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Abstract 

By the Shadowing Lemma we can shadow any sufficient accurate pseudo-trajecto-
ry of a hyperbolic system by a true trajectory of a hyperbolic system. If we are 
interested in finite trajectories, at least from one side, then a pseudo trajec-
tory usually has many possible shadows. Here we show that we can choose a 
continuous single-valued selector from the corresponding multi-valued operator 
"pseudo-trajectory i-t the totality of possible shadows". We do this in the con-
text of Lipschitz mappings which are semi-hyperbolic on some compact subset, 
which need not be invariant. We also prove that semi-hyperbolicity implis in-
vers€ shadowing with respect to a very broad class of nonsmooth perturbations. 

1 Introduction 
Consider a discrete time dynamical system generated by a mapping f. The Shadowing 
Lemma tells us that any sufficiently accurate pseudo-trajectory can be shadowed by a 
true trajectory in the invariant set on which the mapping f is hyperbolic. If only bi-
infinite trajectories are of interest, by the expansivity property of hyperbolic systems 
there is usually only one shadowing true trajectory for each pseudo-trajectory and 
the correspondence between a pseudo-trajectory and its unique shadow is continuous 
in a natural sense, see e.g. [10]. 

On the other hand, a pseudo-trajectory usually has many possible shadows when 
the trajectories are finite on at least one side. It is then useful to know if we can 
choose a continuous single-valued selector from the corresponding multi-valued oper-
ator "pseudo-trajectory r-+ the totality of possible shadows". This is of some interest 
when the dynamical system is simulated on a computer [2, 3, 5, 6, 8, 11], particularly 
in connection with an inverse shadowing property which says that for a given class of 
perturbations (for example, corresponding to certain types of arithmetical processes) 
it is possibl.e to approximate any trajectory of the original system to a required accu-
racy by some trajectory generated by a sufficiently small perturbation belonging to 
this class. In fact, we will prove that continuous shadowing implies inverse shadowing 
with respect to a broad class of nonsmooth perturbations. In this paper the class 
.consists of all continuous ({3, Y)-methods introduced in [8] and contains trajectories 
generated by continuous functions, time varying numerical methods and hysteresis 
systems. Such "methods" are defined in terms of a mapping from the state space of 
the dynamical system to a space of sequences taking values in this state space, es-
sentially assigning a pseudo-trajectory of the original system to a given initial state. 
Hence our results extend those of [3, 5, 6], where a combined shadowing and inverse 
shadowing property, bishadowing for short, was established for semi-hyperbolic map-
pings with respect to perturbations given by continuous functions and by hysteresis 
functions, and from [8] where systems generated by hyperbolic homeomorphisms on 
a compact manifold were considered. 

The semi-hyperbolicity concept [3, 4, 5, 6] that we consider here is a far reach-
ing generalization of the hyperbolicity concept for diffeomorphisms that encompasses 
nonsmooth and noninvertible dynamical systems which are not traditionally studied 
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in dynamical systems theory [3, 4, 5]. In particular, the set on which it applies need 
not be invariant, thus allowing even wider application. 

The paper is organised as follows. The definition and some basic properties of 
senmi-hyperbolic mappings are given in the next section. Section 3 contains the main 
result of the paper, a Continuous Shadowing Lemma, which is proved in Section 6. 
Results on continuous and inverse shadowing for the above mentioned methods are 
presented together with their proofs in Sections 4 and 5, respectively. 

2 Semi-hyperbolicity 
Denote by£= .C(X) the set of Lipschitz mappings f : X r-+ X, where Xis an open 
subset of lRd, and call a four-tuples = (.As, Au, µs, µu) of nonnegative real numbers a 
split if 

(2.1) 
Note that the inequalities (2.1) imply that the spectral radius of the split matrix 

(2.2) 

given by 

a(s) = ~ ( c~ +>-.) + (2.3) 

is strictly less than 1. 

Definition 1. Let Y be a compact subset of X, lets = (.As, Au, µs, µu) be a split, and 
let h and 5 be positive real numbers. A map f E .C(X) is said to be (s, h, 5)-semi-
hyperbolic on the set Y if for each x E Y there exists a decomposition lRd = E~ Ee E~ 
with corresponding projectors P;, P;: such that: 

SHO. dim (E~) =dim (E~) if x, y E Y ; 

SHl. SUPxEY{IP;l IP;:I} ::; h ; 

SH2. The inclusion x + u + v E X and the inequalities 

IP: (f ( X + U + V) - f ( X + U + V)) I < As I U - U I, 
IP;(f(x+u+v)-f(x+u+v))I < µslv-vl, 

IP; U ( x + u + v) - f ( x + u + v)) I < µu I u - u I, 
IP; (! ( x + u + v) - f ( x + u + v)) I > Au Iv - vi 

hold for all x, y E Y with IY - f(x)I ::; 5 and all u, u E E~, v, v E E~ such 
that lul, liil, Iv!, !vi ::; 5. 
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We shall call the semi-hyperbolic mapping continuously semi-hyperbolic if the de-
composition can be chosen to be continuous in x. Let Y11 = { x E X : dist(x, Y) ~ 'T/} 
be the closed rJ-neighbourhood of Y. 

Lemma 1. Let f be continuously (s, h, 8)-semi-hyperbolic on Y. Then for each suf-
ficiently small e > 0 there exists an rJ( c) > 0 such that the system f is continuously 
semi-hyperbolic on Y 11(e:) with parameters 8 - e > 0 and h- e > 0 for the split s(e) = 
(>.s + e, Au - e, µs + e, µu + e). 

Proof: This is done using the Tietze Extension Theorem ([9], p. 127) in a standard 
way, so we omit the details. D 

3 Continuous shadowing 
Let X be an open subset of IR d and consider the discrete-time dynamical system 
generated by a continuous mapping f : X i---+ X. 

We will consider certain finite and infinite sequences y = {Yi}o belonging to X as 
approximate trajectories off. For such a sequence we define the !-discrepancy by 

1J(y; !) = sup I Yi - f (Yi-1) I· 
l~i~n 

A sequence y with 1J({3; !) ~ {3 is called a {3-pseudo-trajectory of the system f. Let 
Trn(f, Y, f:J) denote the totality of such {3-pseudo-trajectories belonging entirely to a 
subset Y C X. We write Trn(f, Y) for Trn(f, Y, 0) and Trn(f) for Trn(f, X) and will 
use the uniform norm on these sets, that is 

llx - Yll = sup lxi - Yil· 
O~i~n 

The set Tr00 (f, Y, {3) will sometimes be endowed with the topology of coordinate-wise 
convergence when convenient. 

A dynamical system generated by a mapping f : X i---+ X is said to be continuously 
shadowing with positive parameters a and f:J on a subset Y of X if for each given 
positive integer n there exists a continuous operator wn : Trn(f, Y, {3)--+ Trn(f) such 
that 

(3.1) 

Theorem 1. Let f be (s, h, 8)-semi-hyperbolic on the set Y. Then it is continuously 
shadowing on Y with a and {3 given by 

a(s, h) h Au - As + µs + µu 
(1 - As) (Au - 1) - µsµu' 

(3.2) 

f:J(s, h, 8) 8h-1 (1 - As)(Au - 1) - µsµu . 
max{..Xu - 1 + µs, l - As+ µu} 

(3.3) 
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This theorem, which concerns the continuous shadowing of trajectories of a given 
length, is a special case of the next theorem. In applications it is often important 
to "glue together" continuous shadowing trajectories of different lengths. For such 
situations the following concretization of the above theorem is convenient. Define 

ru(s, 8) = 8 1 - As+ µu (3.4) 
max{ Au - 1+µs,1- As+ µu} 

and denote by B; ( r) and B~ ( r) the closed balls in the linear subspaces E; and E~, 
respectively, of radius r and centered at y. 

Theorem 2. (Continuous Shadowing Lemma) Let f be (s, h, 8)-semi-hyperbolic 
on the set Y. Then for each positive integer n there exists a continuous operator 
Wn(y, zu) definedfory E Trn(f, Y,(3), zu E B~n (ru(s, 8)) and taking values in Trn(f) 
such that 

(3.5) 
and for each 1 ::; m ::; n the restriction of the trajectory wn (y, zu) to the integer 
interval [O, m] coincides with the trajectory 

Wm (y, z:) where z: = P;rn (xm - Ym). (3.6) 
There also exists an operator W 00 

: Tr00 (f, Y,{3) -t Tr00 (f) such that for each pos-
itive integer m the restriction of the trajectory W 00 (y) to the integer interval [O, m] 
coincides with the trajectory (3.6). Moreover, the operator W 00 is coordinate-wise 
continuous and the trajectories wn(yn, z~) converge coordinate-wise to W 00 (y00

) for 
each sequence yn E Trn(f, Y,f3) converging coordinate-wise to y 00 and any z~ E 
B~~ (ru(s, 8)). 

The proof will be presented in Section 6. 

4 Continuous shadowing for methods 
Denote by T the set of all possible (finite or infinite) sequences y = {y0 , .•. ,yn, .. . } 
belonging to X and for a sequence y E T define 'D(y; f, Y) to be equal to 'D(y*; f) 
where y * is the maximal initial fragment of y which belongs entirely to Y. We call a 
mapping r.p : Y r-+ Ta method of accuracy /3 for f on Y, or just a (/3, Y)-method for 
short, if r.p(y) 0 = y and D(r.p(y); f, Y) ::; /3 for any y E Y. Note that the image of the 
set Y under a (/3, Y)-method is a complete family of /3-pseudo-trajectories in the 
terminology of Corless and Pilyugin [2, 11]. 

Example 1. Let Y C X and consider a sequences of maps gi : Yr-+ X, i = 1, 2, 3, ... , 
with Dy(gi, f) = sup{lgi(x) - f(x)I : x E Y} ::; /3. For each point x E Y define a 
sequence {finite or infinite} r.p(x) E T by 

r.p(x)o = x, r.p(x)n = 9n(r.p(x)n-1), for n > 0, 

as long as successive points belong to Y. Such a (/3, Y)-method r.p arises when a 
simulation of the forward orbits of the dynamical system generated by f involves 
procedures that may vary with time. 
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The above example is a special case of the following one which includes hysteresis 
perturbations [7] and multi-step procedures. 

Example 2. Let a family of maps hn : yn H- X satisfy the following condit'ion: For 
any n > 0 and any points Yo, ... Yn-l E Y 

. If (hn(Yo, · · ·, Yn-1)) - hn+i(Yo, · · ·, Yn-b hn(Yo, · · ·, Yn-1))1 ::S: f3 
if hn(Yo, ... , Yn-1) E Y. Define cp: Y H- T as 

cp(y)o = y 

for n = 0 
cp(y )n = hn ( cp(y )o, · · · , cp(y )n-1) 

for n > 1. 

We say that a ((3, Y)-method is a continuous method if cp : Y H- T is continuous 
with respect to the coordinate-wise topology on/. Let us note that, if the maps gn 
and hn are continuous, then the ((3, Y)-methods in theabove examples are continuous 
methods. 

Denote by x(x0 ) the true trajectory xo, .. . , Xn = fn(xo), ... off starting at the 
point x0 and let a, (3 > 0. We will say that the mapping f is continuously M-
shadowing with parameters a > 0, (3 > 0 and 'fJ 2:: 0 (by mentioning a and f3 only, 
we will mean the case 'fJ = 0) on a compact subset Y of X if for any continuous 
((3, Y77 )-method cp there exists a continuous mapping W : Y -+ X such that for any 
positive integer n the inclusions 

cp (y) i E Y, for all i = 0, 1, ... , n ( 4.1) 

imply 
I cp ( y) i - Xi I ::S: a1J ( cp (y); f, Y) for all i = 0, 1, ... , n (4.2) 

where x = x(W(y)). 
We emphasize that we did not fix the length of trajectory under consideration 

in advance and, in fact, different trajectories are to be shadowed on quite different 
intervals. (Also, the mapping W here should be universal). 

Theorem 3. Let f be (s, h, o)-semi-hyperbolic on the set Y. Then it is continuously 
M-shadowing on Y for any a > a(s, h), (3 < (3(s, h, o) and a sufficiently small rJ > 0. 

Proof: Choose positive numbers a> a(s, h) and (3 < f3(s, h, o). Then select a positive 
c such that 

a(s, h) <a< a(s(c), h - c), f3(s, ho) < f3 < f3(s(c;), h - c, o - c) 

and let 'fJ = rJ(c) > 0 be that from Lemma 1. Now fix a continuous ({3, Y77 )-method 
cp and let Y11;n denote the closed rJ/n neighbourhood of Y. Let Yo = Y11 and for n > 
1 denote by Yn the totality of y E Y11;2n such that 

cp(y)i E Y11/2n, i = 0, 1, ... ) n. 
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Clearly, each Yn is a compact set and Yn belongs to the interior of Yn-1· Let r n 
denote the the boundary of Yn and define on r n the function 

Zn-1(Y) = P:/r._ 1 (xn-1 - Yn-1) 
where 

x = wn(y, 0, 0) 
and y = cp(y). Now extend Zn-l ( ·) to a continuous function on the whole set Yn-l \ Yn 
satisfying 

which is possible due to the Tietze Extension Theorem [9]. Finally define the mapping 
Won Yn-1 \ Yn by W(y) = y~ where 

y* = wn-1(y,0, Zn-1(Y)) 

and by 
W(y) = W 00 (y, 0), 

By definition the mapping W is continuous on Y;, and has the required shadowing 
property. Hence the mapping W, or strictly speaking the restriction of this mapping 
to Y, has the neccessary properties and the theorem is proved. D 

5 Inverse shadowing for methods 
As before, let x(x0 ) be the true trajectory off starting at the point x0 and let Y be 
compact subset of X. A map f is said to be inverse M-shadowing on Y with positive 
parameters a, /3 and 'T/ if for any continuous (,B, Y77 )-method cp and any x0 E Y there 
exists a point y E X such that the inclusions 

Xi E Y for all i = 0, 1, ... , n (5.1) 

imply 
lcp(y)i - xii ~ a1J(cp(y); f, Y11 ), for all i = 0, 1, ... , n (5.2) 

where x = x(x0 ). 

This definition generalizes the "inverse POTP" concept considered by Corless and 
Pilyugin in [2] for diffeomorphisms on compact manifolds and bi-finite orbits. It is 
also differs slightly from the definitions of a-robustness and (a, ,B)-inverse shadowing 
investigated the papers [3, 5, 6, 8] where a whole trajectory y E TrJ(f, Y) for a given 
integer interval J was fixed rather than just its 0th point y E Y as in the above 
definition. 

Theorem 4. Let f : X r-+ X be Lispchitz continuous with Lipschitz constant L, let 
Y C X and let 'TJ > 0 be small enough so that Y77 C X. If f is continuously M-
shadowing on Y77 with parameters a and /3, then f is inverse M-shadowing on Y with 
parameters 

a, ,81 = min (!3, !l, L 'T/ ) , a a +l 'TJ. 
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Proof: Let a continuous (,Bi, Y77 )-method cp and let x E Y be fixed. Hence the ball B 
= {y E lRd : Ix - YI ::; 77} C Y77 , so we can define a mapping F : B r-+ lRd by 

F(y) = x - W(y) + y, 

where W is a continuous operator given by continuous M-shadowing on Yw The 
mapping F is thus obviously also continuous. 

Now by shadowing, for y E B we have 

IF(y) - xi = IW(y) - YI ::; a'D(cp(y); f, Y11 ) ::; a,81 ::; 77, 

from which it follows that F(B) C B. By the Brouwer Fixed Point Theorem there 
exists a fixed point x* E B of F and by the definition of F we have x = W(x*). 

Suppose that the inclusions (5.1) hold and let n* be the largest integer for which 

i = 0, 1, ... , n*. 

Suppose that n* < n. Then by the shadowing property 

lcp(x*)n. - Xn. I ::; a,81, 

so If ( cp(x*)nJ - f (xnJ I ::; a,81L and consequently 

lcp(x*)n.+I - Xn.+11 ::; ,81(aL + 1) ::; 77· 

That is cp(x*)n.+I E Y77 , which contradicts the definition of n*. Thus we must haven* 
;?:: n and the desired relation (5.2) then follows from the shadowing property which 
was established in the previous theorem. D 

The theorems 3 and 4 imply 

Corollary 1. Let the mapping f E £(X) be (s, h, 5)-semi-hyperbolic on a compact 
set Y C X. Then for any sufficiently small c > 0, f is inverse M-shadowing on Y 
with parameters 

a> a(c), . { 77(c) 77(c) } 
,B <mm ,B(c), a(c)' a(c)L + 1 ' 

where Lis the Lipschitz constant off, a(c) = a(s(c),h-c) and,B(c) = ,B(s(c),h-
c, 5 - c) while 77( c) is the same as in Lemma 1. 

6 Proof of the Continuous Shadowing Lemma 
We will prove Theorem 2 using the Contraction Mapping Principle. For this we rieed 
some auxiliary facts. 
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6el Auxiliary results 

For each x, y E Y with lf(x)-yj ~ o and for each z E lRd satisfying IP:zl ~ o define 
the mapping Fx,y,z : B~ ( o) i--+ E; by 

Fx,y,z(v) = P; (f(x + P;z + v) - f(x + P;z)). (6.1) 

Lemma 2. Let x, y E Y with lf(x) - yj ~ 8 and z E lRd satisfy IP:zl ~ 8. Then 
Fx,y,z (B~(r)) 2 B;(>..ur) for 0 ~ r ~ 0. 

Proof: We need only consider the case r > 0. Denote the boundary and the interior 
of B~(r) by 8B~(r) and int B~(r), respectively. Clearly, 

Fx,y,z(O) = P; (f(x + P;z) - f(x + P;z)) = 0 E int B;(> .. ur), (6.2) 

while by the inequality (2.4) 

(6.3) 

By Property SHO and the Invariance of Domain Principle (see, e.g., [1], p.396), the 
relation (6.3) implies that 8Fx,y,z(B~(r)) nint B;(>,ur) = 0. This combines with (6.2) 
to imply that Fx,y,z (B~(r)) 2 B;(Aur), which proves the lemma. D 

lFrom this lemma and from inequality (2.4) we immediately obtain 

Corollary 2. Under conditions of Lemma 2 the operator Qx,y,z = Fx~;,z is defined 
and continuous on B; ( AuO) and satisfies the estimates 

and 

6.2 Operator H and its properties 

Let n ~ oo be fixed. Denote by J[n] the set of all finite integers satisfying 0 ~ i ~ 
n and let J(n], J[n) and J(n) be the subsets of J[n] obtained by excluding the first, 
the last and both the first and last elements, respectively. Let zn be the space of 
finite sequences 

z = { Zo' Z1' ... ' Zn} (6.4) 

if n < oo and the corresponding space of infinite sequences otherwise. Choose a 
pseudo-trajectory y E Trn(f, Y,{3) and, when n if finite, also choose a point zu E 
E;n. Introduce an operator H : zn r-+ zn taking z to w which is defined by the 
boundary conditions 

0, 

zu if n < oo, 

8 

(6.5) 

(6.6) 



and the relations 

p~_1 Wi-1 

(6.7) 

(6.8) 

for i E J(n] and i E J( n) in the first and second equations, respectively. A further 
restriction will be placed on the point zu in the boundary condition (6.6) in Lemma 
4 below. 

Define a and b by 

where M(s) is the split matrix (2.2) which, as we saw earlier, has spectral radius a(s) 
strictly less than 1. Hence the matrix 

00 

(J - M(s))-1 = L M(s)i 
j=O 

exits and has nonnegative entries with strictly positive diagonal entries, from which 
it follows that a and b are strictly positive. The set 

is thus nonempty. 

Lemma~. Let z = {zi}i=o E S. Then 

and 

hold for each i E J[n]. 

Proof: First note from (6.9) that 

a + b = a( s, h) and 

the second of which implying that 

8 
max{ a, b} = f3(s, h, 8), 

af3(s, h, 8) :::; 8, bf3(s, h, 8) :::; <5. 

On the other hand, by the definition of the set S we have 
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Inequalities (6.14) and (6.15) lead to (6.11). The inclusion (6.12) then follows from 
(6.11) and the inclusion x + u + v E X of property SH2. 0 

Now' define an auxiliary norm 11 . II* on zn by 

(6.16) 

with lzil* = max{IP;izl, 1IP;izl} where 

{ = ~a(s) - As 
µs µs 

and a(s) is the spectral radius (2.3) of the split matrix M(s). Finally, the boundary 
condition (6.6) will be called restricted if zu satisfies lzul < af3(s, h, 8). 

Lemma 4. Let n = oo or let n < oo and the boundary condition ( 6. 6) be restricted. 
Then the operator H exists and is O'(s)-contracting in the norm (6.16) on the set S. 

Proof: We consider only the more complicated case when n is finite. By inclusion 
(6.12) of Lemma 3, the right hand side of (6:7) is defined and depends continuously 
on z E S. We need thus only to prove that for any i E J(n] the right hand side of 
(6.8) is defined and continuous for z E S. By inclusion (6.12) of Lemma 3 again, the 
expression 

P~ (Yi - f (Yi-1 + P;i-l Zi-1) + zi) 
which is the argument of the operator QYi-l,Yi,Zi-l in (6.8), is defined and continuous 
for z E S. It remains then to verify that the conditions of Corollary 2 hold, that is 
that 

Yi-l>Yi E Y, (6.17) 
and 

(6.18) 

are valid for all i E J(n]. The inclusions in (6.17) follow from the assumptions of 
the theorem and the first inequality in (6.17) is valid by (3.3), while the second one 
follows from Lemma 3 and the first inequality of (6.11). To verify (6.18) we first 
rewrite it as 

(6.19) 
where 

11 = P~(Yi - f(Yi-i)), 12 = P~(f(Yi-1) - f(Yi-1 + P;i_ 1Zi_i)), ]3 = P~zi, (6.20) 

and estimate each of IJ1I, IJ2I and jJ3 j. To estimate IJ1I note that !Yi - f(Yi-1)1 :Sf' 
because y is a 1-pseudo trajectory of f. By property SHl we thus obtain 

(6.21) 

By inequality (2.4) we also have 

(6.22) 
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and obviously 
!Jal= IP~zil· 

On the other hand, z E S implies that 

Hence by (6.22)-(6.24) 

IJ1 + J2 +Jal < IJ1l + IJ2l +!Jal < 'Y(h + aµu + b), 

so it remains to show that 

lFrom (6.9) we see that 

a= h Au - l + µs 
(1 - As)(Au - 1) - µsµu' 

so h + aµu + b = Aub and ( 6.25) can be rewritten as 

"'f Aub ~ Au8. 

Inequality (6.26) then follows from the second equality of (6.13). 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

Let us now prove the contracting property of the operator H. For this we consider 
the difference 

w 1 - w 2 = H z1 - H z2 

for arbitrary z1 , z2 E S. We will verify that the inequality 

holds, or equivalently the pairs of inqualities 

IPJi(w} - wi)I ~ O"(s)llz1 - z21l*' 

'YIP~(w} - wi)I ~ O"(s)llz1 - z21l*· 
In view of the boundary conditions it suffices to establish the estimates 

IPJJw} - wi)I ~ O"(s)lzL1 - zl-11*' 

'YIP~(wL1 - wl-1)1 ~ O"(s)lz} - z[I* 
for i E J(n]. Reasoning in the same way as above, we obtain 

and 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

IP~_ 1 (wf-t - wf-i)I S: ~: IP:,(z} - z;)I + ;,, IP~(z} - zi)I (6.32) 

for i E J(n]. To see that (6.29) and (6.30) follow from (6.31) and (6.32) we recall 
that the norm llM(s)ll* is just O"(s). 0 
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Lemma 5. Let the boundary condition { 6. 6} be restricted. Then for any fixed point 
z E S of H, the sequence 

x=y+z 
is a trajectory off. 

Proof: It is sufficient to show for a given z E zn that 

i E J(n]. 

are equivalent to the following system of pairs of equalities 

p~_ 1 Zi-l = QYi-1,Yi1Zi-1 (P~yi - f (Yi-l + p;i-l Zi) + zi)) · 
Clearly (6.35) is equivalent to 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

On the other hand, applying the (nonlinear) operator FYi-l,Yi,Zi-l = Q;,_~ 1 ,yi,Zi-l to 
both sides of (6.36), by (6.1) with x = Yi-1' y =Yi and z = Zi-l we get 

p~ (f (Yi-l + Zi-1) - f (Yi-1 + p:i-l Zi-1)) = 

p~ ((Yi+ Zi - f (Yi-1 + Zi-1)) + (f (Yi-1 + Zi-1) - f (Yi-l + P;i_.1 Zi-1))) , 

or 0 = P~ (zi - f (Yi-l + Zi-1) +Yi)· That is, (6.36) is equivalent to 

p~ (Yi+ Zi) = P~f (Yi-1 + Zi-1). (6.38) 

Hence the system (6.35)-(6.36) is equivalent to ·the system (6.37)-(6.38), which in 
turn is equivalent to (6.34) and the lemma is proved. D 

Lemma 6. Let the boundary condition ( 6. 6) be restricted. Then the set S is invariant 
under H. 

Proof: Choose and fix any z E S. We need to show that w = H(z) E S or, what is 
the same, to establish the estimates 

i E J[n]. (6.39) 

First we rewrite (6.7) in the form P;iwi = (11 + I2), where 

(6.40) 

and then rewrite (6.8) as P~_1 Wi-l = QYi-l,Yi,Zi-i (11 +12 + 13 ), where Ji, 12 and 13 
are defined in ( 6. 20). 

12 



To estimate II1I note that IYi - f(Yi-i)I :::; ry, so by property SHl we have 

(6.41) 

Also by (2.4) and (2.4) it follows that 

II2I:::; AslP;i_1 Zi-11 + µslP~_ 1 Zi-11· (6.42) 

lFrom the estimates (6.41)-(6.42) and the definition (6.10) of S we obtain 

i E J(n). (6.43) 

Analogously, from (6.21)-(6.23), the definition of S and Corollary 2 it follows that 

i E J(n]. (6.44) 

Inequalities (6.43) and (6.44) together with the boundary conditions (6.5)-(6.6) then 
lead to the component-wise estimate 

for all i E J[n]. On the other hand, in view of (6.9) we have 

1M(s)(a, b)T + ryh 

Hence (6.45) implies that 

which is equivalent to (6.39). 0 

ry(M(s)(I - M(s))-1 + I)h 

ry(I - M(s))-1h =1(a,b)T. 

z ES, 

(6.45) 

Lemma 7. Let the boundary condition ( 6. 6) be restricted. Let 0 :::; m :::; n < oo and 
let y * is the restriction of y to J{mj. Then 

holds for each z E zn, where w* and z* are the restrictions of z and w to J[m] and 
H* = Hy zs zu with 

*' *' * 
zu = { P;m Wn, if m < n, 
* zu, otherwise. 

Proof: The proof follows from the previous lemma and the definitions. 0 
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6.3 Proof of Theorem 2 

Let us now finish the proof of the Continuous Shadowing Lemma (Theorem 2). It is 
known that the unique fixed points of parametrized family of contraction mappings 
on a common complete metric space depend continuously on the parameter if the 
mappings do and if they have a common contraction constant. Clearly, the operators 
H depend continuously on y and zu E B~n (ru(s, 8)) if n < oo and on y if n = oo. 
Moreover, these operators are uniformly contracting with the common contraction 
constant a(s) and each maps the same set S into itself. Hence their unique fixed 
points z = z(y, zu) if n < oo or z = z(y) if n = oo depend continuously on their 
variables. Define 

and 
W 00 (y) = y + z(y). 

It is straightforward to verify that these mappings have the required properties. The 
theorem is thus proved. D 
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