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Abstract

In this paper, we develop a thermodynamically consistent description of the uni-

axial behavior of thermovisco-elastoplastic materials for which the total stress �

contains, in addition to elastic, viscous and thermic contributions, a plastic com-

ponent �
p of the form �

p(x; t) = P ["; �(x; t)](x; t) . Here, " and � are the �elds

of strain and absolute temperature, respectively, and fP [�; �]g�>0 denotes a family

of (rate-independent) hysteresis operators of Prandtl-Ishlinskii type, parametrized

by the absolute temperature. The system of momentum and energy balance equa-

tions governing the space-time evolution of the material form a system of two highly

nonlinearly coupled partial di�erential equations involving partial derivatives of hys-

teretic nonlinearities at di�erent places. It is shown that an initial-boundary value

problem for this system admits a unique global strong solution which depends con-

tinuously on the data.

0 Introduction

For many materials the stress-strain (� - ") relations measured in uniaxial load-de-

formation experiments strongly depend on the absolute (Kelvin) temperature � and,

at the same time, exhibit a strong plastic behavior witnessed by the occurrence of rate-

independent hysteresis loops. Figure 1 shows a typical diagram, where the elasticity

modulus and the yield limit depend on temperature.

Among the materials exhibiting both temperature- and rate-independent hysteretic e�ects

are shape memory alloys (see, for instance, Chapter 5 in [BS]) and even, although to a

smaller extent, quite ordinary steels.

If the � - " relation exhibits a hysteresis, it can no longer be expressed in terms of simple

single-valued functions since the latter are certainly not able to give a correct account of
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the inherent memory structures that are responsible for the complicated loopings in the

interior of experimentally observed hysteresis loops.
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�

Figure 1: Strain-stress diagrams at constant temperatures �1 6= �2 .

To avoid these di�culties, a di�erent approach to thermoelastoplastic hysteresis based

on the notion of hysteresis operators introduced by the Russian group around M.A. Kras-

noselskii in the seventies (see [KP]) has been proposed by the authors in [KS]. In this

approach, the temperature-dependent plastic stress �p has been assumed in the form of

an operator equation with a temperature-dependent hysteretic constitutive operator P
of Prandtl-Ishlinskii type, namely

�
p = P["; �] :=

Z
1

0
'(r; �) sr["] dr : (0.1)

In this connection, sr denotes the so-called stop operator or elastic-plastic element with

threshold r > 0 (to be de�ned in the next section), and '(�; �) � 0 is a density function

with respect to r > 0 , parametrized by the absolute temperature � .

The advantage of this approach is that an operator equation like (0.1) is suited much

better than a simple functional relation to keep track of memory e�ects imprinted on the

material in the past history; in fact, the output at any time t 2 [0; T ] may depend on the

whole evolution of the input in the time interval [0; t] . Observe that the requirement of

rate-independence implies that P cannot be expressed in terms of an integral operator of

convolution type, i. e. we are not dealing with a model with fading memory.

For the isothermal case, i. e. if P is independent of � , a one-dimensional approach to

elastoplasticity using rate-independent hysteresis operators has been carried out earlier by

P. Krej£í in a series of papers (cf. e.g. [K1, K2, K]); the (simpler) case of viscoplasticity

has been treated in [BS1]. In these cases, the space-time evolution is governed by the

equation of motion which takes the form�
� utt � (P[ux])x � �uxxt

�
(x; t) = f(x; t) ; (0.2)

where � , � � 0 and u denote mass density, viscosity coe�cient and displacement, in

that order.

In the non-isothermal case the equation of motion has to be complemented by a �eld

equation representing the balance law of internal energy, and the second principle of ther-

modynamics in form of the Clausius-Duhem inequality must be obeyed. It is, however,
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not obvious how the correct expressions for thermodynamic state functions like the den-

sities of free energy, internal energy and entropy, should look like for a constitutive law

like (0.1). In [KS], a corresponding construction has been carried out. It turned out

that in a setting like ours, where the relation between strain and plastic stress is given in

operator form, it is quite natural to consider the densities of free energy, internal energy

and entropy as operators rather than as functions.

The aim of this paper is to extend the investigations of [KS] to other situations. More

precisely, while in [KS] we have studied the case when the total stress � is composed of

a plastic stress �p of the form (0.1) and a so-called couple stress, we consider here the

situation when � comprises, in addition to the plastic stress (0.1), (nonlinear) elastic,

(linear) viscous, and (linear) thermic contributions �e , �v and �
d , respectively; that is,

we assume a constitutive law of the form

� = �
p + �

e + �
v + �

d
; (0.3)

with �
p given as in (0.1).

It should be mentioned at this place that hysteretic relations can usually not be de-

scribed in an explicit form and, as a rule, enjoy only very restricted smoothness properties.

Therefore, the classical techniques of one-dimensional thermovisco-elasticity developed for

cases in which the stress-strain relation is given through a simple (possibly nonconvex, but

di�erentiable) function (we only refer to the fundamental papers [D, DH]) do not apply,

and new techniques tailored to deal with the speci�c behavior of hysteretic nonlinearities

need to be employed.

The remainder of the paper is organized as follows. In Section 1, the �eld equations

governing the space-time evolution in thermovisco-elastoplastic materials with the consti-

tutive law (0.3) are derived. We obtain a system of nonlinearly coupled partial di�erential

equations involving partial derivatives of hysteretic nonlinearities at di�erent places, even

in derivatives of highest order. Section 2 brings the statement of the initial-boundary

value problem under investigation, and the general existence and uniqueness result is for-

mulated. In Section 3, we employ a space discretization to construct approximations to

the solution for which global a priori estimates are shown in Section 4. Section 5 contains

the proof of existence using compactness arguments and a passage-to-the-limit proceduce.

In the �nal Section 6, stability with respect to the data of the system and uniqueness are

shown.

1 Derivation of the model

The stop operator sr : W 1;1(0; T ) ! W
1;1(0; T ) in the equation (0.1) is de�ned as the

solution operator �r = sr["] of the variational inequality

j�r(t)j � r; ( _"� _�r)(�r � ~�) � 0 a.e.; 8~� 2 [�r; r]; (1.1)

with initial condition

�r(0) = sign("(0))minfr; j"(0)jg (1.2)

which describes the strain-stress law of Prandtl's model for elastic-perfectly plastic mate-

rials with a unit elasticity modulus and yield point r .
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The density function ' in (0.1) is assumed to be given. It can be identi�ed from the

isothermal initial loading curves � = �("; �) obtained experimentally by letting " mono-

tonically increase for each �xed temperature � starting from the origin. The corresponding

formula reads (see [K])

�("; �) =

Z
"

0

Z
1

s

'(r; �) dr ds: (1.3)

We consider here only the case when ' is nonnegative, i.e. the initial loading curves at

each constant temperature are concave and nondecreasing as on Figure 1.

The operator sr has following properties (for a proof, see [BS], [K]).

Proposition 1.1 Let r > 0 be given. Then it holds:

(i) For every " 2 W 1;1(0; T ); we have

 
d

dt
sr["]

!2

= _"
d

dt
sr["] a:e: in ]0; T [: (1.4)

(ii) For every "1; "2 2 W
1;1(0; T ); we have

1

2

d

dt
(sr["1]� sr["2])

2 � ( _"1 � _"2)(sr["1]� sr["2]) a:e: in ]0; T [; (1.5)

Z
T

0

����� ddt(sr["1]� sr["2])

����� (t) dt � j"1(0)� "2(0)j+ 2

Z
T

0
j _"1 � _"2j (t) dt; (1.6)

j(sr["1]� sr["2])(t)j � 2 max
0���t

j"1(� )� "2(� )j 8t 2 [0; T ]: (1.7)

(iii) For every r; q > 0 and " 2 W 1;1(0; T ); we have

j(sr["]� sq["])(t)j � jr � qj 8t 2 [0; T ]: (1.8)

The inequalities (1.6), (1.7) entail that the stop operator sr is Lipschitz continuous in

W
1;1(0; T ) and admits a Lipschitz continuous extension onto C([0; T ]) . Moreover, we

immediately see by de�nition that sr is a causal operator, that is, we have the implication

"1(� ) = "2(� ) 8� 2 [0; t] ) sr["1](t) = sr["2](t) (1.9)

for every t 2 [0; T ]; which means that the output values at time t depend only on past

values of the input. This enables us to consider sr as a family of operators acting in the

spaces C([0; t]) for all t 2 ]0; T ] .

From inequality (1.5) it immediately follows:

Corollary 1.2 For all "; "1; "2 2 W
1;1(0; T ); we have

sr["]

 
_"�

d

dt
sr["]

!
� 0 a.e. in ]0; T [; (1.10)

j(sr["1]� sr["2])(t)j � j"1(0)� "2(0)j +
Z

t

0
j _"1 � _"2j(� ) d� 8t 2 [0; T ]: (1.11)
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In this paper we consider the one-dimensional equation of motion

� utt = �x + f; (1.12)

where � > 0 is a constant referential density, u is the displacement, � is the total unaxial

stress and f is the volume force density.

We assume that � can be decomposed into the sum

� = �
p + �

e + �
v + �

d
; (1.13)

where

�
e = 
("); (1.14)

with a given nondecreasing Lipschitz continuous function 
 : R1 ! R
1 , 
(0) = 0; is the

(nonlinear) kinematic hardening component,

�
v = � _" (1.15)

with a constant � > 0 is the viscous component,

�
d = ��� (1.16)

with a constant � 2 R1 is the thermic dilation component and �
p is the thermoplastic

component given by (0.1). Equation (1.13) can be interpreted rheologically as a combi-

nation in parallel of the above components (see [LC]). The stop operator sr is assumed

to act on functions of x and t according to the formula

sr["](x; t) := sr["(x; �)](t); (1.17)

i.e. x plays the role of a parameter. The equation of motion (1.12) has to be coupled

with the energy balance equation

Ut = �"t � qx + g; (1.18)

where U is the total internal energy, q is the heat �ux and g is the heat source density.

The model is thermodynamically consistent provided the temperature � and the entropy

S satisfy the inequalities

� > 0; (1.19)

St �
g

�
�
�
q

�

�
x

(Clausius-Duhem); (1.20)

in an appropriate sense.

In [KS] we derived the following expressions for thermoplastic parts of internal energy Up

and entropy Sp in operator form corresponding to the constitutive law (0.1),

U
p = V["; �] :=

1

2

Z
1

0
('(r; �)� �'�(r; �)) s

2
r
["] dr; (1.21)

S
p = S["; �] := �

1

2

Z
1

0
'�(r; �) s

2
r
["] dr: (1.22)
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In accordance with (1.13), (1.21), (1.22), we put

U := CV � + V["; �] + �(") + V0; (1.23)

S := CV log � + S["; �] + �"; (1.24)

where CV > 0 , the purely caloric part of the speci�c heat, is a constant, V0 > 0 is a

constant which is chosen in order to ensure that U � 0 according to Hypothesis 2.2

below, and �(") :=
R
"

0 
(s)ds: For the heat �ux we assume Fourier's law

q = ���x (1.25)

with a constant heat conduction coe�cient � > 0 . We complete the system (1.12), (1.18)

with the small deformation hypothesis

" = ux (1.26)

and rewrite it in the form

�utt � (
(ux) + P[ux; �] + �uxt � ��)
x
= f; (1.27)

(CV � + V[ux; �])t � ��xx = (P[ux; �] + �uxt � ��)uxt + g: (1.28)

In fact, the model can be interpreted in the framework of classical thermodynamics using

a continuous family of internal parameters. In the above setting, the memory state at

point x and time t is described by the function

r 7�! sr["](x; t); (1.29)

i.e. the internal parameter function takes values in an in�nite-dimensional subset of the

metric space

� =
n
� 2 W 1;1(0;1); j�0(r)j � 1 a.e. in ]0;1[

o
; (1.30)

according to (1.8). The operator notation we introduced in [KS] and use here is much

more elegant, indeed.

2 Statement of the problem

We consider a model problem for a system of the form (1.27), (1.28), namely

utt � 
(ux)x � (P[ux; �])x � �uxxt + ��x = f(�; x; t); (2.1)

(CV � + V[ux; �])t � �xx = P[ux; �]uxt + �u
2
xt
� ��uxt + g(�; x; t); (2.2)
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for x 2 ]0; 1[ , t 2 [0; T ] , where T > 0 , � > 0 , CV > 0 , � 2 R1 are �xed constants,


:R1 ! R
1 , f; g: ]0;1[� ]0; 1[� [0; T ] ! R

1 are given functions, and P , V are the

operators de�ned by (0.1), (1.21) with a given distribution function ': (]0;1[)2 ! [0;1[

satisfying Hypothesis 2.2 below.

In other words, we assume in (1.27), (1.28) that the volume force and heat source densities

are given functions of x and t which may also depend on the instantaneous value of � ,

and we rescale the units in such a way that � � � � 1 . The system (2.1), (2.2) is coupled

with boundary and initial conditions which are chosen in the following simple form.

u(0; t) = u(1; t) = �x(0; t) = �x(1; t) = 0; (2.3)

u(x; 0) = u
0(x); ut(x; 0) = u

1(x); �(x; 0) = �
0(x): (2.4)

The data are assumed to satisfy the following hypotheses.

Hypothesis 2.1 (i) u
0
; u

1 2 W
2;2(0; 1)\

�

W
1;2(0; 1) , �0 2 W

1;2(0; 1); and there exists

a constant � > 0 such that

�
0(x) � � 8x 2 [0; 1]: (2.5)

(ii) 
:R1 ! R
1 is an absolutely continuous function, 
(0) = 0; and there exists a

constant 
0 > 0 such that

0 �
d
(")

d"
� 
0 a.e. in R1

: (2.6)

(iii) The functions f; g are measurable, f(�; x; t) , g(�; x; t) are absolutely continuous in

[0;1[ for a.e. (x; t) 2 ]0; 1[�]0; T [ . Moreover, there exist a constant K > 0 and

functions f0; g0 2 L
2(]0; 1[�]0; T [) such that

g(0; x; t) = g0(x; t) � 0 a:e:; (2.7)

jf(�; x; t)j+ jft(�; x; t)j � f0(x; t) a:e:; (2.8)

jf�(�; x; t)j+ jg�(�; x; t)j � K a:e: : (2.9)

Hypothesis 2.2 The function ': (]0;1[)2 ! [0;1[ is measurable, '(r; �) , '�(r; �) are

absolutely continuous for a.e. r > 0; and there exist constants L > 0 , V0 > 0 such that

for a.e. � > 0 the following inequalities hold.Z
1

0
'(r; �) dr � L; (2.10)

Z
1

0
j'�(r; �)j r dr � L; (2.11)

Z
1

0
� j'��(r; �)j r

2
dr � CV ; (2.12)

where CV is the constant introduced in (1.23),

1

2

Z
1

0
j'(r; �)� �'�(r; �)j (1 + r

2) dr � V0: (2.13)
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Example 2.3 A typical function ' satisfying Hypothesis 2.2 can be chosen as

'(r; �) = �E(�) c(r � �r(�)); (2.14)

where c 2 D(]�m;m[) is a molli�er such that

Z
m

�m

c(s) ds = 1; c � 0; (2.15)

with a (small) constant m > 0 , and �E; �r are given functions such that �E(�) � L ,

m � �r(�) � R; for some constant R � m , with (1 + �)
�
j �E0(�)j+ j�r0(�)j

�
bounded and

� (j �E00(�)j+ j�r00(�)j + �E
02(�) + �r

02(�)) small, uniformly with respect to � .

We now state the main result of this paper.

Theorem 2.4 Let Hypotheses 2.1, 2.2 hold. Then there exists a unique solution (u; �)

to the problem (2.1)�(2.4) such that

utt; uxx; uxxt; �x 2 L
1(0; T ; L2(0; 1)); (2.16)

uxtt; �t; �xx 2 L
2(]0; 1[� ]0; T [); (2.17)

�; u; ux; ut; uxt 2 C([0; 1]� [0; T ]); (2.18)

there exists a constant c0 > 0 depending only on the given data such that for all t 2 [0; T ]

and x 2 [0; 1] we have

�(x; t) � �e
�c0t

> 0; (2.19)

and (2.1)�(2.4) are satis�ed almost everywhere.

We �rst check that the model is thermodynamically consistent according to (1.19), (1.20).

Corollary 2.5 The solution from Theorem 2.4 satis�es the Clausius-Duhem inequality

(1.20) with S de�ned by (1.24), (1.22) almost everywhere in ]0; 1[�]0; T [ .

Proof of Corollary 2.5. For a.e. x and t we have

�St + �

�
q

�

�
x

� g (2.20)

= CV �t + � (S[ux; �])t + ��uxt � �xx � g +
1

�
�
2
x

= � (V[ux; �])t + � (S[ux; �])t + P[ux; �]uxt + �u
2
xt
+

1

�
�
2
x

=

Z
1

0
'(r; �) sr[ux] (ux � sr[ux])t dr + �u

2
xt
+

1

�
�
2
x

and the assertion follows from (1.10).
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The existence result in Theorem 2.4 is proved via compactness methods based on a space-

discrete approximation scheme. We use a stepwise estimation technique which will be

explained in the next two sections. It depends substantially on the following properties

of the hysteresis operators P and V .

Proposition 2.6 Let Hypothesis 2.2 hold. Then the operators P;V are causal and have

the following properties.

(i) For every "; � 2 W 1;1(0; T ) , � > 0; we have

jP["; �](t)j � V0; jV["; �](t)j � V0; (2.21)����� ddtP["; �](t)

����� � L

�
j _"(t)j+ j _�(t)j

�
; a.e. in ]0; T [: (2.22)

(ii) For every "; "2; �1; �2 2 W
1;1(0; T ) , �1 > 0 , �2 > 0 and for every t 2 [0; T ]; we have

jP["1; �1]�P["2; �2]j (t) � L

�
j�1 � �2j(t) + j"1 � "2j(0) +

Z
t

0
j _"1 � _"2j(� )d�

�
; (2.23)

jV["1; �1]� V["2; �2]j (t) �
CV

2
j�1��2j(t) + V0

�
j"1�"2j(0) +

Z
t

0
j _"1� _"2j(� )d�

�
; (2.24)

jP["1; �1]�P["2; �2]j (t) � L

�
j�1 � �2j(t) + 2 max

0���t
j"1 � "2j(� )

�
; (2.25)

jV["1; �1]� V["2; �2]j (t) �
CV

2
j�1 � �2j(t) + 2V0 max

0���t
j"1 � "2j(� ): (2.26)

Proof. The causality is obvious. To prove part (ii), we just note that it holds

jP["1; �1]�P["2; �2]j �
Z
1

0
j'(r; �1)� '(r; �2)j jsr["1]j dr (2.27)

+

Z
1

0
'(r; �2)jsr["1]� sr["2]j dr;

jV["1; �1]� V["2; �2]j �
1

2

Z
1

0
j'(r; �1)� �1'�(r; �1)� '(r; �2) + �2'�(r; �2)j s

2
r
["1] dr

+
1

2

Z
1

0
j'(r; �2)� �2'�(r; �2)j

���s2
r
["1]� s

2
r
["2]

��� dr; (2.28)

and the inequalities (2.23)�(2.26) follow from the hypotheses (2.10)�(2.13) and the in-

equalities (1.7), (1.11). In addition, by de�nition we have

jsr["](t)j � r 8"; 8t; (2.29)

and from (1.4) it follows that

����� ddtsr["](t)
����� � j _"(t)j a:e:; 8": (2.30)
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A straightforward argument yields (2.22) and the second inequality of (2.21). The proof

of Proposition 2.6 will be complete if we check that Hypothesis 2.2 implies

Z
1

0
r '(r; �) dr � V0 8� > 0: (2.31)

To this end, we introduce the function

 (r; �) :=
r

�
'(r; �): (2.32)

By (2.10), (2.11), (2.13), we have for all � > 0

Z
1

0

1

r
 (r; �) dr �

L

�
; (2.33)

Z
1

0
j (r; �) + � �(r; �)jdr � L; (2.34)

Z
1

0
j �(r; �) j dr �

V0

�2
; (2.35)

and the triangle inequality yields that

Z
1

0
 (r; �) dr � L+

V0

�
: (2.36)

The functions  (�; �) thus belong to L
1(0;1) for each value of the parameter � > 0 .

Moreover, from (2.35) it follows for �2 > �1 > 0 that

Z
1

0
j (r; �1)�  (r; �2)j dr �

Z
1

0

Z
�2

�1

j �(r; �)j d� dr � V0

�
1

�1

�
1

�2

�
: (2.37)

Since the space L1(0;1) is complete, there exists a function  1 2 L1(0;1) such that

lim
�!1

Z
1

0
j (r; �)�  1(r)j dr = 0: (2.38)

Passing to the limit in (2.37) as �2 !1 we obtain

Z
1

0
j (r; �)�  1(r)j dr �

V0

�
8� > 0: (2.39)

On the other hand, for every R > 0 and � > 0 we have

Z
R

0
 1(r)dr � R

Z
R

0

1

r
 (r; �)dr +

Z
R

0
j (r; �)�  1(r)j dr: (2.40)

Hence, (2.33), (2.39) yield that  1 = 0 a.e.; inequality (2.31) now follows immediately

from (2.39), (2.32).
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3 Space discretization

Let n > 1 be a given integer. We replace (2.1) � (2.4) with the following system of ODEs

for unknown functions u1; : : : ; un�1 , �1; : : : ; �n .

�uk = n(�k+1 � �k) + fk(�k; t); k = 1; : : : ; n� 1; (3.1)

d

dt
(CV �k + V["k; �k]) = n

2(�k+1 � 2�k + �k�1) + (3.2)

+(P["k; �k] + � _"k � ��k) _"k + gk(�k; t); k = 1; : : : ; n;

"k = n(uk � uk�1); k = 1; : : : ; n; (3.3)

�k = 
("k) + P["k; �k] + � _"k � ��k; k = 1; : : : ; n; (3.4)

u0 = un = 0; �0 = �1; �n+1 = �n; (3.5)

fk(�; t) = n

Z k
n

k�1

n

f(�; x; t) dx; gk(�; t) = n

Z k
n

k�1

n

g(�; x; t) dx; k = 1; : : : ; n; (3.6)

uk(0) = u
0

 
k

n

!
; _uk(0) = u

1

 
k

n

!
; �k(0) = �

0

 
k

n

!
; k = 1; : : : ; n: (3.7)

It can be proved in a standard way that the system (3.1) � (3.7) admits a unique local

solution; indeed, it su�ces to put vk := _uk and to rewrite (3.1), (3.2) as integral equations,

vk(t) = u
1

 
k

n

!
+

Z
t

0
(n(�k+1 � �k) + fk(�k; �))(� ) d�; (3.8)

uk(t) = u
0

 
k

n

!
+

Z
t

0
vk(� ) d�; (3.9)

�k(t) = �
0

 
k

n

!
+

1

CV

(V["k; �k](0)� V["k; �k](t)) +
Z

t

0

1

CV

h
n
2(�k+1 � 2�k + �k�1)

+ (P["k; �k] + �n(vk � vk�1)� ��k)n(vk � vk�1) + gk(�k; �)
i
(� ) d�: (3.10)

The system (3.8) � (3.10) is of the form

W (t) = W (0) +A(W )(t)�A(W )(0) +

Z
t

0
B(W; �)(� ) d�; (3.11)

where W is the vector function with components fvk; uk; �k; k = 1; : : : ; ng , A is the oper-

ator in C([0; t];R3n) for every t 2]0; T [ with components f0; : : : ; 0| {z }
2n

;� 1
CV
V["k; �k](t); k =

1; : : : ; ng , and the operator B is given by the expressions under the integral signs in (3.8)

� (3.10). We endow the space R3n with the norm
���������W ��������� = nP

k=1

(j�kj +
8nV0
CV

jukj + jvkj) .

11



Then we have, by Proposition 2.6,

���������A(W1)(t)�A(W2)(t)
��������� � 1

2
max
�2[0;t]

���������W1(� )�W2(� )
��������� (3.12)

for every W1 , W2 2 C([0; t];R3n) . The operator B is Lipschitz in C([0; � ];R3n) for every

� 2 [0; t] by Proposition 2.6 and Hypothesis 2.1. In a standard way we conclude from

the Contraction Mapping Principle that equation (3.11) (and therefore also system (3.1)

� (3.7)) admits a unique classical solution in an interval [0; Tn] . Taking a smaller Tn > 0;

if necessary, we may assume that

�k(t) > 0 for all t 2 [0; Tn]; k = 1; : : : ; n; (3.13)

due to hypothesis (2.5).

In the interval [0; Tn] the solution u1; : : : ; un�1 , �1; : : : ; �n of (3.1) � (3.7) satis�es the

following estimates.

Theorem 3.1 There exists a constant �C which depends only on T , on the number

M := ku0kW 2;2 + ku1kW 2;2 + k�0kW 1;2 + kf0kL2 + kg0kL2; (3.14)

and on the constants CV ; �; �;K;L; V0 and 
0; such that for all t 2 [0; Tn] we have

1

n

nX
k=1

�
_u2
k
+ �u2

k
+ "

2
k
+ _"2

k
+ �

2
k
+ n

2(�k+1 � �k)
2
�
(t) � �C; (3.15)

n

n�1X
k=1

�
("k+1 � "k)

2 + ( _"k+1 � _"k)
2
�
(t) � �C; (3.16)

1

n

nX
k=1

Z
t

0
(�"2

k
+ _�2

k
)(� ) d� � �C; (3.17)

n
3
n�1X
k=1

Z
t

0
(�k+1 � 2�k + �k�1)

2(� ) d� � �C: (3.18)

We devote the next section to the proof of Theorem 3.1 which requires several consecutive

steps (Lemmas 4.1 � 4.10 below). For this purpose it is convenient to rewrite equation

(3.2) in the form

_�k

�
CV �

1

2

Z
1

0
�k'��(r; �k) s

2
r
["k] dr

�
(3.19)

= n
2 (�k+1 � 2�k + �k�1) + �k

�Z
1

0
'�(r; �k)sr["k](sr["k])t dr � � _"k

�

+

Z
1

0
'(r; �k)sr["k]("k � sr["k])t dr + � _"2

k
+ gk(�k; t):

Theorem 3.1 has the following consequence.

12



Corollary 3.2 The solution (u1; : : : ; un�1; �1; : : : ; �n) of (3.1) � (3.7) can be extended to

[0; T ] , the estimates (3.15) � (3.18) hold for all t 2 [0; T ] , and there exists a constant

c0 > 0 , independent of 
 and n , such that

�k(t) � �e
�c0t for k = 1; : : : ; n; t 2 [0; T ]: (3.20)

The proof of Corollary 3.2 is based on the following �discrete maximum principle�.

Lemma 3.3 Let w1; : : : ; wn be absolutely continuous functions satisfying the system

bk(t) _wk(t)�A(wk+1 � 2wk + wk�1)(t) + ak(t)wk(t) = rk(t) (3.21)

for a.e. t 2 ]0; T [;

w0 = w1; wn+1 = wn; (3.22)

bk(t) � B; jak(t)j � C; rk(t) � 0 a.e. in ]0; T [; (3.23)

wk(0) � �; (3.24)

for all k = 1; : : : ; n , where A � 0 , B > 0 , C > 0 , � > 0 are given constants and

ak; bk; rk are measurable functions. Then

wk(t) � �e
�
C
B
t for all t 2 [0; T ]; k = 1; : : : ; n: (3.25)

Proof of Lemma 3.3. For a �xed C
�
>

C

B
put pk(t) := wk(t)e

C
�
t . Then, a.e. in ]0; T [ ,

the functions pk solve for k = 1; : : : ; n the system

bk(t) _pk(t)�A(pk+1 � 2pk + pk�1)(t) = (C�
bk(t)� ak(t))pk(t) + rk(t)e

C�t
: (3.26)

Assume that there exist � 2]0; �[ , k 2 f1; : : : ; ng , and t 2 [0; T ] such that pk(t) < �� � .

Moreover, put

�t = sup ft 2 [0; T ]; pj(� ) � � � � 8j 2 f1; : : : ; ng; 8� 2 [0; t]g : (3.27)

We �x some j such that pj(�t) = � � � and � > 0 such that

A jpk(�t)� pk(t)j �
B

8

�
C
� �

C

B

�
(� � �); k = 1; : : : ; n; 8t 2 [�t� �; �t]: (3.28)

Then we have

0 �

 
A

�

Z �t

�t��

dt

bj(t)

!
(pj+1(�t)� 2pj (�t) + pj�1(�t))

�
4A

�B

Z �t

�t��
max
k

jpk(�t)� pk(t)j dt+
A

�

Z �t

�t��

1

bj(t)
(pj+1(t)� 2pj(t) + pj�1(t)) dt

�
1

2

�
C
� �

C

B

�
(� � �) +

1

�

Z �t

�t��

 
_pj(t)�

 
C
� �

aj(t)

bj(t)

!
pj(t)�

rj(t)

bj(t)
e
C
�
t

!
dt

� �
1

2

�
C
� �

C

B

�
(� � �) < 0;
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which is a contradiction. We therefore have wk(t) � �e
�C

�
t for all C�

>
C

B
and t 2 [0; T ];

and the assertion follows easily.

Proof of Corollary 3.2. Equation (3.19) is of the form (3.21) with A = n
2 ,

rk(t) = � _"2
k
+

Z
1

0
'(r; �k) sr["k] ("k � sr["k])t dr + gk(�k; t) +K�k;

ak(t) = K + � _"k �
Z
1

0
'�(r; �k) sr["k] (sr["k])t dr;

bk(t) = CV �
1

2

Z
1

0
�k '��(r; �k) s

2
r
["k] dr:

By hypothesis (2.12) we have bk(t) �
1
2
CV > 0 . Using the elementary inequality

j _"j(t)j
2
�

 
j _"k(t)j+

n�1X
i=1

j _"i+1(t)� _"ij (t)

!2

for j; k 2 f1; : : : ; ng , we obtain from (3.15), (3.16) that

max
1�j�n

j _"j(t)j
2
�

2

n

nX
k=1

_"2
k
(t) + 2n

n�1X
k=1

( _"k+1 � _"k)
2(t) � 4 �C;

hence jak(t)j � K + 4 �C(� + L) a.e. for all k; by Hypothesis 2.2. We further have

gk(�k; t) +K�k = n

Z k
n

k�1

n

(g(�k; x; t) +K�k) dx � 0

by hypotheses (2.8), (2.9), as long as �k > 0 , and from (1.10) it follows that rk(t) � 0

a.e. for all k . By Lemma 3.3, for all t 2 [0; Tn] and k = 1; : : : ; n , we have �k(t) � �e
�c0t;

for some c0 . This, and the estimates (3.15) � (3.18), implies that the solution "k; �k of

(3.1) � (3.7) can be extended onto the whole interval [0; T ] , and Corollary 3.2 is proved.

4 Estimates

In a series of lemmas below we derive the estimates (3.15) � (3.18). Throughout this

section we denote by C;Ci positive constants that depend only on CV ; �; 
0; �;K;L; V0; T

and the constant M de�ned by (3.14). We start with two discrete versions of Nirenberg's

inequality.

Lemma 4.1 For each � 2 ]0; 1[ there exists a constant C� such that for every n 2 N
and every sequence z1; : : : ; zn of positive numbers we have

max
1�j�n

zj � C�

2
41
n

nX
k=1

zk +

 
n

nX
k=1

(zk+1 � zk)(z
��

k
� z

��

k+1)

! 1

2��
 
1

n

nX
k=1

zk

! 1

2��

3
5 : (4.1)

14



Proof. Let a sequence z1; : : : ; zn be given, and let j be such that zj � zk for all

k = 1; : : : ; n . Then we have for all k ,

z
1��

2

j
� z

1��
2

k
+

n�1X
i=1

����z1��
2

i+1 � z
1��

2

i

���� ; (4.2)

whence

zj � 2
�

2��

0
B@zk +

 
n�1X
i=1

����z1��
2

i+1 � z
1��

2

i

����
! 2

2��

1
CA : (4.3)

Using the elementary inequality

�
a
1��

2 � b
1��

2

�2
� K�(a+ b)(a� b)(b�� � a

��) for every a; b > 0; (4.4)

where

K� := sup
s>0

(1 + s)�((1 + s)1�
�
2 � 1)2

s(2 + s)((1 + s)� � 1)
<1; (4.5)

we obtain from (4.3), after summing over k , that

zj � 2
�

2��

0
B@ 1

n

nX
k=1

zk +

 
K

1=2
�

n�1X
i=1

(zi+1 � zi)
1

2 (z��
i
� z

��

i+1)
1

2 (zi + zi+1)
1

2

! 2

2��

1
CA ; (4.6)

and (4.1) follows from the discrete Hölder inequality.

Lemma 4.2 For every sequence z1; : : : ; zn of real numbers we have

max
1�j�n

z
2
j
�

1

n

nX
k=1

z
2
k
+ 2

 
1

n

nX
k=1

z
2
k

!1

2

 
n

n�1X
k=1

(zk+1 � zk)
2

! 1

2

: (4.7)

Proof. We proceed as in Lemma 4.1, where (4.2) is replaced by z2
j
� z

2
k
+
P

n�1
i=1 jz

2
i+1�z

2
i
j .

In the following Lemmas 4.3 � 4.10 we derive upper bounds for the solution (u1; : : : ; un�1 ,

�1; : : : ; �n) of the system (3.1) � (3.7).

Lemma 4.3 There exists a constant C1 > 0 such that for every t 2 [0; Tn] it holds

1

n

nX
k=1

�
�k + _u2

k
+ �("k)

�
(t) � C1: (4.8)

Proof. Multiply (3.1) by _uk and sum over k = 1; : : : ; n� 1 . This yields, for t 2]0; Tn[ ,

1

n

nX
k=1

(�uk _uk + � _"k � fk(�k; �) _uk) (t) = 0: (4.9)

15



Summing (3.2) over k = 1; : : : ; n and adding the result to (4.9), we obtain

1

n

d

dt

nX
k=1

�
CV �k + V["k; �k] +

1

2
_u2
k
+ �("k)

�
(t) =

1

n

nX
k=1

(gk(�k; �) + fk(�k; �) _uk) (t); (4.10)

where

jgk(�k; t)j � n

Z k
n

k�1

n

jg(�k; x; t)j dx � K�k(t) + n

Z k
n

k�1

n

g0(x; t) dx; (4.11)

jfk(�k; t)j � n

Z k
n

k�1

n

f0(x; t) dx: (4.12)

Furthermore,

1

n

nX
k=1

�k(0) �
Z 1

0

�
�
0(x) +

1

n
j�0
x
(x)j

�
dx; (4.13)

1

n

nX
k=1

_u2
k
(0) �

Z 1

0

�
ju1(x)j2 +

2

n
ju1(x)j ju1

x
(x)j

�
dx; (4.14)

1

n

nX
k=1

�("k)(0) �

0

2n

nX
k=1

"
2
k
(0) �


0

2

Z 1

0
ju0

x
(x)j2dx; (4.15)

and we obtain (4.8) from (4.10) � (4.15) and Gronwall's lemma.

The following estimate which goes back to Dafermos [D, DH] is crucial for the proof of

Theorem 3.1. We �x an auxiliary parameter � and assume

� 2
�
0;

1

3

�
: (4.16)

Lemma 4.4 There exists a constant C2 > 0 such that for all t 2 [0; Tn] we have

1

n

nX
k=1

Z
t

0

�
n
2(�k+1 � �k)

�
�
��

k
� �

��

k+1

�
+ �

��

k
_"2
k

�
(� ) d� � C2; (4.17)

1

n

nX
k=1

Z
t

0
�
3��
k

(� ) d� � C2: (4.18)

Proof. Multiply the equation (3.19) by ����
k

. Introducing the function

 ��(r; ��) =

Z ��

0
�
1��

'��(r; �) d� (4.19)

for r; �� > 0 , we obtain, using (1.10), (2.30), (2.7), (2.9), and (2.11),

d

dt

�
�

CV

1� �
�
1��
k

+
1

2

Z
1

0
 ��(r; �k)s

2
r
["k] dr

�
(4.20)

+ � _"2
k
�
��

k
+ n

2 (�k+1 � 2�k + �k�1) �
��

k

= ����
k

�
gk(�k; t) +

Z
1

0
'(r; �k)sr["k] ("k � sr["k])t dr

�

+ ��
1��
k

_"k � (1� �)

Z
�k

0

Z
1

0
�
��
'�(r; �)sr["k](sr["k])t dr d�

� (j�j+ L) �1��
k

j _"kj+K�
1��
k

:
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By hypothesis (2.12), we have

��� Z 1

0
 ��(r; �k)s

2
r
["k] dr

��� � Z
�k

0
�
��

Z
1

0
� j'��(r; �)j r

2
dr d� �

CV

1� �
�
1��
k

; (4.21)

and, by Lemma 4.3 and Hölder's inequality,

1

n

nX
k=1

�
1��
k

(t) � C
1��
1 8t 2 [0; Tn]: (4.22)

Summing and integrating (4.20), we obtain, using (4.21), (4.22),

1

n

nX
k=1

Z
t

0

�
��

��

k
_"2
k
+ n

2(�k+1 � �k)(�
��

k
� �

��

k+1)
�
(� ) d�

� C

 
1 +

1

n

nX
k=1

Z
t

0

�
�
1��
k

j _"kj
�
(� ) d�

!
: (4.23)

From Hölder's inequality it follows that

1

n

nX
k=1

�
�
1��
k

j _"kj
�
(� ) d� �

 
1

n

nX
k=1

Z
t

0
�
2��
k

(� ) d�

!1

2

 
1

n

nX
k=1

Z
t

0

�
�
��

k
_"2
k

�
(� ) d�

! 1

2

: (4.24)

On the other hand, for an arbitrary p 2 ]0; 2��] we estimate, using Lemmas 4.1 and 4.3,

1

n

nX
k=1

Z
t

0
�
p+1
k

(� ) d� � max
0���t

 
1

n

nX
k=1

�k(� ) d�

!Z
t

0
max
j

�
p

j (� ) d� (4.25)

� C

 
1 + n

n�1X
k=1

Z
t

0
(�k+1 � �k)(�

��

k
� �

��

k+1)(� ) d�

! p

2��

:

Inequality (4.17) now follows from (4.23), (4.24), (4.25) for p = 1� � , and from Young's

inequality. The estimate (4.18) is then obtained from (4.25) for p = 2 � � .

Lemma 4.5 There exists a constant C3 > 0 such that for all t 2 [0; Tn] it holds

1

n

nX
k=1

�
_u2
k
(t) + �("k(t)) +

Z
t

0
_"2
k
(� ) d�

�
� C3: (4.26)

Proof. Integrating (4.9) from 0 to t and using (2.21), (4.8), and (4.12) � (4.15), we �nd

1

n

nX
k=1

�
1

2
u
2
k
(t) + �("k(t)) + �

Z
t

0
_"2
k
(� ) d�

�
� C

 
1 +

1

n

nX
k=1

Z
t

0
(1 + �k)j _"kj(� ) d�

!

� C

 
1 +

1

n

nX
k=1

Z
t

0

�
j _"kj+ �

1+�
2

k
(�
�
�
2

k
j _"kj)

�
(� ) d�

!
; (4.27)

and (4.26) follows from Hölder's inequality, (4.17) and (4.18).
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Lemma 4.6 There exists a constant C4 > 0 such that for every t 2 [0; Tn] it holds

1

n

nX
k=1

_"2
k
(t) + n

n�1X
k=1

Z
t

0
( _"k+1 � _"k)

2(� ) d� � C4

 
1 + n

n�1X
k=1

Z
t

0
j�k+1 � �kj

2(� ) d�

!
: (4.28)

Proof. Multiply (3.1) by _"k � _"k+1 and sum over k = 1; : : : ; n� 1 . Then

1

n

nX
k=1

�"k _"k + n�

n�1X
k=1

( _"k+1 � _"k)
2 = n

n�1X
k=1

�

("k+1)� 
("k) + P["k+1; �k+1]

�P["k; �k]� �(�k+1 � �k) +
1

n
fk(�k; t)

�
( _"k � _"k+1): (4.29)

We have

1

n

nX
k=1

_"2
k
(0) = n

nX
k=1

 Z k
n

k�1

n

u
1
x
(x) dx

!2

�
Z 1

0
ju1

x
j2dx; (4.30)

n

n�1X
k=1

("k+1 � "k)
2(0) = n

3
n�1X
k=1

 Z k
n

k�1

n

Z
x+ 1

n

x

u
0
xx
(�) d� dx

!2

(4.31)

� n

Z 1� 1

n

0

Z
x+ 1

n

x

ju0
xx
(�)j2 d� dx �

Z 1

0
ju0

xx
(�)j2d�;

where the last inequality follows from Fubini's theorem. Furthermore,

"
n

n�1X
k=1

("k+1 � "k)
2(t)

# 1

2

�

"
n

n�1X
k=1

�
j"k+1 � "kj(0) +

Z
t

0
j _"k+1 � _"kj(� ) d�

�2# 1

2

(4.32)

�

 
n

n�1X
k=1

("k+1 � "k)
2(0)

! 1

2

+

 
tn

n�1X
k=1

Z
t

0
( _"k+1 � _"k)

2(� ) d�

! 1

2

:

Integrating (4.29) from 0 to t and using (2.6), (4.30) � (4.32), (2.23), (3.6), (2.8), and

Hölder's inequality, we obtain

1

n

nX
k=1

_"2
k
(t) + n

n�1X
k=1

Z
t

0
( _"k+1 � _"k)

2(� ) d� (4.33)

� C

 
1 + n

n�1X
k=1

Z
t

0

�
(�k+1 � �k)

2(� ) +

Z
�

0
( _"k+1 � _"k)

2(s)ds

�
d�

!
:

The functions w(t) := n
P

n�1
k=1

R
t

0( _"k+1 � _"k)
2(� ) d� and A(t) := 1 + n

P
n�1
k=1

R
t

0(�k+1 �
�k)

2(� ) d� are nonnegative, nondecreasing, and satisfy the inequality

w(t) � C

�
A(t) +

Z
t

0
w(� ) d�

�
; t 2 [0; Tn]; (4.34)

which implies Z
t

0
w(� ) d� � CA(t)

�
e
Ct � 1

�
� CA(t) eCT : (4.35)

The assertion now follows from (4.33) and (4.35).
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Lemma 4.7 There exists a constant C5 > 0 such that for every t 2 [0; Tn] it holds

1

n

nX
k=1

�
2
k
(t) + n

n�1X
k=1

Z
t

0
(�k+1 � �k)

2(� ) d� � C5; (4.36)

1

n

nX
k=1

�
"
2
k
(t) + _"2

k
(t)
�
+ n

n�1X
k=1

�
("k+1 � "k)

2(t) +

Z
t

0
( _"k+1 � _"k)

2(� ) d�

�
� C5; (4.37)

1

n

nX
k=1

Z
t

0
( _"4

k
+ �

4
k
)(� ) d� � C5: (4.38)

Proof. Multiply (3.19) by �k and put

 1(r; ��) :=

Z ��

0
�
2
'��(r; �)d� for r; �� > 0; (4.39)

according to (4.19). Then

1

2

d

dt

�
CV �

2
k
�
Z
1

0
 1(r; �k)s

2
r
["k]dr

�
� n

2(�k+1 � 2�k + �k�1)�k (4.40)

= �k

�
� _"2

k
+

Z
1

0
'(r; �k)sr["k]("k � sr["k])t dr + gk(�k; t)

�

���2
k
_"k +

Z
1

0
(�2

k
'�(r; �k)�  1(r; �k))sr["k](sr["k]t) dr;

where Hypothesis 2.2 yields that

����2
k
'�(r; �k)�  1(r; �k)

��� = 2

�����
Z

�k

0
�'�(r; �) d�

����� � �
2
k
max
�

j'�(r; �)j ; (4.41)

����
Z
1

0
 1(r; �k)s

2
r
["k] dr

���� �
Z

�k

0

Z
1

0
�
2 j'��(r; �)j r

2
dr d� �

CV

2
�
2
k
: (4.42)

Similarly as in (4.14), we have

1

n

nX
k=1

�
2
k
(0) �

Z 1

0

�
j�0(x)j2 +

2

n
j�0(x)j j�0

x
(x)j

�
dx: (4.43)

Summing (4.40) over k = 1; : : : ; n , and integrating from 0 to t , we obtain from (4.41),

(4.42), (2.11), (2.31), (2.7), (2.9), (3.6) and (2.30) that

1

n

nX
k=1

�
2
k
(t) + n

n�1X
k=1

Z
t

0
(�k+1 � �k)

2(� ) d�

� C

 
1 +

1

n

nX
k=1

Z
t

0

�
(1 + �

2
k
)(1 + j _"kj) + �k _"

2
k

�
(� ) d�

!
: (4.44)

We now apply Hölder's inequality to the right-hand side of (4.44). We have

1

n

nX
k=1

Z
t

0
(�k _"

2
k
)(� ) d� �

 
1

n

nX
k=1

Z
t

0
�
2
k
(� ) d�

! 1

2

 
1

n

nX
k=1

Z
t

0
_"4
k
(� ) d�

! 1

2

; (4.45)

1

n

nX
k=1

Z
t

0
(�2

k
j _"kj)(� ) d� �

 
1

n

nX
k=1

Z
t

0
�

8

3

k
(� ) d�

! 3

4

 
1

n

nX
k=1

Z
t

0
_"4
k
(� ) d�

! 1

4

; (4.46)
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whence, by Lemma 4.4,

1

n

nX
k=1

Z
t

0
�
2
k
(t) + n

n�1X
k=1

Z
t

0
(�k+1 � �k)

2(� ) d� � C

 
1 +

1

n

nX
k=1

Z
t

0
_"4
k
(� ) d�

! 1

2

: (4.47)

Moreover,
1

n

nX
k=1

Z
t

0
_"4
k
(� ) d� � max

�

 
1

n

nX
k=1

_"2
k
(� )

!
�
Z

t

0
max
j

_"2
j
(� ) d�; (4.48)

where, by Lemmas 4.2 and 4.5,Z
t

0
max
j

_"2
j
(� ) d� �

1

n

nX
k=1

Z
t

0
_"2
k
(� ) d�

+ 2

 
1

n

nX
k=1

Z
t

0
_"2
k
(� ) d�

! 1

2

 
n

n�1X
k=1

Z
t

0
( _"k+1 � _"k)

2(� ) d�

! 1

2

� C

 
1 + n

n�1X
k=1

Z
t

0
( _"k+1 � _"k)

2(� ) d�

! 1

2

: (4.49)

Combining (4.47) � (4.49) with (4.27), we obtain for all t 2 [0; Tn] that

1

n

nX
k=1

�
2
k
(t) + n

n�1X
k=1

Z
t

0
(�k+1 � �k)

2(� ) d� � C

 
1 + n

n�1X
k=1

Z
t

0
(�k+1 � �k)

2(� ) d�

! 3

4

: (4.50)

Thus, (4.36) follows from Young's inequality, (4.37) is then a consequence of (4.28), (4.36),

(4.32), and of the obvious inequality 1
n

P
n

k=1 "
2
k
(t) �

R 1
0 ju

0
x
j2dx + C

n
max0���t

P
n

k=1 _"2
k
(� ) ,

analogous to (4.32). Estimate (4.38) is obtained using the argument of (4.48).

Lemma 4.8 There exists a constant C6 > 0 such that for all t 2 [0; Tn] it holds

1

n

nX
k=1

Z
t

0

_�2
k
(� ) d� + n

n�1X
k=1

(�k+1 � �k)
2(t) � C6; (4.51)

n
3
n�1X
k=1

Z
t

0
(�k+1 � 2�k + �k�1)

2(� ) d� � C6: (4.52)

Proof. Multiplying (3.19) by _�k , we infer from Hypotheses 2.1 and 2.2 that

CV

2n

nX
k=1

_�2
k
(t) +

n

2

d

dt

n�1X
k=1

(�k+1 � �k)
2(t)

�
C

n

nX
k=1

j _�k(t)j

 
1 + �

2
k
(t) + _"2

k
(t) + n

Z k
n

k�1

n

g0(x; t) dx

!
: (4.53)

Integrating (4.53) with respect to t , and using the inequality

n

n�1X
k=1

(�k+1 � �k)
2(0) �

Z 1

0
j�0
x
(x)j2dx; (4.54)

we obtain (4.51) from (4.38). Inequality (4.52) is an immediate consequence of (4.51) and

equation (3.19).
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Lemma 4.9 There exists a constant C7 > 0 such that for all t 2 [0; Tn] it holds

1

n

nX
k=1

�
�u2
k
(t) +

Z
t

0
�"2
k
(� ) d�

�
� C7: (4.55)

Proof. The right-hand side of (3.1) is absolutely continuous. Di�erentiating with respect

to t and multiplying by �uk(t) , we obtain for a.e. t that

1

n

nX
k=1

 
1

2

d

dt
�u2
k
+ _��"

!
(t) =

1

n

nX
k=1

�uk

 
@fk

@t
+ _�k

@fk

@�

!
(�k(t); t): (4.56)

Hence, by hypotheses (2.8) and (2.9), and by inequality (2.22), we �nd that for all t

1

2n

d

dt

nX
k=1

�u2
k
(t) + �n

nX
k=1

�"2
k
(t) �

C

n

nX
k=1

"
j�"kj(1 + j _�kj+ j _"kj) + j�ukj

 
j _�kj+

�����@fk@t
�����
!#

(t);

(4.57)

where
1

n

nX
k=1

Z
t

0

�����@fk@t (�k(� ); � )
�����
2

d� �
Z

t

0

Z 1

0
f
2
0 (x; � ) dx d�: (4.58)

For the initial value �uk(0) we obtain from equation (3.1) and inequality (2.23) the estimate

1

n

n�1X
k=1

�u2
k
(0) � Cn

n�1X
k=1

�
("k+1 � "k)

2(0) + ( _"k+1 � _"k)
2(0)

+ (�k+1 � �k)
2(0)

�
+

2

n

n�1X
k=1

f
2
k
(�k(0); 0); (4.59)

where
1

n

n�1X
k=1

f
2
k
(�k(0); 0) �

nX
k=1

Z k
n

k�1

n

f
2(�k(0); x; 0) dx: (4.60)

For a.e. x 2]0; 1[ , t; s 2 [0; T ] and � > 0 , we infer from hypothesis (2.8) that

f
2(�; x; t) � f

2
0 (x; s) + 2

Z
t

s

f
2
0 (x; � ) d�; (4.61)

whence

max
t;�

f
2(�; x; t) � C

Z
T

0
f
2
0 (x; � ) d� a.e. in ]0; 1[: (4.62)

The estimate

n

n�1X
k=1

( _"k+1 � _"k)
2(0) �

Z 1

0
ju1

xx
(x)j2dx; (4.63)

which is similar to (4.31), now yields that

1

n

n�1X
k=1

�u2
k
(0) � C: (4.64)

Integrating (4.57) from 0 to t , we easily obtain (4.55) from (4.58), (4.64), and Lemmas

4.7 and 4.8.
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Lemma 4.10 There exists a constant C8 > 0 such that for all t 2 [0; Tn] it holds

n

n�1X
k=1

( _"k+1 � _"k)
2
(t) � C8: (4.65)

Proof. Using again equation (3.1) and inequalities (3.23), (4.62), we obtain for t 2 [0; Tn]

that

n

n�1X
k=1

( _"k+1 � _"k)
2
(t) � C

 
1 +

1

n

n�1X
k=1

(�u2
k
(t) + n

2("k+1 � "k)
2(t)

+ n
2(�k+1 � �k)

2(t) +

Z
t

0
( _"k+1 � _"k)

2(� ) d�

!
: (4.66)

The assertion now follows from Lemmas 4.7 to 4.9 and a Gronwall-type argument.

To conclude this section, we just notice that Theorem 3.1 is proved by Lemmas 4.5 � 4.10.

5 Existence

In this section, we will construct a sequence fu(n); �(n)g of approximate solutions to the

system (2.1) � (2.4) and use the compactness method to prove that a limit point of this

sequence solves (2.1) � (2.4) in the sense of Theorem 2.4.

Let n 2 N be given, and let u1; : : : ; un�1 , �1; : : : ; �n be the solutions to the system (3.1)

� (3.7). For t 2 [0; T ] , x 2 [k�1
n
;
k

n
[ , k = 1; : : : ; n , we de�ne the functions (continuously

extended to x = 1),

�
(n)(x; t) =

1

2
(�k + �k�1) + n

 
x�

k � 1

n

!
(�k � �k�1) (5.1)

+
n
2

2

 
x�

k � 1

n

!2

(�k+1 � 2�k + �k�1);

~�(n)(x; t) = �k; (5.2)

u
(n)(x; t) = uk�1 + n

 
x�

k � 1

n

!
(uk � uk�1); (5.3)

~u(n)(x; t) = uk; (5.4)

"
(n)(x; t) = "k + n

 
x�

k � 1

n

!
("k+1 � "k); (5.5)

~"(n)(x; t) = "k; (5.6)

�
(n)(x; t) = �k; (5.7)

where we have put un+1 := �un�1 , so that "n+1 = "n .

By Theorem 3.1 and Corollary 3.2 there exists a constant C > 0 , independent of n , such

that ( jj � jj denotes the norm of L2(0; 1))

jj�(n)(t)jj2 + jj�(n)
x

(t)jj2 + jj"
(n)
t (t)jj2 + jj"

(n)
xt (t)jj

2 + jju
(n)
t (t)jj2 (5.8)

+jju
(n)
tt (t)jj2 + jj"(n)(t)jj2 + jj"(n)

x
(t)jj2 � C 8t 2 [0; T ];
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Z
T

0

�
jj"

(n)
tt jj

2 + jj�
(n)
t jj2 + jj�(n)

xx
jj2
�
(t) dt � C: (5.9)

We further have for every x and t that

���~u(n)(x; t)� u
(n)(x; t)

���2 �
1

n2

nX
k=1

"
2
k
(t) �

C

n
; (5.10)

���~"(n)(x; t)� "
(n)(x; t)

���2 �
n�1X
k=1

("k+1 � "k)
2(t) =

1

n
jj"(n)

x
(t)jj2 �

C

n
; (5.11)

���~�(n)(x; t)� �
(n)(x; t)

���2 �
nX

k=1

(�k+1 � �k)
2(t) �

C

n
; (5.12)

���~"(n)t (x; t)� "
(n)
t (x; t)

���2 �
n�1X
k=1

( _"k+1 � _"k)
2(t) �

C

n
; (5.13)

Z
T

0

���~u(n)tt (x; t)� u
(n)
tt (x; t)

���2 dt �
1

n2

nX
k=1

Z
T

0
�"2
k
(t) dt �

C

n
; (5.14)

u
(n)
x

= ~"(n): (5.15)

From the estimates (5.8) � (5.9) we conclude that there exist subsequences (still indexed

by (n) , for the sake of simplicity) and functions u; "; � such that

�
(n)
xx
! �xx; �

(n)
t ! �t; "

(n)
tt ! "tt; all weakly in L2(]0; 1[�]0; T [); (5.16)

"
(n)
xt ! "xt; "

(n)
x
! "x; "

(n)
t ! "t; u

(n)
tt ! utt; �

(n)
x
! �x;

all weakly* in L1(0; T ;L2(0; 1)); (5.17)

ux = "; (5.18)

and, by compact embedding,

"
(n)
t ! "t; "

(n) ! "; u
(n)
t ! ut; u

(n) ! u; �
(n) ! �; (5.19)

all in C([0; 1]� [0; T ]) uniformly:

The functions u(n); �(n); ful�l the boundary conditions (2.3). The convergence (5.16),

(5.19) implies that conditions (2.3), (2.4) holds also for the limit functions.

To prove the existence result, it remains to check that the system (2.1), (2.2) is satis�ed

almost everywhere.

Let w 2
�

W
1;2(0; 1) , z 2 L2(0; 1) and � 2 D(]0; T [) be arbitrary test functions. Then the

system (3.1) � (3.4) can be rewritten in the form

Z
T

0
�(t)

Z 1

0

h�
~u
(n)
tt (x; t)� f(~�(n)(x; t); x; t)

�
w(x) + �

(n)(x; t)w0(x)
i
dx dt (5.20)

= An :=

Z
T

0
�(t)

nX
k=1

Z k
n

k�1

n

 
w

 
k

n

!
� w(x)

!�
f(�k; x; t)� �uk

�
dx dt;

Z 1

0
z(x)

Z
T

0

"�
CV

~�(n) + V[u(n)
x
; ~�(n)]

�
�
0(t) +

 
��

(n)
xx

+ �(u
(n)
xt )

2 (5.21)

+ P[u(n)
x
; ~�(n)]u

(n)
xt � �~�(n)u

(n)
xt + g

�
~�(n)(x; t); x; t

�!
�(t)

#
dt dx
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= Bn :=

Z
T

0
�(t)n

nX
k=1

Z k
n

k�1

n

g(�k; x; t)

Z k
n

k�1

n

(z(x)� z(�)) d� dx dt;

�
n = 
(u(n)

x
) + P[u(n)

x
; ~�(n)] + �u

(n)
xt � �~�(n): (5.22)

The right-hand sides of (5.20), (5.21), respectively, can be estimated as follows.

jAnj �
Z

T

0
j�(t)j

nX
k=1

 Z k
n

k�1

n

jw0(x)j dx
Z k

n

k�1

n

(f0(x; t) + j�ukj) dx

!
dt (5.23)

�
Z

T

0
j�(t)j

0
@ nX
k=1

 Z k
n

k�1

n

jw0(x)j dx

!2
1
A

1=2

�

�

0
@ nX
k=1

 Z k
n

k�1

n

(f0(x; t) + j�ukj) dx

!2
1
A

1=2

dt

�
1

n
jjw0jj

Z
T

0
j�(t)j

 
nX

k=1

Z k
n

k�1

n

(f0(x; t) + j�ukj)
2
dx

!1=2

dt

�
1

n
jjw0jj

Z
T

0
�(t)

0
@
 
1

n

nX
k=1

�u2
k

!1=2

+

�Z 1

0
f
2
0 (x; t) dx

�1=21A dt
�

C

n
jjw0jj jj�jjL2(0;T );

jBnj � n

Z
T

0
j�(t)j

nX
k=1

Z k
n

k�1

n

(�k + g0(x; t))

Z k
n

k�1

n

jz(x)� z(�)j d� dx dt (5.24)

� n

Z
T

0
j�(t)j

 
nX

k=1

Z k
n

k�1

n

(�k + g0(x; t))
2
dx

!1=2

�

�

0
@ nX
k=1

Z k
n

k�1

n

 Z k
n

k�1

n

jz(x)�z(�)jd�

!2

dx

1
A

1=2

dt

� Z
1=2
n

Z
T

0
j�(t)j

0
@
 
1

n

nX
k=1

�
2
k

!1=2

+

�Z 1

0
g
2
0(x; t) dx

�1=21A
� CZ

1=2
n
jj�jjL2(0;T );

where

Zn := n

nX
k=1

Z k
n

k�1

n

Z k
n

k�1

n

jz(x)� z(�)j2d� dx: (5.25)

Let us extend the function z by zero outside the interval [0; 1] . Then

Zn � n

nX
k=1

Z k
n

k�1

n

Z
x+ 1

n

x�
1

n

jz(x)� z(�)j2d� dx = n

Z 1

n

�
1

n

Z 1

0
jz(x)� z(x+ s)j2dx ds: (5.26)

By the Mean Continuity Theorem we have lims!0

R 1
0 jz(x)� z(x+ s)j2dx = 0 , hence

lim
n!1

Zn = lim
n!1

Bn = 0: (5.27)

Using the convergence results (5.10) � (5.19), (5.23), (5.27), and Proposition 2.6 (ii), we

can pass to the limit as n!1 in (5.20) � (5.22) and obtain
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utt � �x � f(�; x; t) = 0 a.e.; (5.28)

(CV � + V[ux; �])t � ��xx = �u
2
xt
+ P[ux; �]uxt � ��uxt + g(�; x; t) a.e.; (5.29)

� = 
(ux) + P[ux; �] + �uxt � ��: (5.30)

Hence (u; �) is a solution to (2.1), (2.2) satisfying the assertions of Theorem 2.4. Indeed,

inequality (2.19) follows from Corollary 3.2 and the uniform convergence ~�(n) �! � .

6 Uniqueness and continuous dependence

The proof of Theorem 2.4 will be complete if we prove that the problem (2.1) � (2.4)

admits at most one solution. In fact, we can prove more, namely

Theorem 6.1 Let Hypotheses 2.1(ii), 2.2 hold, let (u0; u1; �0; f; g) , (u0
0
; u

01
; �
00
; f

0
; g
0) be

two sets of given functions satisfying Hypothesis 2.1, and let (u; �) , (u0; �0) be solutions of

(2.1) � (2.4) corresponding to these data, respectively, which satisfy (2.16) � (2.19). As-

sume moreover that there exist a constant ~K > 0 and functions df ; dg 2 L
2(]0; 1[� ]0; T [)

such that

jf(�1; x; t)� f
0(�2; x; t)j � ~Kj�1 � �2j+ df (x; t); (6.1)

jg(�1; x; t)� g
0(�2; x; t)j � ~Kj�1 � �2j+ dg(x; t); (6.2)

holds for all �1; �2 2 R
+ and a.e. (x; t) 2 ]0; 1[� ]0; T [ .

Then there exists a constant C depending only on the constant �C in Theorem 3.1 (i.e.

on the size of the data in their respective spaces) such that for all t 2 [0; T ] the di�erences

�u = u� u
0 , �� = � � �

0 , satisfy

jj�ut(t)jj
2 +

Z
t

0

�
jj��jj2 + jj�uxtjj

2
�
(� ) d� (6.3)

� C

�
jj�ut(0)jj

2 + jj�ux(0)jj
2 + jj��(0)jj2 +

Z
t

0

Z 1

0
(d2

f
+ d

2
g
) dx dt

�
:

Proof. From equation (2.1) it follows that

�utt���uxxt = ���x+(P[ux; �]�P[u0
x
; �
0])x+(
(ux)�
(u

0

x
))x+f(�; x; t)�f

0(�0; x; t); (6.4)

a.e. in ]0; 1[�]0; T [ . Multiplying (6.4) by �ut and integrating over [0; 1] , we obtain, using

(6.1) and (2.19),

1

2

d

dt

Z 1

0
�u2
t
dx+ �

Z 1

0
�u2
xt
dx (6.5)

� K1

Z 1

0

�
j��j j�uxtj+ (j��j+ df )j�utj+

�
j�ux(0)j +

Z
t

0
j�uxtj(� ) d�

�
j�uxtj

�
dx a:e:;

where K1 > 0 is some constant. Consequently,

d

dt

Z 1

0
�u2
t
dx+

Z 1

0
�u2
xt
dx � K2

Z 1

0

 
��2 + j�ux(0)j

2 + d
2
f
+

�Z
t

0
j�uxt(� )j d�

�2
!
dx; (6.6)
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for a.e. t , with some constant K2 > 0 . Similarly, integrating (2.2) over [0; t] , we obtain

�
CV

�� + V[ux; �]� V[u
0

x
; �
0]
�
(x; t)� �

Z
t

0

��xx d� (6.7)

=
�
CV

�� + V[ux; �]� V[u
0

x
; �
0]
�
(x; 0) +

Z
t

0

h
�(u2

xt
� u

02

xt
) + P[ux; �]uxt �P[u0

x
; �
0]u0

xt

��(�uxt � �
0
u
0

xt
) + g(�; x; � )� g

0(�0; x; � )
i
d�:

The functions uxt , u
0

xt
, � , �0 , P[ux; �] , P[u0

x
; �
0] , are uniformly bounded by a constant

depending only on the constant �C from Theorem 3.1. Moreover, using (2.24), we can

estimate

jV[ux; �]� V[u
0

x
; �
0]j (x; t) �

CV

2
j��(x; t)j+ V0

�
j�ux(x; 0)j+

Z
t

0
j�uxt(x; � )j d�

�
: (6.8)

Multiplying (6.7) by ��(x; t) , and integrating over [0; 1] , we therefore obtain, using (2.23),

CV

Z 1

0

��2dx+
�

2

d

dt

Z 1

0

�Z
t

0

��x d�

�2

dx (6.9)

�
CV

2

Z 1

0

��2dx+K3

Z 1

0
j��j
�
j��(x; 0)j+ j�u(x; 0)j+

Z
t

0
(j�uxtj+ j��j+ dg) d�

�
dx;

with a constant K3 > 0 depending on �C . Moreover, from Schwarz's inequality it follows

that

CV

Z 1

0

��2dx+ �
d

dt

Z 1

0

�Z
t

0

��x d�

�2

dx (6.10)

� K4

Z 1

0

 
j��(x; 0)j2 + j�u(x; 0)j2 +

�Z
t

0
(j�uxtj+ j��j+ dg) d�

�2
!
dx;

for a suitable constant K4 > 0 . An appropriate linear combination of (6.6) and (6.10)

then yields

jj��(t)jj2 + jj�uxt(t)jj
2 +

d

dt

�
jj�ut(t)jj

2 +
������ Z t

0

��x d�
������2� (6.11)

� K5

�
jj��(0)jj2 + jj�ux(0)jj

2 +

Z 1

0
d
2
f
(x; t)dx+ t

Z
t

0

�
jj�uxtjj

2 + jj�jj2 +
Z 1

0
d
2
g
(x; � )dx

�
d�

�
;

for some constant K5 > 0 . Inequality (6.11) is of the form

_w(t) � a(t) + b(t)w(t); (6.12)

where

w(t) = jj�ut(t)jj
2 + jj

Z
t

0

��x d� jj+
Z

t

0

�
jj��jj2 + jj�uxtjj

2
�
d�; (6.13)

a(t) = K5

�
jj��(0)jj2 + jj�uxt(0)jj

2 +

Z 1

0
d
2
f
(x; t) dx+ t

Z
t

0

Z 1

0
d
2
g
(x; � ) dx d�

�
; (6.14)

b(t) = K5t; (6.15)

which entails

w(t) � e
B(t)

w(0) +

Z
t

0
e
B(t)�B(�)

a(� ) d�; (6.16)

where B(t) =
R
t

0 b(� ) d� = 1
2
K5t

2 .

Inequality (6.3) then immediately follows with a constant C depending on K5 and T .
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