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Abstract. The paper is devoted to the inverse problem of identifying the coe�cient

in the main term of a quasilinear elliptic di�erential equation describing the �ltration

of groundwater. Experience suggests that the gradient of the piezometric head, i.e.,

Darcy's velocity, may have discontinuities and the transmissivity coe�cient is a piecewise

constant function.

For solving this problem we use a modi�cation of a direct method of G. Vainikko.

Starting with a weak formulation of the problem a suitable discretization is obtained by

the method of minimal error. If necessary this method can be combined with Tikhonov

regularization.

The main di�culty consists in generating distributed state observations from measure-

ments of the ground�water level. For this step we propose an optimized data preparation

procedure using additional information such as knowledge of the sought parameter values

at some points and lower and upper bounds for the parameter.

Numerical tests show that locally su�ciently many measurements provide locally sat-

isfactory results. Two numerical examples, one with simulated data and the other with

real life data, are given.

1. Introduction

The two�dimensional steady �ow in an isotropic and con�ned aquifer is governed, in

general, by the quasilinear elliptic boundary value problem (cf. e.g. [5])

�r � (a(x; u)ru(x)) = f(x) x 2 
 � R
2 (1.1)

u(x) = h(x) x 2 @
1 (1.2)

a(x; u)ru(x) � �(x) = g(x) x 2 @
2 = @
n@
1 ; (1.3)

where 
 is a bounded domain with piecewise smooth boundary and � = �(x) is the outer
unit normal on @
2. In the sequel, we con�ne ourselves to the special case that @
1 has

positive Lebesgue measure and h(x) = h0. Physically, u(x) can be interpreted as the

groundwater level (piezometric head of ground water) in 
, and a(x; u) as transmissivity

coe�cient depending upon the space variable x and on the piezometric head u(x). From
this consideration it is clear that a(x; u) > 0 for all admissible x and u. The function

f(x) characterizes sources or sinks in 
. The groundwater level on @
1 and the in�ow

or out�ow through @
2 are denoted by h0 and g(x), respectively. The direct (forward)

problem consists in the following:

Given f; h0; g; a. Find u.

For the well-posedness in the sense of Hadamard, (i.e. there exists a unique solution u

which continuously depends on the data f; h0; g; a), of the direct problem (1.1)�(1.3) see

[11]. Now let us formulate the inverse problem:

Given f; h0; g; u. Find a.

An inverse problem is ill�posed in general. Due to the lack of continuous dependence on

the data (i.e. due to the lack of stability) di�culties arise when using noisy data.

Here we will be concerned with a stable reconstruction algorithm only, using Tikhonov

regularization or self�regularization by discretization.

Let us brie�y mention some relevant papers from the extensive literature concerning the

inverse problem formulated above: Alessandrini [2] regularized the problem using singular

perturbation theory which requires a high level of smoothness of the boundary and the

data. In [14], [6], [15] the inverse problem is considered as a �rst order partial di�erential

equation with respect to the unknown coe�cient, where a high level of smoothness of

the data has also to be assumed. A very fast procedure is obtained by the method of
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Vainikko, where the inverse problem is transformed into a linear operator equation with

a noncompact data dependent operator.

Ho�man and Sprekels [7], [8], [16] propose an adaptive method considering the steady

state problem as an asymptotic limit of a suitable evolutionary process. The method

needs the �rst derivatives of the data and has high numerical stability.

In this context the output least squares method is very often used, consisting of a minimum

problem combined with Tikhonov regularization. Here no derivatives of the data are

necessary, but the problem is nonlinear. Other methods using optimization procedures

are the equation error method, the augmented Lagrange method [9] and the method of

Lowe�Kohn [12]. In addition, let us refer to the papers [1], [4] as well as to the monograph

[17].

To reduce the high computational expense of such methods, in this paper a direct inversion

is proposed which is numerically cheap but very sensitive with respect to errors. Therefore,

it is combined with an optimized data preparation procedure.

In our calculations we use what is basically a modi�cation of Vainikko's method [18], [19],

[20]. Starting with a weak formulation of the problem Vainikko's method consists of a

�nite element discretization of an operator equation in suitable Hilbert spaces, where the

operator depends on the measured data. The considered projection method, the so�called

method of least error, takes advantage of the simple form of the adjoint operator. The pro-

cedure is combined with Tikhonov regularization. This approach needs one measurement

at each node.

In practice, however, only very few measurements are at our disposal so that data gained

by interpolation are very erroneous and not in accordance with the a priori information

on the coe�cient. To counter these di�culties the method of Vainikko is combined with

a method of �data smoothing� whose stabilizing e�ect consists of restricting the possible

data set by a �smoothing� process. The goal of this method is an optimal utilization of

the given information about both the coe�cient and the data.

�New� data are sought, optimally �tting the �old� data and satisfying the discretized state

equation with a certain tolerance, where the state equation is constructed using an a priori

guess of the transmissivity. One gets a constrained minimization problem that is solved

by the method of Lagrange multipliers and Newton's method. (Similar considerations in

another context can be found in Parker's book [13].)

The paper can be understood as a continuation of [3] and is organized as follows. In

Section 2 a short survey of the method is given. Section 3 deals with the data preparation.

Finally, some numerical experiments are presented in Section 4:

2. The method

2.1. Formulation of the problem and properties. Let 
 � IRd (d � 2) be a bounded
domain with piecewise smooth boundary @
, where �(x) (x = (x1; :::; xd)) is the outer
unit normal on @
. Furthermore, let @
1 � @
 be a subset with a positive Lebesgue

measure and @
2 = @
n@
1 be a relatively open subset having both, a piecewise smooth

boundary on @
. For a function u 2 W 1;1(
) we de�ne the real numbers

v1 = min
x2


u(x); v2 = max
x2


u(x);
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and suppose that v1 < v2. In general the function a(x; u) is de�ned for all x 2 
 and all

u 2 [v1; v2]. The inverse problem describing the �ltration of ground water in the domain


 can be formulated in the following way:

Find the coe�cient a(x; u) 2 L2(
� (v1; v2)) such that

�r � (a(x; u)ru(x)) = f(x) x 2 
 � IRd (2.1)

u(x) = 0 x 2 @
1 (2.2)

a(x; u)ru(x) � �(x) = g(x) x 2 @
2 ; (2.3)

where u 2 W 1;1(
); f 2 L2(
); g 2 L2(@
2). Here @
2 � @
 may be empty.

Physically, u can be interpreted as the piezometric head of the groundwater in 
, the
function f characterizes the sources and sinks in 
 and the function g describes the

in�ow and out�ow through @
2 � @
. The transmissivity coe�cient a is, physically,

positive and piecewise continuous with possible discontinuities on some surfaces in 
.

Introducing the subspace

H
1(
; @
1) = fw 2 H

1(
) : w(x) = 0 for x 2 @
1g � H
1(
);

we can give the following weak formulation of the inverse problem (2.1)�(2.3): For given

u �nd a 2 L2(
� (v1; v2)) such thatZ



aru �rw dx =

Z



fw dx +

Z
@
2

gw dS for all w 2 H1(
; @
1) : (2.4)

The problem (2.4) makes sense for a 2 L2(
� (v1; v2)) and u 2 W
1;1(
).

We consider an auxiliary problem:

�� (x) = f(x) x 2 
 � IRd (2.5)

 (x) = 0 x 2 @
1 (2.6)

r (x) � �(x) = g(x) x 2 @
2 (2.7)

with the weak formulationZ



r �rw dx =

Z



fw dx +

Z
@
2

gw dS for all w 2 H
1(
; @
1) : (2.8)

From (2.4) and (2.8) we obtainZ



aru �rw dx =

Z



r �rw dx: (2.9)

Let G be the space of gradients of functions w 2 H
1(
; @
1):

G = G(
; @
1) = frw : w 2 H
1(
; @
1)g � (L2(
))d :

Furthermore, using the orthoprojector

QG : (L2(
))d ! G

we de�ne an operator T 2 L(L2(
� (v1; v2)); G) by

Ta = QG(aru) ; a 2 L
2(
� (v1; v2)) (2.10)
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and consider the operator equation

Ta =r ; (2.11)

where  2 H
1(
; @
1) is the solution of the direct problem (2.5)�(2.7). Using QGr =

r it is easily seen that the problem (2.4) is equivalent to the operator equation (2.11).

If @
2 6= @
, then the direct problem (2.5)�(2.7) is uniquely solvable.

For general coe�cients a(x; u) the equation (2.9) should be used for the discretization of

the problem. But, sometimes the adjoint operator has a very simple form which can more

conveniently be used for discretization.

Let us list some important special cases. From (2.11) we obtain

hTa;rwi = hr ;rwi = ha; T
�
rwi for all rw 2 G ; (2.12)

where h�; �i denotes the scalar product in L2. We restrict the function a(x; u) from D(a) =

 � [v1; v2] to the graph f(x; u(x)) jx 2 D(u) = 
g of the function u and denote the

restriction by a(x; u(x)).

1. We assume that a(x; u(x)) is a function depending only on the �rst variable x, i.e.

we identify a(x; u(x)) = a(x) 2 L2(
).
Analogously to (2.10), we de�ne T1a = (QGaru) and using (2.12) we obtain

T
�

1rw =ru �rw: (2.13)

This is the operator used in the method of Vainikko [18], [19], [20]. Vainikko was

the �rst to recognize the advantages of applying the adjoint operator to the deter-

mination of coe�cients in the form a(x).
2. We assume that a(x; u(x)) is a function depending only on the second variable u(x),

i.e. we identify a = a(x; u(x)) = a(u(x)) 2 L2(
).
The transformation

v(x) =

u(x)Z
v1

a(s) ds (2.14)

yields

rv = aru; (2.15)

and

��v(x) = f(x) x 2 
 (2.16)

v(x) = v0 x 2 @
1 (2.17)

rv(x) � �(x) = g(x) x 2 @
2 (2.18)

Now, the determination of the coe�cient a = a(u(x)) can be carried out in two

steps:

(a) Find v from the direct problem (2.16)�(2.18).

(b) Solve the integral equation (2.14)

If jru j� c > 0, then a(x; u(x)) can be calculated via the formula

a(u(x)) =
rv �ru

jru j2

which is obtained from (2.15).
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3. We assume that a(x; u(x)) has the form

a(x; u(x)) = a1(x) a2(u(x)); x 2 
;

where a2(u(x)) is a known continuous function, i.e. we identify a1(x) 2 L
2(
).

Moreover, we assume that a1(x) > 0 and a2(u(x)) > 0 for all x 2 
. Now, we de�ne
an operator Ta2 2 L(L

2(
); G) by

Ta2 a1 = QG(a1 a2ru); a1 2 L
2(
): (2.19)

Comparing (2.10) with (2.19) we see that Ta2 a1 = T a for a = a1 a2 2 L
2(
). From

(2.19) we conclude

hTa2 a1;rwi = hQG(a1 a2ru);rwi = ha1 a2ru;QGrwi

= ha1 a2ru;rwi = ha1; a2ru �rwi

= ha1; T
�

a2
rwi = hr ;rwi for all rw 2 G;

where the adjoint operator T �a2 2 LL
2(
); G) has the form

T
�

a2
rw = a2(u)ru �rw rw 2 G:

Using (2.13) we have with K = K
� = a2 I : L2(
)! L

2(
)

T
�

a2
rw = K T

�

1rw rw 2 G: (2.20)

The operators T �a2 and Ta2 have the following properties:

1. Let be d � 2. Then the range R(T �a2) � L
2(
) is nonclosed in L2(
) even if jru j�

c1 > 0 and j a2(u(x)) j� c2 > 0 in 
.
Indeed, the nonclosedness of the range R(T �1 ) of the operator T

�

1 is shown in [19].

Using (2.20) we see that R(T �1 ) � D(K) = L
2(
); N(K) = f0g and K is bounded

in L2(
). Then from R(T �1 ) 6= R(T �1 ) it follows that R(KT
�

1 ) 6= R(KT �1 ) ([10] $ 10).
2. T �a2 is noncompact.

T
�

1 is noncompact as a multiplication operator in the pair of spaces (G;L2(
)).
Then the product KT �1 , where j a2(u(x)) j� c2 > 0 in 
 is noncompact too.

3. The operator Ta2 has a nonclosed range R(T �a2) � G and is also noncompact.

4. The problem (2.11) with the operator T1 or Ta2 is ill-posed.

2.2. Discretization and implementation. As we mentioned above, for the discretiza-

tion we use the simple form of the adjoint operator T �, where for T � we take T �1 or

T
�

a2
. The discretization is carried out by the method of minimal error, which is a special

projection method.

Consider �nite dimensional subspaces Sh � H
1(
; @
1) with the usual admissibility prop-

erties and take

Gh =rSh � G ; T
�
rSh � L2(
)

as test and trial spaces, respectively. Then from (2.12)

hah; T
�
rvhi = hr ;rvhi for all vh 2 Sh ; (2.21)

where ah =ru �rv̂h ; v̂h 2 Sh , and

kah � akL2
= min

vh2Sh

kru �rvh � akL2
:

Problem (2.21) has a unique solution ah and

kah � akL2
! 0 as h! 0:
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Here a is a minimal norm solution of (2.4).

The implementation is performed if d = 2; x = (x1; x2), and for two types of coe�cients:

1. a(x; u(x)) = a(x) x 2 
,
2. a(x; u(x)) = a1(x)(u(x) � u0(x)) x 2 
, where a1(x) denotes the transmissiv-

ity, u(x) is the groundwater level and u0(x) is the lower bound of the aquifer. In

particular, in our case, where the two-dimensional uncon�ned groundwater �ow is

considered, the coe�cient is of this kind.

First we derive a linear equation system for the determination of the coe�cient in the

form a(x) from the considerations in the special case 1 of Section 2.1. The linear equation

system for the determination of the coe�cient in the form a1(x)(u(x) � u0(x)) follows

from the the special case 3 just there.

2.2.1. Coe�cients of the form a = a(x). Let 
 be a polygonal bounded domain and for

a �xed discretization level h let Th be a regular triangulation, where


 =
[
E2Th

E:

Denote by N = fPjg
n
j=1 the set of all nodes of the triangulation Th that do not lie on

the boundary @
1 and in the �nite dimensional subspace Sh � H
1(
; @
1) choose a basis

with linear base functions fwjg
n
j=1 with wj = 0 on @
1 and wj(Pi) = �ij; 1 � i; j � n:

Let us assume that the coe�cient a(x) is constant on each element (triangle) E 2 Th and

the discretized coe�cient ah can be represented as the vector

a = (aE)E2Th:

Then for the direct problem, where

u =
X

1�j�n

ujwj

is to be determined, the linear systemX
1�j�n

Lij[a]uj = di; 1 � i � n; (2.22)

where

Lij[a]
def
=
X
E

a
E

Z
E

rwj �rwi dx; (2.23)

has to be solved (aE and di are given). The values of u on the boundary @
1 are already

known as u(x) = 0 on @
1:

For the inverse problem the linear systemX
1�j�n

Mij[u]cj = dj; 1 � i � n; (2.24)

has to be solved, where

Mij[u]
def
=
X
E

Z
E

(ru �rwj)(ru �rwi) dx
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(here ru and di are known). Then ah will be found from

ah =
X

1�j�n

cjru �rwj: (2.25)

In combination with Tikhonov regularization (2.24) reads asX
1�j�n

(�Lij +Mij[u])c
�
j = dj; 1 � i � n; (2.26)

where

Lij

def
=
X
E

Z
E

rwj �rwi dx = Lij[1]:

It is clear that this method of Vainikko will work well when ru has su�ciently good

properties. If the matrix (Mij[u])i;j in (2.24) is ill�conditioned, Tikhonov regularization

(2.26) with a not too small � may produce results. However, if � is chosen too large the

computed coe�cient

a
�
h =

X
1�j�n

c
�
jru �rwj

cannot be interpreted as a solution to the inverse problem.

Remark 2.1. The matrices L[a] = (Lij[a])i;j and M[u] = (Mij[u])i;j can be easily con-

structed using the coe�cients

L
E
ij =

Z
E

rwj �rwi dx :

Since rwi (1 � i � n) is constant on each element (i.e. triangle) E, we have

L
E
ij = meas(E)rwj �rwi;

Lij[a] =
X
E

a
E
L
E
ij;

Mji[u] =Mij[u] =
X
E

(
X
k2N

1�k�n

uk L
E
ki)(

X
l2N

1�l�n

ul L
E
lj)

1

meas(E)
:

2

Remark 2.2. If the triangle E (of the triangulation Th ) has no obtuse angles we have

the well-known properties

L
E
ij = L

E
ji � 0; i 6= j;

L
E
ii > 0;

X
j2N

1�j�n

L
E
ij = 0 if E \ @
1 = ;:
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2

In summary, choosing a basis fwig
n
i=1, setting in (2.21) T � = T

�

1 and using (2.25) we

obtain a linear equation system of the form

Mc = d;

where M = (mij) is a n� n�matrix with the elements

mij = hT
�

1rwj; T
�

1rwii i; j = 1; :::; n;

and c as well as d are n�dimensional vectors with the components c1; :::; cn

di = hr ;rwii i = 1; :::; n; (2.27)

respectively.

2.2.2. Coe�cients of the form a = a1(x)(u(x)� u0(x)). It is easily seen that we can use

the considerations of the special case 3 Subsection 2.1 if we set a2(u(x)) = u(x)� u0(x).
Then (2.21) has the form

ha1h; T
�

a2
rvhi = hr ;rvhi for all vh 2 Sh; (2.28)

where

a1h =
X

1�j�n

c1jru �rwj:

Using as in Subsection 2.2.1 the basis fwjg
n
j=1 we obtain from (2.28) a linear equation

system in the form

Nc1 = d;

where N = (nij) is a n� n-matrix with the elements

nij = hT
�

1rwj; T
�

a2
rwii i; j = 1; :::; n:

The n-dimensional vectors c1 and d have components c11; :::; c1n and di in the form (2.27).

Remark 2.3. Let us compare the determination of a piecewise constant function a(x) in
the linear equation

�r � (a(x)ru(x)) = f(x) x 2 
 (2.29)

with that of a piecewise constant function a1(x) in the quasilinear equation

�r � (a1(x)(u(x)� u0(x))ru(x)) = f(x) x 2 
: (2.30)

For the �nite element discretization of (2.30) we use that a1(x) is piecewise constant, i.e.

a1(x) = a
E
1 for x 2 E;

and suppose that u(x); u0(x) are piecewise linear functions,

u(x) =
X

1�k�n

ukwk(x);

u0(x) =
X

1�k�n

u0kwk(x); x 2 
:
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Recalling that rwk is constant on E, and
R
E
wk(x) dx = meas(E)

d+1
, if Pk is a vertex of E,

from (2.30) we obtainZ



f(x)wi(x) dx =
X
E

a
E
1

Z
E

X
k;Pk vertex of E

(uk � u0k)wk(x)
X
j

ujrwj �rwi dx

=
X
E

a
E
1

meas(E)

d+ 1

X
k;Pk vertex of E

(uk � u0k)
X
j

ujrwj �rwi:

On the other hand, from (2.29) we haveZ



f(x)wi(x) dx =
X
E

a
E
meas(E)

X
j

ujrwj �rwi

whence follows

a
E = a

E
1

1

d+ 1

X
k;Pk vertex of E

(uk � u0k):

This means that aE1 can be determined from a
E if u(x) > u0(x) holds for every x 2 
.

2

3. Description of the data smoothing procedure

3.1. Preliminary remarks. As in most inverse problems the in�uence of uncertain data

is destructive to the inversion so that without regularization no useful result can be

obtained.

In the problem considered here disturbances are caused on one hand by uncertain mea-

surements of potential values and, on the other hand, by incomplete observations. To

overcome the di�culties caused by noise Tikhonov regularization and the regularization

by discretization had been proposed. Here, to avoid ambiguities caused by incomplete

measurements, a so�called data smoothing procedure is considered. This procedure can

be taken as some kind of regularization, where a well-behaved model is chosen which

converges to the solution, if the noise (in this case the lack of measurements) tends to

zero.

The inversion procedure of Vainikko, considered in this paper, needs one measurement at

every node. The di�culty is that in practical tasks only very few measurements are at

our disposal and, moreover these few measurements are not necessarily located at nodes

in the domain.

The purpose of the data smoothing procedure is to construct a new data set suitable

for the application of Vainikko's method. This suitable data set is to satisfy the state

equation to a given tolerance and to have minimal distance from the measurement values.

As well as the available measurements, a priori information is also of importance in the

construction.

In what follows a matrix B relating the given information (measurements and a priori

guesses) to the searched data set is de�ned and its properties are discussed. Then the

minimum problem is formulated and solved.
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The data smoothing procedure is described in detail. It is shown that the iterative ap-

plication of this procedure decreases the distance between the calculated data and the

measured ones.

Finally, some examples are considered and rules for the choice of procedure parameters

are discussed.

The goal of these investigations is not to �nd the real permeability coe�cient, which is

impossible, because of the lack of measurements. Instead we attempt to use the given

information in an optimal way, so as to be as helpful as possible in �nding the true values.

3.2. The matrix B. First, let us recall some notation from 2.2. Let 
 be a bounded

domain in IR2 with a piecewise linear boundary, 
 = [E a �xed triangulation and N the

set of nodes Pi (i = 1; :::; n), being used in the Vainikko inversion. In addition, let us

again consider the linear functions wi on 
 with the property wi(Pj) = �ij.

To stress the correspondence between wi and Pi, in what follows we shall write wPi
instead

of wi. Then

wP(Q) = �PQ ; P;Q 2 N ;

where

�PQ =

�
1 if P = Q

0 else:

Let

A = fa; 0 < �
E
� a

E
� �

E
g ;

be a set of admissible parameters, �E, �E given real numbers and d a �xed right hand

side for the discretized direct problem (2.22). The vector d, calculated from sources and

boundary values, is assumed to be given exactly. Finally, let a0 be an a priori guess of

the searched�for data set and

b� given measurements in y� 2 
 ; � = 1; :::; m :

In what follows let us suppose

Assumption 1: Let P 2 N be �xed. If wP(y�) � wQ(y�) for all Q 2 N , then y� is

uniquely determined.

Roughly speaking, assumption 1 means that the measurement points are more thinly

distributed in 
 than the nodes.

Assumption 1 implies that a one�to�one relation can be de�ned between a subsetM� N ,

jMj = m and the set of measurement points

P() xP ; P 2 M

with the property

wP(xP) = max
Q2N

wQ(xP) :

Indeed, let

M� = fP; wP(y�) � wQ(y�) 8Q 2 Ng :

The sets M� are non�empty and disjoint. Now let P 2 M� be arbitrarily chosen, and

set y� = xP.
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Lemma 3.1. Let V n be the space of the functions

u =
X
P2N

uPwP ; uP 2 IR ;

where u(P) = uP. We consider the operator ~B : V n
! V

n

~BwR =

8>><
>>:

wR +
X
P2M

wR(xP)wP ; R 2 NnMX
P2M

wR(xP)wP ; R 2 M ;

where the related matrix B mapping IRn to IRn, has the entries

BSR =

�
�RS ; S 2 NnM

wR(xS) ; S 2 M :
(3.1)

Then

( ~Bu)P =

�
u(P) ; P 2 NnM

u(xP) ; P 2 M :

Proof.

~Bu =
X
R

u(R) ~BwR =
X

R2NnM

u(R) ~BwR +
X
R2M

u(R) ~BwR

=
X

R2NnM

u(R)

 
wR +

X
P2M

wR(xP)wP

!
+
X
R2M

u(R)
X
P2M

wR(xP)wP

=
X

R2NnM

u(R)wR +
X
P2M

wP

0
@ X
R2NnM

u(R)wR(xP) +
X
R2M

u(R)wR(xP)

1
A

=
X

P2NnM

u(P)wP +
X
P2M

 X
R2N

u(R)wR(xP)

!
wP

=
X

P2NnM

u(P)wP +
X
P2M

u(xP)wP :

2

The matrix B is �nearly� a diagonal matrix, with BRR � BRS � 0; BRR > 0:

For the sequel, in addition to Assumption 1 let us suppose

Assumption 2: The matrix B is invertible.

3.3. The minimum problem. Starting from a given a priori guess a0, let L[a0] be
constructed and let u[a0] be calculated by solving the direct problem

L[a0]u[a0] = d :

Furthermore, we de�ne the data vector �u = (�uP;P 2 N ) as

�uP =

�
u[a0](P) ; P 2 NnM

bP ; P 2 M :
(3.2)

11



We have

kBu[a0]� �uk2 =
X
P2M

(u[a0](xP)� bP)
2 = kBmu[a0]� bk

2
m ; (3.3)

denoting by Bm the restriction of B to IRm, the space of vectors (uP)P2M.

Let us consider the minimum problem: Find û 2 V n with the property

kBû� �uk = min
fu2V n ; kL[a0]u�dk��g

kBu� �uk ; (3.4)

where � > 0 is given.

Let us assume that û solves the state equation more exactly then B�1�u. Then

0 � � � kLB
�1�u� dk:

Theorem 3.1. Under the assumption 2 and if the operator BT
B + �L

T
L is invertible,

the minimum problem (3.4) has exactly one solution

û = (BT
B+ %L

T
L)�1(BT �u+ %L

T
d);

where L = L[a0] and %; 0 � % � 1, is unique with the property

� = kL(BT
B+ %L

T
L)�1BT (�u�BL�1d)k :

For % =1 we have û = u[a0] = L
�1
d and for % = 0 we get û = B

�1�u.

Proof. First, it is clear that (3.4) has a solution: Let fukgk be a minimizing sequence, i.e.

k�u�Bukk ! 
 := inf
u2V n;kLu� dk��

k�u�Buk :

Then kBukk � C; ku
k
k � C; for a subsequence fukrg u

kr
! ~u as r ! 1 and

k�u�Bukrk ! k�u�B~uk, kLukr � dk ! kL~u� dk as r !1, kL~u� dk � �, i.e. ~u is a

solution of (3.4).

Additionally, if ~u solves (3.4) then ~u solves

k�u�Bûk = min
fu; kLu� dk=�g

k�u�Buk : (3.5)

Let ~u solve (3.4) with kL~u � dk = ~� < �. Let us show that kB~u � �uk > 0. Indeed,

B~u = �u means that ~u = B
�1�u, and

kLB
�1�u� dk = ~� < � � kLB

�1�u� dk;

is a contradiction. Now consider

w := �~u+ (1� �)B�1�u for some �; 0 < � < 1 :

Then

kBw� �uk = �kB~u� �uk < kB~u� �uk

for � < 1, and

kLw � dk = kL~u� d + (1� �)(LB�1�u� L~u)k

� kL~u� dk+ (1� �)C � �;

which contradicts to the assumption that ~u solves (3.4). The proof of (3.5) is complete.

Now, let us solve (3.5). Consider the Lagrange function

L(u; �) = kBu� �uk2 + �(kLu� dk2 � �
2) :

12



Necessary conditions for a minimum are

@L

@u
= 0 ;

@L

@�
= 0 :

We have�
@L

@u
; �u

�
= lim

�!0

1

�
(kB(u+ ��u)� �uk2 � kBu� �uk2 + �(kL(u+ ��u)� dk2

�kLu� dk
2)) = 2(BT (Bu� �u) + �L

T (Lu� d); �u):

Then, we obtain from the necessary conditions

B
T (Bû� �u) + %L

T (Lû� d) = 0 ; (3.6)

� = kLû� dk : (3.7)

From the equations (3.6), (3.7) the pair (û; %) is uniquely determined, if d, �u, � are given.
Indeed, (3.6) implies

û = (BT
B+ %L

T
L)�1(BT �u+ %L

T
d):

Then we have

� = kLû� dk

= kL(BT
B+ %L

T
L)�1(BT �u+ %L

T
d)� dk

= kL(BT
B+ %L

T
L)�1(BT �u+ %L

T
d� (BT

B+ %L
T
L)L�1d)k

= kL(BT
B+ %L

T
L)�1(BT �u+ %L

T
d�B

T
BL

�1
d� %L

T
LL

�1
d)k

= kL(BT
B+ %L

T
L)�1(BT �u�BT

BL
�1
d)k

whence follows

� = kL(BT
B+ %L

T
L)�1BT (�u�BL�1d)k: (3.8)

The function

�(s) = kL(BT
B+ sL

T
L)�1BT (�u�BL�1d)k2

is strictly decreasing for 0 � s <1 . Indeed, introducing z(s) as the solution of

(BT
B+ sL

T
L)z(s) = B

T (�u�BL�1d)

we obtain

�
0(s) =

d

ds
hLz(s);Lz(s)i = 2hLz0(s);Lz(s)i = 2hz0(s);LT

Lz(s)i;

where z0(s) is given as the solution of

(BT
B+ sL

T
L)z0(s) + L

T
Lz(s) = 0 :

Then it follows

�
0(s) = �2h(BT

B+ sL
T
L)�1LT

Lz(s);LT
Lz(s)i � 0

since (BT
B+ sL

T
L)�1 is positive de�nite. In addition it holds

�(0) = kL(BT
B)�1BT (�u�BL�1d)k2 = kLB

�1(�u�BL�1d)k2 = kLB
�1�u� dk2 > 0:

Now, we obtain the uniqueness of % from (3.8). 2
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3.4. The procedure. The purpose is the construction of a data set û suitable for the

Vainikko inversion, from the a priori guess a0 and the measurements b, and to repeat this

process if reasonable.

Preparation: Start with constructing L[a0] = L from the given a priori guess a0, then

calculate u[a0] by solving a direct problem. After de�ning the correspondence xP () P,

P 2 M ( by calculating wQ(y�)Q 2 N ; � = 1; :::; m) construct the matrices B in (3.1)

and BT
B, and build the vector �u from (3.2).

Iteration:

(I) Choose %, 0 � % � 1.

(II) Calculate û = (BT
B+ %L

T
L)�1(BT �u+ %L

T
d).

(III) Invert û by the Vainikko method, the result is ~a.

(IV) Project ~a to the convex set A, i.e. a = PA~a.

(V) Apply a suitable stopping rule.

(VI) Construct L = L[a].

(VII) Construct �u : �uP =

�
ûP ; P 2 NnM

bP ; P 2 M ;

(VIII) Go to (I).

Theorem 3.2. Let the assumptions of Theorem 3.1 be satis�ed and let û0 = u[a0], ûi = û

in the i�th iteration of (II), �ui = �u in the i�th iteration of (VII). If % < 1 then the

sequence ûi has the property

kBmûi+1 � bkm < kBmûi � bkm ; i = 0; 1; 2; :::; (3.9)

(i.e. by iteration the �tting of the measurements will be improved).

Proof. First let us prove the inequality

kBûi � �ui�1k < kBûi�1 � �ui�1k i = 1; 2; :::: (3.10)

Let i be one of the numbers 1; 2; ::: and

g := Bûi�1 � �ui�1 6= 0 : (3.11)

For g = 0, then we have a total �t of the measurements by ûi�1. In this case the inversion

ai�1 of ûi�1 cannot be improved and has to be taken as solution.

Setting in (2.23) L = L[ai�1] we have

ûi = (BT
B+ %L

T
L)�1(BT �ui�1 + %L

T
d) ;

implying

Bûi � �ui�1 = B(BT
B+ %L

T
L)�1(BT �ui�1 + %L

T
d� (BT

B+ %L
T
L)B�1�ui�1) :

Straightforward calculations yield

Bûi � �ui�1 = B(BT
B+ %L

T
L)�1%LT

LB
�1(BL�1d� �ui�1) :

Since ai�1 corresponds to the inversion of ûi�1, under the assumption that the di�erence

between ai�1 and ~ai�1 is small we have approximately

L
�1
d = ûi�1 :
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Then we obtain

Bûi � �ui�1 = B(BT
B+ %L

T
L)�1%LT

LB
�1
g

= B(%�1BT
B+ L

T
L)�1LT

LB
�1
g:

Now let us consider the continuous function

 (s) = kBz(s)k2;

where z(s) is de�ned by

(sBT
B+ L

T
L)z(s) = L

T
LB

�1
g: (3.12)

Then

 
0(s) = 2hBz0(s);Bz(s)i = 2hz0(s);BT

Bz(s)i ;

where z0(s) can be determined by di�erentiating (3.12), i.e.

(sBT
B+ L

T
L)z0(s) +B

T
Bz(s) = 0:

From this we have

 
0(s) = �2h(sBT

B+ L
T
L)�1BT

Bz(s);BT
Bz(s)i < 0

as z(s) 6= 0 (c.f. (3.11)).

Furthermore,

 (0) = kB(LT
L)�1LT

LB
�1
gk

2 = kgk
2
6= 0;

lim
s!1

 (s) = lim
s!1

s
�2
kB(BT

B+ s
�1
L
T
L)�1LT

LB
�1
gk

2 = 0 :

That means  (s) <  (0) if s > 0, i.e. (3.10).

Now, let us prove (3.9). First of all we have (cf. (3.3))

kBûj � �ujk
2 =

X
P2M

(ûj(xP)� bP)
2 = kBmûj � bk

2
m ; j = 0; 1; 2; :::: (3.13)

Since obviously

kBmûi � bk
2
m � kBûi � �ui�1k

2

the assertion (3.9) follows from (3.10) and (3.13) for j = i� 1: 2

Remarks on the choice of % and on the stopping rule (V) can be found below.

4. Numerical examples

4.1. A numerical example with simulated data. In the following numerical experi-

ments the e�ect of the data preparation will be demonstrated. Let us consider a square

domain 
 = fx 2 R
2 :j x j< 1:1g with impermeable upper and lower boundary, homoge-

neous Dirichlet conditions at the left boundary and inhomogeneous Neumann conditions

at the right one. No sources and sinks are considered. The domain 
 is triangulated by

30� 30 equidistant nodes.

Data generation: Suppose that we are given (cf. Fig. 1)
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1. (from a geological a priori information) an a priori guess a0, i.e., more precisely, a lens

C � A of diminished (constant) transmissivity a02 = 10�3 surrounded by an area 
nC of

(constant) transmissivity a01 = 10�5;

2. measurements in an area B0
� B at about 75% of all nodes in B0

:

These measurements are simulated by the potential values resulting from an assumed

reality, i.e. more precisely, the lenses A and B of transmissivity a02 surrounded by an

area 
n(A [B) of transmissivity a01:

Figure 1

Then, the data �u are composed from these simulated measurements and � on every node

where no measurement is given � from potential values ~u = (L[a0])
�1
d resulting from the

a priori guess a0. For technical reasons we set � = %
�1.

Results: The Figures 2 to 5 show the transmissivity gained by

(1) direct inversion of the data �u (Fig. 2),

(2) inversion after data preparation, � = 10�5 (Fig. 3),

(3) inversion after data preparation, � = 5 � 10�6 (Fig. 4),

(4) inversion after data preparation, � = 10�6 (Fig.5).

Discussion: The lens C in (1) - (4) is generally reproduced satisfactorily. This is ex-

pected since the data ~u are disturbed only in the area B
0, i.e. disturbances in B

0 do

not essentially a�ect the area C. It con�rms the above�mentioned local behavior of

Vainikko's method. Moreover, Fig. 2 shows that the lens B cannot be reconstructed

by direct inversion of the data. Fortunately, this can be achieved by additional data

preparation according to Section 3. The best reconstruction is obtained for � = 10�6

(Fig. 5), where B has nearly its correct shape, but its mean value is between a01 and

a02, i.e. much less than its true value a02. The latter fact is not surprising since the

used (prepared) data are situated between ~u and �u. The value 10�6 for � seems to

be optimal in this context but also � = 5 � 10�6 (Fig. 4) or � = 5 � 10�7 would be

possible. But, for numerical reasons, � � 10�7 is not suitable; in that case the con-

dition number of the matrix (�I + L[a0])
2 appeared to be too bad for a calculation.

16



Figure 2 Figure 3

Figure 4 Fig. 5

In our example we have set B = I. We have made four calculations with �ve iterations

each.

Calculation 1 2 3 4

Iteration � FIT � FIT � FIT � FIT

1 10�6 34948. 10�6 34948. 10�6 34948. 10�6 34948.

2 10�6 9467. 2 � 10�6 6377. 2 � 10�6 6377. 10�5 1970.

3 10�6 3944. 3 � 10�6 1736. 4 � 10�6 1433. 10�4 33.

4 10�6 2520. 4 � 10�6 785. 8 � 10�6 425. 10�3 0.23

5 10�6 2038. 5 � 10�6 424. 16 � 10�6 126. 10�2 0.002

with

FIT = kû� bk
2
m:
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Description of the results

Calculation 1 (� = 10�6 for every iteration). The area B being rather pale for one

iteration now appears clearer and darker. This e�ect is clearly stronger than a visible

increase of disturbances.

Calculation 2 and 3 (� = l � 10�6, l = 1; 2; 3; 4; 5, and � = l � 10�6, l = 1; 2; 22; 23; 24),
respectively. In principle we have the same as in calculation 1, but the contour of the

area B is even clearer. Disturbances are tolerable but stronger.

Calculation 4 (� = 10�l, l = 6; 5; 4; 3; 2).
Here the rough structure is just discernible. But considerable disturbances have to be

considered as destructive in a more complicated structure.

Discussion. 0 First of all it is clear that disturbances caused by uncertain data will

increase by iteration. The reason is the ill�posedness of the inverse problem. Therefore,

the following rule is useful

Rule 1. Iterate only a few times.

Another error source consists in the lack of measurements. If � is large then û is strongly

in�uenced by the measured values. This can be disadvantageous in the inversion. The

data û is the more suitable the smaller � is.

Rule 2. Choose � small. But large enough that a di�erence to the a priori guess is

visible. Then try to increase this trend by iteration.

As the test calculations show, the quantity FIT does not �t as a stopping rule. The reason

is that there are a lot of u �tting the measurements, suitable and unsuitable ones.

Rule 3. Stop the iteration if the calculated a does not change any more.

4.2. A numerical example with real life data. The following �gures illustrate some

numerical examples using real life data for an uncon�ned aquifer.

The �ow region 
 of a 50 km2 size was discretized by a �nite element grid with 5365
nodes and 10479 triangles due to the details known from the geological point of view.

Inside 
 there are placed 50 observation points at which measured values of the ground-

water level are available. Further values of the piezometric head are given at some ditches

implemented by boundary conditions of third kind.

The Figure 6 describes the a priori guess for the transmissivity due to geological con-

siderations. Figure 7 presents the reconstruction of the transmissivity from simulated

measurements at each node. To simulate these measurements the a priori guess was used.

In this case the parameter � = 0 and the regularization parameter � = 0. Figure 8 shows

the in�uence of the measurements mentioned above. The parameter � can be understood

as a weight between the in�uence of the measurements and of the a priori guess. We have

chosen � = 1 and � = 0. Finally, the Figure 9 demonstrates the smoothing properties of

the Tikhonov regularization with choice of � = 1 and � = 10�2.
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Figure 6

Figure 7
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Figure 8

Figure 9
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