
Abstract

We present a quantum theory of gravity which is in agreement

with observation in the relativistic domain. The theory is not rel-

ativistic, but a Galilean invariant generalization of Lorentz-Poincare

ether theory to quantum gravity.

If we apply the methodological rule that the best available theory

has to be preferred, we have to reject the relativistic paradigm and

return to Galilean invariant ether theory.
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... die blo�e Berufung auf k�unftig zu entdeckende Ableitungen bedeutet uns

nichts. Karl Popper

In quantum gravity, as we shall see, the space-time manifold ceases to exist

as an objective physical reality; geometry becomes relational and contextual;

and the foundational conceptual categories of prior science { among them,

existence itself { become problematized and relativized. Alan Sokal
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1 The Problem Of Quantum Gravity

We believe that there exists a unique physical theory which allows to describe

the entire universe. That means, there exists a theory | quantum gravity

| which allows to describe quantum e�ects as well as relativistic e�ects of

strong gravitational �elds.

The simplest strategy would be to search for a theory which is in agree-

ment with the metaphysical principles in above limits | a relativistic quan-

tum theory of gravity. This theory

� allows to derive the experimental predictions of general relativity in

~! 0 and Schrdinger theory in c!1;

� is a quantum theory;

� is in agreement with the relativistic paradigm.

The strategy seems to fail. After a lot of research we have, instead of a

theory, a list of serious problems: problem of time, topological foam, non-

renormalizability, information loss problem. The consequences of relativistic

quantum gravity seem close to Sokal's parody [19].

What if this strategy really fails? In this case, at least one of the two

paradigms of modern science has to be wrong. This makes quantum gravity

| a theory we possibly never need to predict real experimental results |

very interesting for current science.

But, if one of the principles is wrong, how can we �nd out which? To �nd

the answer, we can apply standard scienti�c methodology (following Popper

[14]). All we need is the following methodological rule: We always have to

prefer the best available theory, to refer to possible results of future research

is not allowed. What we have to do is to present one of the following theories:
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� post-relativistic quantum theories (non-relativistic theories which pre-

dict relativistic e�ects in some limit);

� post-quantum relativistic theories (non-quantum theories which but

predict quantum e�ects in some limit).

Until relativistic quantum gravity has not been found, the principle which

is not valid in this theory is the wrong one. Indeed, in this case we have a

theory which ful�ls our �rst condition. We have to prefer this theory as

the best available theory, and reference to the future success of relativistic

quantum gravity is not allowed. qed.

The rejected paradigm may be revived by the results of future research.

But this is a trivial remark | it is correct for every invalid paradigm. Thus,

this paradigm is as dead as possible for a scienti�c paradigm.

This result depends on some methodological rules we have to accept. We

have to make a decision to apply a certain methodology of empirical science.

We need:

� The rule that we have to prefer the best available theory and to ignore

the hope for future success of alternative approaches;

� A rule which allow to prefer a uni�ed theory of quantum gravity com-

pared with theories which do not allow to describe quantum e�ects of

strong gravitational �elds;

Our decision was to accept the methodology of Popper [14]. It contains

the rule that we have to prefer the best available theory. Popper's criterion

of potential predictive power obviously prefers a uni�ed theory of quantum

gravity.

2 Introduction

The aim of this paper is to present a post-relativistic quantum theory of

gravity | that means, a non-relativistic theory which nonetheless describes

relativistic e�ects correctly.

Our strategy may be described as the simplest search strategy after the

search for relativistic quantum gravity. We have to omit at least one of the
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guiding principles | the relativity principle or quantum theory. As guiding

principles, we use the other principle and an available competitor of the

rejected principle.

For quantum theory we have no appropriate known competitor | Bohm's

hidden variable theory seems to be even less compatible with relativity. For

the relativity principle the best known non-relativistic theory is Lorentz-

Poincare ether theory. It is Galilean invariant, thus, we have obviously no

\problem of time". We have a �xed, 
at space, thus, no topological foam.

Thus, to replace relativity by the Lorentz-Poincare ether paradigm solves at

least two of the quantization problems.

Thus, we try to use the pre-relativistic ether paradigm as the replacement

of the relativity principle and search for a theory of gravity which

� is a quantum theory,

� is Galilean invariant,

� allows to describe relativistic time dilation as caused by interaction

with a physical �eld | the \ether".

We already know how we have to describe special-relativistic e�ects, thus,

what we have to do is to generalize this scheme to gravity and to quantize the

resulting theory in the simplest possible way | with canonical quantization.

To realize this concept is surprisingly simple.

We know that general relativity is tested for a wide range, thus, the

simplest idea is to remain as close as possible to general relativity. Thus, it

would be the simplest case if we have a Lorentz metric gij(x; t) in our theory

and this metric ful�lls the Einstein equations. What we have to include

is a preferred Newtonian frame. The simplest idea is to choose harmonic

coordinates to de�ne this frame.

We obtain a theory | post-relativistic gravity | which is slightly dif-

ferent from general relativity, with a natural ether interpretation: we can

identify a \density" �, a \velocity" vi, and a \stress tensor" �
ij with correct

transformational behaviour and the usual conservation laws. The simplest

way to incorporate the harmonic equation into the Lagrange formalism re-

quires to break the covariance. This makes the ether observable in principle

| as some type of dark matter, with two cosmological constants which have

to be �tted by observation.
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Once we have an ether theory, the question if this ether has an atomic

structure is natural. Is our continuous ether theory valid for arbitrary dis-

tances or is it only the large scale approximation of some atomic ether theory

for distances below some �? The �rst hypothesis leads to problems already

in classical theory, but in the quantum case we obtain ultraviolet problems.

That's why we assume that the atomic hypothesis is true. This obvi-

ously solves the ultraviolet problems. We show this for a simple example

theory with discrete structure | standard regular lattice theory. For this

theory, standard canonical quantization may be applied without problem.

This suggests that for better atomic theories canonical quantization works

too.

Our lattice theory is not the ideal atomic ether theory. But this is already

a Galilean invariant quantum theory of gravity, and it works in the relativistic

domain. Thus, it already solves the problem of quantum gravity. In other

words, the solution of the \problem of quantum gravity" can be described in

a single sentence:

Classical canonical Weyl quantization of a lattice theory (standard �rst

order �nite elements on a regular rectangular lattice in space) of a classical

Galilean invariant theory for an \ether" gij and matter �elds � with

Lagrangian

L = LRosen(gij) + Lmatter(gij ; �) + �1g
00 + �2g

aa

Note that to remove the regularization, that means to solve the ultravio-

let problem by some sort of renormalization, is necessary only in a relativis-

tic theory. The point is that the regularization is not relativistic invariant.

That's why this theory is far away from being \relativistic quantum gravity".

But Galilean invariant regularization is not problematic, and that's why

this simple theory already solves the problem of Galilean invariant, non-

relativistic quantization of gravity, even for the relativistic domain.

3 Generalization Of Lorentz-Poincare Ether

Theory To Gravity

In this section, we present the details of the de�nition of our ether theory.

We present a slightly more general scheme, which shows that our approach
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is not very much related with the details of the theory of gravity.

De�nition 1 Assume, we have a classical relativistic theory with the fol-

lowing variables: the Lorentz metric gij and some matter �elds �
m, with a

relativistic Lagrangian

Lrel = Lrel(gij; gij;k; �
m
; �

m
;k)

In this case, the \related ether theory" is de�ned in the following way:

The theory is de�ned on Newtonian space-time R3�R. The independent

variables are:

� a positive scalar �eld �(x; t) named \density of the ether",

� a vector �eld v
a(x; t); 1 � a � 3 named \velocity of the ether",

� a positive-de�nite symmetrical tensor �eld �
ab(x; t); 1 � a; b � 3 named

\stress tensor of the ether",

� and one �eld �
m(x; t) for every \matter �eld" of the original relativistic

theory named \inner step of freedom of the ether".

The Lagrange functional is

L = Lrel(gij; gij;k; �
m
; �

m
;k) + �1g

00 + �2g
aa

where the \ether metric" gij(x; t) is de�ned by the following formulas:

ĝ
00 = g

00
p�g = � (1)

ĝ
a0 = g

a0
p�g = �v

a (2)

ĝ
ab = g

ab
p�g = �v

a
v
b � �

ab (3)

(4)

The most interesting example is of course general relativity. The related

ether theory we have named post-relativistic gravity or simply post-relativity.

In the following we restrict ourself to this theory. Nonetheless, the previous

schememay be applied to other metrical theories of gravity too. That means,

the question of existence of an ether does not depend on the details of the

theory of gravity.
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3.1 Elementary Properties Of Post-Relativistic Gra-

vity

The \ether metric" in post-relativistic gravity identi�es the ether with the

gravitational �eld. It is in general inhomogeneous and instationary. Only

in the Minkowski limit the ether becomes homogeneous and stationary, and

obviously coincides with the ether of Lorentz-Poincare ether theory. Because

of our assumptions about � and �
ab, gij is really of signature (1; 3).

The ether in
uences all matter �elds only via minimal interaction with the

ether metric, thus, in the same way. Thus, we have no ether for the electro-

magnetic �eld only, but a common ether for all matter �elds. Especially, all

clocks | which have to be described by matter �elds | are time-dilated in

the same way and show general-relativistic proper time � . But this \proper

time" does not have the metaphysical status of time. It is only a parameter

for the speed of clocks, which depends on the state of the ether and the

relative velocity of the clock and the ether.

Our Lagrange density is not covariant. To compare it with relativistic

theory, it is useful to introduce the preferred coordinates as independent

functions T;Xa. This allows to make the Lagrange density covariant:

L = Lrel(gij ; gij;k; �
m
; �

m
;k) + �1g

ij
T;iT;j + �2g

ij
X

a
;iX

a
;j

Now we see that the relativistic �eld equations are ful�lled, with a small

modi�cation | an additional term has to be added to the energy-momentum

tensor. In the preferred coordinates T;Xa, the additional energy term is

(Tfull)
0

0
= (Trel)

0

0
+ �1g

00 � �2g
aa
:

For the absolute coordinates, we obtain the usual harmonic wave equation

2T = 0; 2Xa = 0

Translated into the original variables, these are simply conservation laws

for the ether:

@t�+ @i(�v
i) = 0

@t(�v
j) + @i(�v

i
v
j � �

ij) = 0
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3.2 The Cosmological Constants

Thus, the only immediately observable di�erence between general relativity

and post-relativistic gravity are two unknown constants �1; �2. To observe

them we have to compare the energy-momentum tensor of observable matter

with the observable Einstein tensor in harmonic coordinates. The observed

di�erence should have the form �1g
00 � �2g

aa. These parameters may be

considered as cosmological constants of post-relativistic gravity.

This does not mean that this observation immediately falsi�es relativ-

ity. We can explain the same observation inside the relativistic paradigm

too. Indeed, we can interpret the �elds T;Xa as some new matter �elds.

They obviously ful�l a relativistic equation. The �elds T;X
a are de�ned

only modulo a constant, thus, describe only some potential, only the deriva-

tives ĝijT;j; ĝ
ij
X

a
;j are physical �elds. These �elds do not interact with other

matter. Thus, all what we observe from relativistic point of view is more or

less standard dark matter.

3.2.1 The Observation Of The Cosmological Constants

To observe the cosmological constant seems possible for the global homoge-

neous universe solution. In post-relativistic gravity, only the 
at universe

is homogeneous | a preference of the 
at universe which is supported by

observation. Now, let's look how dark matter of the form �1g
00 � �2g

aa in

harmonic coordinates modi�es the 
at Friedman solution (c=1)

ds
2 = d�

2 � b
2(� )(dx2 + dy

2 + dz
2):

The harmonic coordinates are x; y; z and t =
R
b
�3(� )d� , thus, we have

ds
2 = b(t)6dt2 � b

2(t)(dx2 + dy
2 + dz

2):

The �rst part �1g
00
p�g = �1 is a �xed density | something like invisible

dust in rest.

The second part ��2gaa
p�g = �3�2b4(t) has a di�erent behaviour. The

parameter �2 obviously in
uences the observable (proper time) age of the

universe.

In other words, if the cosmological constants are non-trivial and have

observable e�ects, we will observe:
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� a missing mass | a di�erence between observed mass and mass neces-

sary to explain the current Hubble coe�cient in general relativity.

� a wrong age of the universe | a di�erence between the observable age

of the universe and the age which follows from general relativity and

the current Hubble coe�cient.

The observations may be described in general relativity as more or less

standard dark matter.

3.2.2 The Necessity Of Cosmological Constants

We know that there are problems with missing mass and the age of the

universe. We have to admit that this knowledge has in
uenced our decision to

incorporate these cosmological constants into post-relativistic gravity. But,

remember the history of the cosmological constant in general relativity. Is it

possible that the introduction of these constants is an error in post-relativity

too?

For an ether interpretation of gij we need conservation laws | the har-

monic condition. To incorporate the harmonic condition into general rela-

tivity without cosmological constants we have some possibilities: we can use

penalty terms like gij�
i�j , or Lagrange multipliers like �i�

i. We can also con-

sider the harmonic equation as an external constraint, which does not have

to be derived with the Lagrange formalism. Indeed, non-harmonic con�gura-

tions violate conservation laws, thus, are simply meaningless, not part of the

physical con�guration space. Variation in these directions is meaningless.

Comparing these possibilities, we nonetheless tend to prefer the variant

with cosmological constants, because of the following arguments:

� They seem to be the simplest way to incorporate the harmonic equation

into the theory.

� The related terms � and �v
2� �

aa look much more natural from point

of view of an ether interpretation, if we compare them with the other

possibilities like gij�
i�j .

� They break relativistic symmetryand make the \hidden preferred frame"

observable. This allows to avoid classical positivistic argumentation
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against hidden variables.1

Thus, there are some independent reasons to prefer the theory with cos-

mological constants.

In the following, we ignore the questions related with the cosmological

constants. That means, we consider the theory in the domain with �1; �2 �
0, in other words, we consider solutions of general relativity in harmonic

coordinates as solutions of post-relativistic gravity. In this domain, we have

relativistic symmetry for all observables, the \preferred frame" is a hidden

variable.

3.3 The Global Universe

Let's consider now what happens with the global universe. For this purpose,

we have to consider homogeneous solutions of post-relativistic gravity.

In the case without cosmological constants, we have to use homogeneous

solutions of general relativity and to introduce homogeneous harmonic coor-

dinates. This is possible only for the 
at universe. Thus, that the universe

is 
at is a consequence of the assumption that it is homogeneous in the large

scale.

For the standard Friedman solution

ds
2 = d�

2 � �
4=3(dx2 + dy

2 + dz
2)

we obtain the absolute (harmonic) coordinates x; y; z and t = ���1. This
leads to the following interpretation:

� All galaxies remain on it's true place, the ether density remains con-

stant.

� The observed expansion is explained by distortion of rulers. All our

rulers become smaller.

� The limit � !1 may be reached in �nite absolute time.

1I have to remark that I consider this argumentation, as well as positivism, as invalid.

Moreover, there are two other domains where the hidden variables become observable:

for small distances it follows from the atomic hypothesis, and in the quantum domain

space-time points have an invariant meaning, which also violates relativistic symmetry

requirements.
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Thus, instead of the big bang singularity in the past, we have now a

singularity in future. We don't know yet if this future singularity is only a

property of this particular solution or a general problem. In the following,

we assume the worst case | that this singularity is as unavoidable as the

big bang and black hole singularity in general relativity.

An interesting property of this singularity is that our rulers become in-

�nitely small in absolute distances and constant ether density. This suggests

a simple solution of this problem | an atomic hypothesis. If the ether has

some atomic structure, in some future the rulers become small enough to

observe these atoms. At this moment, the application of continuous the-

ory is no longer justi�ed, we have to use the atomic theory to understand

what happens with our rulers. Thus, before the singularity � !1 happens,

continuous theory breaks down and has to be replaced by an atomic theory.

3.4 Gravitational Collapse

For the consideration of solutions with special symmetries, like spherical

symmetry, we also have no problem of choice of the harmonic coordinates |

we require that they have to be symmetric too. For example, for the solution

of a spherical static star we have the following harmonic coordinates:

ds
2 = (1� mm

0

r
)(
r �m

r +m
dt

2 � r +m

r �m
dr

2)� (r +m)2d
2

Here m = m(r) = GM(r)=c2, M(r) is the mass inside the sphere of

radius r. For a collapsing star the situation is a little bit more complicate,

nonetheless we have a unique choice | no incoming waves. This has been

found already by Fock [8]. A spherical symmetric collapse or explosion leads

to outgoing ether density waves.

A remarkable property of post-relativistic gravity is that the part behind

the horizon is not part of the complete solution. In the ether interpretation,

the time dilation for a falling observer becomes in�nite, in a way that the

limit of observed, distorted, time remains �nite in in�nite absolute time.

Thus, in post-relativity we have no \black hole" in the general-relativistic

sense. The part behind the horizon is not physical. The old notion \frozen

star", which is also in agreement with the temperature of Hawking radiation,

seems more appropriate.
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Note that ether density is greater near the surface, and reaches in�nity

at the horizon. The collapse leads to a 
ow of ether into the black hole. This

suggests that the theory may break down already some time before horizon

formation. Probably, once the ether has reached some critical density, the

collapse stops.

This leads to a theoretical possibility to test the theory: fall into a great

black hole like the center of the galaxy. In general relativity, we will reach

the region behind the horizon and die in the singularity. In post-relativistic

gravity, we stop falling before the horizon, and survive there up to the time

of the breakdown of the continuous approximation we have found for the

global universe.

This is of course far away from realization. In the domain where we have

experimental data, post-relativistic gravity coincides with general relativity.

This includes not only tests of the PPN parameters in the solar system, but

also tests for strong gravitational �elds like black holes outside the horizon.

3.5 A Post-Relativistic Lattice Theory

We have observed internal problems of the continuous theory which may be

interpreted as a breakdown for small distances | a solution which leads to

in�nite values in �nite time. We also have similar evidence from quantum

theory: the ultraviolet problems of general relativity in harmonic gauge are

well-known, highly probable they appear in post-relativity too. That's why

we make the following \atomic hypothesis":

Post-relativistic gravity is only the large scale approximation of a di�erent,

atomic ether theory.

Note that this atomic hypothesis destroys the relativistic symmetry of

post-relativity in the domain �1; �2 � 0. The atomic theory has a completely

di�erent symmetry group compared with the large scale approximation. Rel-

ativistic time dilation is only a large scale e�ect. The atomic theory should

be Galilean invariant, but there will be no local Lorentz invariance. Thus, for

distances where the atomic structure of the ether becomes observable, rel-

ativistic symmetry becomes invalid, the hidden \preferred frame" becomes

observable.

There are a lot of di�erent possibilities for \atomic models". All what

follows from the internal problems of continuous theory is a breakdown of
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this theory for absolute distances below some � > 0. But even this � > 0 is

unknown yet.

To �nd out if the atomic hypothesis allows to solve these internal prob-

lems, the details of the atomic model seem to be not interesting. For this

purpose, a simple example theory should be su�cient. Let's de�ne now such

a theory. Note that the purpose of this theory is not so much to describe a

nice atomic model, but to have a simple example theory for computations.

De�nition 2 Assume we have a Galilean invariant classical �eld theory with

a Lagrange density Lc which does not depend on higher than �rst derivatives

of the �elds �.

The \related lattice theory" is de�ned by the following steps of freedom:

� a regular rectangular 3D lattice with distance � between the nodes, with

N nodes in each direction;

� for every �eld �(x) of the continuous theory one step of freedom �x for

every node x of the lattice;

and it's Lagrange density

L = Llattice + Lc(i(�x))

Here Llattice denotes the Newtonian Lagrangian of a rigid body for the

position of the lattice as a whole, and i(�x) denotes the standard (tri-linear)

�rst order �nite element embedding.

The �nite element embedding i(�x) is a function with (i(�x))(y) = �y

for every node y, interpolated for the other points. It is a continuous func-

tion with discontinuous �rst order derivatives. That's why we include the

condition that Lc does not depend on higher than �rst derivatives.

The movement of the lattice as a whole may be ignored. The only purpose

of this construction was to make the lattice theory Galilean invariant.

The most interesting example is post-relativistic gravity. The related lat-

tice theory we name post-relativistic lattice theory. To �t into the scheme, we

have to use the Rosen Lagrangian instead of the curvature as the relativistic

Lagrangian Lrel. This well-known Lagrangian

LRosen = g
ik(�m

il �
l
km � �l

ik�
m
lm)
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does not depend on second order derivatives, but leads to the same rela-

tivistic equations like scalar curvature R.

Thus, we have de�ned a simple example theory with a �nite number

of steps of freedom. It ful�lls the necessary requirements of our approach:

Galilean invariance and agreement with experiment.

3.6 Better Atomic Ether Theories

Post-relativistic lattice theory is only one example theory with a microscopic

structure. It ful�ls the necessary requirements | Galilean invariance and

agreement with experiment. Frommathematical point of view, lattice theory

seems to be the simplest discrete theory.

But there is an interesting class of theories which has to be preferred

because of higher predictive power | theories which really justify the notion

\atomic models".

Indeed, the steps of freedom of the ether highly remember classical matter,

and we have classical conservation laws. These properties have not been used

in lattice theory. Better atomic models with the following properties:

� Galilean invariance,

� atoms as particles with a certain position as steps of freedom,

� the ether density � and velocity vi of continuous ether theory as particle

density and average velocity of these particles.

automatically explain these properties. Some other ideas for atomic the-

ories:

� There may be a crystal structure. The axes may be described by a

triad formalism. This is a natural modi�cation of the relativistic tetrad

formalism. We already have a prede�ned splitting into space and time

direction, thus, we need only three vector �elds in space.

� Visible fermionsmay be interstitials, their anti-particles vacancies. That's

a variant of Dirac's original idea.

� Gauge �elds describe di�erent types of deformations related with these

crystal defects. It is known that gauge formalism may be used to

describe crystal defects.
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Thus, even without experimental support, further improvement of the

atomic ether models is possible. The ideal �nal result may be something like

a qualitative crystal model of the ether which explains the observed particles

and gauge �elds as some types of crystal defects. This will be the ether-

theoretical replacement of a uni�ed �eld theory. But, of course, even in this

ideal picture we have a lot of unexplained remaining parameters, like the

masses of the di�erent sorts of ether atoms.

4 Canonical Quantization

Now, let's show that the hypothesis of a di�erent microscopic structure really

allows to solve the quantization problem. For this purpose, it is su�cient

to show the existence of a quantum theory with the necessary properties:

Galilean invariance and agreement with experiment. Moreover, it is su�cient

to do this for our simple example theory | post-relativistic lattice theory.

Theorem 1 Assume we have a classical Galilean invariant theory with La-

grange formulation so that the Lagrangian does not depend on higher than

�rst derivatives of the variables.

In this case, there exists a quantum theory with this theory as some clas-

sical approximation.

This is straightforward: we can apply classical canonical quantization to

our theory. Indeed, we have a theory with a �nite number of steps of freedom,

and a classical Lagrange mechanism with a Lagrange density which does not

depend on higher than �rst derivatives of these steps of freedom.

This is already su�cient to derive the Hamilton formulation in the canon-

ical way. Constraints we remove by small regularization terms like � _�2 for a

Lagrange multiplier �.

Once we have found a Hamilton formulation, the only remaining quanti-

zation problem is the de�nition of the Hamilton operator ĥ for the classical

Hamilton function h(p; q). But the existence can be proven for arbitrary

L
1-functions. If Weyl quantization (which works for L2) fails we can use

anti-normal quantization (which works for L1). If even this scheme fails be-

cause h(p; q) is not bounded, we regularize it using some large enough energy

H0 for cutting. This does not change Galilean invariance and agreement with

experiment. qed.
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Note that the regularizations we have allowed in this general scheme are

modi�cations of the classical Hamilton formalism. The quantization itself is

pure, standard, canonical quantization.

Now we can apply this scheme to post-relativistic lattice theory and ob-

tain the main result:

Theorem 2 There exists a Galilean invariant quantum theory of gravity,

obtained by classical canonical quantization, which is in agreement with ex-

periment in the relativistic domain, even for strong gravitational �elds.

Of course, there may be better variants. Instead of a regularization of

the constraints, we will obviously prefer the generalized Hamilton formalism

introduced by Dirac. But all we need for the purpose of this paper is to show

the existence of such a quantum theory.

5 Discussion

This shows that special and general relativistic e�ects are compatible with

Galilean invariance, the metaphysics of Lorentz-Poincare ether theory and

canonical quantization.

Our argumentation is very simple. The mathematical part of theory we

have presented is trivial | de-facto a single sentence. We apply a method-

ological rule which is also a single sentence: we have to choose the best

available theory. The conclusion is very non-trivial: we have to choose this

non-relativistic theory as the best available theory of quantum gravity. That

means, the relativistic paradigm has to be rejected. Instead, we have to use

pre-relativistic ether-theoretical metaphysics.

It seems, the simplicity of our argumentation is essential. Only a very sim-

ple argumentation which does not leave place for loopholes and immunization

has the power to destroy such a fundamental paradigm like relativity.

We have to remark that it is not our simple theory which invalidates

relativity. What we have done was to prove that there is no compatibil-

ity problem between gravity, Lorentz-Poincare ether theory and canonical

quantization. Relativity has to be rejected because it is incompatible with

quantum gravity. There is enough support for the incompatibility hypothe-

sis: the problem of time [11], topological foam, the information loss problem,
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non-renormalizability. It's time to draw the conclusions and to reject rela-

tivity.

Moreover, this is not the only reason to reject relativity. The other is an

experimental result | the violation of Bell's inequality by Aspect's experi-

ment [3]. If we accept the EPR argumentation [7], it is a clear experimental

violation of Einstein causality. Bell's conclusion was (cited by [15]):

\the cheapest resolution is something like going back to relativity as it

was before Einstein, when people like Lorentz and Poincare thought that there

was an aether | a preferred frame of reference | but that our measuring

instruments were distorted by motion in such a way that we could no detect

motion through the aether. Now, in that way you can imagine that there is a

preferred frame of reference, and in this preferred frame of reference things

go faster than light."

At this time, there was a strong counter-argument: to go back to the

Lorentz ether means to throw away general relativity | one of the most suc-

cessful theories of our century. Indeed, in general relativity we have solutions

with non-trivial topology, but this is incompatible with Lorentz ether theory.

In other words, Lorentz ether theory was much more wrong than general

relativity, because it was unable to describe gravity.

Now, by the way, this counter-argument is removed. We have an ether

theory of gravity which is compatible with relativistic experiment. Thus,

Bell's conclusion is now much stronger, we have de-facto no costs if we \go

back to relativity as it was before Einstein".

This independent argument against relativity remains valid even if a rel-

ativistic quantum theory of gravity will be found in future following one of

the many research directions ([1], [2], [4], [6], [12], [11], [9], [10], [20]). This

theory should not only solve all of the well-known problems, but it should

present obvious advantages to overweight their problem with the violation

of Bell's inequality. From this point of view, the relativistic paradigm is as

dead as possible for a scienti�c paradigm.

5.1 Conclusion

According to our argumentation, the relativistic paradigm has to be rejected.

We have two independent reasons for this rejection: The non-existence of a

relativistic quantum theory of gravity, and the violation of Bell's inequality.
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We have to replace relativity by a generalization of Lorentz-Poincare ether

theory to gravity which does not have these faults. It follows that:

� Our universe is Galilean invariant. There exists an absolute space and

absolute time. The space is �lled with an ether | another word for

the gravitational �eld.

� Our clocks and rulers are distorted by interaction with the ether.

� Our universe is 
at and not expanding. Only our rulers become smaller.

There is no big bang in the past in absolute time.

� Black holes do not exist, instead we have \frozen stars". In absolute

time, the collapse stops immediately before horizon formation. The

part \behind the horizon" is not physical.

The assumption that our current continuous ether theory remains valid

at arbitrary small distances has to be rejected. The ether probably has a yet

unknown atomic structure.

For this atomic theory we can apply canonical quantization. This has

been shown for a simple discrete example theory, and there is no reason to

doubt that it works for other atomic ether theories too.
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