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POINTWISE CONFIDENCE INTERVALS IN NONPARAMETRIC 
REGRESSION WITH HETEROSCEDASTIC ERROR STRUCTURE 

MICHAEL H. NEUMANN 

ABSTRACT. We assume a nonparametric model with heteroscedastic error struc-
ture and consider pointwise confidence intervals for the mean. We construct con-
fidence intervals by using quantiles from a Cornish-Fisher expansion and from the 
wild bootstrap distribution, with as well as without a subsequent bias correction. 
It turns out that pure undersmoothing, where the full smoothness is used by the 
initial estimator, outperforms the method with a subsequent bias correction. 

1 



2 M.H.NEUMANN 

1. INTRODUCTION 

In the present paper we consider a nonparametric regression model with a hetero-
scedastic error structure. We intend to construct pointwise confidence intervals for 
the regression function and compare various methods with respect to their coverage 
accuracy. 

These procedures can be divided into two parts. The estimation part consists in the 
construction of an appropriate pivotal statistic, which is achieved by a normalization 
of a usual kernel estimator. A main problem in the construction of confidence intervals 
is the treatment of the bias, which is unavoidable in this context. We can take the 
initial statistic as it is, but we can also include at this stage a bias correction based on 
another kernel estimator. With an appropriate choice of the order of the kernels and 
the bandwidths, both approaches yield asymptotically equivalent pivotal statistics 
Tn. The second step for the construction of the confidence interval _is the distribution 
recognition part, which finally yields a quantile for the interval. A simple approach 
is the inversion of an Edgeworth expansion of Tn. We can also try to estimate the 
distribution of Tn directly. Because of the heteroscedasticity we approximate it by 
the wild bootstrap distribution as proposed in [HM90] .. This second step can also 
contain a bias correction, either explicitely by some bias estimator or implicitely via 
the wild bootstrap. 

The aim of this paper is the comparison of these methods. Provided an optimal 
choice of the bandwidths, it is shown that the inversion of an Edgeworth series and 
the wild bootstrap without subsequent bias correction are equivalent, that is both 
methods yield the same rate of decay for the error in coverage probability. Now one 
may conjecture that it is possible to improve on these methods by a subsequent bias 
correction. Of course, if we use the same pivotal statistic Tn in both cases, such an 
additional correction does not harm, and if mis sufficiently smooth, we can attain an 
improvement of the uncorrected method. Such a result is obtained in [HHJ91]. The 
reason is that the bias-corrected method utilizes a greater part of the smoothness 
assumption on m, which pays off in a better recognition of the distribution of Tn. In 
the present paper we compare both approaches in the same way as [Hal91] does in the 
case of confidence intervals in density estimation. Using kernels of different orders, 
we construct both methods such that they exploit the same share of the smoothness 
assumption. Then it turns out that the first method, which is a pure undersmoothing 
technique, is superior to the second one. 

2. ASSUMPTIONS AND DEFINITIONS 

We consider the nonparametric model 

(1) 
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where the nonrandom design points Xi are spaced on the unit interval [O, 1] with 

(2) 

To cover a wide variety of practical cases we admit heteroscedastic errors C:i with 

(3) Ee:~ =Vi ' 

where 0 < c :::; Vi :::; C holds for some constants c and· C. As a basis we take a kernel 
estimator as proposed in [GM79], namely 

n 

(4) mh(x) = L W(x, h)j}j 
j=l 

with the weights W(x, h)j = J:/_1 *wx,h(zJ.x)dz , where Wx,h is some usual kernel 
with support [-1,1] if h:::; x :::; 1 - h, and some boundary kernel otherwise. Further, 
we set so= 0, Sj =(xi+ Xj+1)/2 for j = 1, ... ,n - 1 and Sn= 1. The 
bandwidth h may vary in the interval H = [O, 1/2] and will be selected later. Let 
x0 E (0, 1) be this interior point of the unit interval, at which we intend to construct 
a confidence interval for m. 

Throughout this paper we assume that 
(Al) mis k-times continuously differentiable on the interval (x0 - 5, x0 + 5) 

for some 5 > 0 and m(k)(x0 ) -/:-0. (k :'.:: 2) 
For the asymptotic investigations we suppose that the design points Xi = Xi( n) are 
regularly spaced,. that is 

(A2) f0xi d(t)dt = (i - 1/2)/n, 
where dis a positive, continuous probability density on [O, 1], and assume the sample 
size to tend to infinity. The pivotal quantities considered here are derived from the 
quantity Vn -l/2 (mh(xo) - m(xo) - Bn), where Bn = Ej=1 W(xo, h)jm(xj) - m(xo) 
is the bias and Vn = Ej=1 W(x 0 , h);vi is the variance of mh(xo) . To obtain an 
observable quantity we have to replace the unknowns Bn and Vn with appropriate 
estimates. 

There are two methods to deal with the bias Bn . We can correct it explicitely by 
n 

(5) En= 2: W(xo, h)jmh1 (xi) - mh1 (xo), 
j=l 

where mh1 is again a kernel estimator according to ( 4 ), which is possibly based on 
another kernel function Wx,hi . Another widely used practice is to neglect the bias at 
this stage, which corresponds to 

(6) En= o. 
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To treat both cases simultaneously, we introduce the unified notation 

n 

(7) m(xo) = mh(xo) - En= 2: Wnj}j 
j=l 

with appropriate weights W nj We adopt the following assumption concerning the 
orders of the kernels Wx,h and Wx,hi , respectively. 

For 0 < r ::; k we assume 

{ 
(i) 

(A3) 
(ii) 

if (5) holds, then Wx,h is a kernel of order r1 and Wx,h1 is a kernel 
of order r 2 , r = r 1 + r2, 
if (6) holds, then Wx,h is a kernel of order r. 

In both cases, the estimator ;;;:( x0 ) utilizes the presence of r derivatives of m. By 
Lemma 6.1 from Section 6 we conclude that the remaining bias bn = Efii(x0 )-m(xo) 
of ;;;:( x 0 ) as an estimator of m( x 0 ) is of order 0( hr1 h~2 + n- 2 h-1 ) in case ( i), and of 
order O(hr + n- 2 h-1 ) in case (ii). 

The best choice for hi, which preserves a variance of ;;;:(x0 ) of order O((nh)-1 ) , 

will be of the some order as h . In the sequel, we choose h1 :::::::: h , which leads to a 
bias of order O(hr + n-2h-1 ) also in the first case. 

In distinction to the paper of [Hal92] we admit also a heteroscedastic varianc( 
structure, and because we do not want to restrict ourselves to cases, where the vari-
ance function can be modelled by some parametric model, we estimate the variance 
of fii(x 0 ) nonparametrically by 

(8) 

where 0 = Yj - m1(xj) are estimated residuals based on a kernel estimator m1 
with a kernel function Wx,f and a bandwidth f . We assume that m1 uses the full 
smoothness assumption on m , that is 

(A4) Wx,f is a kernel of order k and f:::::::: n-1/C2k+i) . 

Replacing the unknowns Bn and Vn with En and Vn, respectively, we obtain the 
pivotal quantity 

(9) T _ fii(xo) - m(xo) 
n - -1/2 ' 

Vn 

which is the starting point for the construction of confidence intervals. 
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3. EDGEWORTH EXPAN.SION FOR Tn 
It is clear that the methods can only be implemented if we choose all bandwidths in 

a reasonable way by the data. But to obtain more insight into the methods we treat 
first the case of nonrandom bandwidths h = h( n ), g = g( n ), f = f ( n) . As we 
will see later, we have to apportion the smoothness of m between the curve estimation 
part due to fii(x 0 ) and the distribution recognition part for the pivotal quantity by 
explicit or implicit methods. To obtain a consistent procedure, the remaining bias 
of ~(x0 ), possibly after a subsequent bias correction, must be of smaller order than 
the standard deviation of it, which determines the size of the confidence interval. 
In particular, without any subsequent bias correction we must not use an estimator 
m(x0 ) with an MSE-optimal bandwidth h, since it has bias and standard deviation 
of the same order. Hence, all the widely used bandwidth selectors fail, because they 
are tuned to keep the MS E or some related criterion as small as possible. Making a 
sensible data-dependent choice in practice seems to be difficult, but we will provide 
a (rough) applicable proposal at the end of this paper. 

In the following we approximate the distribution of Tn by an Edgeworth series. For 
that we need some analogue to Cramer's condition in the i.i.d. case, namely 

(A5) maxi suplltll>b IE exp {it' ( :O} I ::; Cb < 1 for all b > 0. 

To obtain consistency of the methods we assume that 
(A6) all moments of the c/s are uniformly bounded, 

which leads to an algebraic decay of the probabilities of large deviations of linear 
forms in the €j 1S. 

To cover also the case with a su_bsequent bias estimation, we derive an Edgeworth 
expansion of the more general statistic 

(10) 

where we assume 
n 

(11) 2.: jw ni - W nil = O((nht 1l 2 ). 
j=l 

Now we derive the expansion of T n in two steps. First, we infer from results of 
[Sko86] the validity of an expansion of arbitrary length of the random vector 

n 

(12) S B -1/2""""" n= n L..JC'i-j, 
j=l 
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Having this, we can derive from results of [Sko81] the validity of the expansion of 
a sufficiently regular sequence of functions fn(Sn) . . 

To get such a function, we approximate T n by 

(13) 

- -2 2 = 
where Vn = Ej=1 W njcj and bn = Ej=1 W njm(xi) - m(xo) . 
On the basis of Theorem 3.2 of [Sko81) we obtain the following proposition. 

Proposition 3.1. Assume (Al) trough (A6) , {ll) and h ~ n->.i , where 
A1 > (2r + lt1 . Then 

(14) bn 2t2 + 1 
q>(t) - 172¢(t) + Pn3 ¢(t) 

Vn 6 

1 V n - Vn . ( ) 1 bn ( · ( ( ) 1 -2 V. t¢ t + 2 172Pn3t¢ t) + 0 nh - ) 
n Vn 

h ld . t l h - v:-3/2 n W3 E 3 d V - n =2 . 0 s unijorm y over-oo < t < oo, w ere Pn3 - n Ej=l nj Cj an n - Ej=l wnjvJ. 

As a special case of (14) we obtain an expansion for the quantity 
Tn = vn-1!2 (I:j=l w nj}'j - m(xa)). The pivotal statistic Tn ' which is of primary 
interest, does not admit an Edgeworth expansion immediately, because it cannot be 
expressed as a function of the mean of independent random vectors. To treat this 
and other more complicated cases we introduce the following concept. 

Definition 3.1. Let {Yn} be a sequence of random variables and { rnl} , { rnd be 
sequences of constants. We write 

if 
P(IYnl > Crnd ~ Crn2 

holds for some n ~ 1 and C < oo . 

Lemma 3.1. Let {Xn}, {Yn} be sequences of random variables with 

P(Xn < t) = q>(t) + tn¢(t) + O(un) 

uniformly over -oo < t < oo for some bounded sequence { tn}. Further, we assume 
Yn = O(rnl , !n2) . Then 

P(Xn + Yn < t) = P(Xn < t) + O(Tnl + fn2 +Un) 
holds uniformly over - oo < t < oo . 
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This lemma can be proved analogously to Lemma 3.2 of [Neu92]. Now we return 
to the derivation of an expansion for Tn . 

Lemma 3.2. Under the assumptions of Proposition 3.1 it holds 

Tn -Tn = O((nht1,n-1 ) 

From Proposition 3.1 and the Lemmas 3.1 and 3.2 we conclude, observing that the 
fourth term on the right-hand side of (14) vanishes, the following assertion. 

Proposition 3.2. Assume (Al) through (A6) and hn ;::::: n-"1 , >. 1 > (2r + 1t1 . 

Then 

(15) P(Tn < t) 

where bn 

4. CONFIDENCE INTERVALS FOR m(xo) 
In this section we consider different methods for the construction of confidence 

intervals for m( x 0 ) to an asymptotic level 1 ---: a . On first sight, there seem to be 
two different methods to do this. First we can invert the Edgeworth expansion of Tn 
and estimate the unknown parameters, which leads to a Cornish-Fisher expansion. 
A special case of this method, which neglects the terms involving the skewness Pn3 

in (15 ), consists in the application of the normal quantile, which was also considered 
in [Neu92] for estimators with data-driven bandwidths. 

A second approach is, to mimic the distribution of Tn by means of the wild boot-
strap proposed by [HM90]. Then we do not need any explicit Edgeworth expansion, 
the bootstrap provides an appropriate quantile automatically. As we will see later, 
the above classification is not the deciding one. On the contrary, these two approaches 
are more or less equivalent. 

In distinction to classical problems in parametric regression, there does not exist 
any consistent, unbiased estimator of m( x 0 ). However we construct a confidence 
interval, we have always to deal with some remaining bias. There are various methods 
to keep the bias negligible, which lead to confidence procedures with distinct rates 
for the coverage errors. Firstly, we can neglect it and take it into account by the use 
of pivotal statistics, which use an undersmoothed estimator ~( x 0 ) . Secondly, we can 
estimate it explicitely and correct the location of the interval correspondingly. And 
thirdly, we can take it into account implicitely by mimicking it by the bootstrap. 

Although two-sided confidence interval are perhaps of greater practical interest, we 
consider throughout this paper one-sided intervals, because this provides a stronger 
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look at the behavior of the methods, see [Hal91], Section 3.7, for a discussion of this 
problem. 

4.1. Confidence intervals without bias correction. If we construct a confidence 
interval only on the basis the normal quantile Ua = <I>-1 (a), then we obtain by 
Proposition 3.2 for I= [m(xo) + v;12ua:' 00) a coverage probability of 

P(m(xo) E J) = P(Tn < ua:) = 1 - o: + O((nht112 + (nh) 112 hr). 

By inverting the expansion (15) it is easy to see that 

2t2 + 1 P(Tn < t - Pn3 6 ) = <I>(t) + O((nh)112 hr + (nht 1 ). 

To perform such a skewness correction in practice we estimate Pn3 simply by 
n 

(16) ~ - ~-3/2 ~-3 ~ Pn3 - Vn L..t W njcj . 
j=l 

It is easy to see that 'fin3 - Pn3 = Op( ( nh t 1 ) holds, and hence we might conjecture 
that 

(17) 

with ta = Ua - Pn3 2u~ +l forms a one-sided confidence interval for m( Xo) to a nominal 
level 1 - a with a coverage error of O((nh)112 hr + (nh)- 1 ). To prove this rigorously, 
we have to follow the proof of ( 4.6) in [Hal91], which yield_s the following theorem. 

Theorem 4.1. Under the assumptions of Proposition 3.2 we have 

Another way to find an appropriate quantile consists in the approximation of the 
distribution of Tn by the wild bootstrap proposed by [HM90]. 

Recall that fj = Yj- m1( Xj) • Now we draw independent random variables cj with 

where E• denotes the expectation with respect to the (random) bootstrap distribu-
tion. 

[HM90] proposed the following procedures to generate such a sample : 
(i) a discrete bootstrap distribution 

c1~,...., /ba&· + (1 -1)6be· , 
J J 

where 'V =YE: a=~ b = HIS Ox being the Dirac measure at x, I 10 l 2 l 2 l 
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(ii) a continuous bootstrap distribution 
* ,...., ~.(b. + Z~-1) 

C:3 C:3 v'2 2 ' 
where Z1 and Z2 are independent Gaussian random variables with zero mean 
and unit variance, also independent of f3. 

Now we define a bootstrap analogue of 1j as 

Y/ = m9 .(x1) + c:j, 
where m9 • is another kernel estimator with (nonrandom) bandwidth g*. As an ana-
logue of the estimated residuals f3 we have . 

n 

£j = Y/ - L W(xJ, f)kYt 
k=l 

If we neglect the bias by the bootstrap, that is if we mimic Tno = Vn -l/ 2 (;;;:( x0 ) - Em(x0 )) 

- - -1/2 (- - ) or Tno = Vn m(x0 ) - Em(x 0 ) , we have the following bootstrap statistics: 

and 
n 

T~o = LWn3cj J/Vi, 
j=l 

h V~ * '"'n w2 ~ 2 d v-* '"'n w2 * 2 w ere n = L.Jj=l nj €3 an n = L.Jj=l njcj . 
To draw conclusions for the distribution of T~0 and T~0 under the condition 

of the original sample Y = (Yi, ... , Yn) , respectively , we are going to apply 
again Edgeworth expansions. In case of the continuous bootstrap distribution the 
validity of these expansions follows from the same arguments given in the proof of 
Proposition 3.1, since the random variables cj fulfill Cramer's condition in a uniform 
manner. 

In case of the discrete bootstrap version the situation seems to be more complicated. 
To make this difficulty clear, observe that the formal Edgeworth expansion of the 
sum of n random variables with a fixed lattice distribution is correct only to an 
order of O(n-112 ), see [BR86), Chapter 5. This becomes immediately clear, if we 
note that the distribution function of that sum has jumps with a maximal height of 
order O(n-112 ), and therefore we cannot approximate it with a better rate by the 
(continuous) Edgeworth series. On the other hand, the sum of the cj's is distributed 
as the convolution of different lattice distributions, which has a distribution function 
with much smaller jumps than in the above case. This fact let us hope, that the 
formal Edgeworth expansion is valid to a sufficiently high order. It is clear that the 
t:j's do not fulfill Cramer's condition. To exploit the diversity of the distributions of 
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the cj's, we prove some version of Petrov's condition, which only requires that the 
product of the characteristic functions is bounded away from 1 in a certain region. 
On the basis of results of [Sko81] and [Sko86] we :finally obtain the validity of the 
Edgeworth expansion , which is stated in the following proposition. 

Proposition 4.1. Under the assumptions of Proposition 3.2 we have 
(i) 

- 2t2 + 1 
P(T~0 < tiY) = <I>(t) + p~3 6 ¢(t) + O((nht1 ) 

where p~3 = E*(Pn3IY) = Pn3 and Pn3 is defined by (16), 
(ii) . . 

P(T~0 < tiY) = P(T~0 < tiY) + O((nht1), 

both uniformly over Y E Cn for some subset Cn ~ IRn with P(Cn) = O(n-.X) for 
arbitrarily lar!J..e A . 
_Let ta and ta be the (1 - a) - quantiles of the bootstrap distributions of T;,0 and 
T;,0 , respectively. Then we have by Proposition 4.1 

(18) 

uniformly over Y E Cn . In other words, we have 

which yields by Lemma 3.1 the next assertion. 

Proposition 4.2. Under the assumptions of Proposition 3.2 we have 

P(Tn <ta)+ O((nht1 ) 

1 - a+ O((nh)112 hr + (nh)- 1 ). 

uniformly over Y E Cn. 
Let 12 = [~(xo) - v;t2ta, oo) and 13 = [m(x0 ) - v;t2ta, oo) . Then we have 

the following analogue of Theorem 4. L 

Theorem 4.2. Under the assumptions of Proposition 3.2 we have 

P(m(xo) E 12)} = 1 _a+ O((nh)1f2hr + (nhtl ). 
P(m(xo) E J3) 

In view of Theorems 4.1 and 4.2 we can state that the inversion of the Edgeworth 
expansion as well as the wild bootstrap are indeed equivalent methods for obtaining 
confidence intervals. 
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We have seen that all confidence intervals without bias correction provide an error 
in coverage probability of order O((nh)112hr +(nh)-1 ). This error term is minimized 
for 

(19) 
3 

hopt x n-2r+3 ' 

which yields for j = 1, 2, 3 

(20) 

4.2. Confidence intervals based on an explicit bias correction. In the pre-
vious section we have seen that the coverage accuracy is affected by the incorrect 
location of the interval due to the bias bn of m( Xo) as an estimator of m( Xo) . 
This drawback is unavoidable in the context of nonparametric confidence intervals, 
because each consistent estimator of m( x 0 ) is necessarily biased. 

To take the bias into account we can include a subsequent bias correction. In 
distinction to [Hal91], who estimates only theleading term of a bias expansion, which 

. removes the error term of order 0( hr) but ignores the remainder from this expansion 
of order o(hr) + O(n-2 h-1 ), we estimate the whole bias bn = E:;;,(x0 ) - m(x0 ). Let 

n 

(21) bn = .2: Wnjm9 (xi) - m9(x0 ) 
j=l 

be an estimator of bn , which is based on a kernel estimator m9 with an (r -1 )-times 
continuously differentiable kernel of order s and bandwidth g . If we assume that m 
is ( r + s )-times continuously differentiable, it follows by Lemma 6.1 from Section 6 
that bn has a bias of order O(hrgs + n-2h-1 ), and by Lemma 8.8 in [Neu92] we 
conclude that bn has a standard deviation of order O(hr(ng2"+i)-1! 2 ). These terms 
are balanced for g x n-1 /C2r+2s+i) , but we will prove that another choice provides 
a better asymptotic coverage accuracy for the appropriately corrected confidence 
intervals. 

Now we consider the following bias-corrected pivotal quantity 

T. _ ~(xo) - m(xo) - bn _ 'Ej=l Wnjej + bn 
nc - ~1/2 - ~1/2 ' Vn Vn 

(22) 

where bn = 'Ej=1 W njm(xj) - m(xo) . It follows by 

Wnj - Wnj = O(n-lhkg-(k+l) + n- 2g-2 ) 

that the W nj 's fulfill ( 11) if 

(23) (h/gy = O((nh)-112). 
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Under the assumptions of Proposition 3.2 and the additional assumption (23) we 
derive by Proposition 3.1 and Lemma 3.2 that 

P(Tnc < t) = 

(24) 

Now we can prove analogously to Theorem 4.1 that 

(25) 

(26) 

(27) 

I 

bn = O(hr gs+ n-2h-1) 

O(nh) [ 2 t, W n;(W nj - Wn;)v(x;) + t, (Wnj - W nj )' v(x;)] 

O((h/gy+1 + (nht 1 ) 

we obtain the following theorem. 

Theorem 4.3. Under the assumptions of Proposition 3:2 and (23) we have for 
j = 1,2,3 

(28) P(m(xo) E Ijc) = 1 - a+ O((nh)112 hr gs+ (h/gy+i + (nh)- 1 ). 

It is easy to see that the residual term of (28) attains the smallest possible order, 
if and only if the three terms are balanced. This is achieved for 

(29) 
_ 3+2•/{r+l) 

h ::::::: n 2{r+•)+3+2•/{r+l) 

and 

(30) g;:::::: h(nh)l/(r+1) 1 
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which yields 

(31) 

This may be compared with the slightly worse rate of [Hal91] who attained a coverage 
( 

2r(2r+2•+1)+2• ) 
error of 0 n (2r+ 2•+i)( 2r+ 3 l . The reason for this worse rate is, that the bandwidth 
in that paper is chosen such that the bias and the variance of the subsequent bias 
estimator are balanced, whereas it is shown here that another choice provides a better 
coverage accuracy. 

4.3. Confidence intervals with an implicit bias correction via the wild bo-
otstrap. We can also take into account the bias by mimicking it in the bootstrap 
world. We define 

(32) T* n 
L,j=l w nj Yj* - mg• ( Xo) 

)2=1J=1 w!j £; 2 

Lett~ bethe(l-a)-quantileofthedistributionofT:andJb = [;;:(xo) - v,;l 2t~,oo). 
If the quantity Tnc includes the bias corrector bn = b~ = L,j=l w njmg• ( Xj) - mg• ( xo), 
then 

Observe that t~ - .!b2 is the (1 - a)-quantile of the quantity v,. 

Analogously to Proposition 4.1 we can expand r:0 + Rn in an Edgeworth series. 
It is easy to see that Rn= Op(hr +n-2h-1 ), and since we have sufficient moment 
conditions, we infer that Rn contributes to this expansion only terms of order 0( hr + 
n-2 h-1 ). Hence, we have the following proposition. 

Proposition 4.3. Under the assumptions of Proposition 3.2 we have 

uniformly over Y E Cn. 
By (33) we can prove analogously to Theorem 4.1 the following assertion. 
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Theorem 4.4. Under the assumptions of Proposition 3.2 we have 

(34) 
P (m(xo) E lb) = 1 - a+ 0 ((nh) 1l 2 hr g* 8 + (h/g*y-+- 1 + (nht 1 + hr). 

If we choose hand g* according to (29) and (30), then the first three residual terms 
of (34) are balanced. The fourth residual term is of smaller or of the same order if 
and only if 

(35) r(r + 1) ~ 2s. 

Hence, we obtain by Jb a coverage accuracy of the same order as by Ijc (j = 1, 2, 3) 
iff r(r + 1) ~ 2s holds. 

5. DISCUSSION 

1) We distinct between two main classes of confidence procedures. The first class 
contains such methods that use a pure undersmoothing, that is the initial estimator 
~(x0) uses a suboptimal bandwidth with h2r « (nht 1 . The second class involves a 
subsequent bias correction, either by an explicit bias estimator or by an implicit cor-
rection via the wild bootstrap. In any case, the correspondingly corrected estimator 
has a remaining bias that is of lower order than its standard deviation. That is, all 
consistent methods use ultimately, more or less hidden, an undersmoothing. 

2) There are some other papers, which are devoted to a comparison of the two 
approaches, undersmoothing and subsequent bias correction. [HHJ91 J compared both 
methods, but they restricted themselves to second order kernels at all stages. Their 
bias-neglecting pivotal quantity Un uses the presence of two derivatives of m, whereas 
their bias-corrected quantity Tn uses already the presence of four derivatives. The 
bias modelization by the wild bootstrap, which is only made for Tn, exploits then the 
existence of two more derivatives. Therefore it is not very surprising, that this bias 
correction method with optimal bandwidths outperforms the pure undersmoothing. 

3) In the case of confidence intervals for densities [Hal91 J compared the methods 
from another point of view. To make a fair comparison, he assumes that all methods 
under consideration exploit the same amount of smoothness of m, and he concludes 
that pure undersmoothing is to be preferred. 

To do the same in our case, we assume that m is ( r + s )-times continuously differen-
tiable. According to (19) and (20), the undersmoothing method provides confidence 
intervals of size 0 (n-U! 2) with a coverage error of order O(n-u), where 

(36) U = 2(r + s) 
2(r + s) + 3 
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As may be seen by (29) and (31) as well as by the remark after Theorem 4.4, the bias 
correction methods can at best provide confidence intervals of size 0( n -V 12 ) with a 
coverage accuracy of O(n-v), where 

(37) V = . 2(r + s) . 
2( r + s) + 3 + 2s / ( r + 1) 

Ifs > 1, then· we have U > V and therefore the undersmoothing method turns out 
to be superior. 

4) The reason for this better behavior can easily be observed by comparing the 
statistics Tn with an (r + s)-th order kernel for ~(xo) and Tnc with an r-th order 
kernel for ~(xo) and ans-th order kernel for mg. On the one hand, both statistics use 
the presence of r + s derivatives Of m and the remaining bias bn is O(hr+s) + n-2 h-1 

and O(hrgs + n-2 h-1 ), respectively. On the other hand, if we mimic these statistics 
in the bootstrap world by r:..o and r:.., respectively, their denominators estimate the 
standard deviation of the respective numerators. This is also the case for the statistic 
Tn, whereas the denominator of Tnc primarily estimates the standard deviation of the 
numerator of the uncorrected quantity Tn. Hence, we have to choose the bandwidth 
g of the subsequent bias estimator such that it provides a good compromise between 
bias reduction and disturbation of the original variance. Such a compromise is not 
necessary for Tn, because r:,,0 is its complete analogue in the bootstrap world. 

5) We have seen that the performance of the confidence procedure depends mainly 
on the possibility of a good estimation of the (approximate) cumulants of Tn. We 
note that the first approximate cumulant depends on the bias of ;:;;( x 0 ), and can be 
estimated with an accuracy that depends on the smoothness of m. On the other 
hand, the third approximate cumulant depends only on the distribution of the pure 
errors C:j, and can be estimated in any case with a mean squared error of O((nh- 1 ). 

6) It is clear that all the methods require a choice of the bandwidths, which is fitted 
to the underlying smoothness of m. Since there does not exist a sensible universal 
rule for the bandwidths, we have to adapt them in dependence on the data. It is 
known that all of the usual bandwidth selectors find bandwidths of the MS E-optimal 
order (see [HHM88]), which need not to be optimal for the aim of an as accurate as 
possible coverage probability. 

To give any definite rule, which is fitted to the underlying situation at least to 
a minimal amount, we propose to apply cross-validation or any other equivalent 
criterion for the bandwidth choice. As already stated, the ultimate estimator of 
m(xo), that is ;:;;(xo) in case of a bias-neglecting procedure or the bias-corrected 
quantity otherwise, must be an undersmoothed one. A method, which yields such 
an estimator is proposed in [Neu92]. We estimate m(x0 ) first by an r-th order kernel 
and correct this estimator by some bias estimator, which is based on an s-th order 
kernel. In both cases we can apply cross-validation to choose the bandwidths hand g, 
respectively. Then bias and standard deviation of the initial estimator are balanced, 
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but the second estimator provides a smaller order for the remaining bias. Hence, we 
obtain a consistent procedure. 

6. APPENDIX 

First we state a lemma, which improves on the remainder term of order O(n-1) of 
an approximation of Emh(x0 ) in [GM79], p. 30. 

Lemma 6.1. Let (A 1} be fulfilled and let Wx,h be a kernel function of order r :::; k. 
Further, let Wx,h and d be Lipschitz-continuous of order 1. Then 

Emh(xo) = fo1 1wx,h (xo ~ z) m(z)dz + O(n-2 h-1 ) 

for 0:::; h:::; min{x0 , 1 - x0 }, where 

f 1 1 (xo - z) lo hwx,h h m(z) dz - m(xo) 

Proof. First, observe that under h :::; min{x0 , 1 - x0 } the estimator mh(xo) does 
not include any boundary kernel. For simplicity we write w rather than Wx,h in the 
following. By a Taylor expansion of m we obtain 

f 1 1 (xo - z) Emh(x0 ) - lo hw h m(z) dz 

n J. 8 i 1 (Xo - z) j; si-l hw h (m(xi) - m(z)) dz 

n 18 i 1 ( (x0 - z) (x0 - x ·)) · L . - w -w 3 (xi-z)m'(xi)dz 
j=l s,_1 h h h 

+ t, 1w (xo ~ Xj) m'(xi) fo\xi - z) dz 

+ t, 1:~1 *w (xo ~ z) O((z - xi) 2 ) dz 

Ai+ A2 + A3. 
Because of lw (xo;z)-w (xo~xi)l lxi - zl = O(n-2h-1) for z E [sj-1,sj] we get 

immediately that 

A1 = O(n-2h-1 ). 

F ( ) ( ) _ Xj+l -Xj Xj-Xj-1 _ 1 ( 1 1 ) 0( -2) f rom si - xi - xi - si-l - 2 - 2 - 211: d(ei) - d(ei-d = n or 
some ej-1 E (xj-1, Xj) and ej E (xj, Xj+1) we obtain that J:j_l (xi - z) dz= O(n-3 ) 
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holds, which implies 

Finally, we obtain easily 

which proves the first assertion. The second part of the lemma is easily proved via a 
Taylor expansion of mat x 0 . O 

Proof of Proposition 3.1. 
For the sake of a clear presentation we divide this proof into two parts. 

1) validation of an Edgeworth expansion for Sn 

In this part we prove on the basis of results of [Sko86] the validity of an Edgeworth 
expansion of the random vector Sn that is defined by (12). 

For simplicity, we adopt the notation of the abovementioned paper as far as possi-
ble. First, we choose s = 4, an(t) = (nh) 1l 2 and {En} such that En= O((nht1 - 0 ) 

for some 8, 0 < 8 ::; 1/2. Now we check the conditions of Theorem 3.4. in [Sko86]. 
It is obvious, that (I) is fulfilled. 
Next we show that 

(38) 

holds for certain positive definite matrices M1 and M2. There /1 ::;" denotes the usual 
partial order-relation of symmetric matrices. Let /3j = ( c j, c; - Vj )' and C OVj = 
Cov(/33 ). Since exp{ ix} = 1 +ix+ O(IJxll 2) holds uniformly over x E ( -oo, oo ), we 
obtain by (A5) for arbitrary t, lltll = 1, that 

1 > C1 ~ JE exp{it1{33}I > 1 - t'Cov3t, 

which implies 

(39) 

for some M 3 > 0. On the other hand, since the first eight moments of the cjs are 
assumed to be uniformly bounded, we have 

(40) 

for some M4 < oo. Let Dj = diag [nhW nj, (nh) 2W!j] . It is easy to see that 

n 

L DJ = diag[mnli mn2J, 
j=l 
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where mn1 , mn2 :::::: nh, which yields, in conjunction with (39) and ( 40), the relation 
(38). 

Since the moments of the c/s are bounded, we obtain 

n 2: cumk(t' B;:.1!2 Dj{3j) 
j=l 

n 

0(11 t Ilk II B;:.112 Ilk L II Dj Ilk) 
j=l 

= O(JI t Ilk (nht(k-2)/2), 
which implies by X2,n = cum2(Sn) =I that 

P4,n = max sup {( ~JXk,n(tk)J / lltllk )1/(k- 2)} 
k=3,4 t k! X2,n 

maxsup { O((lltllk(nht(k-2)/2lltll-k)1/(k-2)} 
k=3,4 t 

O((nh)t112, 

which means that condition (II) is satisfied. 
Let 5 > 0 be arbitrary. Next we show that the characteristic function en of 

Sn = B;:1!2 'Ej=1 Dj{3j satisfies condition (III:) in [Sko86]. Let 

Jn= {jj).rnin{Dj} 2:: C}, 
where we choose the constant C such that #Jn :::::: nh holds. Since for 
JJtll > 8(nh) 1 l 2 and j E Jn the estimate 

holds, we have 

llB;:.1 Djtll > Arnin{B;:.112}>.min{Dj} 11t11 
> C1(nht1l 2 (M2 t 1 / 2 5(nh)112 

= b = b(5) > 0 

( 41) IE exp{ it' B;:.1! 2 Di,Bi}I ~ Cb 

for j E Jn, lltlJ > 8(nh) 1l 2 , where Cb < 1 is defined by (AS). This yields under 
lltll > 6(nh) 1l 2 that 

Jen(t)I < II IE exp{ it' B;:. 1! 2 Di,Bi}I 
jEJ,,, 

< (Cb)#l,,, = O((nht>.) 

holds for arbitrary >. > 0, which implies that (III:) is satisfied. 
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Finally, we infer from Remark 5.2 in [Sko81] that (IV) is fulfilled. By Theorem 
3.4 in [Sko86] we obtain that the random vector Sn admits an Edgeworth expansion 
that holds uniformly over any class C of Borel sets with 

(42) sup { ef>(u)du = O(c) as E - 0, 
BEG j(oB)' 

where (6B)e = {ul:Jt EB : lit - ull ~ E}. The residual term of the expansion is of 
order 0( En(log E~ 1 )m) for some m > 0, which is obviously also of order o( ( nh t 1 ) . 

2) identification of the expansion for T n 

To conclude from part 1) the validity oj such an expansion, we intend to apply 
results of [Sko81]. First, we approximate T n by 

(43) T' _ anl + bn _ ! ( anl +bn)an2 ~ ( anl + bn)a~2 
n - v;12 2 v;12 + 8 v;12 ) 

where anl = l::j=l w njCj and an2 = l::j=l w!j(cJ - Vj). By Lemma 8.1 in [Neu92] 
we have for arbitrary / > 0 that an1 = O((nh)-1!2+-r, n- 1 ) and 
an2 = O((nh)-3! 2+-r , n- 1 ) hold, and because of h = o(n-l/(2r+1)) we obtain bn = 
o((nht1l2 ). This implies in particular (an2 + Vn)- 1 = O(nh, n-1 ). 

Therefore, we have, by a simple Taylor expansion of ( an2 + Vn)- 112 at the point 
an2 = 0' that 

( 44) 0 ((lan1I + lbnl)lan2l3(nht712 , n-1) 

0 ((nht3/2+4-r' n-1). 

According to Lemma 3.1, the Edgeworth expansions of T n and T~ coincide up to a 
term of order 0 ((nht312H-r + n-1 ) and, hence, it suffices to state this expansion 
for T~. 
Let Cn = Cov ( (~=~)) and 

T' - b v:-1/2 n n n 
( C~l2 ) 1 Sn 1 ( ( C~12)iSn + bn) ( C~l2)2Sn 

v;12 2 v;12 

3 ( ( C~l2 )1Sn + bn) ( ( C~l2 )2Sn) 2 

+ 8 v;12 

Obviously, 9n obeys (3.4) in [Sko81]. Analogously to that paper we define 

fn(Sn) = W~11 2gn(Sn) 1 
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where Wn = (Dgn(O))(Dgn(O))' = \1Vn- 1 l 2 (C~l2 )1 - ~vn-3l 2 bn(C~l2 )2ll 2 . From 
C ( O((nh)-1) O((nh)-2)) 1 d ll(Cl/2) II . 0(( h)-1/2) d 

n = O((nh)-2) O((nh)-3) We cone U e n 1 = n an 
jj(C~l2 )2JI = O((nh)-312 ), which yields Wn = l+o(l) and jjDi fn(O)ll = O((nh)-(j-l)/2 ) 

for j = 2,3. Further, we have D 4 fn(t) = 0, that is, Assumption 3.1 in [Sko81] is 
fulfilled with p = 4 and An = O((nht 1 ). By Theorem 3.2 and Remark 3.4 of that 
paper we obtain that 

P(fn(Sn) E B) = l ifn(u)du + o((nht 1 ) 

holds uniformly over any class C of Borel sets satisfying ( 42) in the one - dimensional 
case. Here ifn is the signed measure with characteristic function. 

where Xv,n denotes the v-th cumulant of fn(Sn) . Hence, we conclude that 

(45) P(T~ E B) = l "ln(u)du + o((nht1 ) 

holds uniformly over B E C , if C obeys ( 42), where 

{ t2} { (it )2 } (46) fln(t)=exp -2 exp itx1,n+2!(X2,n-l) 

[ (it)3 1 ((it)3 )
2 (it)4 l 

1+3!X3,n + 2! 3!X3,n + ~X4,n ' 

and the Xv,n 's are the cumulants of T~ . 
Next, we approximate the first four cumulants Xv,n up to a residual term of order 

O((nht1 ) . First, observe that the fourth moment of the third term on the right-
hand side of (43) is of order O((nht4 ). Hence, this term contributes only terms of 
order O((nht 1 ) to the cumulants we look for. Therefore we calculate them on the 
basis of the cumulants K 11,n of 

T" _ O'.nl + bn _ ~ ( O'.nl + bn)O'.n2 
n - v.;12 2 v:12 

which differ from those of T~ only by a term of order O((nht 1 ) . 

It holds 

K1,n b v:- 1!2 - ~ v:-3 / 2 Ea a + O((nh)-1 ) n n 2 n nl n2 
. 1 

bnVn-112 - 2Pn3 + O((nht 1 ). 
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With T 111 = T" - b v:-1/ 2 we obtain n n n n 

E(Tn111)2 = Ea.!1 _ ~ Ean1an2 _ Ea~1 an2 + O(( ,h)-i) 
V. v.1/2 V.3/2 v:2 n 

which implies 

Further, we have 

which yields 

Finally, we have 

n n n n 

V n bn (( )-1) V. - ~Pn3 + 0 nh , n Vn 

K2,n E(T;:')2 - (ET;:') 2 + O((nht1) 

Vn bn (( )-1) V. -~ Pn3 + 0 nh . 
n Vn 

Ea~l _ ~ Ea!1(an1 + bn)et.n2 + O((nhtl) 
v;12 2 Vns/2 

-~Pn3 + O((nht1), 

K3,n E(T;:')3 - 3E(T;:')2 ET::'+ 2(ET;:')3 
-2Pn3 + O((nht1 ). 

K4,n = O((nht1). 

21 

Because of IK1,nl + IK2,n -11 + IK3,nl = O((nht1l 2) and ex= l + x + O(x2) as x---+ 0 
we have 

fin(t) =exp{-;} [i + itK1,n + (i;r (K2,n -1) + (i;r K3,n + O((nh)-1(t2 + t 8 ))] ' 

which implies 

P(T~ ::St)+ O((nht1 ) 

<P(t)-(bnVn-l/2 - ~Pn3)¢(t)- (Vn~ Vn -bnV;112Pn3) ~<P(t) 
t 2 - 1 

-(-2Pn3)-6-¢(t) + O((nht1) . 

This proves the assertion. D 
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Proof of Proposition 4.1. 
Analogously to the proof of Proposition 3.1, this proof is based on the validity of 

the Edgeworth expansion of the statistic S~ = B~ - 1 ! 2 I:j=1 aj , 
where a"'.= (nhW · e"'. (nhW ·)2 (c:* 2 - E*c:"'. 2 )) and B* = "~ Gov* (a".) J n3 J ' n3 J J n L...-3=1 J · 

First, we prove that the average moments· of the a:j's are bounded with a suffi-
ciently high probability. It holds E* lej IP = (t aP + (1 -1) bP) lf1IP , and because 
of 

for arbitrarily small 5 > 0 and arbitrarily large >. , it suffices to consider the 
empiric average p-th moment of the e/s rather than those of the f/s. By Markov's 
and Whittle's inequalities we have for s 2 2 

( 

s 
n n 

P ?=I nhW nj ejlp - ?=. El nhW nj ejlp 
J=l J=l 

0 ( (t,( nh W nj )")'''( nh t') 
0 ((nhts/2) ' 

which yields, by I:j=1 ElnhWnj e1IP = O(nh) , that the average p-th moment of 
(a:j)1 is of order O(nh) with exception of a set of events with probability of order 
0 ( ( nh ts/2 ) • In the same way we can prove an analogous bound for the average 
p-th moment of (a:jh. 

Now we infer that, with a probability of 1-0 ((nh)-sl 2 ) , condition (II) of [Sko86] 
and, by Remark 5.2 of [Sko81], also condition (IV) are satisfied. It remains to prove 
an analogue of condition (II() for the characteristic function of S~ . 

In case of the continuous bootstrap version, this condition follows in the same 
way as in the proof of Proposition 3.1. In case of the discrete bootstrap however, 
the situation is much more involved. We know from [BR86] that the Edgeworth 
expansion of a sum of n i.i.d. lattice-valued random vectors is valid only up to a 
residual term of order O(n- 112 ) . Here we can exploit however the diversity of the 
distributions of the ej's. 

Let Kn ~ Jn with #Kn = O(na) for some a > 0 with na = o(nh) . We 
define 

n 

f10 = Yj - L W(xj, f)k m(xk) - L W(xj, f)k ck· 
k=l keKn 
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We have on the one hand 

f1 f10 + 'L: · W(xo, J)k Ek 
kEKn 

f10 + 0 ((nht 1na/2 n° , n->.), 

and on the other hand that the f10 's are, conditioned on Yn = {Yk}k~Kn , indepen-
* - a £ jo i £ j = a c j * - * •2 ~2 ' { ~ ·1 * ~ 

dent. Let £10 - b ~. .1 * _ b ~. and (310 - (£10 , t:10 - t:10 ). Then c1o i cj - t:1 

E* exp{ it' B;;,112 D j f3j0 } 1exp {it'B;;,1/2 Dj (( 2 afjo) ~2 ) } 
a - 1 t:10 

+ (1-1)exp{it'B;;,1l2 Dj ((b2 ~f~)f}o)} 

exp {it'B;;,112 Dj ((:2f~~o)} b + (1-1)exp{ii' f3j0 }], 

where t = diag (b - a, b2 - a 2 ] Dj B;; 112 t. 
Let Cj = f]o - E:j = m(x1) - I:k=l W(x1, f)k m(xk) - I:kEK W(xj, J)k E:k and 

C1 = {Ynl ic1i ~ (nft 1l 2 n° V j E Kn}· 
In the sequel let .X be an arbitrarily large constant. Then 

P(C1) = 0 (n->.). 

Under fixed Yn E C1 , we obtain for iitii > 8(nh)1l 2 

( E (IE* exp{ it' B;;,112 D1f3j0 } I jYn) )2 
( E (IT+ (1 - 1) exp{i t'f3jo}l jYn) )2 

(47) < E(IT + (1-1)exp{ii'(3j0 }l 2 jYn) 
1 + 1(1 - I) [ E (exp{ ii' (3j0 } +exp{ -it1(3j0 }jYn) - 2) 

< 1+1(1-1) [IE( exp{i f(3j0 } jYn) I + j E( exp{it'(3j0 } jYn) j- 2) 
< 02 

for some C < 1 , which does not depend on t and Y. Here the last inequality in 
(47) holds true, since from iitii > 8(nh) 1 l 2 and lc1i ~ (n!)- 1!2 n° the relation . 
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follows, which yields by (41) from the proof of Proposition 3.1 

IE (exp{ i t'/3]0 } IYn) I 
IE (exp{ i [ (t1 + 2c1t2)E:j + t2cj + t1Cj + t2cj]} IYn) I 

= IE (exp{ i [ (t1 + 2c1t2)E:j + t2cj]} IYn) I 
:::; c < 1 

uniformly over Yn E C1 . 

Let Zj = 1-1 E* exp {it' B;,1!2 Dj tJjo }j and C2 = { y I ( #Kn)-l L:kEK zk ~ % }. 
Since the Z/s are bounded random variables, which are, conditioned on Yn, in-

dependent, we obtain by Markov's and Whittle's inequalities 

P(C2) :::; P(C1) + P(C2 n C1) = 0( n->.). 

Let C3 = {YI lf1 - f10 I :::; (nht 1 n"-12 n° and lf1 I :::; n° for j E Kn}· By 
Lemma 8.1 in [Neu92] we obtain 

P(C3 ) = O(n->.). 

If we choose a and 5 small enough such that n"-12 n30 = 0 ( ( nh )112 ) , then we 
have for /Jj = ( nh W nj cj , ( nh W nj cj )2 )' that 
!ltJ; - /Jjo II = 0 (icj - cjo 1(1 + lcj I)) = 0 ((nh t 112 n-0 ) for Y E C3. 

Let now Y E C = {YI Yn E Ci} n C2 n C3 . Then 

( # Kn)-1 L IE* exp {it' B;,1!2 Dj tJj} I 

+ 0 (11t1111 B;,112 1111 /Jj - /Jj II) 

< 1 - ~ + 0 (II t II (nht 1 n°) 

c < 1 --
4 

for 5 ( nh )112 < II t II < 5" nh n° . 
In other words, we have shown that, for fixed t, 5 ( nh )112 < II t 11 < 5" nh n° , 

( 48) Pt P (( #Knt1 _L IE* exp {it' B;,112 Dj /3]} I :::; 1 - ~) 
JEKn 

0 ( n->.) 
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holds. To achieve uniformity in t, we state ( 48) on a sufficiently dense grid. Observe 
that 

IE* exp {it~ B~1!2 Di f3j } - E* exp {it~ B~1!2 Di {3j } \ 
= 0 (II ti - t2 II II B~112 II ll/3j II) 

holds. Let . 
C4 = {YI l/3j I ~ n 6 for j E Kn}. 

Then we have, again by Lemma 8.1 in [Neu92], 

P(C4) = O ( n->. ). 
Now, it is enough to prove ( 48) on an grid Tn = { tni, ... , tnc(n)} with an algebraic 
number c(n) of points such that for all t with 8(nh)112 < lltll < 8"(nh)n6 

there exists at= t(t) E Tn with lit -t(t) II= O((nh) 1! 2 n- 26 ). 

Having this, we conclude 

P((#Knt1 2: IE*exp{it'B~1 /2 Dj/3j}I ~ 1- ~ forall8(nh) 1/ 2 <lltll<8") 
jEK,.. 

~ L Pt + P(C4) = 0 (n->.) 
tET,.. 

This yields, with a probability exceeding 1 - 0 (n->.), that 

IE* {it's~} I = I fi E* exp {it' B~112 Dj ,Bj} I 

( )
#~ 

< ( #K;. t 1 .L IE* exp {it' B~1 / 2 Dj ,Bj }I 
JEK,.. 

< (1-~)#Kn=O(n->.) 

for arbitrary A > 0. Hence, (III~) is fulfilled with a probability exceeding 1 - 0 (n->.), 
which yields the validity of the Edgeworth expansion of S~. The rest of this proof 
goes completely analogous to part 2) of the proof of Proposition 3.1 . D 
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