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Abstract

The stationary Schr�odinger{Poisson system with a self{consistent e�ective Kohn{Sham
potential is a system of PDEs for the electrostatic potential and the envelopes of wave
functions de�ning the quantum mechanical carrier densities in a semiconductor nano-
structure. We regard both Poisson's and Schr�odinger's equation with mixed boundary
conditions and discontinuous coe�cients. Without an exchange{correlation potential the

Schr�odinger{Poisson system is a nonlinear Poisson equation in the dual of a Sobolev space
which is determined by the boundary conditions imposed on the electrostatic potential.
The nonlinear Poisson operator involved is strongly monotone and boundedly Lipschitz
continuous, hence the operator equation has a unique solution. The proof rests upon
the following property: the quantum mechanical carrier density operator depending on
the potential of the de�ning Schr�odinger operator is anti{monotone and boundedly Lip-
schitz continuous. The solution of the Schr�odinger{Poisson system without an exchange{
correlation potential depends boundedly Lipschitz continuous on the reference potential in

Schr�odinger's operator. By means of this relation a �xed point mapping for the vector of
quantum mechanical carrier densities is set up which meets the conditions in Schauder's
�xed point theorem. Hence, the Kohn{Sham system has at least one solution. If the
exchange{correlation potential is su�ciently small, then the solution of the Kohn{Sham
system is unique. Moreover, properties of the solution as bounds for its values and its
oscillation can be expressed in terms of the data of the problem.
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Introduction

Van Roosbroeck's equations provide a good landscape view on an electronic device, while
the Schr�odinger{Poisson system portraits the individual features of a nanostructure within
the device. In a nanostructure electrons and holes can no longer move freely in all space di-

van Roosbroecks's point of view

electronic device

electrostatic potential

carrier densities

̂

nanostructure

Schr�odinger{Poisson system

nanostructure


electrostatic potential

envelopes of wave functions

Figure 1. Around the nanostructure and beyond

rections and the model of a three{dimensional electron{hole gas is not adequate any more.
Instead there is a two{, one{ or zero{dimensional electron{hole gas and the densities of
electrons and holes have to be computed by quantum mechanical expressions. A suitable
model for such a carrier gas with reduced dimension is the Kohn{Sham system i.e. the
stationary Schr�odinger{Poisson system with a self{consistent e�ective Kohn{Sham po-
tential (cf. e.g. [46, 16, 29, 45, 17]). From the mathematical point of view this is a system
of PDEs for the electrostatic potential and the envelopes of wave functions de�ning the
quantum mechanical carrier densities in the nanostructure. It has to be supplemented

by in general mixed boundary conditions (cf. e.g. [16, 17]). For a two{, one{ or zero{

dimensional carrier gas the dimension d of the (bounded) spatial domain 
 � 
̂ � R
d,

where we regard the system, is d = 1; 2; 3, respectively.

The coupling of the nanostructure to its enviroment is a widely discussed task in mod-
elling and simulation of semiconductor nanostructures (cf. e.g. [6, 4, 16, 29, 30, 31, 45, 46]),
but it is open to mathematical validation [20]. The inclusion of the Schr�odinger{Poisson

system into Van Roosbroeck's equations will be dealt with in this paper only as far as we
treat Poisson's equation on the whole device domain thereby assuming given quasi{Fermi
potentials on the part of the device domain which is not occupied by the nanostructure.
This allows to cope with realistic boundary conditions [17] for the electrostatic potential.
In view of modelling equilibrium situations we regard Schr�odinger's operator with mixed
hard{wall and harmonic boundary conditions (1.18). This Schr�odinger operator is self-
adjoint, has a pure point spectrum, and commutes with the complex conjugation on the
underlying Hilbert space. In that case one always �nds a complete orthonormal family

of real eigenfunctions. Hence the quantum mechanical current vanishes on the whole
nanostructure. Even more, the normal derivative of the carrier densities vanishes on the
boundary, cf. also x5.c. When leaving equilibrium situations, of course, in general there
should be currents over the boundary of the nanostructure [16, 6]. Proper conditions at
the interface of the nanostructure and its enviroment are:

� continuity of each carrier density,
� continuity of the normal component of each current.



Aiming at the inclusion of the Schr�odinger{Poisson system into Van Roosbroeck's equa-
tions (cf. [25]) one can meet them with a boundary condition for the current continuity
equations involving the quantum mechanical carrier densities in addition with the follow-
ing boundary condition for the Schr�odinger operator (cf. [24]):

~

m

@ 

@�
= � i� 

@�

@�
on @
;(�)

where  is a state function, m is the e�ective mass, � the mobility, and � the quasi{
Fermi potential of the carriers under consideration, and � is the outer unit normal at

the boundary @
 of the nanostructure. If the macroscopic carrier density matches the
quantum mechanical carrier density u =

P
1

l=1Nlj lj
2, (Nl is the occupation number of

the state  l), on the boundary of the nanostructure, then this condition ensures, that
the normal component of the phenomenological current ��u grad � matches the normal
component of the quantum mechanical current ~

m

P
1

l=1Nl= [ �l grad l] at the interface.

Up to now the mathematical investigation of the Schr�odinger{Poisson system has been
concentrated on the special case of only one kind of carriers, homogeneous Dirichlet
boundary conditions imposed on the electrostatic potential as well as the eigenfunctions
of Schr�odinger's operator, and without exchange{correlation e�ects (cf. [12, 35, 36, 17, 1,
27, 26]).

Without an exchange{correlation potential the Schr�odinger{Poisson system is a nonlinear
Poisson equation in the dual of a Sobolev space which is determined by the boundary con-
ditions imposed on the electrostatic potential. The nonlinear Poisson operator involved is
strongly monotone and boundedly Lipschitz continuous, hence the operator equation has
a unique solution, and one can establish various methods of descent for its approximative
determination. For the method of steepest descent the electrostatic potentials converge

uniformly on the device domain which leads to convergence results for the eigenvalues of
the corresponding Schr�odinger operators [27, 26]. The proof of the stated results on the
Schr�odinger{Poisson system rests on the following property: the carrier density operator
depending on the potential of the de�ning Schr�odinger operator is anti{monotone and
boundedly Lipschitz continuous. In establishing this property we rely on form bounds of
the Schr�odinger operators and on the calculus of double Stieltjes operator integrals [7, 8].

The analytical properties of the Schr�odinger{Poisson system pass to the discretized system
(cf. [12, 1]), thus allowing proper implementation of the above mentioned iterations, e.g.
based on a �nite box method as in [18].

Our calculus for the Schr�odinger{Poisson system with certain exchange{correlation po-
tentials is based upon the results for the system without exchange{correlation potential.
First one can prove that the solution of the Schr�odinger{Poisson system depends bound-
edly Lipschitz continuous on the reference potential in Schr�odinger's operator. By means
of this relation a �xed point mapping for the vector of quantum mechanical carrier den-
sities is set up which meets the conditions in Schauder's �xed point theorem. Hence,

the Kohn{Sham system has at least one solution. To that end the exchange{correlation
potential should be a bounded and continuous mapping of the carrier densities from the
space L1(
) on a potential from L2(
). The physically relevant exchange{correlation
potentials in the two{ and three{dimensional case belong to that class. If the exchange{
correlation potential is Lipschitz continuous and su�ciently small, then the solution of
the Kohn{Sham system is unique. As the exchange{correlation potentials in general are
only from L2, we need a calculus for Schr�odinger operators with potentials from L2. In
contrast to the quantum Vlasov equation (cf. [33]), this seems to be an appropriate set-
ting for the Schr�odinger{Poisson equations. Indeed, we get non{negative carrier densities



from the space L1, in fact, they are even much more regular. Our present approach to
the Kohn{Sham system rests upon the supposed L1{norm conservation for each kind of
carriers, cf. also Remark 6.16. This is a reasonable assumption, as we do not take into ac-
count an exchange mechanism of carriers between the nanostructure and the surrounding

device within this paper.

In the Schr�odinger{Poisson and Kohn{Sham system the electrostatic potential acts via
the e�ective potential in each of the separate scalar Schr�odinger equations for electrons

and holes. The densities of electrons and holes only couple in Poisson's equation. This ap-
proach makes sense for the summary treatment of electrons and holes (cf. Appendix A.2).
For a more detailed investigation of the band structure one has to take into account
further band coupling by introducing matrix Schr�odinger operators.

1. The Kohn{Sham system

The Kohn{Sham system is a system of equations governing the electrostatic potential '
and the vector u = (u&)&2f1;::: ;�g of carrier densities under consideration. Here and in the

following the indices & 2 f1; : : : ; �g indicate the particle species (electrons and/or holes).
The electrostatic potential and the carrier densities have to obey Poisson's equation

�div
�
" grad'

�
= q
�
NA �ND +

X
&2f1;::: ;�g

e&u&

�
in 
̂(1.1)

in the device domain 
̂. e& is +1 for holes and �1 for electrons, q is the magnitude
of the elementary charge, and " = "(x) denotes the dielectric permittivity tensor. The
right{hand side of (1.1) is a charge distribution and consists of a �xed density NA �ND

of ionized dopants and the carrier densities which are de�ned by the state equations (1.2)
and (1.6). Outside the nanostructure there are the state equations

u&(x) = F&

�
�e&

�
'(x)� �&(x)

��
x 2 
̂ n 
;(1.2)

where we assume that the electrochemical (quasi{Fermi) potentials �& are given functions
which are �xed throughout this paper. F& are statistical distribution functions. In general
there is Fermi{Dirac statistics (cf. e.g. [17]), i.e.

F&(�) = c&F 1
2
(�);(1.3)

where F�(�) denotes Fermi's integral (� > �1) and Fermi's function (� = �1) respec-
tively:

F�(�) =

(
1

�(�+1)

R
1

0

��

1+exp(���)
d� if � > �1

1
1+exp(��)

if � = �1
� 2 R(1.4)

F
0

�(�) = F��1(�); � � 0; � 2 R:(1.5)

Inside the nanostructure the carrier densities have to be computed by the quantum me-
chanical expressions

u&(V&)(x) =

1X
l=1

Nl;&(V&) j l;&(V&)(x)j
2
; x 2 
; & 2 f1; : : : ; �g:(1.6)

The Nl;& are the occupation factors

Nl;&(V&) = f& (El;&(V&)� EF;&(V&)) ; & 2 f1; : : : ; �g;(1.7)



where EF;& denotes the Fermi level, and f& the thermodynamic equilibrium distribution
function of the &{type carriers.

El;& = El;&(V&) are the eigenvalues (counting multiplicity) and  l;& =  l;&(V&) the corre-
sponding orthonormal eigenfunctions of the one{electron Schr�odinger operator in e�ective{
mass approximation (Ben{Daniel{Duke form) with the e�ective Kohn{Sham potentialV&�

�
~
2

2
div
�
m�1
& grad

�
+V&

�
 l;& = El;& l;& in 
;(1.8)

where m& = m&(x) is the 
{component of the position dependent e�ective{mass tensor
of &{type carriers.

The e�ective Kohn{Sham potentials depend on the carrier densities, and split up in the
following way

V&(u) = �e&�E& + Vxc;&(u) + e&q'(u)j
;(1.9)

where '(u)j
, denotes the restriction of the electrostatic potential '(u) to the domain 
 of
the nanostructure, cf. (1.1). The band{edge o�sets �E& are given external potentials rep-
resenting the electronic characteristics of the material. Vxc;& are the exchange{correlation
potentials, which depend on the particle densities. Generic expressions for Vxc;& are

Vxc;&(u) = ��& u
�
& ; �& > 0; & 2 f1; : : : ; �g(1.10)

where � = 1
d
for d = 2; 3 (cf. Appendix A.1).

The Fermi level EF;& = EF;&(V&) of the &{type carriers is de�ned by the charge conservation

law for these carriers

N& =

Z



u&(V&)(x)dx =

1X
l=1

f&(El;&(V&)� EF;&(V&));(1.11)

N& being the �xed total number of &{type carriers in the nanostructure domain 
 under
consideration.

The distribution functions f = f& , & 2 f1; : : : ; �g take di�erent forms depending on the
reduced dimension of the carrier gas (cf. Appendix A.2). They are closely related to the
functions (1.4), namely the distribution function is

f(s) = cF�
�
�
s

�

�
; � =

8><>:
�1 if d = 3;

�1
2

if d = 2;

0 if d = 1;

(1.12)

with positive constants c and �. According to (1.5) the corresponding primitive is

F (t) = �

Z
1

t

f(s)ds = �c� F�+1
�
�
t

�

�
:(1.13)

More precisely, for an ensemble of electrons in a quantum dot, i.e. 
 � R
3, the distribution

function is essentially given by Fermi's function

f(s) = 2 g F�1
�
�

s

kBT

�
=

2 g

1 + exp
�

s
kBT

� ;(1.14)

kB being Boltzmann's constant, T = T& the temperature of the carrier gas, and g = g& a
material constant. For the one{dimensional electron gas in a quantum wire, i.e. 
 � R

2,
the distribution function is

f(s) = 2 g

r
m?kBT

2�~2
F
�

1
2

� � s
kBT

�
=

g

�~

p
2m?kBT

Z
1

0

��
1
2

1 + exp
�
� + s

kBT

� d�;(1.15)



and for the two{dimensional electron gas in a quantum well i.e. 
 � R
1 there is

f(s) = 2 g
m?kBT

2�~2
F0

�
1 + exp

� � s
kBT

��
= g

m?kBT

�~2
ln
�
1 + exp

� � s
kBT

��
;(1.16)

where m? = m?& is the component perpendicular to 
 of the e�ective{mass tensor of
&{type carriers.

1.1. Remark. The expressions (1.6) and (1.7) apply to electrons as well as to holes, i.e.
the energies (and the Fermi level) of quantum mechanical electrons are scaled in the usual
way, whereas energies (and the Fermi level) of quantum mechanical holes are counted on

a negative energy axis. However, classical electrons and holes both have been treated on
the usual energy axis (cf. (1.2) and Appendix A.2).

In semiconductor device modeling one has to cope in general with rather complex, mixed
boundary conditions [17]. As far as the electrostatic potential ' is concerned, we regard
the following ones:

0 = '� '�̂ on �̂; �h�; " grad 'i = b('� '�̂) on @
̂ n �̂;(1.17)

where the function '�̂, de�ned on the closure of 
̂, represents the boundary values given

on �̂ and the inhomogeneous boundary condition of third kind on @
̂ n �̂. � denotes

the outer unit normal at the boundary @
̂ of the device domain 
̂ and �̂ models Ohmic

contacts. The part @
̂ n �̂ covers the interface between the semiconductor device and an

insulator, where b � 0 is a capacity, and the rest of @
̂, where homogeneous Neumann
boundary conditions are prescribed i.e. b = 0 (cf. [17]).

How to supplement the Schr�odinger operators (1.8) by suitable boundary conditions is
a widely discussed question (cf. e.g. [16, 29, 30, 45, 31, 4, 46] ). If we assume a de-
vice structure which, by con�ning the charge carrieres, helps to enforce charge neutrality,
homogeneous Dirichlet boundary conditions for the eigenfunctions  of the Schr�odinger
operators (1.8) might do the job (cf. [16]). Then the carrier densities vanish on the

boundary of 
 and there should be a depletion zone around the device (cf. [29]). Alter-
natively, one can use homogeneous Neumann boundary conditions. We take into account
the following mixed boundary conditions

0 =  on �; 0 = h�;m�1
& grad i on @
 n �(1.18)

for all  in the domain of the Schr�odinger operator from (1.8). As T. Kerkhoven pointed
out, the envelope{functions de�ning the carrier densities really shouldn't `feel' the bound-
ary conditions too much in those parts of the device where one is genuinely interested in
the carrier densities.

2. Mathematical formulation of the problem

Mathematically, one has to impose some conditions on the domains 
̂ and 
 and on the
parts of its boundaries which assure certain regularity properties for the solutions of both,

the Poisson and the Schr�odinger equation. The problem is here that the mixed boundary
conditions together with discontinuous coe�cients prevent dom(H) lying in W 2;2, what
is commonly used elsewhere, [36],[26]. Fortunately, it is possible to obtain a reasonable
substitute to serve our purpose, at least for the space dimensions up to d = 3, which are
required for our physical situations. To achieve this, we make the following

2.1. Assumption. 
̂ � R
d and 
 � 
̂, 1 � d � 3, are bounded Lipschitz domains the

boundaries @
̂ and @
 of which contain closed Dirichlet parts �̂ and � respectively.



� If the space dimension d is 2, the boundary parts � and @
n�, satisfy the regularity

property of Gr�oger [22] and the same is true for �̂ and @
̂ n �̂.
� If d = 3 the boundary parts do satisfy the suppositions of Stampaccia [40].

For the convenience of the reader, we quote those results of [22] and [40], which are of
interest in the following (for the case d = 3, also see [38]). In order to represent the
homogeneous Dirichlet boundary conditions we have to introduce adequate subspaces of

the spaces W 1;p(
̂) and W 1;p(
):

2.2. De�nition. Let ~
 be a Lipschitz domain and ~� � @ ~
 be a closed subset of the

boundary of ~
 with positive surface measure. Then we denote by W
1;p
~�
(~
) that subspace

of the Sobolev spaceW 1;p(~
) whose elements have a vanishing trace on ~� and byW
�1;p
~�

(~
)

the dual space of W
1;p0

~�
(~
), (1

p
+ 1

p0
= 1). We denote by J the duality mapping between

W
1;2
~�
(~
) and W

�1;2
~�

(~
).

2.3. De�nition. Let a : ~
 7�! B(Rd;Rd) be a function with positive de�nite, invertible
values, such that au = kakL1(~
;B(Rd;Rd)) and al = ka�1kL1(~
;B(Rd;Rd)) are �nite. We de�ne

the operator A :W
1;2
~�
(~
) 7�!W

�1;2
~�

(~
) by

hAv;wi =

Z
~


ha(x) grad v(x); gradw(x)i + v(x)w(x) dx; v; w 2 W 1;2
~�
(~
):

2.4. Theorem. Let ~
 be a Lipschitz domain and ~� � @ ~
 a part, of the boundary such
that ~� and @ ~
 n ~� satisfy the regularity assumptions of [22]. Then

i) The function

[2;1[3 p 7�! kJ �1k
B(W

�1;p
~�

(~
);W
1;p
~�

(~
))

is monotonously increasing and there is

lim
p!2

kJ �1k
B(W

�1;p
~�

(~
);W
1;p
~�

(~
))
= kJ �1k

B(W
�1;2
~�

(~
);W
1;2
~�

(~
))
= 1:

ii) If p � 2 and

au � al

au + al
kJ

�1
k
B(W

�1;p
~�

(~
);W
1;p
~�

(~
)) < 1(2.1)

then AjW 1;p
~�

(~
) provides an isomorphism between the spaces W 1;p
~�
(~
) and W�1;p

~�
(~
) .

iii) If one denotes J �1j
W
�1;p
~�

(~
)
by J �1

p , then one has :

kA
�1
k
B(W

�1;p
~�

(~
);W
1;p
~�

(~
)) �
al

a2u

kJ �1
p k

B(W
�1;p
~�

(~
);W
1;p
~�

(~
))

1� au�al
au+al

kJ �1
p k

B(W
�1;p
~�

(~
);W
1;p
~�

(~
))

iv) If for some number p � 2 (2.1) is satis�ed, then for q = p

p�1
the mapping A�1

possesses an extension to the space W�1;q
~�

(~
), which is isomorphically mapped onto

W 1;q
~�
(~
). Additionally,

A
�1 :W

�1;q
~�

(~
) 7�!W
1;q
~�
(~
) is the adjoint to A

�1 :W
�1;p
~�

(~
) 7�! W
1;p
~�
(~
)

and, hence, their norms are equal.

2.5. Remark. According to the �rst assertion of Theorem 2.4 there is always an � > 0,
such that (2.1) is satis�ed for all p 2 [2; 2 + �].



2.6. Theorem. Let ~
 again be a Lipschitz domain and ~� a part of the boundary @ ~
 such
that ~� and @ ~
 n ~� satisfy the suppositions in [40] for the mixed boundary value problems.

Further, let A be according to De�nition 2.3. Then the mapping A�1 : W
�1;2
~�

(~
) 7�!

W
1;2
~�
(~
) possesses an extension to the spaces Lp(~
) + div((Lq(~
))d) (where p > d

2
and

q > d) which is mapped thereby continuously into some H�older space C�(~
) with � > 0.

In the following we will frequently use

2.7. Corollary. Let ~
 be a Lipschitz domain and ~� � @ ~
 satisfy the supposition in
Theorem 2.4 if d = 2 or in Theorem 2.6 if d = 3. Then for any p > d

2
with p � 1 the

mapping A of De�nition 2.3 has an inverse, which maps Lp(~
) into a space C�(~
) ,!

L1(~
) and which can be extended to a continuous mapping from L1(~
) into Lp
0

(~
), where
1
p0
= 1 � 1

p
. Further, one has

kA�1k
B(L1(~
);Lp(~
)) = kA�1k

B(Lp
0
(~
);L1(~
)) <1:

The corollary follows easily Theorem 2.4 or Theorem 2.6, respectively, the selfadjointness

of A on L2(~
) and by embedding results.

2.8. Remark. In particular, the Assumption 2.1 on the boundary of 
 assures that
the domains (provided with their graph norm) of the Schr�odinger operators (cf. De�ni-
tion 2.12) acting in the Hilbert space L2(
), continuously embed into a space of H�older
continuous functions. We will make use of this property without further comment in the
sequel.

Let us now introduce some further mathematical notions and assumptions, which are
necessary for a precise formulation of the Schr�odinger{Poisson problem. We will start
with the quasi Fermi levels �& and the statistical distribution functions F& occuring in
(1.2):

2.9. Assumption. The functions �&, which represent the quasi Fermi levels, are sup-

posed to be from W
1;2

�̂
(
̂) \ L1(
̂).

2.10. Assumption. The statistical distribution functions F& are supposed to be mono-

tone and to de�ne locally Lipschitz continuous mappings F& :W
1;2

�̂
(
̂) 7! W

�1;2

�̂
(
̂) which

are given by

hF&(v); wi =

Z

̂n


e&F&(e&(�&(x)� v(x)))w(x) dx v;w 2 W 1;2

�̂
(
̂):(2.2)

2.11. Remark. Su�cient analytic conditions for the functions F& to ful�ll Assump-
tion 2.10 are:

� d = 1: F& itself is locally Lipschitzian.
� d = 2 or d = 3: F& is di�erentiable and the derivative F 0

& is bounded on ] �1; 1]
and obeys:

jF 0

&(s)j � �jsjp; s 2 [1;1[;

where p is any �nite number if d = 2 and a number not greater than 4, if d = 3.

Of course, the Fermi Dirac distribution function (1.3), which we have mainly in mind,
obeys these conditions.

Next we introduce a precise notion of the Schr�odinger operator.



2.12. De�nition. For any & 2 f1; : : : ; �g suppose m = m& 2 L1(
;B(Rd;Rd)) with
positive de�nite, invertible values such that m�1 is also from L1(
;B(Rd;Rd)). We

de�ne the Schr�odinger operator with zero potential H0 :W
1;2
� (
) 7�! W

�1;2
� (
) by

hH0v;wi =
~
2

2

Z





m(x)�1 grad v(x); gradw(x)

�
dx; v; w 2 W

1;2
� (
):(2.3)

The restriction of this operator to other range spaces | in particular L2(
) | we also
denote by H0. However, the notion dom(H0) is reserved for the Schr�odinger operator in
the Hilbert space context of L2(
). If p � 2 and V 2 Lp, then we denote the operator

H0 + V (which is also de�ned on dom(H0), cf. Proposition 3.3) by HV .

We recall some basic facts on H0 (cf. e.g. [28] or [39]), which are essential for this paper:

2.13. Theorem. H0 is a nonnegative, selfadjoint operator with pure point spectrum. If
d is the dimension of the spatial domain, then the resolvents of H0, are q{summable
operators for all q > d

2
with q � 1.

The proof of the second assertion rests upon the following facts: The eigenvalues of H0

are lying between the corresponding eigenvalues of the operator �~2

2
div(m�1 grad) once

combined with pure (homogeneous) Neumann and on the other hand pure (homogeneous)
Dirichlet conditions (cf. Courant/Hilbert [14, ch. VI, $ 2]). The asserted summability
property is now an easy consequence of the asymptotics for the eigenvalues of ��, both,
in case of Dirichlet or Neumann conditions (cf. Courant/Hilbert [14, ch. VI, $ 4]) and the
upper and lower bounds for m.

Next we will introduce the class of distribution functions f = f& , which are admissable
in our context. In order to cover all physically relevant cases (cf. x1) and to meet the
mathematical requiries for proving our theorems, we make the following assumption:

2.14. Assumption. f is a positive, di�erentiable, strictlymonotonously decreasing func-
tion on R. For any � 2 R and any

k �

(
3 if d = 1; 2;

4 if d = 3:
(2.4)

there is

�k;� = sup
s2[14 ;1[

f(s+ �)sk <1; �0

k;� = sup
s2[14 ;1[

f 0(s+ �)sk+1 <1:(2.5)

In applications of the Birman{Solomjak theoremwe will frequently encounter the following
functions g, which are closely related to the distribution function f .

2.15. De�nition. Let f and k be in accordance with Assumption 2.14, and � an arbi-
trary real number We introduce the functions

gk;� : [0; 4] 7�! R; gk;�(s) =

(
f
�
s�1 + �

�
s�k for s > 0

0 for s = 0
(2.6)

and denote by

Lk;� = sup
s2[0;4]

���g0k;����(2.7)

the corresponding Lipschitz constants which easily can be expressed in terms of the dis-
tribution function f .



2.16. De�nition. Let f be a distribution function ful�lling Assumption 2.14 and m as
in De�nition 2.12. Then we de�ne a pseudo carrier density operator corresponding to f
and m by

~N (V )(x) =

1X
l=1

f(El(V )) j l(V )(x)j
2
; V 2 L2(
); x 2 
:(2.8)

Here the El(V ) and  l(V ) are the eigenvalues and normalized eigenfunctions, respectively,
of the Schr�odinger operator HV = H0 + V . If & 2 f1; : : : ; �g, f = f& and m = m& then
we de�ne the &{particle density operator N = N& by

N (V ) = ~N (V � EF (V ))(2.9)

where EF (V ) = EF;&(V ) is the Fermi level de�ned byZ



N (V ) dx =
X
l

f(El(V )� EF (V )) = N;(2.10)

N = N& being the �xed number of &{type carriers. We avoid whenever possible the
indexing with &, as in this de�nition.

2.17. Remark. We have introduced the notion of the pseudo carrier density operator,
(at �rst excluding the Fermi level), because it serves well our functional analytic purpose.
In particular, the reader should note that it is a mapping from suitable function spaces

over the domain 
 into spaces of functions, which are again de�ned over 
. Later, when we
are again regarding the system as a whole, the values of the corresponding carrier densitiy

operators will also be regarded as functions over the greater domain 
̂, embedding them

by an operator Z into L2(
̂).

2.18. Remark. A priori it is evident only for potentials V 2 L1(
), that the Fermi
level is well de�ned, because the spectrum of HV is then at worst that of H0, shifted
by �kV kL1. From this, the eigenvalue asymptotics for H0, the monotonicity and decay
properties of the distribution function f follows that EF (V ) is well de�ned. This directly
implies that the series on the right hand side of (2.8) (there V substituted by V �EF (V )),
which de�nes the particle density operator N&, is absolutely converging in L1(
). Later
it will become apparant (cf. Proposition 5.8) that the particle density operators N are
well de�ned as operators from L2(
) into spaces of much more regular functions.

2.19. Assumption. The exchange-correlation term in its dependence on the particle

densities, i.e. the mapping u 7�! Vxc;&(u) is a continuous and bounded mapping from�
L1(
)

��
into L2(
) for any & 2 f1; : : : ; �g.

2.20. Remark. In the two{ and three{dimensional case the generic exchange{correlation
potentials (1.10) belong to that class. This is not true for the one{dimensional case.
However, there is still a lot of uncertainty about correct expressions for the exchange{
correlation potentials, especially for electron gases with reduced dimension.

2.21. Assumption. The function '
�̂
, which represents the boundary values given on �̂

and the inhomogeneous boundary condition of third kind on @
̂ n �̂, is from the space

W 1;2(
̂). Let ~'�̂ denote the linear form on W
1;2

�̂
, which is given by

h 7�!

Z

̂

h"(x) grad'�̂(x); grad h(x)i dx; h 2 W 1;2

�̂
:(2.11)

2.22. De�nition. Suppose " 2 L1(
̂;B(Rd;Rd)) with positive de�nite values such that
the essential in�mum of the lowest eigenvalues is strictly positive. Further, let 0 � b be

from L1(@
̂n �̂) (with respect to the surface measure), and let either the surface measure



of �̂ be not zero or b be strictly positive on a subset of @
̂ n �̂ with positive surface

measure. Then we de�ne the operator A :W
1;2

�̂
(
̂) 7�!W

�1;2

�̂
(
̂) by

hAv;wi =

Z

̂

h"(x) grad v(x); gradw(x)i dx +

Z
@
̂n�̂

b(� )v(� )w(� ) d�; v; w 2 W
1;2

�̂
(
̂):

The de�nition is correct, because W 1;2

�̂
(
̂) embeds continuously into L2(@
̂ n �̂).

We denote by cb a constant such that

kuk2
W

1;2

�̂
(
̂)

� cb
�
k grad uk2

L2(
̂;Rd)
+ kbu2kL1(@
̂n�̂)

�
for all u 2 W

1;2

�̂
(
̂):(2.12)

The constant cb depends on 
̂, �̂ and b. Indeed, it is �nite as the surface measure of �̂ is

nonzero or b does not vanish almost everywhere on @
̂ n �̂ [19, ch. II, x1, Lemma 1.36].

2.23. De�nition. Suppose

NA �ND 2 L
2(
̂); �E& 2 L

2(
); & 2 f1; : : : ; �g(2.13)

and a tuple (Z1; : : : ; Z�) of linear, continuous identi�cation operators

Z& : L
2(
̂) 7�! L2(
); & 2 f1; : : : ; �g:(2.14)

to be given. Further, let ",m1, : : : ,m�, f and '�̂ be given and the preceeding assumptions
satis�ed. We de�ne the external potentials V& and the e�ective doping D by

V& = Z�

& '�̂
� e&�E&; & 2 f1; : : : ; �g;(2.15)

D = q(NA �ND)� ~'�̂:(2.16)

Then we say that (V; u1; :::; u�) 2 W
1;2

�̂
(
̂) � L2(
;R�) is a solution of the Kohn{Sham

system (Schr�odinger{Poisson system with exchange{correlation potential) if

AV = D +
X

&2f1;::: ;�g

Z�

& u& + F&(V )(2.17)

u& = N& (V& + Vxc;&(u) + Z&V ) ; & 2 f1; : : : ; �g:(2.18)

2.24. Remark. With respect to the formulation of the problem in x1, the mapping Z&
is simply the operator, which restricts functions over 
̂ to 
, multiplied by e&q:

(Z&v) (x) = e&qv(x); x 2 
;
�
Z�

&w
�
(x) =

�
e&qw(x); x 2 
;

0 ; x 2 
̂ n 
:
(2.19)

However, the authors believe that it can serve well later purpose, to introduce an ad-
ditional degree of freedom at this point, because the coupling between the macroscopic
and the microscopically described part of the device, which expresses here, is by far not

completely understood. It turns out that a `macroscopically extended particle density
operator' of the structure described above possesses highly satisfactory functional ana-
lytic properties. Even more, as the reader will see in Remark 6.5, the class of admissable
operators may be widened by small perturbations.

2.25. Remark. The natural space for the quantum mechanical particle densities u&,
(2.9), to ly in is L1(
), because the charge conservation laws (2.10) accord to this space.
But the functional anlytic context, in which we will regard the system, is mainly deter-
mined by the monotonicity properties of the nonlinear Poisson operator, acting between

W 1;2

�̂
(
̂) and W�1;2

�̂
(
̂). Thus, we have decided to associate with the notion of a so-

lution that the particle densities are also from L2(
). In fact, it turns out later (see
Remark 6.15) that the structure of the system itself assures that the particle densities



are much more regular over 
, even when at �rst only u& 2 L
1(
) is supposed. It should

be noted, however, that on the boundary of 
 discontinuities of the carrier densities may
appear. This depends on the fact that in the present concept the densities u& within the
quantum mechanically described region 
 and in the macroscopically described one are

related only via the nonlinear Poisson equation, i.e. the electrostatic potential '. A com-
pletely selfconsistent approach would have to include equations for the | macroscopic
and microscopic | Fermi level, a program which we will carry out in later papers [24, 25].

Our approach to the Schr�odinger{Poisson system is based upon the following fundamental
theorem:

2.26. Theorem. (cf. [19, ch. III, x3.2].) Let A be a strongly monotone and boundedly
Lipschitz continuous operator between the Hilbert space H and its dual H�. Then the
equation

A(u) = f(2.20)

admits for any f 2 H� exactly one solution. This solution u satis�es

kukH �
1

mA

kA(0) � fkH�;(2.21)

where mA denotes the monotonicity constant of A. Let J : H ! H� be the duality mapping
andMA be the local Lipschitz constant of A belonging to a centered ball K in H with radius
not smaller than

2

mA

kA(0)� fkH�:(2.22)

Then the operator

u! u�
mA

M2
A

J�1
�
A(u)� f

�
(2.23)

maps the ball K strictly contractive into itself and its contractivity constant does not exceeds
1�

m2
A

M2
A

:(2.24)

The �xed point of (2.23) is identical with the solution of (2.20).

Now we recall some properties of the norm in the spaces of q{summable operators.

2.27. Theorem. Let S = [0; a] be any �nite interval and g any real valued, Lipschitz
continuous function on S with g(0) = 0. For any selfadjoint, q{summable operator B,
having its spectrum in S there is

kg(B)kq � LipS(g) kB kq;(2.25)

where LipS(g) is the Lipschitz constant of g on S. Moreover, if B is any q{summable
selfadjoint operator, then B� is q

�
{summable and

kB�k q

�

= kBk
�

q ; 1 � q <1; 0 < � � q:(2.26)

2.28. Theorem. (Birman and Solomjak [7, 8].) Let A and B be two selfadjoint operators,
whose di�erence is Hilbert{Schmidt and whose spectral measures are concentrated on a
�nite interval S � R. Further, assume that g : S 7�! R is Lipschitz continuous on S with
the Lipschitz constant LipS(g). Then one has

kg(A)� g(B)k2 � LipS(g) kA�B k2:(2.27)



Finally we cite two deep complex interpolation results, which we use to get �ne tuned
estimates later on.

2.29. Theorem. (cf. [42, Section 1.15.3].) If B is a strictly positive, selfadjoint operator,
then �

dom(B�);dom(B�)
�
�
= dom(B�(1��)+��); 0 < � < 1; 0 � <� < <� <1:(2.28)

2.30. Theorem. (cf. [42, Section 4.3.1].) If ~
 is a domain satisfying a cone condition,
then

(2.29)
h
W 1;p(~
);W 1;q(~
)

i
�
= W 1;r(~
); (including the equivalence of norms)

0 < � < 1; 1 < p; q <1;
1

r
=

1 ��

p
+
�

q
:

3. The Schr�odinger operator with mixed boundary conditions

In this section we present properties of the Schr�odinger operator which are afterwards
an essential instrument for verifying the existence and uniqueness statements for the
Schr�odinger{Poisson system. For the sake of technical simplicity, during this and the

next chapter we will often omit the symbol 
 in the notation of function spaces, because
all of them are belonging to 
. | m has to be regarded as any of the e�ective masses
m&, & 2 f1; : : : ; �g. In the following propositions, certain Gagliardo{Nirenberg constants
and the L1{bound of m play an essential role.

3.1. De�nition. If the dimension of the spatial domain equals d we de�ne p as the
Gagliardo{Nirenberg constant (cf. e.g. [34, 1.4.8/1])

p = sup
0 6= 2W

1;2
�

k k
L

2p
p�1

k k
d

2p

W
1;2
�

� k k
1� d

2p

L2

; p � 1; p >
d

2
:(3.1)

For any m = m&, & 2 f1; : : : ; �g, we denote

m = max

�
1;
2 kmkL1(
;B(Rd;Rd))

~2

�
:(3.2)

3.2. Remark. m has been de�ned such that 1
m

is the monotonicity constant of the

operator (H0 + 1) : W
1;2
� ! W

�1;2
� ; (cf. De�nition 2.12), hence, m is the norm of the

inverse operator:

k k2
W

1;2
�

� mh(H0 + 1) ; i;  2 W
1;2
� (
);

(H0 + 1)�1

B(W

1;2
�

;W
�1;2
�

)
= m:(3.3)

Now we regard the Schr�odinger operator

H = HV = H0 + V(3.4)

from De�nition 2.12 in the Hilbert space L2(
).

3.3. Proposition. Let V be from Lp(
), p � 2. One has:

i) V , as a multiplication operator acting on the Hilbert space L2(
), is in�nitesimally
small and relatively compact with respect to H0+1. Hence, if V is real{valued, then
HV = H0+V is again selfadjoint and has, as well as H0, a pure point spectrum. The
eigenfunctions  l of HV form an orthonormal basis in L2(
) and all eigenvalues are
real.



ii) The operator H0 + V may be estimated as follows in the sense of forms:

1 �
d

2p
+ �V � (1�

d

2p
)(H0 + 1) + �V � H0 + V � (1 +

d

2p
)(H0 + 1) � �V � 2;(3.5)

where

�V = �
�
1�

d

2p

�
kV k

2p

2p�d

Lp 
4p

2p�d
p m

d

2p�d � 1:(3.6)

iii) If � � �V , then the spectrum of (HV � �)�1 is contained in [0; 4] and

k(HV � �)�
1
2 (H0 + 1)

1
2k = k(H0 + 1)

1
2 (HV � �)�

1
2k � (1 �

d

2p
)�

1
2 :(3.7)

iv) For any V 2 L2(
) and any q with q � 1 and q > d
2
the resolvent of HV is a

q{summable operator and one has

k(HV � �)�1kq � (1�
d

2p
)�1k(H0 + 1)�1kq <1; � � �V :(3.8)

3.4. Remark. The lower form bound of H0 + V in (3.5) can be improved by using the
negative part V � of V instead of jV j to construct the lower bound, i.e. one can replace

�V by �V � on the left hand side of (3.5).

Proof of i). Because Lp ,! L2 if p > 2 we may focus our attention to the case V 2 L2(
).
First we prove that V has then zero bound with respect to H0+1. Because the embedding
C�(
) ,! L1(
) is compact and the embedding L1(
) ,! L2(
) is injective, one may
apply Ehrling's lemma (cf. e.g. Wloka [47]). That means, for any � there is a �(�) such
that for any  2 dom(H0) there is

kV  kL2 � kV kL2 k kL1 � kV kL2(� k kC� + �(�)k kL2)

Then the term k kC� may be estimated by k(H0 + 1)�1kB(L2;C�) k(H0 + 1) kL2 (cf. Re-
mark 2.8) what proves the �rst assertion. The relative compactness results from the
continuity of the embedding dom(H0) ,! C� and the compactness of the embedding
C� ,! L1. | The discreteness of the spectrum of HV follows from the compactness
of the resolvent of H0 and the invariance of the essential spectrum under relative com-

pact perturbations (cf. Kato [28]). The last assertion is a wellknown fact on selfadjoint
operators with pure point spectrum [28].

Proof of ii). In the sense of forms there is

H0 � jV j � H0 + V � H0 + jV j:

We estimate the form

W 1;2
� 3  7�! hjV j ; i

beginning with an application of H�older's inequality:

hjV j ; i � kV kLpk k
2

L
2p
p�1

then the Gagliardo{Nirenberg inequality

� kV kLp 
2
p

�
k k2

W
1;2
�

� d

2p

k k
2� d

p

L2

(3.3)

� h(H0 + 1) ; i
d

2p kV kLp 
2
p m

d

2p k k
2� d

p

L2



and �nally Young's inequality

�
d

2p
h(H0 + 1) ; i+ (1�

d

2p
)kV k

2p

2p�d

Lp 
4p

2p�d
p m

d

2p�d k k2L2

=

��
d

2p
(H0 + 1) + (1 �

d

2p
) kV k

2p
2p�d

Lp 
4p

2p�d
p m

d

2p�d

�
 ; 

�
:

Proof of iii). It su�ces to prove the statements for � = �V , because for � � �V one has

k(HV � �V )
1
2 (HV � �)�

1
2k � 1

(cf. [28, ch. VI, x2]). From (3.5) and the de�nition of �V follows that

1

4
(H0 + 1) � (1�

d

2p
)(H0 + 1) � HV � �V(3.9)

is true in the sense of forms. Consequently, the spectrum of HV � �V has to ly above 1
4
,

and | by the spectral mapping theorem | the spectrum of (HV � �V )
�1 is localized in

the interval [0; 4]. | For � = �V (3.7) follows from (3.9), [28, ch. VI, x2], and the fact

that the operators (HV � �)�
1
2 (H0 + 1)

1
2 and (H0 + 1)

1
2 (HV � �)�

1
2 are adjoint to each

other.

Proof of iv). (3.8) is trivially implied by (3.7) and Theorem 2.13.

3.5. Remark. N.B. the conditions p > d
2
and p � 1 restrict the following considerations

to the space dimensions d = 1; 2; 3, because the adequate sets of potentials are bounded
in L2(
) only (see also Remark 6.16).

3.6. Corollary. From (3.5) and the minimax principle (cf. e.g. Reed, Simon [39]) one
gets the following estimate for the eigenvalues El(V ) of the operator HV = H0 + V :

(1�
d

2p
)(�l + 1) + �V � El(V ) � (1 +

d

2p
)(�l + 1) � �V � 2; l = 1; 2; : : :(3.10)

where the �l are the eigenvalues of the operator H0, and �V is according to (3.6).

3.7. Proposition. Suppose V 2 L2(
) and real{valued. Then the graph norms of H0

and HV on L2(
) are equivalent. If � is a lower bound of HV � (1 � d
4
), then one has in

the case d = 1

(3.11) k(H0 + 1)(HV � �)�1k � 1 + (kV kL2 + j�+ 1j j
j
1
2 )k(H0 + 1)�1kB(L2;L1)

+
4

3
(kV kL2 + j�+ 1j j
j

1
2 )2k(H0 + 1)�1k2

B(L1;L1) <1;

in the case d = 2

(3.12) k(H0 + 1)(HV � �)�1k �
�
1 + (kV kL2 + j�+ 1j j
j1=2)k(H0 + 1)�1kB(L2;L1)

�2
+ 2(kV kL2 + j�+ 1j j
j

1
2 )3 k(H0 + 1)�1k2

B(L
4
3 ;L1)

<1;

and in the case d = 3

(3.13) k(H0 + 1)(HV � �)�1k �
�
1 + (kV kL2 + j�+ 1j j
j1=2)k(H0 + 1)�1kB(L2;L1)

�4
+ 4(kV kL2 + j�+ 1j j
j

1
2 )5 k(H0 + 1)�1k4

B(L
8
5 ;L1)

<1:



Proof. The �rst statement follows from the identity of dom(H) and dom(HV ), the (obvi-
ous) continuity of the embedding dom(H0) ,! dom(HV ) and the open mapping theorem;
it may also be deduced from the next assertions. For the proof of (3.11), (3.12) and (3.13)
we use the formula

(H0 + 1)(HV � �)�1 =

rX
k=0

h
~V (H0 + 1)�1

ik
+
h
~V (H0 + 1)�1

ir
~V (HV � �)�1;(3.14)

where

~V = (H0 + 1)� (HV � �) = 1 � V + �; k~V kL2 � kV kL2 + j�+ 1j j
j
1
2 :(3.15)

Because � has a distance of at least 1� d
4
to the spectrum of HV , there is

k(HV � �)�1k � (1�
d

4
)�1:(3.16)

For the case d = 1 we use (3.14) with r = 1 and estimate thereby using (3.16)

(3.17) k(H0 + 1)(HV � �)�1k � 1 + k~V kL2k(H0 + 1)�1kB(L2;L1)

+
4

3
k~V kL2k(H0 + 1)�1kB(L1;L1)k

~V kL2:

It is easy to see from the continuity of the embeddingsW
1;2
� ,! L1 and L1 ,!W

�1;2
� that

k(H0 + 1)�1kB(L1;L1) is �nite in the one{dimensional case. Finally, taking into account
(3.15), one obtains (3.11).

In the case d = 2 we use (3.14) with r = 2 and estimate again using (3.16)

(3.18) k(H0 + 1)(HV � �)�1k � 1 + k~V kL2k(H0 + 1)�1kB(L2;L1)

+ k~V kL2k(H0 + 1)�1kB(L2;L1)k
~V kL2k(H0 + 1)�1kB(L2;L1)

+ 2k~V kL2k(H0 + 1)�1k
B(L

4
3 ;L1)

k~V kL2k(H0 + 1)�1kB(L1;L4)k~V kL2:

By Theorem 2.4 and Sobolev's embedding theorem, k(H0 + 1)�1kB(L1;L4) is �nite, and

from the selfadjointness of H0 on L
2(
) and a simple duality argument

k(H0 + 1)�1kB(L1;L4) = k(H0 + 1)�1k
B(L

4
3 ;L1)

follows. Taking into account (3.15), this proves (3.12).

In the case d = 3 we use (3.14) with r = 4. Observing (3.15), (3.16), and abbreviating
H1 = H0 + 1 we estimate the items of the sum in (3.14) by means of~V H�1

1

 � �kV kL2 + j�+ 1j j
j
1
2

�
kH�1

1 kB(L2;L1)

and�~V (H0 + 1)�1
�4 ~V (HV � �)�1

 � 4
�~V H�1

1

�4 ~V  �
4k~V kL2kH

�1
1 k

B(L
8
5 ;L1)

k~V kL2kH
�1
1 k

B(L
4
3 ;L8)

k~V kL2kH
�1
1 k

B(L
8
7 ;L4)

k~V kL2kH
�1
1 k

B(L1;L
8
3 )
k~V kL2

To �nish the proof of (3.13), one has to give bounds of the factors kH�1
1 kB(Ls;Lt). At �rst

one observes that

H�1
1 : L

8
5 (
) 7�! L1(
)(3.19)

is the adjoint to

H�1
1 : L1(
) 7�! L

8
3 (
)(3.20)



and, hence, their norms are equal and �nite, cf. Corollary 2.7. Both,

H�1
1 : L

4
3 (
) 7�! L8(
) and H�1

1 : L
8
7 (
) 7�! L4(
)

are interpolating operators of (3.19) and (3.20), thus their norms are not greater than

kH�1
1 k

B(L
8
5 ;L1)

= kH�1
1 k

B(L1;L
8
3 )

by the Riesz{Thorin interpolation theorem.

3.8. Remark. Because (HV ��)
�1(H0+1) is the adjoint operator to (H0+1)(HV ��)

�1,
they are equal in norm. We will make use of this frequently in the sequel without further
comment.

3.9. Remark. If � is a strict lower bound of the operator HV , one also obtains an
estimate for the operator norm of (H0 + 1)(HV � �)�1, namely

(3.21) k(HV � �)�1(H0 + 1)k

� k(HV � �)�1(HV � (�� 1))k k(HV � (� � 1))�1(H0 + 1)k

�
�
1 + dist(�; spec[HV ])

�1
� (HV � (�� 1))�1(H0 + 1)


Hence, if a L2(
){bounded set of Schr�odinger potentials is given, and � is a uniform strict
lower bound for all the corresponding operators HV , then the norms of the operators
(H0+1)(HV � �)

�1 and (HV � �)
�1(H0+1) are uniformely bounded with respect to this

set. Often this insight completely su�ces. We give explicit bounds here, because later on

we aim at a{priori bounds in terms of the data for the solutions of the Schr�odinger{Poisson
system.

We conclude this section with some further properties of the Schr�odinger operators (3.4)
with potentials V ranging in a L2(
){bounded set M.

3.10. Lemma. Assume M� L2(
) to be bounded and

� � �M = sup
V2M

�V jp=2 = �
�
1 �

d

4

�


8
4�d

2 m
d

4�d sup
V 2M

kV k
4

4�d

L2
� 1(3.22)

to be given, where �V jp=2 is (3.6) with p = 2, and 2, m according to De�nition 3.1.

i) If
�
Vn
	
n
is a sequence fromM, L2(
){weakly converging to V , then the resolvents of

HVn at the point � are converging to the resolvent of HV at � in the Hilbert|Schmidt
topology, and, hence, in the usual uniform operator topology.
Consequently, the operators HVn are converging to HV in the generalized sense

and any �nite system of eigenvalues of HVn is converging to the corresponding �nite
system of HV .

ii) The mapping V 7�! (HV � �)�1 is Lipschitz continuous on M into the class of
Hilbert|Schmidt operators. As a Lipschitz constant one may take

(1 �
d

4
)�2k1k2

B(W 1;2
� ;L4)

m k(H0 + 1)�1k2:(3.23)

Proof of i). We prove the �rst part of the assertion, the second one follows suit by well
known theorems (cf. Kato [28, ch. IV $2 and $3]). The Hilbert|Schmidt property of
the resolvents follows from Theorem 2.13 and item iv) of Proposition 3.3. Because of



kV kL2(
) � supn kVnkL2(
), � is a lower bound of HV �
�
1� d

4

�
, hence, � is in the resolvent

set of HV There is (abbreviating H1 = H0 + 1)

k(HV � �)�1 � (HVn � �)�1k2 = k(HV � �)�1(Vn � V )(HVn � �)�1k2

� k(HV � �)�1H1k kH
�1
1 (Vn � V )H�1

1 k2 sup
n

kH1(HVn � �)�1k

� k(HV � �)�1H1k kH
�4=5
1 k2 kH

�1=5
1 (Vn � V )H�1

1 k sup
n

kH1(HVn � �)�1k

According to Proposition 3.7 the terms k(HV � �)�1H1k and supn kH1(HVn � �)�1k are

�nite, and so is kH
�4=5
1 k2 by Proposition 3.3 and (2.26). Now it is su�cient to show that

k(H0 + 1)�1=5(Vn � V )(H0 + 1)�1k ! 0; as n!1:

Assuming that this is not the case, there is a � > 0, a subsequence fVkgk and a sequence
f kgk of normalized elements from L2(
), such that

k(H0 + 1)�1=5(Vk � V )(H0 + 1)�1 kkL2 � � for all k:(3.24)

Because dom(H0) (in the graph norm) is compactly embedded into L1(
) (cf. Re-
mark 2.8), the sequence f(H0 + 1)�1 kgk contains a subsequence f(H0 + 1)�1 rgr, which
is strongly converging in L1(
). Using this, it is not di�cult to see that the sequence

f(Vr � V )(H0 + 1)�1 rgr is weakly converging in L2(
) to zero. But (H0 + 1)�1=5 maps

L2(
) compactly into itself, hence�
(H0 + 1)�1=5(Vr � V )(H0 + 1)�1 r

	
r

contains a subsequence which converges strongly to zero in L2(
), and this contradicts
(3.24).

Proof of ii). We start with the following inequality (abbreviating again H1 = H0 + 1):

(3.25) k(HV � �)�1 � (HU � �)�1k2 = k(HV � �)�1(U � V )(HU � �)�1k2

� kH
�

1
2

1 k4kH
1
2

1 (HV � �)�
1
2k k(HV � �)�

1
2H

1
2

1 k kH
�

1
2

1 (U � V )H
�

1
2

1 k

� kH
1
2

1 (HU � �)�
1
2k k(HU � �)�

1
2H

1
2

1 k kH
�

1
2

1 k4:

Now applying (3.7) and observing (2.26) one gets

(3.26) k(HU � �)�1 � (HV � �)�1k2

� (1 �
d

4
)�2kH�1

1 k2kH
�

1
2

1 (U � V )H
�

1
2

1 k

� (1 �
d

4
)�2kH�1

1 k2kH
�

1
2

1 k
B(L

4
3 ;L2)

k(U � V )kL2kH
�

1
2

1 kB(L2;L4)

=(1 �
d

4
)�2kH�1

1 k2k(U � V )kL2kH
�

1
2

1 k2
B(L2;L4):

kH
�

1
2

1 kB(L2;L4) is not greater than the product of kH
�

1
2

1 k
B(L2;W

1;2
�

) and the embedding con-

stant k1k
B(W 1;2

�
,!L4) of W

1;2
� into L4, which is �nite for the space dimensions we consider.

Finally, it is not di�cult to see (cf. Remark 3.2), that

kH
�

1
2

1 k
B(W

�1;2
� ;L2) = kH

�
1
2

1 k
B(L2;W

1;2
� ) = kH�1

1 k
1
2

B(W
�1;2
� ;W

1;2
� )

� m
1
2 :(3.27)



4. The Fermi level

In the next propositions we develope some tools which we need for the existence proof later
on. Partly, these results have already been proved in the case of pure Dirichlet boundary
conditions. Here we present proofs, however, which are quite di�erent in character. They
completely avoid the Dunford calculus employed in [26] and use the embedding of the
eigenvalues of H0 + V , given by Corollary 3.6, instead. Moreover, these proofs provide a
priori bounds for the solution in terms of the data of the problem.

First we state a lemma, the proof of which exempli�es the techniques we apply to estimate
functions of the Schr�odinger operator.

4.1. Lemma. Let M � L2(
) be bounded. For any two elements U; V of M, and any
& 2 f1; : : : ; �g a distribution function f from Assumption 2.14 of the Schr�odinger operator
from De�nition 2.12 complies

f(HU ) � f(HV )

1
� 2

�
1�

d

4

�
�3
L1;�M k1k

2

B(W 1;2
�

;L4)
m k(H0 + 1)�1k22kU � V kL2;

(4.1)

where L1;�M is the Lipschitz constant from De�nition 2.15, and �M is the number (3.22).

Proof. We abbreviate � = �M. First we observef(HU )� f(HV )

1
�
f(HU )(HU � �)


2

(HU � �)�1 � (HV � �)�1

2

+
f(HU )(HU � �)� f(HV )(HV � �)


2

(HV � �)�1

2
:

(4.2)

In order to estimate the termsf(HU )(HU � �)

2

and
f(HU )(HU � �)� f(HV )(HV � �)


2

by means of Theorem 2.27 and the Birman{Solomjak Theorem 2.28 we rewrite forW 2 M

f(HW )(HW � �) = g
�
(HW � �)�1

�
;

where g = g1;� is the function (2.6). Indeed, this is justi�ed by Proposition 3.3 item iii),
because the spectrum of (HW � �)�1 is contained in [0; 4] for all W 2 M. Consequently

Theorem 2.27 yieldsf(HU )(HU � �)

2
=
g((HU � �)�1)


2
� L1;�

(HU � �)�1

2
:

Correspondingly we get with Theorem 2.28f(HU )(HU � �)� f(HV )(HV � �)

2

=
g((HU � �)�1)� g((HV � �)�1)


2
� L1;�

(HU � �)�1 � (HV � �)�1

2
:

Hence (4.2) may be majorized by

L1;�

�(HU � �)�1

2
+
(HV � �)�1


2

�(HU � �)�1 � (HV � �)�1

2
:

Now one can estimate
(HU ��)

�1

2
and

(HV ��)
�1

2
by means of (3.8), and the term(HU ��)

�1� (HV ��)
�1

2
by means of Lemma 3.10 item ii using the Lipschitz constant

(3.23).

4.2. Proposition. Let 
 � R
d be according to Assumption 2.1. For any & 2 f1; : : : ; �g

we regard the Schr�odinger operators HV = H0 + V from De�nition 2.12 and the Fermi
level EF = EF;& from De�nition 2.16.



i) For all V 2 L2(
) and any U 2 L1(
) there is

jEF (V + U) � EF (V )j � kUkL1:(4.3)

ii) Let f�lg be the sequence of eigenvalues of the free Hamiltonian H0. We de�ne for
any p > d

2
the numbers �p and ��p by

1X
l=1

f
��
1 �

d

2p

�
�l � �p

�
=

1X
l=1

f
��
1 +

d

2p

�
�l � ��p

�
= N;(4.4)

where N is as in (2.10). If V 2 Lp(
), p > d
2
and p � 1, then one has the following

bounds for the Fermi level EF (V ):

�p + �V +
�
1�

d

2p

�
� EF (V ) � ��p � �V �

�
1�

d

2p

�
(4.5)

where �V is (3.6).
iii) V 7! EF (V ) is a Lipschitz continuous mapping EF : L2(
) 7! R on bounded subsets

of L2(
).

Proof of i). (4.3) follows from the strict decay of f (cf. Assumption 2.14) and the form
inequality

HV � HV+U + kUkL1 ;

which implies a corresponding inequality for the eigenvalues.

Proof of ii). We prove the left part of (4.5), the other runs along the same lines. Assume
the opposite, namely

�p + �V +
�
1�

d

2p

�
> EF (V ):

This and (3.5) in Proposition 3.3 would imply�
1 �

d

2p

�
H0 � �p < H0 + V � EF (V )

in the sense of forms. Then from the minimaxprinciple one could conclude the correspond-
ing inequality for the eigenvalues of the operators (1� d

2p
)H0��p andH0+V �EF (V ), which

is a contradiction to the de�nitions (4.4) and (1.11) of �p and EF (V ), respectively.

Proof of iii). Let M� L2(
) be bounded andfM =M+ EF (M)�
;

where �
 is the characteristic function of the domain 
. fM is bounded due to (4.5).
Choose any two elements U; V of M, then we may estimate:��EF (U) � EF (V )�� � �M

���f�E1(V )� EF (V )
�
� f

�
E1(V )� EF (U)

����(4.6)

where

�M = sup
U;V2M

sup

�
1

jf 0(s)j
: minfEF (V ); EF (U)g � E1(V )� s � max fEF (V ); EF (U)g

�
:

�M can be estimated using the bounds for E1(V ) established in Corollary 3.6 and the
bounds (4.5) for the Fermi levels EF (U); EF (V ). From this and the supposed properties
of the distribution function f (cf. Assumption 2.14) follows that �M is �nite.



We continue (4.6) by further enlarging the right hand side:

��EF (U) � EF (V )
�� � �M ���f�E1(V )� EF (V )

�
� f

�
E1(V )� EF (U)

����
� �M

��� trhf�HV � EF (V )
�
� f

�
HV � EF (U)

�i���
N.B. N = tr

�
f(HV � EF (V ))

�
= tr

�
f(HU � EF (U))

�
according to (2.10)

� �M

f�HU�EF (U)

�
� f

�
HV�EF (U)

�
1

� 2
�
1 �

d

4

��3
�ML1;�

fM

k1k
2

B(W 1;2
� ;L4)

m
(H0 + 1)�1

2
2
kU � V kL2;

where the last estimate follows from Lemma 4.1.

5. The particle density operator

This section is devoted to Lipschitz properties and C� and W 1;p
� estimates of the particle

density operators N&. We will use these results later for the existence proof. One cor-
nerstone is a representation formula, which expresses the duality between a value of the
particle density operator and a L1{function. It has been introduced into the theory of
the Schr�odinger{Poisson system by F. Nier in his pioneering papers [35, 36].

5.a. Representation theorem.

5.1. Theorem. Let U be from L2(
). Then for any W 2 L1(
) the duality between
~N (U) 2 L1(
) (cf. De�nition 2.16) and W can be written as

h ~N (U);W i =

Z



~N (U)(x)W (x) dx = tr [f(HU )W ] :(5.1)

5.2. Remark. In particular, if U = V � EF (V ) (where EF (V ) is again the Fermi level
corresponding to the potential V , cf. De�nition 2.16), then

hN (V );W i =

Z



~N (V � EF (V ))(x)W (x) dx = tr
�
f(HV�EF (V ))W

�
:(5.2)

This formula allows to de�ne particle density operators also in contexts, where the Fermi
level is given otherwise (e.g. externally) and need not be a constant.

In the sequel, we wish to express the norms in several function spaces X by the dual
pairing of these spaces with L1, because we want to avoid complicated procedures of
extending (5.1) to W 's from distribution spaces. So we regard test functions from the set

K = fW 2 X�
\ L1; kWkX� = 1g:(5.3)

5.3. Lemma. Suppose V 2 L2(
), � � �V jp=2, (cf. (3.6) with p = 2), ~� = ���2+2�+1�
d
4
,

(cf. Proposition 4.2), and f and k in accordance with Assumption 2.14. There isf(HV � EF (V ))(HV � �)k
 � �k;~�:(5.4)

If additionally �k+1;~� is �nite, then one has for any q � 1 with q > d
2f�HV � EF (V )

�
(HV � �)k


q
� �k+1;~�

�
1�

d

4

��1(H0 + 1)�1

q
:(5.5)



Proof. By Proposition 3.3 item iii) the spectrum of (HV ��) is contained in
�
1
4
;1
�
. From

the spectral theorem | applied to (HV � �), (4.5), and the monotonicity of f , followsf�HV � EF (V )
�
(HV � �)k

 � sup
s2[14 ;1[

f(s � EF (V ) + �)sk

� sup
s2[14 ;1[

f
�
s� ��2 + 2� + 1�

d

4

�
sk = �k;~�:

(5.5) follows now by decomposingf�HV � EF (V )
�
(HV � �)k


q
=
f�HV � EF (V )

�
(HV � �)k+1

(HV � �)�1

q

and observing (3.8).

5.4. Remark. One can prove even more easily than Lemma 5.3f(HV )(HV � �)k
 � �k;�(5.6)

and for any q � 1 with q > d
2f(HV )(HV � �)k


q
� �k+1;�

�
1�

d

4

��1(H0 + 1)�1

q
:(5.7)

5.5. Lemma. Let X be a normed space of functions over 
, which embeds injectively,
continuously and densely into L1(
). Moreover, the image of L1 under the adjoint em-
bedding L1 ,! X� shall be dense in X�. Further assume that the duality h�; �i between X
and its dual space X� extends the canonical (L1; L1){duality. Then

k ~N (U)kX = sup
W2K

��h ~N (U);W i
�� = sup

W2K

��tr[f(HU)W )]
��; U 2 L2(
)(5.8)

and

k ~N (U)� ~N (V )kX = sup
W2K

���tr��f(HU )� f(HV )
�
W
����; U; V 2 L2(
):(5.9)

If U = V � EF (V ), � � �V jp=2 (cf. (3.6) with p = 2), ~� = ���2 + 2� + 1 � d
4
, (cf.

Proposition 4.2), and k is according to Assumption 2.14, then (5.8) implies the following
estimate of the particle density operator (2.9):

kN (V )kX = k ~N (V � EF (V ))kX � �k;~� sup
W2K

k(HV � �)�k+1W (HV � �)�1k1:(5.10)

5.6. Remark. Let be X a normed space and assume

khkX = sup
W2K

jhh;W ij for all h 2 X:(5.11)

If one additionally already knows that ~N (U); ~N (V ) are from X, then (5.8), (5.10) and

(5.9) also hold.

Proof of Lemma 5.5. (5.8) and (5.9) follow from the Hahn{Banach principle, elementary
density condiderations and Theorem 5.1. As for (5.10) we estimate

(5.12) kN (V )kX = k ~N (V � EF (V ))kX = sup
W2K

j tr
h
f
�
HV � EF (V )

�
W )
i
j

= sup
W2K

��� tr hf�HV � EF (V )
�
(HV � �)k(HV � �)�k+1W (HV � �)�1

���
�

f�HV � EF (V )
�
(HV � �)k

 sup
W2K

(HV � �)�k+1W (HV � �)�1

1
;



observing the commutativity of functions of HV and the commutativity under the trace.
Now (5.10) follows with the help of (5.4).

To obtain optimal results for the one{ and two{dimensional case, one has to work with
fractional powers of the operator (H0 + 1)�1. This in mind, we prove

5.7. Lemma. Assume d = 1 or d = 2 and p > 2 chosen such that dom(H0) continuously

embeds into W
1;p
� (cf. Theorem 2.4 and Remark 2.5). We abbreviate H1 = H0 + 1.

i) For any 1
2
< � < 1 the domain of H�

1 continuously embeds into a space W
1;q
� with

q > 2, namely

dom(H�
1 ) ,!W

1;q
� ;

1

q
= 1� � +

2�� 1

p
<

1

2
:(5.13)

Hence,

kH��
1 k

B(W
�1;q0

� ;L2)
= kH��

1 k
B(L2;W

1;q
� )

<1;
1

q0
= 1 �

1

q
(5.14)

and a fortiori

kH��
1 kB(L1;L2) = kH��

1 kB(L2;L1) <1:(5.15)

ii) There is

kH
�

1
3

1 k
B(L

4
3 ;L2)

= H
�

1
3

1 kB(L2;L4) <1:(5.16)

iii) For any W 2 L2(
) (identi�ed with the corresponding multiplication operator) the

operator H
�

2
3

1 WH
�

2
3

1 is bounded on L2(
) and one has

kH
�

2
3

1 WH
�

2
3

1 k � kH
�

2
3

1 kB(L1;L2)kWkL1kH
�

2
3

1 kB(L2;L1) = kWkL1kH
�

2
3

1 k
2
B(L2;L1);(5.17)

(5.18) kH
�

2
3

1 WH
�

2
3

1 k � 2kWk
W
�1;q0

�

kH
�

2
3

1 kB(L2;L1)kH
�

2
3

1 k
B(L2;W

1;q
�

);

q 2

�
2;

3p

p+ 1

�
;

1

q
+

1

q0
= 1:

We will focus our attention to the case d = 2. The proof for the one{dimensional case
runs along the same lines.

Proof of i). Specifying in Theorem 2.29 � = 1
2
, � = 1 and � = 2� � 1, one obtainsh

dom(H
1
2

1 );dom(H1)
i
2��1

= dom(H�
1 ):(5.19)

From De�nition 2.12 follows that W
1;2
� is the form domain of H1. The second repre-

sentation theorem for forms (cf. Kato [28, ch. VI, x2]) states that the form domain is

identical with the domain of H
1
2

1 . The premise on p implies that dom(H1) continuously em-

beds into W
1;p
� , consequently, dom(H�

1 ) =
�
W

1;2
� ;dom(H1)

�
2��1

continuously embeds into�
W

1;2
� ;W

1;p
�

�
2��1

: This space continuously embeds intoW
1;q
� with 1

q
= 1��+ 2��1

p
: Indeed,

its elements satisfy the correct boundary condition because of
�
W

1;2
� ;W

1;p
�

�
2��1

,! W
1;2
�

and according to Theorem 2.30 there is�
W

1;2
� ;W

1;p
�

�
2��1

,!
�
W 1;2;W 1;p

�
2��1

= W 1;q;
1

q
= 1� � +

2�� 1

p
:



AsH��
1 is selfadjoint on L2(
), both the terms in (5.15) and (5.14), respectively, are equal.

The �niteness of the norms follows from (5.13) and Sobolev's embedding theorem.

Proof of ii). Again the equality of the norms is a consequence of the selfadjointness of

H��
1 . Obviously (5.16) is true if dom(H

1
3

1 ) continuously embeds into L
4(
), what we will

show now: the interpolation formula for fractional powers (2.28) says thath
dom(H0

1);dom(H
1
2

1 )
i
2
3

= dom(H
1
3

1 ):

As already mentioned above, dom(H
1
2

1 ) is equal to W
1;2
� and, hence, continuously embeds

into L8. Consequently, dom(H
1
3

1 ) continuously embeds into [L
2; L8] 2

3
= L4.

Proof of iii). Now we will prove (5.18), while (5.17) is obviously implied by (5.15). It

su�ces to prove (5.18) only for functions W 2 W
�1;q0

� \ L1 because this space is dense

in W
�1;q0

� and the inequality then extends by continuity to the whole space. As H
�

2
3
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selfadjoint, there is
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The duality between W
1;q
� and W

�1;q0

� is the extended (L1; L1){duality, hence,

(5.21)
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)k
~ kL2k kL2:

According to (5.15), kH
�

2
3

1 k
B(L2;W

1;
3p
p+1

�
)

is �nite, the more is kH
�

2
3

1 k
B(L2;W

1;q
� )

for q 2h
2; 3p

p+1

h
. This, together with (5.20) and (5.21), proves (5.18).

5.b. A priori estimates. Now we will derive estimates of the carrier density operators.
We have to distinguish the cases d = 1, d = 2 and d = 3, because on the one hand
the resolvents (H0 + 1)�1 of the Hamiltonian di�er in their mapping and summability
properties, depending on d, and on the other hand the C�{bounds in the case d = 3 cannot
be achieved with the help of Lemma 5.5. We have decided to present all proofs in detail,
because the knowledge on the norm boundedness of the carrier densities in function spaces
compactly embedding into L1 is essential for the existence proof later on. Furthermore,
the C� estimates, which follow in all dimensions d = 1; 2; 3 from the presented results,

are in our context the only instrument to control the oscillation behaviour of the carrier
densities.

5.8. Proposition. The operator V 7�! N (V ) = ~N (V �EF (V )), where N is the carrier
density operator from De�nition 2.16, is well de�ned as an operator from L2(
) into
L1(
). Let M be a bounded set in L2(
), d the dimension of the spatial domain 
,
� � �M as in (3.22), ~� = ���2 + 2� + 1 � d

4
, (cf. Proposition 4.2), and �k;~� according to

(2.5). We abbreviate again H1 = H0 + 1.



i) d = 1: Let k1k
B(W 1;2

� ;L1) denote the embedding constant from W
1;2
� into L1, which

is �nite for d = 1. The particle density operator N takes its values in W 1;2
� (
) and
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V2M

kN (V )kW 1;2
�
� 4 k1k

B(W 1;2
�

;L1)m�2;~�kH
�1
1 k1:(5.22)

ii) d = 1 or d = 2: If kH�1
1 k

B(L2;W
1;p
�

)
is �nite for some p � 2, then N takes its values

in W
1; 3p
p+1

� and
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V 2M
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2:

iii) d = 3: If kH�1
1 kB(L2;C�) is �nite, then N takes its values in C� and if kH�1

1 k
B(L2;W

1;p
�

)

is �nite, then its values are contained in W
1;p
� . Moreover,
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(5.24)
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� sup
V 2M

H1(HV � �)�1
2:

The assertion that N : L2(
) ! L1(
) is well de�ned follows from the estimates stated

in Proposition 5.8.

Proof of i). According to De�nition 2.16 one has for any V 2 M

kN (V )kW 1;2
�
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1X
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j l(V )j2W 1;2
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:
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1
:

One arrives now at (5.22) with the help of (5.5).



Proof of ii). In this part of the proof we abbreviate X = W
1; 3p
p+1

� , hence, X� = W
�1; 3p

2p�1

� .
K denotes again the set (5.3). According to Lemma 5.5, (5.10) there is for any V 2 M
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thereby using Lemma 5.7, (5.18) and Theorem 2.27, (2.26).

Proof of iii). First we prove (5.25). According to De�nition 2.16 one has for any V 2 M

kN (V )kW 1;p
�
�

1X
l=1

f(El(V )� EF (V ))
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:(5.26)

We estimate the items separatelyj l(V )j2W 1;p
�
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We now continue (5.26)
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with the help of (5.4) and (3.8), which �nishes the proof of (5.25).

In order to prove (5.24), one uses the inequalityj l(V )j2C� � k l(V )k
2
C� � kH�1

1 k
2
B(L2;C�)kH1 l(V )k
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to estimate the terms in

kN (V )kC� �

1X
l=1

f(El(V )� EF (V ))
j l(V )j2C� :

The remaining part of the proof for (5.24) is as before.

5.9. Corollary. Proposition 5.8 implies L1{estimates in all dimensions d = 1; 2; 3.
Thus in connection with (2.10) one obtains Lp{bounds for the values of the particle density
operators:
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) � N
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kN (V )k
p�1
p

L1(
)
:(5.27)

We can also give W�1;2
� {estimates for the particle density operators.

5.10. Proposition. We abbreviate again H1 = H0 + 1 and regard the particle density
operator N from De�nition 2.16.

i) If d = 1 then for any V 2 L2(
)
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� N k1k
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� );(5.28)

where N is the total amount of the particle species under consideration, cf. De�ni-
tion 2.16.

ii) If d = 2 or d = 3, M is a L2(
)-bounded set, V 2 M, � is in accordance with
(3.22), and ~� = ���2 + 2� + 1� d

4
, (cf. Proposition 4.2), then
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Proof. (5.28) follows easily by embedding L1 ,! W
�1;2
� and from the L1{normalization

condition (2.10) for N .

Now let K be the intersection of L1(
) with the unit ball of W 1;2
� (
). Observing the

commutativity implied by the spectral theorem and the commutativity under the trace
one obtains by means of Theorem 5.1
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According to (2.26), one has
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spatial dimensions d = 1; 2; 3 under consideration (cf. Theorem 2.13), and we continue
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where k1k
B(W

1;2
�

;L6) is the embedding constant of W
1;2
� ,! L6.

Obviously, kH
�

1
4

1 kB(L2;L3) is �nite, if dom(H
1
4

1 ) continuously embeds into L
3, what we will

show now: the interpolation formula for fractional powers (2.28) says thath
dom(H0

1 ;dom(H
1
2

1 )
i
1
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= dom(H
1
4

1 ):

As already mentioned, dom(H
1
2

1 ) is equal to W
1;2
� , which continuously embeds into L6.

Consequently, dom(H
1
4

1 ) continuously embeds into [L
2; L6] 1

2
= L3.

5.11. Remark. There are also estimates of the pseudo particle density operator ~N (cf.

De�nition 2.16), which are analogous to those in Proposition 5.8, Corollary 5.9, and

Proposition 5.10. According to Assumption 2.14, the L1{norm of ~N (V ) is bounded ~N (V )

L1
� �0;0; for all V 2 L2(
):(5.30)

Moreover, if � � �V jp=2, (cf. (3.6) with p = 2), thenf(HV )(HV � �)k
 � �k;�(5.31)

and one has for any 1 � q �1 with q > d
2f(HV )(HV � �)k


q
� �k+1;�

�
1�

d

4

��1(H0 + 1)�1

q
:(5.32)

Hence, the estimates from Proposition 5.8, Corollary 5.9, and Proposition 5.10 are true

for ~N instead of N , while replacing ~� by � and N by �0;0. In particular this ensures that
~N (V ) belongs to C(
) for all V 2 L2(
), and the de�ning series converges uniformly on


 towards the density ~N (V ).

5.c. Boundary behaviour. In the next proposition we will deal with the boundary

behaviour of the values of the pseudo particle density operator ~N , which | naturally |

implies the same behaviour of the values of the operators N& . It is easy to prove that
the particle densities vanish on the Dirichlet boundary part �, as the wave functions  l
do there. Moreover, the normal derivative of ~N (V ) vanishes | in a certain sense | on
the whole boundary of 
. In order to give an adequate formulation of this boundary
behaviour, we introduce a trace operator and establish a corresponding Gauss{Green
formula.

5.12. De�nition. Suppose 
 � R
d as in De�nition 2.2 and p 2]1;1[. Further, let

sp : W 1;p(
) 7�! W 1� 1
p
;p(@
)



be the usual trace mapping � 7! sp(�), which maps a W 1;p{function � on 
 to the trace
sp(�) = �j@
 of this function on the boundary of 
, cf. [21]. Moreover, we de�ne sp� as
the mapping

sp� : C
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;Rd) 7�! L1(@
) ,!

�
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1� 1
p
;p
(@
)

��
; sp�

�
(�1; : : : ; �d)

�
=

dX
j=1

�j sp(�j);

where � is the outer unit normal on the boundary of 
. Finally we de�ne the space Ep as

Ep =
n
w : w 2 L

d

d�1 (
;Rd); divw 2 Lp(
)
o
; p > 1;

topologized by k � k
L

d

d�1 (
;Rd)
+ kdiv(�)kLp(
) .

5.13. Lemma. For any p 2]1;1[ the space C1(
;Rd) is dense in Ep.

Proof. According to the Hahn{Banach theorem it is su�cient to prove that any linear

continuous functional over Ep, which vanishes on C1(
;Rd), is identically zero. First, it
is easy to see that any linear continuous functional on Ep has the form

w 7�!

Z



�divw dx +

Z



hw; ~�i dx; ~� 2 Ld(
;Rd); � 2 L
p

p�1 (
):(5.33)

The argument is the same as in the representation theorem for the elements of W�1;p(
),
cf. e.g. [49]. Suppose now that a functional of the form (5.33) vanishes on the subspace

C1(
;Rd) of Eq. Taking test functions w from C1

0 (
;Rd) � C1(
;Rd) with only one
nonvanishing component, one deduces from the de�nition of the partial derivative of a
distribution

@�

@xj
= ~�j 2 L

d(
); j = 1; : : : ; d:

By means of the Gauss{Green formula for W 1;p{spaces (cf. [21]) now followsZ
@


h�;wi sp(�) d� = 0; for all w 2 C1(
;Rd);(5.34)

where d� denotes integration with respect to the surface measure on @
. Next we conclude
that sp(�) vanishes almost everywhere with respect to the surface measure on @
, which

implies � 2 W
1;d
0 (
) (cf. [19]). Indeed, regarding (5.34) for functions w 2 C1(
;Rd)

with only one nonvanishing component, one gets that for any j 2 f1; : : : ; dg the Radon
measure

�j : f 7�!

Z
@


�j(� )f(� )sp(�)(� ) d�

vanishes on the subspace fsp(g) : g 2 C1(
)g of C(@
). By the Stone{Weierstra�

theorem, this subspace is dense in C(@
), hence, all the measures �j are identically
zero. From this, one easily deduces that all the functions �j(�)�(�) must vanish almost
everywhere with respect to the surface measure on @
, what implies that � itself has to
vanish almost everywhere on @
. Now let w 2 Ep be arbitrary. Then

� 7�!

Z



dX
j=1

wj
@�

@xj
dx +

Z



�divw dx

is a linear continuous functional on W 1;d(
), which annihilates the subspace C1

0 (
). As

C1

0 (
) is dense in W
1;d
0 (
), it also annihilates any element from W

1;d
0 (
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5.14. Lemma. For any p 2 ]1;1[ the mapping sp� (cf. De�nition 5.12) extends uniquely

to a mapping from Ep into
�
W 1� 1

d
;d(@
)

�
�

and one has for all w 2 Ep and all � 2 W
1;d(
)

the generalized Gauss{Green formulaZ



�divw dx+

Z



hw; grad �iRd dx =
D
sp�(w); sp(�)

E��
W

1� 1
d
;d
(@
)

�
�

;W
1� 1

d
;d
(@
)

�:(5.35)

Lemma 5.14 and its proof are similar to [41, Theorem 2.1]. The uniqueness of the extension
for the mapping sp� to the whole space Ep follows from Lemma 5.13.

5.15. Proposition. For any V 2 L2(
) the particle density ~N (V ) (cf. De�nition 2.16)
has the following trace properties (cf. De�nition 5.12) on the boundary of the domain 
:

~N (V )j� = 0; as an equation in C(�),(5.36)

sp�
�
m�1 grad ~N (V )

�
= 0; as an equation in

�
W 1� 1

d
;d(@
)

��
.(5.37)

5.16. Remark. If d = 1, then (5.37) a fortiori is true as an equation in
�
W

1
2
;2(@
)

��
,

i.e. in the usual sense (cf. [41]).

Proof of (5.36). According to Remark 5.11 the series
P

1

l=1 f(El(V ))j l(V )j
2, de�ning

~N (V ), converges in the space C(
) and the property  lj� = 0 of the eigenfunctions

passes to the density u = ~N (V ).

Proof of (5.37). We abbreviate X = W 1� 1
d
;d(@
) and H1 = H0 + 1. As the Schr�odinger

operator HV from De�nition 2.12 is selfadjoint and commutes with the complex conjuga-
tion on the underlying Hilbert space one can always �nd an orthonormal system of real
eigenfunctions, and we refer to that in the following. For any (real) eigenfunction  l of

HV there is 

sp�(m

�1 grad l); sp(h)
�
[X�;X]

= 0; for all h 2 W 1;2
�(5.38)

(cf. [19, ch. II $ 2 ]). Moreover, the distributions

div
�
m�1 grad 2

l

�
= 2 lH0 l + 2



grad l;m

�1 grad l
�
Rd

(5.39)

are from a space Lq(
) with q > 1. Indeed, observing Proposition 3.7 and Corollary 2.7,
one can estimate the items in (5.39) as follows:

k lkL1 � kH�1
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� kH�1
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and
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where � is well beyond the spectrum of HV (cf. Corollary 3.7), and p > 2 such that
k(H0 + 1)�1kB(L2;W 1;p) is �nite, cf. Theorem 2.4 and Remark 2.5.



Thus  2
l 2 Eq; for some q > 1. Hence, the generalized Gauss{Green formula (5.35)

provides for any h 2 W 1;d(
)

(5.42)
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Z



h hm�1 grad l; grad liRd dx

�
= 2


sp�(m

�1 grad  l); sp( l h)
�
[X�;X ]

From (5.38) follows that the last term is zero, because h 2 W 1;d(
) and  l 2 W
1;p
� (
),

(p > 2) imply  lh 2 W
1;2
� (
). Taking into account (5.40), (5.41), (5.42) and the decay

properties of the sequence ff(El(V ))g (cf. Assumption 2.14), one easily veri�es that the
series X

l

f(El(V ))sp�(m
�1 grad 2

l )

converges in
�
W 1� 1

d
;d(@
)

��
, what proves (5.37).

5.d. Lipschitz continuity. The next statements are concerned with the Lipschitz prop-

erties of the mapping ~N , regarded from L2(
) into several target spaces. Some of the
results are needed explicitely in our later considerations, some are stated, because the
authors believe that they are interesting in themselves. The proofs are based on the
representation Theorem 5.1 and the Birman{Solomjak Theorem 2.28. We start with the
simplest case, the |natural| target space L1 for the carrier density operators.

5.17. Proposition. The (pseudo) carrier density operators ~N : L2 7�! L1 are locally
Lipschitz continuous:

 ~N (U)� ~N (V )

L1
� 2

�
1 �

d

4

�
�3
L1;�M

(H0 + 1)�1
2
2
m k1k

2

B(W 1;2
�

;L4)
kU � V kL2 ;

for all U; V 2 M, where M is any bounded set in L2(
), �M is the number (3.22), and
L1;�M is the Lipschitz constant from De�nition 2.15.

Proof. Using (5.1), one gets ~N (U) � ~N (V )

L1

= sup
kWkL1=1

��h ~N (U)� ~N (V );W i
��

= sup
kWkL1=1

���tr��f(HU )� f(HV )
�
W
���� � f(HU )� f(HV )


1
:

Now the assertion follows from Lemma 4.1.



5.18. Lemma. We abbreviate H1 = H0+1. Let X satisfy the suppositions of Lemma 5.5.

If for some U , V from L2(
) there is ~N (U) 2 X and ~N (V ) 2 X, then

(5.43)
 ~N (U)� ~N (V )


X
� 4

�
1�

d

4

��2
L3;�M

H�1
1

2
2

H�1
1


B(L1;L2)

sup
W2K

H�1
1 WH�1

1


�max
T2M

(HT � �)�1H1

3 kU � V kL2;

where M = fU; V g, �M is the number (3.22), and L1;�M is the Lipschitz constant from
De�nition 2.15. Moreover,

(5.44)
 ~N (U)� ~N (V )


X
� 3

�
1�

d

4

��1
L2;�M

H�1
1


2

H�1
1


B(L1;L2)

sup
W2K

H�1
1 WH�1

1


2

�max
T2M

(HT � �)�1H1

3 kU � V kL2:

Proof. We use (5.9) for the proof and write: ~N (U) � ~N (V )

X
= sup

W2K

���trh�f(HU )� f(HV )
�
W
i���:(5.45)

Chosing k = 2 or k = 3 and � � �M one may continue

� sup
W2K

����trh�f(HU )(HU � �)k � f(HV )(HV � �)k
�
(HU � �)�k+1W (HU � �)�1

i����
+ sup

W2K

����trhf(HV )(HV � �)k
�
(HU � �)�k+1W (HU � �)�1

� (HV � �)�k+1W (HV � �)�1
�i����

�
f(HU )(HU � �)k � f(HV )(HV � �)k


2
sup
W2K

(HU � �)�k+1W (HU � �)�1

2

+
f(HV )(HV � �)k


2
sup
W2K

(HU � �)�k+1W (HU � �)�1

� (HV � �)�k+1W (HV � �)�1

2

Observing the De�nition 2.15 of Lk;�, Theorem 2.27 and (3.8) providef(HV )(HV � �)k

2
� Lk;�

(HV � �)�1

2
� Lk;�

�
1 �

d

4

��1H�1
1


2
;(5.46)

while the Birman{Solomjak Theorem 2.28 and (3.26) yield

(5.47)
f(HU )(HU � �)k � f(HV )(HV � �)k


2
� Lk;�

(HU � �)�1 � (HV � �)�1

2

�
�
1 �

d

4

��2
Lk;� kH

�1
1 k2kH

�
1
2

1 k
B(L

4
3 ;L2)

kH
�

1
2

1 kB(L2;L4)kU � V kL2

�
�
1 �

d

4

�
�2
Lk;� kH

�1
1 k2kH

�1
1 kB(L1;L2)kU � V kL2:

Indeed, it is easy to see that

kH
�

1
2

1 k
B(L

4
3 ;L2)

kH
�

1
2

1 kB(L2;L4) = kH�1
1 k

B(L
4
3 ;L4)

;� kH�1
1 kB(L1;L2);

where the estimate follows from the Riesz{Thorin theorem via interpolation with 1
2
be-

tween H�1
1 : L1 7! L2 and its adjoint H�1

1 : L2 7! L1.



For the proof of (5.43) we specify k = 3 and observe that

(5.48) (HU � �)�2W (HU � �)�1 � (HV � �)�2W (HV � �)�1

= (HU � �)�2W
�
(HU � �)�1 � (HV � �)�1

�
+(HU � �)�1

�
(HU � �)�1 � (HV � �)�1

�
W (HV � �)�1

+
�
(HU � �)�1 � (HV � �)�1

�
(HV � �)�1W (HV � �)�1:

Rewriting (HU � �)�1 � (HV � �)�1 as (HU � �)�1(V � U)(HV � �)�1 and using (3.8),
one may estimate the Hilbert Schmidt norm of (5.48)

(5.49)
(HU � �)�2W (HU � �)�1 � (HV � �)�2W (HV � �)�1


2
� 3

�
1�

d

4

��1
�max
T2M

k(HT � �)�1H1k
3 kH�1

1 k2kH
�1
1 kB(L1;L2)kH

�1
1 WH�1

1 k kU � V kL2:

N.B. kH�1
1 kB(L1;L2) = kH�1

1 kB(L2;L1): Finally we estimate(HU � �)�2W (HU � �)�1

2
� k(HU � �)�1H1k

3kH�1
1 k2kH

�1
1 WH�1

1 k(5.50)

and �t together (5.45), (5.46), (5.47), (5.49), and (5.50) to get the assertion (5.43).

In order to show (5.44), we proceed in a similar way as above. One again starts with
(5.45) this time specifying k = 2. We assemble (5.46) and the following estimatesf(HU )(HU � �)2 � f(HV )(HV � �)2


2
� L2;�

(HU � �)�1(V � U) (HV � �)�1

2

�
�
1�

d

4

��1
L2;� kH

�1
1 k2 kH

�1
1 kB(L1;L2) kH1(HV � �)k kU � V kL2;

(HU � �)�1W (HU � �)�1 � (HV � �)�1W (HV � �)�1

2

� 2 max
T2M

(HT � �)�1H1

3 kH�1
1 kB(L1;L2) kH

�1
1 WH�1

1 k2 kU � V kL2;(HU � �)�1W (HU � �)�1

2
� k(HU � �)�1H1k

2
kH�1

1 WH�1
1 k2

to conclude (5.44).

5.19. Remark. In dependence from the space dimension d and the target space X one

has to ensure that

sup
W2K

k(H0 + 1)�1W (H0 + 1)�1k or sup
W2K

k(H0 + 1)�1W (H0 + 1)�1k2

is �nite. We will have to do this in the sequel.

5.20. Proposition. The mapping V 7�! ~N (V ) is boundedly Lipschitz continuous from
L2(
) into X = C(
). If p � 2 is chosen, such that the operator H0 + 1 provides an

isomorphism between the spaces W 1;p
� (
) and W�1;p

� (
), then the mapping ~N : L2(
) 7�!

X = W 1;p
� (
) is also Lipschitz continuous on bounded subsets of L2(
).

Let M� L2(
) be bounded and � � �M as in (3.22); we abbreviate again H1 = H0 + 1.
The local Lipschitz constants, corresponding to M, are in the case d = 3

64L3;� kH
�1
1 k

2
2 kH

�1
1 k

3
B(L1;L2) sup

V 2M

(HV � �)�1H1

3(5.51)

for X = C(
) and

128L3;� kH
�1
1 k

B(L2;W
1;p
� )

kH�1
1 k

2
2 kH

�1
1 k

2
B(L1;L2) sup

V 2M

(HV � �)�1H1

3(5.52)



for X = W
1;p
� (
). In the case d = 1 or d = 2, the local Lipschitz constants are

(5.53) 3
�
1�

d

4

��1
L2;� kH

�1
1 k2 kH

�
2
3

1 k2 kH
�1
1 kB(L1;L2) kH

�
2
3

1 k2
B(L2;L1)

� sup
V2M

(HV � �)�1H1

3 for X = C(
)

(5.54) 6
�
1�

d

4

��1
L2;� kH

�1
1 k2 kH

�
2
3

1 k2 kH
�1
1 kB(L1;L2) kH

�
2
3

1 k
B(L2;W

1;q
�

)
kH

�
2
3

1 kB(L2;L1)

� sup
V2M

(HV � �)�1H1

3 for X = W
1;q
� with q 2

�
2;

3p

p+ 1

�
:

Proof. We use (5.43) or (5.44) from Lemma 5.18. For X =W
1;q
� this is possible, because

L1 is dense in W
�1;q0

� ,
�
1
q
+ 1

q0
= 1

�
, hence, X = W

1;q
� satis�es the assumptions of

Lemma 5.5. Concerning X = C(
), we know already from Proposition 5.8 that ~N (U),
~N (V ) do belong to this space, if U; V are from L2(
). Moreover, for elements h 2 C(
)
there is

khkC(
) = sup
n��Z




W (x)h(x) dx
�� : W 2 L1; kWkX� =

Z
jW jdx = 1

o
:

Thus Remark 5.6 applies and we can use Lemma 5.18.

First we will treat the case d = 3 and estimate the terms

sup
W2L1\L1;kWk

L1
=1

kH�1
1 WH�1

1 k and sup
W2W

�1;p0

� \L1; kWk
W
�1;p0

�

=1

kH�1
1 WH�1

1 k;

where 1
p
+ 1

p0
= 1. On the one hand, one has

sup
W2L1\L1;kL1k=1

kH�1
1 WH�1

1 k � kH�1
1 k2

B(L2;L1):(5.55)

On the other hand, for every W 2 W
�1;p0

� \ L1 with kWk
W
�1;p0

�

= 1 there is

kH�1
1 WH�1

1 k = sup
k k

L2=k
~ k
L2=1

��hH�1
1 WH�1

1  ; ~ i
��

and��hH�1
1 WH�1

1  ; ~ i
�� = ��hWH�1

1  ;H�1
1

~ i
�� = ���Z




W (x)
�
H�1

1  
�
(x)
�
H�1

1
~ 
��
(x) dx

���
�

�H�1
1  

��
H�1

1
~ 
��

W
1;p
�

� kH�1
1  kL1kH

�1
1

~ kW 1;p
�

+ kH�1
1

~ kL1kH
�1
1  kW 1;p

�

� 2 kH�1
1 kB(L2;L1)kH

�1
1 k

B(L2;W
1;p
�

):

Hence,

sup
W2W

�1;p0

� \L1; kWk
W
�1;p0

�

=1

kH�1
1 WH�1

1 k � 2 kH�1
1 kB(L2;L1)kH

�1
1 k

B(L2;W
1;p
� ):(5.56)

Now combining the inequalities (5.43) and (5.55), one obtains (5.51). Analoguously, (5.43)
and (5.56) yield (5.52).



In the case d = 1 or d = 2, (5.53) and (5.54) immediately follow from (5.44) in Lemma 5.18
with the inequality

kH�1
1 WH�1

1 k2 � kH
�

1
3

1 k
2
4kH

�
2
3

1 WH
�

2
3

1 k

and (5.17), (5.18) from Lemma 5.7.

5.21. Remark. In fact, it can be proved that ~N : L2 7! W
1;q
� is locally Lipschitz con-

tinuous for all q 2 [2; p] also in the case d = 2, but the occuring Lipschitz constants
are worse. In our context, however, it is only essential to know, that there is at all a

q > 2, such that ~N : L2 7! W
1;q
� is locally Lipschitz continuous and to have a fairly good

constant at hand. That is why we have focused our attention to the case considered in
Proposition 5.20.

The proof of the next theorem follows directly from De�nition 2.16, Proposition 4.2, and
Proposition 5.20.

5.22. Theorem. Let X be any of the function spaces speci�ed in Proposition 5.20. The
mappings N& : L

2(
) 7! X, & 2 f1; : : : ; �g, are locally Lipschitz continuous. If M is a
bounded set from L2(
), then the local Lipschitz constant of N& on M is

LipM(N&) �
�
1 + j
j

1
2LipM(EF;&)

�
Lip�

M+EF (M)�


�( ~N&);

where Lip
M
(EF;&) is the local Lipschitz constant of the Fermi level EF;& on the setM which

has been estimated in the proof of of Proposition 4.2, and Lip�
M+EF (M)�


�( ~N&) is the local

Lipschitz constant of ~N& : L
2(
) 7! X on the bounded set M+EF (M)�
 � L2(
), which

has been estimated in Proposition 5.20.

5.e. Monotonicity.

5.23. Theorem. We refer to the notation of De�nition 2.16. For any & 2 f1; : : : ; �g
the negative particle density operator �N& is a monotone operator from L2(
) into L2(
)

and a strictly monotone operator from W
1;2
� (
) into W�1;2

� (
).

The proof of these monotonicity properties is similar to that given in [12, 35, 36]. It
is based on the Fr�echet di�erentiability of the particle density operator N& and explicit
calculation of D�

N&
0(V )

�
W ; W

E
for all W 2 L1(
); V 2 W

1;2
� (
):

The resulting expression turns out positive due to the monotonicity properties of the

distribution function f&, cf. Assumption 2.14.

6. Existence of solutions and apriori estimates

6.a. The linear Poisson operator.

6.1. Lemma. The operator A : W 1;2

�̂
(
̂) 7! W�1;2

�̂
(
̂) from De�nition 2.22 is strongly

monotone and Lipschitz continuous.

mA = c�1b min
n
1; vraimin

x2
̂

spec["(x)]
o

(6.1)

serves as a monotonicity constant and

MA = vraimax
x2
̂

spec["(x)] + kbkL1(@
̂n�̂) k1k
2

B(W
1;2

�̂
(
̂);L2(@
̂n�̂))

;(6.2)



as a Lipschitz constant, where k1k
B(W

1;2

�̂
(
̂);L2(@
̂n�̂)) denotes the embedding constant from

W
1;2

�̂
(
̂) into L2(@
̂ n �̂).

Proof. First we observe

k grad uk2
L2(
̂;Rd)

= k"�
1
2 "

1
2 grad uk2

L2(
̂;Rd)
� k"�1kL1(
̂;B(Rd;Rd))k"

1
2 grad uk2

L2(
̂;Rd)

= k"�1kL1(
̂;B(Rd;Rd))

Z

̂

h"(x) grad u(x); gradu(x)i dx:

Now one easily deduces from the de�nition of A and cb (cf. De�nition 2.22)

kuk2
W

1;2

�̂
(
̂)

� cb
�
k grad uk2

L2(
̂;Rd)
+ kbu2kL1(@
̂n�̂)

�
� cb

�
k"�1kL1(
̂;B(Rd;Rd))

Z

̂

h"(x) grad u(x); gradu(x)i dx+

Z
@
̂n�̂

b(� )u2(� ) d�
�

� cbmax
�
1; k"�1kL1(
̂;B(Rd;Rd))

	 

Au; u

�
:

N.B. b is nonnegative. To prove the second assertion we estimate the norm of A

MA = kAk
B(W

1;2

�̂
(
̂);W

�1;2

�̂
(
̂)) = sup

kuk
W

1;2

�̂
(
̂)

=kvk
W

1;2

�̂
(
̂)

=1

��hAu; vi��
by means of��hAu; vi�� = ���Z


̂

h"
1
2 (x) grad u(x); "

1
2 (x) grad v(x)idx+

Z
@
̂n�̂

b(� )u(� ) v(� ) d�
���

� k"kL1(
̂;B(Rd;Rd))kukW 1;2

�̂
(
̂)kvkW 1;2

�̂
(
̂) + kbkL1(@
̂n�̂)kukL2(@
̂n�̂)kvkL2(@
̂n�̂):

Finally one observes that W 1;2

�̂
(
̂) embeds continuously into L2(@
̂ n �̂).

6.b. The nonlinear Schr�odinger{Poisson operator. Up to now we have regarded
the particle density operators as operators from L2(
) into function spaces over 
. From
now on we will regard the system as a whole and therefore consider the particle density

operators as operators with values in suitable function spaces over 
̂ by means of the
identi�cation operators Z�

& from De�nition 2.23. In the following V = (V1; : : : ; V�) 2

L2(
;R�) is a given �{tuple of external potentials.

The statements of the next proposition follow directly from Theorem 5.23 and the Lip-
schitz properties of the operators N& (cf. x5.d).

6.2. Proposition. For any & 2 f1; : : : ; �g the negative extended particle density operator

L2(
̂) 3 V 7�! �Z�

&N&(V& + Z&V ) 2 L
2(
̂)

is monotone from L2(
̂) into itself and also monotone fromW
1;2

�̂
(
̂) into W�1;2

�̂
(
̂). More-

over, this operator is locally Lipschitz continuous from L2(
̂) into L2(
̂), and its local

Lipschitz constant on a bounded set cM� L2(
̂) is

kZ�

& k
2

B(L2(
);L2(
̂))
Lip

(V&+Z& cM)
(N&);(6.3)

where Lip
(V&+Z& cM)

(N&) is the local Lipschitz constant of the mapping N& : L
2(
) 7! L2(
),

restricted to the set V& + Z& cM.

Proposition 6.2 implies by means of Theorem 2.26 the following



6.3. Proposition. The nonlinear Schr�odinger{Poisson operator

PV :W
1;2

�̂
(
̂) 7! W

�1;2

�̂
(
̂); PVV = AV �

X
&2f1;::: ;�g

Z�

&N&

�
V& + Z&V

�
� F&(V )(6.4)

is strongly monotone with mA as a monotonicity constant. Additionally, this operator is

locally Lipschitz continuous. More precisely: if cM1 is a bounded set in W 1;2

�̂
(
̂) and cM

denotes the image of cM1 under the canonical embedding from W
1;2

�̂
(
̂) into L2(
̂), then

the local Lipschitz constant of PV, corresponding to the set cM1, may be taken as

(6.5) Lip
cM1
(PV) =MA +

X
&2f1;::: ;�g

Lip
cM1
(F&)

+ k1k2
B(W

1;2

�̂
(
̂);L2(
̂))

X
&2f1;::: ;�g

kZ�

& k
2

B(L2(
);L2(
̂))
Lip

(V&+Z& cM)
(N&):

Lip
cM1
(F&) is the local Lipschitz constant of the mapping F& de�ned in Assumption 2.10.

The nonlinear Poisson equation

PVV = D(6.6)

admits exactly one solution V for every e�ective doping pro�le D 2 W�1;2

�̂
(
̂) (cf. De�-

nition 2.23). This solution satis�es the estimate

kV kW 1;2

�̂
(
̂)

�
1

mA

D +
X

&2f1;::: ;�g

Z�

&N&(V&) + F&(0)

W
�1;2

�̂
(
̂)
:(6.7)

If J : W
1;2

�̂
(
̂) 7! W

�1;2

�̂
(
̂) is the duality mapping and MP the local Lipschitz constant

(6.5) of the mapping PV which corresponds to the centered ball cM1 in W
1;2

�̂
(
̂) with radius

2

mA

D +
X

&2f1;::: ;�g

Z�

&N&(V&) + F&(0)

W
�1;2

�̂
(
̂)
;(6.8)

then the solution V of (6.6) is obtained as the �xed point of the mapping

QV : cM1 7�! cM1; QV : V 7�! V �
mA

M2
P

J
�1(PVV �D);(6.9)

which is contractive on cM1 with the contraction constants
1 �

m2
A

M2
P

:(6.10)

From Proposition 6.3 one easily deduces

6.4. Theorem. The Schr�odinger{Poisson system without exchange{correlation potential
(cf. De�nition 2.23) has the unique solution (V ; ~N1(V1 + V ); :::; ~N�(V� + V )), where V is
the �xed point of the operator (6.9).

6.5. Remark. It is not hard to see that the main content of this subsection remains true
if the operator Z� is replaced by an operator lying in a suitable neighbourhood of Z�. In
particular, the operator PV, constructed this way, then satis�es similar monotonicity and
Lipschitz properties and the machinery on monotone operators still works.

Next we will have a look on the dependance of the solution of the nonlinear Schr�odinger{
Poisson equation (6.6) on the vector V = (V1; : : : ; V�) 2 L

2(
;R�) of external potentials.



6.6. Lemma. Let

L : L2(
;R�) 7�! L2(
̂); L(V) = V(6.11)

be the operator, which assigns to the �{tuple of external potentials V = (V1; : : : ; V�) 2
L2(
;R�) the solution V of the equation (6.6). If M is a bounded set in L2(
), then

(6.12) sup
V2M�

kL(V)kL2(
̂) �
k1k

B(W
1;2

�̂
(
̂);L2(
̂))

mA

 
q k1k

B(W
1;2

�̂
(
̂);L2(
̂))kNA �NDkL2(
̂)

+ k"kL1(
̂;B(Rd;Rd))k'�̂kW 1;2

�̂
(
̂)

+
X

&2f1;::: ;�g

kF&(0)kW�1;2

�̂
(
̂)

+ sup
V=(V1;::: ;V�)2M�

X
&2f1;::: ;�g

Z�

&N&(V&)

W
�1;2

�̂
(
̂)

!
:

The mapping L is boundedly Lipschitz continuous from L2(
;R�) into W
1;2

�̂
(
̂), and its

local Lipschitz constant corresponding to M� is

2

mA

k1k
B(W

1;2

�̂
(
̂);L2(
̂)) sup

&2f1;::: ;�g

kZ�

& kB(L2(
);L2(
̂))

X
&2f1;::: ;�g

Lip(M+Z&L(M�))(N&);(6.13)

where Lip(M+Z&L(M�))(N&) is the local Lipschitz constant of the mapping N& : L
2(
) 7!

L2(
), restricted to the set M+ Z&L(M
�).

Proof. By de�nition of L, V = L(V) is a solution of (6.6) and, hence, satis�es the estimate
(6.7). Taking into account (2.16), and the inequality

k ~'�̂kW�1;2

�̂
(
̂) � k"kL1(
̂;B(Rd;Rd))k'�̂kW 1;2

�̂
(
̂)

this implies the �rst assertion.

For the proof of the local Lipschitz continuity, let U = (U1; :::; U�) and V = (V1; :::; V�)
fromM� be given. L(V) is the �xed point of the strict contraction QV de�ned in (6.9),
and L(U) is the �xed point of QU. Hence,

kL(U)� L(V)kW 1;2

�̂
(
̂) = kQUL(U)�QVL(V)kW 1;2

�̂
(
̂)

� kQUL(U)�QUL(V)kW 1;2

�̂
(
̂) + k(QU �QV)L(V)kW 1;2

�̂
(
̂)

Taking into account the Lipschitz constant for QU, given in (6.10), one easily deduces
from this L(U) � L(V)


W

1;2

�̂
(
̂)

�

�
1�

s
1�

m2
A

M2
P

��1�QU �QV
�
L(V)


W

1;2

�̂
(
̂)
:

Now using the de�nition of QU and QV and the inequality

mA

M2
P

1�
q
1�

m2
A

M2
P

�
2

mA



one arrives at

kL(U) � L(V)k
W

1;2

�̂
(
̂)

�
2

mA

J �1
�
PU � PV

�
L(V)


W

1;2

�̂
(
̂)

�
2

mA

�PU � PV
�
L(V)


W
�1;2

�̂
(
̂)

�
2

mA

 X
&2f1;::: ;�g

Z�

&N&

�
U& + Z&L(V)

�
� Z�

&N&

�
V& + Z&L(V)

�
W
�1;2

�̂
(
̂)

�

2 k1k
B(W

1;2

�̂
(
̂);L2(
̂))

mA

sup
&2f1;::: ;�g

kZ�

& kB(L2(
);L2(
̂))

�

 X
&2f1;::: ;�g

N&

�
U& + Z&L(V)

�
�N&

�
V& + Z&L(V)

�
L2(
)

;

and �nally at the Lipschitz constant (6.13).

6.c. The Kohn{Sham system. We will now introduce an adequate subset of L1(
;R�)
and a suitable mapping � from this set into itself the �xed points of which will pro-
vide solutions for the Kohn{Sham system i.e. the Schr�odinger{Poisson system with an
exchange{correlation potential.

6.7. De�nition. Let V = (V1; : : : ; V�) 2 L2(
;R�) be a given �{tuple of external po-
tentials and N1, : : : , N�, the �xed numbers of carriers, cf. De�nition 2.16. We de�ne

L1
N =

n
u = (u1; : : : ; u�) : u& � 0;

Z
u&(x)dx = N& ; & 2 f1; : : : ; �g

o
(6.14)

and � : L1
N 7�! L1

N as the mapping whose &{component is given by

�&(u) = N&

�
V& + Vxc;&(u) + Z&L

�
V1 + Vxc;1(u); : : : ; V� + Vxc;�(u)

��
:(6.15)

6.8. Lemma. For any & 2 f1; : : : ; �g let Vxc;& be a bounded and continuous mapping from�
L1(
)

��
into L2(
). If

� = sup
&2f1;::: ;�g

sup
u2L1

N

Vxc;&(u)L2(
)(6.16)

and

M =
n
V 2 L2(
) : max

&2f1;::: ;�g
kV � V&kL2(
) � �

o
;(6.17)

then the number

(6.18) s = sup
&2f1;::: ;�g

kV&kL2(
) + � +

�
sup

&2f1;::: ;�g

kZ&kB(L2(
̂);L2(
))

� k1k
B(W

1;2

�̂
(
̂);L2(
̂))

mA

�

 
q k1k

B(W
1;2

�̂
(
̂);L2(
̂))

kNA �NDkL2(
̂) + k"kL1(
̂;B(Rd;Rd))k'�̂
k
W

1;2

�̂
(
̂)

+
X

&2f1;::: ;�g

kF&(0)kW�1;2

�̂
(
̂) +

X
&2f1;::: ;�g

sup
V2M

Z�

&N&(V )

W
�1;2

�̂
(
̂)

!



is a common upper bound for the L2(
){norm of the Schr�odinger potentials which are
involved in the de�nition of the carrier densities in (6.15), and

� = �
�
1�

d

4

�


8
4�d

2 sup
&2f1;::: ;�g

m
d

4�d
& s

4
4�d � 1(6.19)

is the corresponding quantity (3.22). Any element from the range of � does not only
belong to L1

N , but satis�es the a priori estimates given in Proposition 5.8, Corollary 5.9,
and Proposition 5.10, where the s{ball in L2(
) serves as the set M in x5.b.

Proof. For the proof it su�ces to show that s is an L2(
){bound for the sets

V& + Vxc;&(L
1
N ) + Z&L

�
V1 + Vxc;1(L

1
N ); : : : ; V� + Vxc;�(L

1
N )
�
; & 2 f1; : : : ; �g

and to apply Proposition 5.8, Corollary 5.9, and Proposition 5.10 respectively. (6.16)

implies Vxc;&(u)L2(
) � � for all u 2 L1
N ; & 2 f1; : : : ; �g:

The right hand side of (6.12) provides a L2(
̂){bound for all

L
�
V1 + Vxc;1(u); : : : ; V� + Vxc;�(u)

�
; with u 2 L1

N ;

if in (6.12) V& is replaced by V& + Vxc;&(u) and M is de�ned by (6.17).

6.9. Remark. Often the exchange{correlation terms Vxc;& are given by rational expres-
sions as e.g. (1.10) which allow to estimate the quantity � in Lemma 6.8 in terms of the
data of the problem. If � � 1

2
in (1.10) then

� � sup
&2f1;::: ;�g

�&N
�
& j
j

1
2
��:(6.20)

Now we are ready to prove the existence theorem for the Schr�odinger{Poisson system
with an exchange{correlation potential.

6.10. Theorem. If Vxc;& is for any & 2 f1; : : : ; �g a bounded and continuous mapping

from
�
L1(
)

��
into L2(
), then the mapping � from De�nition 6.7 has a �xed point.

Proof. It is evident that � maps L1
N into itself (cf. De�nition 6.7 and De�nition 2.16).

From the continuity properties of the mappings Vxc;& , N& , and L (cf. x5.d and Lemma 6.6)
directly follows that � is continuous. Lemma 6.8 assures that the image of � is bounded
in a space C�(
;R�). Consequently, by the Arzela{Ascoli theorem, � satis�es the sup-
positions of Schauder's �xed point theorem, hence, it has a �xed point in L1

N .

6.11. Remark. The �xed point mapping used in this proof was proposed by Herbert
Gajewski in the seminar of Arno Langenbach.

6.12. Corollary. The particle densities u& of a �xed point u =
�
u1; : : : ; u�

�
of � do not

only belong to L1(
), but satisfy the estimates given in Proposition 5.8, Corollary 5.9,
and Proposition 5.10, where � is given by (6.19).

Proof. Obviously any �xed point is contained in the image of � and, hence, obeys the a
priori estimates stated in Lemma 6.8.

6.13. Theorem. u =
�
u1; : : : ; u�

�
is a �xed point of � if and only if

(V; u1; : : : ; u�) =

�
A�1

�
D +

X
&2f1;::: ;�g

Z�

& u&

�
; u1; : : : ; u�

�
(6.21)



is a solution of the Kohn-Sham system, cf. De�nition 2.23. In particular, this means that
the Kohn-Sham system always admits a solution.

Proof. It follows from De�nition 6.7 and De�nition 2.23 that any solution of the Kohn{

Sham system is a �xed point of the mapping �. Any �xed point u = �u de�nes via
(6.21) a solution of the Kohn{Sham system in the sense of De�nition 2.23. This follows
directly from the de�nition of L in (6.11) and Corollary 6.12.

6.14. Remark. Obviously the (homogenized) electrostatic potential

V = A�1
�
D +

X
&2f1;::: ;�g

Z�

& u&

�
belongs to the intersection of a space C�(
̂) and a space W 1;p

�̂
(
̂) with p > 2. Reiter-

ating this argument, one obtains in smooth situations | where the domain 
̂ and the
coe�cients are smooth and the boundary conditions are not mixed | that the particle
densities and the Hartree potential, of a solution are in�nitly smooth.

6.15. Remark. Corollary 6.12 justi�es to demand in De�nition 2.23 that a solution of
the Schr�odinger{Poisson system has carrier densities u& from the space L2(
).

6.16. Remark. The authors have been trying hard to �nd a bounded subset of a stronger

topologized space than L1 | e.g. L2 or L1 | which � maps continuously and compactly
into itself. The aim was to get a solution, which belongs a priori to a space of more
regular functions. All our attempts have failed. May be it is impossible to �nd such a
set, because there is no physically motivated growth restriction for stronger norms than
the L1{norm [23]. N.B. the L1{norm of each carrier density is �xed by the conservation
law (2.10) in De�nition 2.16. The L1{calculus for the carrier densities requires a theory
of Schr�odinger operators with potentials from L2 as it has been developed in x3.

7. Uniqueness of solutions

In sharp contrast to the situation of a vanishing exchange{correlation term in the potential
of Schr�odinger's equation, no general results concerning uniqueness are known to the
authors. However, if the exchange{correlation terms do not change rapidly then one can
prove that the solution remains unique.

7.1. Remark. A speci�c di�culty is that the generic exchange{correlation potentials
(1.10) are not Lipschitz continuous. However, the expressions (1.10) are not properly
justi�ed for very low carrier densities u& and the following regularization is possible [48]

Vxc;&(u) = �& �
�
& � �&

�
u& + �&

��
; �& > 0; 0 � � �

1

2
:(7.1)

This mapping Vxc;& :
�
L1(
)

��
7�! L2(
) is Lipschitz continuous.

7.2. Theorem. If the mappings Vxc;& are boundedly Lipschitz continuous from
�
L1(
)

��
into L2(
) on the set L1

N , and the corresponding Lipschitz constants are su�ently small,
then the solution of the Schr�odinger{Poisson system is unique (cf. De�nition 2.23 and
De�nition 6.7).

Proof. One again regards the mapping � : L1
N 7�! L1

N from De�nition 6.7. Combining
the results on � from x6.c and the Lipschitz properties of the mappings Vxc;& , L (cf.



Lemma 6.6), Z& (cf. De�nition 2.23), and N& (cf. Theorem 5.22), one obtains that � is a
Lipschitz continuous mapping from L1

N into itself.

LipL1
N

�
�&
�
= LipL1

N

�
Vxc;&

�
LipM+Z&L(M)

�
N&

� �
1 +

Z&
B(L2(
̂);L2(
))

LipM�

�
L
��

is a Lipschitz constant of the &{component (6.15) of �, whereM is the set de�ned under

(6.17). Thus, if the Lipschitz constants LipL1
N

�
Vxc;&

�
of the mappings Vxc;& are su�ciently

small, then Banachs's �xed point principle provides a unique solution of the Schr�odinger{
Poisson system.

7.3. Remark. In the sense of Remark 6.9 one often can estimate the Lipschitz constant
of Vxc;& in terms of the data of the problem. The Lipschitz constants of L and N& also can
be estimated in terms of these data cf. Lemma 6.6 and Theorem 5.22 respectively. Thus
in principle one can get ranges of data which assure uniqueness. N.B. for this purpose the

Birman{Solomjak Theorem 2.28 is essential, as it puts the cutting edge to our estimates.
It is not known yet, however, wether the uniqueness assuring ranges of data, which are
determined that way, are pessimistic or really interesting from a physical point of view.



Appendix A. About the Kohn{Sham system (by Udo Krause)

A.1. A few remarks on the physical background. This section provides a physical
perspective leading to the mathematical problem presented in the main text. In principle
the phenomena in a bulk semiconductor and the semiconductor itself are the result of
many particle interactions and as such they have to be described by many particle theory.
Such theories can be formulated (cf. e. g. [11]) and reect the full scope of high-frequency,
high-�eld and high-excitation e�ects, for example intracollisional e�ects, quasi-particle

interaction and so on. Fortunately it was possible to understand bulk semiconductors
whitout external �elds using comparatively simple means inasmuch the electronic band
structure can be computed from a single particle Schr�odinger equation with a pseudopo-
tential [13]. Therefore the selection of a suitable mathematical model of a rather un-
speci�ed nanostructure should be \bottom - top" supplementing the re-interpreted single
particle Schr�odinger equation with some key features rather than deskilling the most of
many body quantum theory.

The application of an electrostatic potential of 5 or 6 V to the contacts of a submicron
MOSFET yields a slowly varying potential in comparision with the variation of Bloch
functions: The Bloch functions are periodic with the crystal lattice having lattice con-
stants of e. g. 0:543 nm (Si) while the gate length is still about 100 : : : 200 nm. Therefore
one is in a position to apply the e�ective mass approximation [2] which must be coupled to

the poisson equation for self-consistency. To take into account many body e�ects the po-
tential of the e�ective mass Schr�odinger equation should contain an exchange-correlation
term Vxc;&(u) which is a functional of the single particle density u& following the local
density approximation of density functional theory [44] thus achieving (1.9).

The exchange-correlation potential Vxc;&(u) is again - though in principle �xed by many
body quantum theory - open to sound approximations. The oldest approximation is the

Slater approximation [5] yielding Vxc;&(u) = const: u
1=n
& ; n = 3; 2 in three or two space

dimensions. It is accurate in three space dimensions if

rs =
r0

a�B
� 1 where r0 =

�
3

4�u&

�1=3

and a�B =

�
~
2

m0e2

�
m0

m�
&

�:

r0 is the mean particle distance and a�B is the e�ective Bohr radius, scaled by the e�ective
mass m�

& and the dielectric constant � [2, S. 26].

Generally the exchange{correlation potentials Vxc;&, & 2 f1; : : : ; �g are given by the func-
tional derivatives

Vxc;& =
�Exc

�u&
; & 2 f1; : : : ; �g;

of the exchange{correlation energy Exc = Exc(u), which is a functional of the carrier
densities (cf. e.g. [37, 15]). Within the local{density approximation (LDA) the exchange{
correlation energy Exc is expressed by the exchange and correlation energy Exc (u) per
particle of a homogeneous electron gas (cf. e.g. [37, 15])

Exc =

Z



0@ X
&2f1;::: ;�g

e&u&(V&)(x)

1AExc (u(x)) dx



and the exchange{correlation potential becomes

V LDA
xc;& =

@

@u&

0@Exc(u) X
&2f1;::: ;�g

e&u&(V&)(x)

1A :

A term often referred to for three-dimensional systems is the following one of Hedin and
Lundqvist [44, S. 77]

Exc(u) = �0:045 F (x) Ry with x =
rs

21
and

F (x) = (1 + x3) ln

�
1 +

1

x

�
+
x

2
� x2 �

1

3
:

It does not reproduce the density dependence in the high- and low-density limits. To
achieve this one has to introduce parameter dependent formul� thus entering the �eld of
parameter determination [44]. \The search for an accurate Exc has encountered tremen-
dous di�culty and continues to be the greatest challenge in the density{functional theory."
[37].

A.2. Distribution functions. In order to avoid the problems of valence band coupling
[2] in the e�ective mass approximation a model of a two-band semiconductor is assumed
as mentioned in the introduction. Let & = 1 for holes and & = 2 for electrons. The

nanostructure in a n dimensional bulk material (n = 3) may be in the simplest case
characterized by a set of band discontinuities �E&;j; 1 � j � n each band-edge o�set
being rescinded after a length Lj. Let d be the number of band discontinuities. Thus for
d = 0 there is no nanostructure, for d = 1 there is a two dimensional electron gas in a
quantum well, for d = 2 there is a one dimensional electron gas in a quantum wire and
for d = 3 a fully quantized electron ensemble exists in a quantum dot. For d > 1 the
separation of variables in the nanostructure is assumed. Furthermore the assumption for
the band discontinuities �E&;j; j = 1; : : : ; d is

sign(�E1;j) = �sign(�E2;j)

to minimize unwanted couplings between e. g. envelope valency states and bulk conduction
band states. The condition

EV +�E1;j < EC +�E2;j 1 � j � d

is self-evident.

One de�nes x(1) := fxig
d
i=1; x(2) := fxig

n
i=d+1 and x = (x(1);x(2)). In the same way one

splits the propagation vectors k = (k(1);k(2)) with k(1) := fkig
d
i=1; k(2) := fkig

n
i=d+1. Let

fxig
n
i=1 and fkig

n
i=1 be cartesian coordinates and fLig

n
i=1 a set of strictly positive �nite

real numbers where the fLig
d
i=1 characterize the nanostructure. One assumes that the n

cartesian vectors (0; : : : ; 0; Li; 0; : : : ; 0) with Li at the i-th position are lattice vectors of
the translation lattice of the bulk crystal. From e�ective mass theory [32] at a band edge
at k0& follows that the wave function is approximately given by

	Q(x) = �Q(x)uk0& (x);(A.1)

where �Q(x) denotes the envelope function, Q the set of quantum numbers and uk0& (x)
is the lattice periodic Bloch function of the bulk material. Let the wave function 	Q be
normalized in L1 � L2 � � � � � Ln. �Q(x) has to ful�ll the e�ective mass equation�

E&(�ir+ k0) +V&(x(1))� EQ
�
�Q(x) = 0



or, explicitely for k0 = 0 
E&(0)�

~
2

2

nX
i;j=1

wij
@2

@xi@xj
+V&(x(1))� EQ

!
�Q(x) = 0:

Following the coordinate splitting one splits the reciprocal e�ective mass tensor also

wij :=
1

~2

@2E&(0)

@ki@kj
;

w =

�
w(1;1) w(1;2)

w(2;1) w(2;2)

�
with

w(1;1) = fwijg
d
i;j=1;

w(1;2) =
�
fwijg

d
i=1

	n
j=d+1

;

w(2;1) =
�
fwijg

n
i=d+1

	d
j=1

;

w(2;2) = fwijg
n
i;j=d+1:

Setting

�Q(x) =  Q(1)
(x(1)) exp(�i

tk(2)w(2;1)w
�1
(1;1)x(1)) exp(i tk(2)x(2))(A.2)

one gets for  Q(1)
(x(1)) the equation (cf. (1.8))�
�
~
2

2
w(1;1)

@2

@x(1)@x(1)

+V&(x(1))� E
0
Q

�
 Q(1)

(x(1)) = 0

with

E 0Q = �E&(0) + EQ(1)
� e&

~
2

2
tk(2)(w(2;2) �w(2;1)w

�1
(1;1)

w(1;2))k(2):(A.3)

Note that the choice of cartesian coordinates fxig
n
i=1 also implies cartesian propagation

coordinates fkig
n
i=1 but the principal axes of the constant-energy ellipsoids have in general

another orientation. Therefore the matrix w enters the foregoing expressions (cf. [3, III.
A.]). As usual, all vectors are viewed as column vectors, tk is the transposed propagation
vector and tkx means the dual pairing between propagation and position vectors.

The carrier density u&(x; t) is given by the trace of the statistical operator Ŵ& [9, S. 85/86]
with �(r � x):

u&(x; t) = tr(�(r � x)Ŵ&);

where Ŵ& satis�es Heisenberg's equation

i~

�

Ŵ& = [Ĥ(p̂; q̂); Ŵ& ]:

Let be Ŵ& = Ŵ0& + Ŵ1&, with Ŵ0& as statistical operator for the thermodynamical equi-
librium and de�ne the trace with the help of 	Q:

u&(x; t) =
X
Q

Z

N

�	Q(r)�(r � x)Ŵ&	Q(r)dr

=
X
Q

�	Q(x)Ŵ&	Q(x):

Note

Ŵ0&	Q(x) = F&(EQ)	Q(x)



where

F&(EQ) =
1

1 + exp
�
�e&

EQ�EF;&

kBT

�
is the Fermi-Dirac statistics. In device modelling it is common to ignore Ŵ1& and to
supply the Fermi-Dirac statistics with quasi Fermi potentials thus getting

u&(x) =
X
Q

F&(EQ) �	Q(x)	Q(x):

To evaluate this formula one introduces the electronic density of states

D( ~E ;x) :=
X
Q

�( ~E � EQ) �	Q(x)	Q(x)

and �nds

u&(x) =

Z
F&( ~E)D( ~E ;x) d ~E

=
X
Q

�Z
F&( ~E)�( ~E � EQ)d ~E

�
�	Q(x)	Q(x):(A.4)

Being interested only in x(1)-dependent phenomena on the length scale of L1; : : : ; Ld one
assumes an averaging over a fundamental cell of the translation lattice of the bulk material
and gets rid of the spatial dependency of the Bloch function uk0&(x). From (A.1) and
(A.2) follows

D( ~E ;x(1)) :=
X
Q

�( ~E � EQ) � Q(1)
(x(1)) Q(1)

(x(1))(A.5)

and �nally

u&(EF;& ;x(1)) =

Z
F&( ~E)D( ~E ;x(1)) d ~E :(A.6)

In order to calculate D( ~E ;x(1)) one transforms the k{sum into a k{integral [10, S. 36]:

X
k2Rg�n

�!

2
�Qn

j=d+1 Lj

�
(2�)n�d

Z
1

�1

dkd+1 : : : dkn:

There is a factor 2 for spin degeneracy and one has to compute the following density of
states:

D( ~E ;x(1)) =
2
�Qn

j=d+1 Lj

�
(2�)n�d

X
Q(1)

Z
1

�1

dkd+1 : : : dkn �( ~E � E
0(Q(1);k(2)))

��� Q(1)
(x(1))

���2 :
(A.7)

Let A be an orthogonal matrix (A tA = 1 n�d) such that

tA(w(2;2) �w(2;1)w
�1
(1;1)

w(1;2))A = diag

�
1

m0
d+1

; : : : ;
1

m0
n

�
:



Such a diagonalization is possible since w is symmetric: tw = w and is a result of the
variable transformation k(2) = Ak0

(2). The energy (A.3) has now the form

E 0Q = E 0(Q(1);k
0

(2)) = �E&(0) + EQ(1)
� e&

~
2

2
tk0

(2)

0BBBB@
1

m0
d+1

0 : : : 0

0 1
m0
d+2

0

...
. . .

...
0 0 : : : 1

m0n

1CCCCAk0

(2)

with strictly positive massesm0

d+1; : : : ;m
0

n. The integral is computed in generalized spher-
ical coordinates

k0d+1 = r
q
m0

d+1 sin �n�d�1 : : : sin�2 sin�1

k0d+2 = r
q
m0

d+2 sin �n�d�1 : : : sin�2 cos�1

...

k0n�1 = r

q
m0

n�1 sin�n�d�1 cos �n�d�2

k0n = r
p
m0
n cos�n�d�1

with 0 � r <1; 0 � �1 < 2�; 0 � �l < � 8l 2 [2; n� d� 1]

dkd+1dkd+2 : : : dkn = (detA)dk0d+1dk
0

d+2 : : : dk
0

n

= (detA)rn�d�1

 
nY

j=d+1

q
m0

j

!
drdSn�d�1;

where dSn�d�1 denotes the surface element of the (n� d� 1){dimensional unit sphere in
R
n�d. With [43, S. 432] Z

dSn�d�1 =
2�(n�d)=2

�
�
n�d
2

� =: Sn�d�1(A.8)

and

2

~2

�
E(Q(1);k

0

(2)) + E&(0)� EQ(1)

�
= �e&r

2

follows

dr =
�e&dE(Q(1);k

0

(2))r
�2~2e&

�
E(Q(1);k

0

(2)) + E&(0) � EQ(1)

�
and

D( ~E ;x(1)) =
2(n�d)=2

�Qn

j=d+1

p
m0

jLj

�
Sn�d�1

(2�~)n�d
(detA) �

�
X
Q(1)

�
�e&( ~E + E&(0)� EQ(1)

)
�n�d

2
�1

�

��
�
�e&( ~E + E&(0) � EQ(1)

)
� ��� Q(1)

(x(1))
���2 d < n:



At last one has to regard that E&(0) has in general multiplicity � 2 N. With �S := �detA
one gets

(A.9)

D( ~E ;x(1)) =
2(n�d)=2�S

�Qn

j=d+1

p
m0

jLj

�
Sn�d�1

(2�~)n�d

X
Q(1)

�
�e&( ~E + E&(0)� EQ(1)

)
�n�d

2
�1

�

��
�
�e&( ~E + E&(0) � EQ(1)

)
� ��� Q(1)

(x(1))
���2 d < n:

For d = n the k0{integration ceases to apply and one has ad hoc

D( ~E ;x(1)) = 2�S
X
Q(1)

�
�
~E + E&(0) � EQ(1)

� ��� Q(1)
(x(1))

���2 d = n:(A.10)

The case d = 0 gives

D( ~E ;x(1)) =
2n=2�S

�Qn

j=1

p
m0

jLj

�
Sn�1

(2�~)n

�
�e&( ~E + E&(0))

�n

2
�1

�
�
�e&( ~E + E&(0))

�
:

� is the Heaviside function �(x) = 1 for x � 0 und �(x) = 0 for x < 0.

Computing the carrier densities one has temporary to distinguish between electrons (e& =
�1) and holes (e& = 1). Substituting (A.9) in (A.6) yields for electrons

u2(EF;2;x(1)) =
2(n�d)=2�S

�Qn

j=d+1

p
m0

jLj

�
Sn�d�1

(2�~)n�d
�

�
X
Q(1)

1Z
EQ(1)

�E2(0)

�
E + E2(0)� EQ(1)

�(n�d)=2�1
1 + exp

�
E�EF;2

kBT

� dE

��� Q(1)
(x(1))

���2
resp. for holes

u1(EF;1;x(1)) =
2(n�d)=2�S

�Qn
j=d+1

p
m0

jLj

�
Sn�d�1

(2�~)n�d
�

�
X
Q(1)

EQ(1)
�E1(0)Z

�1

�
�(E + E1(0)� EQ(1)

)
�(n�d)=2�1

1 + exp
�
�
E�EF;1

kBT

� dE
��� Q(1)

(x(1))
���2 :

The transformation (T > 0 K)

�kBT = �e&(E + E&(0)� EQ(1)
)

dE = �e&kBTd�

leads to

u&(EF;& ;x(1)) =
(2kBT )

(n�d)=2�S

�Qn

j=d+1

p
m0

jLj

�
Sn�d�1

(2�~)n�d
�

�
X
Q(1)

1Z
0

�(n�d)=2�1

1 + exp

�
� + e&

E&(0)+EF;&�EQ(1)
kBT

� d�
��� Q(1)

(x(1))
���2 :



Using the de�nition of the Fermi integrals (cf. (1.4))

F�(�) :=
1

�(1 + �)

1Z
0

��

1 + exp(� � �)
d�

one obtains for d < n:

(A.11) u&(EF;& ;x(1)) =
(2kBT )

(n�d)=2�S

�Qn

j=d+1

p
m0

jLj

�
Sn�d�1

(2�~)n�d
�

�
n� d

2

�
�

�
X
Q(1)

Fn�d

2
�1

�
�e&

E&(0) + EF;& � EQ(1)

kBT

���� Q(1)
(x(1))

���2 :
In the case of d = n the density of states (A.10) is a sum of �{functionals by itself and
the integration is trivial:

u&(EF;& ;x(1)) = 2�S
X
Q(1)

��� Q(1)
(x(1))

���2
1 + exp

�
e&
E&(0)+EF;&�EQ(1)

kBT

�
= 2�S

X
Q(1)

F�1

�
�e&

E&(0) + EF;& � EQ(1)

kBT

���� Q(1)
(x(1))

���2 :

Two special cases are of interest:

(i) d = 2; n = 3; T > 0 K

Note that following (A.8) one has S0 = 2; S1 = 2�; S2 = 4�. The result S0 = 2 accounts
correctly for the fact that a spherical symmetrical function over R is an even function.
From (A.11) follows (cf. (1.15))

u&(EF;& ;x(1)) = 2�S

r
kBTm

0

3

2�~2
L3

X
Q(1)

F
�

1
2

�
�e&

E&(0) + EF;& � EQ(1)

kBT

���� Q(1)
(x(1))

���2 :

(ii) d = 1; n = 3; T > 0 K

Here from (A.11) follows (cf. (1.16))

u&(EF;& ;x(1)) = �S
p
m0

2m
0

3 L2L3

kBT

�~2
�X

Q(1)

ln

�
1 + exp

�
�e&

EF;& + E&(0) � EQ(1)

kBT

����� Q(1)
(x(1))

���2 :



Appendix B. Notations

N natural numbers
R real numbers
C complex numbers numbers
X;Y; : : : Banach spaces over R or C
X�; Y �; : : : dual spaces to X;Y; : : :

Xd set of ordered d{tuples of elements from X

T : X 7! Y operator from X into Y
T � : Y � 7! X� adjoint of a linear operator T : X 7! Y

in particular conjugate of a complex number T 2 C

1 : X ,! Y (bounded) embedding operator from X into Y
k1kB(X;Y ) embedding constant from X into Y
h�; �i = h�; �i[X�;X] dual pairing between the Banach space X and its dual X�

h�; �i = h�; �iX scalar product in the Hilbert space X

k � kX norm in the Banach space X
B(X;Y ) space of bounded linear operators from X into Y
B = B(X;Y ) usually with X = Y = L2(
)
k � k = k � kB(X;Y ) usually with X = Y = L2(
)
Bq(X;Y ) space of q{summable operators from X into Y
Bq = Bq(X;Y ) usually with X = Y = L2(
)
k � kq = k � kBq(X;Y ) usually with X = Y = L2(
)


; 
̂; ~
 bounded open subsets of Rd

@
 boundary of 


L1(
;X) space of all essentially bounded Lebesgue{measurable functions

from 
 into a Banach space X
L1(
) = L1(
;R)

Lp(
;X), 1 � p <1 space of p{integrable functions

Lp(
) = Lp(
;R)

W 1;p(
) Sobolev space with the usual norm

kukW 1;p(
) =
�
kuk

p

Lp(
) + k grad uk
p

Lp(
)

� 1
p

dom(T ) domain of the linear operator T
spec[T ] spectrum of the linear operator T
tr[T ] trace of the nuclear operator T
sp(�) trace of the function � : 
 7! R on the boundary @


grad u gradient of u 2 Lp(
)
div f divergence of f 2 Lp(
;Rd)

C�(
;X), 0 < � < 1 space of all functions from 
 intoX that are H�older continuous
with exponent �

C�(
) = C�(
;R)

C l(
;X) space of all functions from 
 intoX with continuous derivatives
up to order l

C l(
) = C l(
;R)

C(
;X) space of all continuous functions from 
 into X

C(
) = C(
;R)
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