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Abstract

We treat a wide class of electro{reaction{di�usion systems with nonsmooth data

in two dimensional domains. Forced by applications in semiconductor technology

a nonlinear and nonlocal Poisson equation is involved. We state global existence,

uniqueness and asymptotic properties of solutions to the evolution problem. Essential

tools in our investigations are energetic estimates, Moser iteration, regularization

techniques and results for electro{di�usion systems with weakly nonlinear volume and

boundary source terms. Especially, we discuss the connection between the existence

of global lower bounds for the chemical potentials and the property that the energy

functional decays exponentially to its equilibrium value as time tends to in�nity.
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1 Introduction

In this paper we state global existence, uniqueness and asymptotic properties of solutions

to evolution problems for electro{reaction{di�usion systems in heterostructures. First, we

describe some concrete model equations which we are interested in.

Let 
 be a bounded domain, � = �D [ �N [ �0 its boundary, mes �0 = 0, � the outer unit

normal. We consider m electrically charged species Xi with charge numbers qi and initial

distributions Ui : 
 ! R+ . Their concentrations ui : R+ � 
 ! R+ and their chemical

potentials vi : R+ �
! R vary by di�usion processes, by chemical reactions running in 


as well as on � and, �nally, by a drift which is caused by the inner electric �eld. The charge

density u0 =
Pm

i=1 qiui occurs as source term for the electrostatic potential ev0 = v0 � �0

where v0 : R+ � 
! R and �0 : R+ ! R are some auxiliary quantities (cf. [17]).

1Partly supported by the BMBF grant GA7FVB5{1.0M840.
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We consider a �nite number of mass action type reactions of the form

�1X1 + � � �+ �mXm 
 �1X1 + � � �+ �mXm

and denote by R
 and R� the sets of pairs (�; �) of stoichiometric coe�cients � =

(�1; : : : ; �m), � = (�1; : : : ; �m) belonging to all reactions in 
 and on �, respectively.

Mass conservation for each species yields the initial boundary value problem

@ui

@t
+r � ji +R



i (�; v0; v1; � � � ; vm; �0) = 0 on (0;1)� 
;

� � ji � R
�
i (�; v0; v1; � � � ; vm; �0) = 0 on (0;1)� �;

ui(0) = Ui on 
; i = 1; : : : ; m;

9>>>>>>=
>>>>>>;

(1.1)

ui = ui e
vi ; ji = �Di uir�i; �i = vi + qiv0; i = 1; : : : ; m;

R
�
i =

X
(�;�)2R�

(�i � �i)R
�
��; � = 
;�; i = 1; : : : ; m;

R
�
�� = k

�
��(x; v0; v1; � � � ; vm; �0)

�
e

Pm

i=1
�i�i � e

Pm

i=1
�i�i

�
;

x 2 �; (v0; v1; : : : ; vm) 2 Rm+1
; �0 2 R; (�; �) 2 R�

; � = 
;�;

(1.2)

with given reference densities ui : 
! R+ , di�usivitiesDi : 
! R+ and kinetic coe�cients

k
�
�� : ��Rm+2 ! R+ . The remaining quantities v0; �0 are obtained by the Poisson equation

and by a charge conservation relation as follows (cf. [17]):

�r � ("rv0) + e0(�; v0) =
mX
i=1

qiui on (0;1)� 
;

v0 = �0 on (0;1)� �D;

� � ("rv0) + �v0 = ��0 on (0;1)� �N ;Z


e0(�; v0) dx =

Z



mX
i=1

qiui dx on (0;1);

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(1.3)

e0(x; y) =
mX
i=1

qiUi(x) + f0(x) + f1(x) e
y � f2(x) e

�y
; x 2 
; y 2 R; (1.4)

where the dielectric permittivity " : 
! R+ , the capacity � : �N ! R+ and the functions

f0 : 
 ! R, f1; f2 : 
 ! R+ are given. Here homogeneous boundary conditions for ev0 are
involved, since non-homogeneities not depending on time can be eliminated as in [17].

Assuming
Pm

i=1 qi(�i � �i) = 0 for all (�; �) 2 R
 [ R�
; fj = 0; j = 0; 1; 2, and setting

�0 = 0 we arrive at the standard problem of electro{di�usion with multiple reacting species

as considered e. g. in [18]. The more complex form of (1.3) is motivated by problems arising

in semiconductor technology we are mainly interested in. Moreover, in such problems all

physical parameters ui, Di, k
�
��, ", � , f1 and f2 depend on the space variable x in a
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nonsmooth way. In general besides of the kinetic coe�cients k��� also the di�usivities Di

depend on the state variables. But such a dependency will be neglected in this paper.

A precise formulation of our model equations (1.1), (1.3) will be given in Section 2. Here

we consider only the weak formulation of (1.3): For �xed t �nd (v0; �0) with v0 � �0 2
H

1
0 (
 [ �N); �0 2 R such that

Z



�
"rv0rh +

�
e0(�; v0)�

mX
i=1

qiui

�
(h + �)

�
dx +

Z
�N

�(v0 � �0)h d� = 0

8(h; �) 2 H
1
0 (
 [ �N)� R:

9>>=
>>; (1.3�)

Setting v0 = h + � we easily obtain the following equivalent formulation: Find (v0; �0) 2
H � R such that

Z



�
"rv0rv0 +

�
e0(�; v0)�

mX
i=1

qiui

�
v0

�
dx +

Z
�N

�(v0 � �(v0)) (v0 � �(v0)) d� = 0 8v0 2 H and �0 = �(v0)

9>>>>=
>>>>;

(1.3��)

where

H = H
1
0 (
 [ �N) + R; �(w) =

8>><
>>:
j�Dj�1

Z
�D

w d� if j�Dj 6= 0;

k�k�1L1(�N )

Z
�N

� w d� if j�Dj = 0;
w 2 H

1(
): (1.5)

An essential feature of the model equations (1.1), (1.3) is the fact that they allow thermal

equilibria as steady states (see Section 5). Moreover, there is a convex functional which can

be interpreted from the viewpoint of thermodynamics as free energy. This functional turns

out to be a Lyapunov function of the system and ensures exponential decay of arbitrary

perturbations of thermal equilibria, at least under some additional structural property of

the underlying reaction system (see Section 5). Energetic estimates like in Subsection 3.3

and Subsection 5.3 are the basic key in deriving further global estimates and existence

results.

If there are only two kinds of species with opposite sign of their charge (electrons and

holes) we obtain the classical drift{di�usion model of carrier transport in semiconductors

(the van Roosbroeck system, see [30]) as a special case of our model equations. Normally,

here more general boundary conditions as in (1.1), (1.3) are of interest. Then the steady

states need not correspond to thermal equilibria (see e. g. [1, 2, 24, 26, 31]). Starting from

�rst results of Mock (see [28]) the transient problem has been extensively investigated by

Gajewski and Gr�oger (see [12, 13, 14, 19, 22]).

As already mentioned we are mainly interested in electro{reaction{di�usion problems aris-

ing in semiconductor technology. Here more then two kinds of charged or uncharged species

as well as a lot of chemical reactions have to be taken into account (see [23]). From this

�eld of applications also the choice of our boundary conditions is motivated. Often the

model equations (1.1), (1.3) are modi�ed by assuming a local electro-neutrality condition

3



to determine the electrostatic potential (see [23, 31]). Special cases of this type where only

one kind of species is electrically charged have been investigated in [16, 27].

Other applications of electro{reaction{di�usion systems come from the �eld of electrolysis.

Whereas in papers of Amann (see [3, 4]) and Yu [33] the continuity equations are comple-

mented by an electro-neutrality condition in papers of Choi and Lui (see [7, 8, 9]) the full

system of continuity equations coupled with the Poisson equation is considered. Resulting

from the special situation in electrolysis smooth kinetic coe�cients and smooth domains

are assumed. The application of corresponding techniques to the case of nonsmooth data

in the situation of heterostructures as considered in this paper can not be expected, such

that other techniques are needed.

Our investigation of the multiple species problem is based on methods used by Gajewski

and Gr�oger for the van Roosbroeck system in heterostructures [14]. The main di�erence

to [14] consists in the fact that we have in (1.1) no Dirichlet conditions and more general

reactions. From this arise complications in deriving global lower bounds which we shall

overcome by using an additional energetic estimate (see Subsection 5.3 and [15, 18]).

In Section 2 we summarize the assumptions on the data our further considerations are

based on. Besides of assumptions concerning the principal structure of di�usion, drift

and reaction terms there are requirements of a more technical character (two dimensional

domains { cf. (2.1), growth condition for the source terms in the continuity equations

{ cf. (2.6), non-degeneracy condition of the reaction system { cf. (5.7)). Preliminary

results concerning estimates for the solution to the possibly nonlinear and nonlocal Poisson

equation, uniqueness of the solution to the evolution problem and �rst energetic estimates

are collected in Section 3. Here we make essential use of assumption (2.1). Section 4 is

devoted to existence results which are obtained by some regularization technique if the

additional assumption (2.6) is ful�lled. Under the same assumption global upper bounds

for the concentrations are established. The existence of global lower bounds as well as

results concerning the asymptotic behaviour are shown in Section 5 where assumption

(5.7) plays an important rôle. A more detailed representation of our investigations may be

found in the report [17].

Let us collect some notation and results which are relevant for the paper. We assume

that 
 � R
2 is a bounded (strictly) Lipschitzian domain. The notation of function spaces

L
p(
;Rk ), Lp(�;Rk), H1(
;Rk ), k 2 N , L	(
), corresponds to that in [25]. If there is no

danger of misunderstanding we shall write shortly Lp instead of Lp(
;Rk ), and H1 instead

ofH1(
;Rk). With regard to the de�nition of the spaces H1
0 (
[�N ),W 1;p

0 (
[�N ) we refer
to [20] or to [14, Appendix]. By Rk

+ , L
p
+ we denote the cones of nonnegative elements. For

the scalar product in Rk we use a centered dot. In our estimates positive constants, which

depend at most on the data of our problem, are denoted by c. Analogously, d : R+ ! R+

stands for continuous, monotonously increasing functions with limy!1 d(y) =1.

We apply Sobolev's imbedding theorems (see [25]) as well as some other imbedding results.

By a modi�ed application of the H�older inequality from [25, p. 317, formula (5)] we derive

kwkqLq(�) � c
 q kwkq�1L2(q�1)(
)
kwkH1(
) 8w 2 H

1(
); q � 2: (1.6)

4



By means of this trace inequality we get

kwkL1(�) � kwkL1(
) 8w 2 H
1(
) \ L

1(
): (1.7)

As a special case of the Gagliardo{Nirenberg inequality (see [11, 29]) we use the estimate

kwkLp � cp kwk1=pL1 kwk
1�1=p

H1 8w 2 H
1(
); 1 < p <1: (1.8)

As an extended form of Gagliardo{Nirenberg's inequality one obtains that for any � > 0

and any p 2 (1;1) there exists a c�;p > 0 such that

kwkpLp � � kw ln jwjkL1 kwkp�1H1 + c�;p kwkL1 8w 2 H
1(
): (1.9)

In [5] this inequality is proved for bounded domains with smooth boundary and p = 3. An

inspection of that proof yields the validity of (1.9) also for bounded Lipschitzian domains

and p 2 (1;1), since (1.8) is true in this case, too. Finally, from Trudinger's imbedding

theorem (see [32]) we get

kejwjkLp � dp(kwkH1) 8w 2 H
1(
); 1 � p <1: (1.10)

2 Formulation of the problem

In the sequel we shall formulate a general evolution problem which involves the concrete

model problem introduced in Section 1. First we summarize the assumptions which our

further considerations are based on:


 is a bounded Lipschitzian domain in R2
; � := @
;

�D; �N are disjoint open subsets of �; � = �D [ �N ;

�D \ �N consists of �nitely many points;

9>>>=
>>>;

(2.1)

qi 2 Z; ui; Ui 2 L
1(
); ui; Ui � c > 0;

Di 2 L
1(
); Di � c > 0; i = 1; : : : ; m;

U0 :=
Pm

i=1qiUi;

" 2 L
1(
); " � c > 0; � 2 L

1
+ (�N ); mes�D + k�kL1(�N ) > 0;

9>>>>>=
>>>>>;

(2.2)

H is a linear closed subspace of H1(
); H1
0 (
 [ �N) � H;

� 2 L(H1(
);R);

v � �(v) 2 H
1
0 (
 [ �N) 8v 2 H;

�(h)
R
�N
�(v � �(v)) d� = 0 8h 2 H

1
0 (
 [ �N); 8v 2 H;

9>>>>>=
>>>>>;

(2.3)

e0 : 
� R ! R satis�es the Carath�eodory conditions;

je0(x; y)j � c e
cjyj f.a.a. x 2 
; 8y 2 R; c > 0;

e0(x; y)� e0(x; z) � b0(x) (y � z) f.a.a. x 2 
; 8y; z 2 R with y � z;

b0 2 L
1
+ (
); kb0kL1 � c k�k; c > 0;

9>>>>>=
>>>>>;

(2.4)
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R

; R� are �nite subsets of Zm

+ � Z
m
+ ;

for � = 
; � and (�; �) 2 R� we de�ne

R
�
�� := k

�
��(x; y; z) (e

��� � e
���); x 2 �; y = (y0; y1; � � � ; ym) 2 R

m+1
;

�i := yi + qiy0; i = 1; : : : ; m; z 2 R; where
k
�
�� : �� R

m+1 � R ! R+ satis�es the Carath�eodory conditions;

k
�
��(x; �; �) is locally Lipschitz continuous uniformly with respect to x;

k
�
��(x; y; z) � ce

c (jy0j+jzj) f.a.a. x 2 �; 8(y; z) 2 Rm+2
;

k
�
��(x; y; z) � cR > 0 f.a.a. x 2 �; 8(y; z) 2 Rm+2 with y0; z 2 [�R;R]:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

(2.5)

For the proof of existence results we shall additionally suppose that

(e��� � e
���) max

i=1;:::;m
(�i � �i) � c

� mX
j=1

e
n� �j + 1

�

8� 2 R
m
; 8(�; �) 2 R�

; � = 
;�; with n
 = 2; n� = 1; c > 0:

9>>>=
>>>;

(2.6)

Finally, for the investigation of asymptotic properties we need a further assumption on the

structure of the reaction system which will be introduced later on (see (5.7)).

Remark 2.1. The subspace H, see (2.3), equipped with the norm of H1(
) will be re-

garded as a Hilbert space. Then it holds

H
� =

n
u0 : u0 = eu0jH ; eu0 2 H

1(
)�
o
:

If eu0 2 H
1(
)� may be identi�ed with a function eu0 2 L

2(
) then u0 = eu0jH may also be

identi�ed with the function eu0 since H1
0 (
 [ �N) � H and H

1
0 (
 [ �N) is dense in L

2(
).

Remark 2.2. By the assumptions (2.2){(2.4) it follows that there exists a c > 0 such that

krv0k2L2 +
Z


b0 v

2
0 dx+

Z
�N

�(v0 � �(v0))
2 d� � ckv0k2H1 8v0 2 H: (2.7)

Remark 2.3. We de�ne the function �0 by

�0(x; y) := e0(x; y)y �
Z y

0
e0(x; �) d�; x 2 
; y 2 R:

Often we will write only the second argument of the functions e0 and �0. By (2.4) we easily

�nd the properties

e0(y)(y � y)�
Z y

y
e0(�) d� � 1

2
b0 (y � y)2; �0(y) � 1

2
b0 y

2 a.e. on 
; 8y; y 2 R: (2.8)

Remark 2.4. For a special realization of H, � and e0 we refer to (1.5) and (1.4).
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Remark 2.5. The form of the reaction terms in (2.5) involves some important structural

properties. First, it holds

R
�
��(x; y; z)

mX
i=1

(�i � �i)(yi + qiy0) � 0 f.a.a. x 2 �; 8(y; z) 2 Rm+2
: (2.9)

This will ensure the energetic estimates in Section 3. Furthermore, for i = 1; : : : ; m

e
��i (e��� � e

���)(�i � �i) � �i e

n
(�i�1)�i+

P
j 6=i

�j�j

o
if �i > �i;

e
��i (e��� � e

���)(�i � �i) � �i e

n
(�i�1)�i+

P
j 6=i

�j�j

o
if �i < �i:

(2.10)

These relations are used for getting lower bounds in Section 4 and Section 5.

Remark 2.6. Condition (2.6) means only restrictions on the source terms of the continuity

equations whereas sink terms may be of higher order.

In order to formulate our general evolution problem we use the variables

v = (v0; v1; : : : ; vm) : R � 
! R
m+1 (potentials),

u = (u0; u1; : : : ; um): R � 
! R
m+1 (densities).

Analogously we set U = (U0; U1; : : : ; Um) where U0 =
Pm

i=1 qiUi (cf. (2.2)). Since we want

to take into account heterostructures the potentials must belong to a space of su�ciently

smooth functions while the densities are regarded as elements of the corresponding dual

space. We work with the function spaces

X := H �H
1(
;Rm); Y := L

2(
;Rm+1); W := X \ L
1(
;Rm+1):

We de�ne the operators A : W �X �! X
�, E0 : H �! H

� and E : X �! X
� by

hA(w; v); vi :=
Z



� mX
i=1

Diuie
wir�ir�i +

X
(�; �)2R


R


��(�; w; �(w0)) (�� �) � �

�
dx

+

Z
�

X
(�; �)2R�

R
�
��(�; w; �(w0)) (�� �) � � d�; v 2 X;

where �i = vi + qiv0; � i = vi + qiv0; i = 1; : : : ; m;

hE0v0; v0i :=
Z



�
"rv0rv0 + e0(v0)v0

�
dx +

Z
�N

�(v0 � �(v0))(v0 � �(v0)) d�; v0 2 H;

hEv; vi := hE0v0; v0i+
Z



mX
i=1

uie
vivi dx; v 2 X:

Then the problem which we are interested in reads as

u
0(t) + A(v(t); v(t)) = 0; u(t) = Ev(t) f.a.a. t 2 R+ ; u(0) = U;

u 2 H
1
loc(R+ ; X

�); v 2 L
2
loc(R+ ; X) \ L

1
loc(R+ ; L

1(
;Rm+1)):

9=
; (P)
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Remark 2.7. Problem (P) includes the precise weak formulation of the model problem

introduced in Section 1. Especially, by test functions of the form (w;�q1w; : : : ;�qmw),
w 2 H, we obtain that for solutions (u; v) to (P) it holds

u0(t) =
mX
i=1

qiui(t)jH in H
� 8t 2 R+ : (2.11)

Remark 2.8. If (u; v) is a solution to (P) then u; v have regularity properties which can

be derived from the concept of solution only: u 2 C(R+ ; Y ), u 2 Cw�(R+ ; L
1(
;Rm+1)),

v0 2 C(R+ ; H), vi 2 C(R+ ; L
2), i = 1; : : : ; m, v 2 Cw�(R+ ; L

1(
;Rm+1)). Moreover, these

regularity properties imply the validity of (2.11) in the sense of L2 and the relations

E0v0(t) = u0(t) in H
� 8t 2 R+ ;

vi(t) = ln
�
ui(t)=ui

�
in L

1(
) 8t 2 R+ ; i = 1; : : : ; m:

(2.12)

3 Preliminary results

3.1 Estimates for the solution to the Poisson equation

First we note that because of (2.7), (2.8), (2.4) and (1.10) the operator E0 : H ! H
� is

strongly monotone, hemicontinuous, and therefore bijective.

Lemma 3.1. Let the assumptions (2.1){(2.4) be ful�lled. Then there exist constants c > 0,

q > 2 and a continuous increasing function d such that for v0 2 H with E0v0 = u0 2 L
2(
)

kv0kL1 � c

�
ku0 ln ju0jkL1 + d(kv0kH1) + 1

�
; (3.1)

kv0kW 1;q � c

�
ku0kL2q=(2+q) + d(kv0kH1) + 1

�
: (3.2)

Proof. Let v0 2 H be the solution to E0v0 = u0. Then w := v0 � �(v0) 2 H
1
0 (
 [ �N)

and for h 2 H
1
0 (
 [ �N ) it holds �(h)

R
�N

� w d� = 0, cf. (2.3). Since H1
0 (
 [ �N) � H it

follows from the weak formulation of the Poisson equation thatZ


"rwrh dx+

Z
�N

� w h d� =

Z


(u0 � e0(�; v0))h dx 8h 2 H

1
0 (
 [ �N):

Because of the last assumption in (2.2) we can now apply to this equation results of Gr�oger

for elliptic equations [21, Theorem 1] and [20, Theorem 1] and obtain

kv0kL1 � c

�
ku0 � e0(�; v0)kL	 + kv0kH1

�
; 	(s) = (1 + s) ln (1 + s)� s for s � 0;

kv0kW 1;q � c

�
ku0 � e0(�; v0)k(W 1;q=(q�1)

0 (
[�N ))�
+ kv0kH1

�
for some q > 2:

Because of (2.4) and (1.10) the remaining norms of u0 � e0(�; v0) can be estimated in such

a way that the assertions follow. �
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3.2 Uniqueness

From now up to the end of Section 5 we suppose the assumptions (2.1){(2.5) to be ful�lled.

Theorem 3.1. There exists at most one solution to (P) .

Proof. It su�ces to prove uniqueness on every �nite time interval S := [0; T ]. Let

(uj; vj); j = 1; 2, be solutions to (P). Then there exists a constant c such that

kuj(t)kL1; kvj(t)kL1; kvj(t)kL1(�); j�(vj0(t))j; kvj0(t)kW 1;q � c f.a.a. t 2 S; j = 1; 2;

where q > 2 (cf. Lemma 3.1). Let eu := u
1 � u

2, ev := v
1 � v

2. Testing E0v
1
0(t)�E0v

2
0(t) =eu0(t) by ev0(t) we obtain by the strong monotonicity of E0 that

kev0(t)kH1 � c

mX
i=1

keui(t)kL2 f.a.a. t 2 S: (3.3)

Let zi := eui=ui, i = 1; : : : ; m. We use (0; z1; : : : ; zm) 2 L
2(S;X) as test function for (P) and

take into account that R�
��(x; �; �) is uniformly locally Lipschitz continuous. The norms ofevi in L2(
) and L2(�) can be estimated by the corresponding norms of zi. With inequality

(3.3) and r := 2q=(q � 2) we conclude as follows

mX
i=1

�
kzi(t)k2L2+

Z t

0
kzik2H1ds

�
� c

Z t

0

mX
i=1

�
kzikLrkrv10kLqkrzikL2

+krev0kL2krzikL2 + kzik2L2 + kev0k2H1 + kzik2L2(�)
�
ds

�
Z t

0

mX
i=1

�
1
2
kzik2H1 + c

�
kv10krW 1;qkzik2L2 + kzik2L2

��
ds

�
Z t

0

mX
i=1

�
1
2
kzik2H1 + ckzik2L2

�
ds 8t 2 S:

Gronwall's lemma yields zi = 0 on S; i = 1; : : : ; m. With (3.3) the assertion follows. �

3.3 Energetic estimates

In this subsection we collect results on energetic estimates which can be obtained similar

to the techniques in [15, 18]. We de�ne the functional �: X �! R,

�(v) :=

Z



�
"

2
jrv0j2 +

Z v0

0
e0(y) dy +

mX
i=1

ui (e
vi � 1)

�
dx+

Z
�N

�

2
(v0 � �(v0))

2 d�:

By (1.10) this functional is continuous, Gâteaux di�erentiable and it holds @� = E. Since

E is strictly monotone � is strictly convex. Its conjugate functional F : X� �! R ,

F (u) := sup
v2X

n
hu; vi � �(v)

o
;

is proper, lower semicontinuous and convex. It holds u = Ev = @�(v) if and only if

v 2 @F (u), cf. [10]. F may be interpreted as the free energy of the reaction{di�usion

system.
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Lemma 3.2. If u 2 H
� � L

2
+(
;R

m) then the value of F (u) can be calculated as

F (u) =

Z



�
"

2
jrv0j2 + �0(v0) +

mX
i=1

�
ui(ln

ui

ui
� 1) + ui

��
dx +

Z
�N

�

2
(v0 � �(v0))

2 d�

where v0 ful�ls the relation E0v0 = u0. The functional F jH��L2+(
;R
m) is continuous.

For the proof we refer to [17, Lemma 3.2].

Along any solution (u; v) to (P) the function t 7! F (u(t)) is absolutely continuous and it

holds (see [6])
d

dt
F (u(t)) = �D(v(t)) f.a.a. t 2 R+

where the dissipation rate D is given by D(v) := hA(v; v); vi; v 2 W . By the de�nition

of the operator A and by (2.9) the dissipation rate is nonnegative for all v 2 W . This

together with (3.1), (2.11) and (1.7) ensures the following result.

Theorem 3.2. Let (u; v) be a solution to (P). Then

F (u(t2)) � F (u(t1)) � F (U) for t2 � t1 � 0;

kv0(t)kH1 +
mX
i=1

kui(t) lnui(t)kL1 +
Z t

0
D(v(s)) ds � c 8t 2 R+ ;

kv0(t)kL1; kv0(t)kL1(�); j�(v0(t))j � c 8t 2 R+

where c depends only on the data.

4 Existence

4.1 The regularized problem (PN)

In the sequel we consider a problem on an arbitrarily �xed time interval S := [0; T ] which

arises from (P) by regularizing the reaction and boundary terms. Let, for N 2 R+ ,

�N : Rm+2 ! [0; 1] be a �xed Lipschitz continuous function such that

�N (y; z) :=

8><
>:

0 if j(y; z)j1 � N;

1 if j(y; z)j1 � N=2
; j(y; z)j1 := maxfjy0j; : : : ; jymj; jzjg:

We de�ne the operator AN : W �X �! X
� by

hAN(w; v); vi :=
Z



� mX
i=1

Diuie
wir�ir�i

+
X

(�; �)2R


�N(w; �(w0))R


��(�; w; �(w0)) (�� �) � �

�
dx

+

Z
�

X
(�; �)2R�

�N (w; �(w0))R
�
��(�; w; �(w0)) (�� �) � � d�; v 2 X:

10



The operator E is not changed. Now we are looking for solutions to the regularized problem

u
0(t) + AN(v(t); v(t)) = 0; u(t) = Ev(t) f.a.a. t 2 S; u(0) = U;

u 2 H
1(S;X�); v 2 L

2(S;X) \ L
1(S; L1(
;Rm+1)):

9=
; (PN)

4.2 Solvability of (PN)

Theorem 4.1. For each N 2 R+ there exists a unique solution to (PN).

Proof. For �xed N 2 R+ , � = 
;�; i = 1; : : : ; m; we de�ne g�i : �� R
m+1 � R ! R by

g
�
i (x; y; z) := �N (y; z)

X
(�; �)2R�

R
�
��(x; y; z)(�i � �i):

Then g�i satis�es the Carath�eodory conditions and the following properties can be veri�ed:

jg�i (x; y; z)j � c� f.a.a. x 2 �; 8(y; z) 2 Rm+2
;

jg�i (x; y; z)� g
�
i (x; y; z)j � L� j(y � y; z � z)j1

f.a.a. x 2 �; 8(y; z); (y; z) 2 Rm+2
;

mX
i=1

g
�
i (x; y; z)(yi + qiy0) � 0 f.a.a. x 2 �; 8(y; z) 2 Rm+2

;

g
�
i (x; y; z) � c� e

yi f.a.a. x 2 �; 8(y; z) 2 Rm+2 with yi � 0:

Thus we can apply [17, Theorem 6.1] for electro{di�usion systems with weakly nonlinear

volume and boundary source terms to obtain the assertion. �

4.3 Estimates for the solution to (PN)

We are going to �nd estimates for solutions to (PN) which do not depend on N . In this

paper we prove such estimates under the additional assumption (2.6). At �rst, note that

for the solution to (PN) the relation (2.11) is valid. The dissipation rate corresponding

to (PN), DN(v) := hAN(v; v); vi, is nonnegative for all v 2 W . Therefore the results of

Theorem 3.2 remain true for the solution to (PN) and with Lemma 3.1 we �nd that

F (u(t)) � c; kui(t) lnui(t)kL1 ; kui(t)kL1 � c; i = 1; : : : ; m; 8t 2 S; (4.1)

kv0(t)kL1; kv0(t)kL1(�); j�(v0(t))j � c4:2;

kv0(t)kW 1;q � c

� mX
i=1

kui(t)kL2q=(2+q) + 1

�
8t 2 S:

(4.2)

All these estimates in (4.1) and (4.2) are independent of N and T . Next we look for upper

bounds for the concentrations. We intend to use the Moser iteration and start with some

preliminary estimate.
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Lemma 4.1. Additionally we suppose (2.6). Then there exist constants c; c4:3 > 0 depend-

ing only on the data, but not on N and T , such that for the solution (u; v) to (PN)

kui(t)kL2 � c; i = 1; : : : ; m; kv0(t)kW 1;q � c4:3 8t 2 S: (4.3)

Proof. Let K := max f1; kU1=u1kL1; : : : ; kUm=umkL1g, zi := (ui=ui �K)+, i = 1; : : : ; m.

We use the test function 2et(0; z1; : : : ; zm) for (PN). By (2.6) the source terms in the volume

and boundary reactions are of at most second and �rst order, respectively. Moreover

j�N j � 1. With (4.2), (1.6), the H�older and Young inequalities we �nd that

e
t
mX
i=1

kzi(t)k2L2 �
Z t

0
e
s

mX
i=1

�
� �kzik2H1

+c
�
kzik3L3 + 1 +

�
1 +

mX
j=1

kzjkLr0
�
kzikH1(kzikLr + 1)

��
ds 8t 2 S

with r = 2q=(q � 2), r0 = 2q=(q + 2), q from (3.2) and some � > 0. For kzik3L3 we apply
(1.9) with p = 3, � := �=(4

Pm
i=1 kzi ln zikL1(S;L1)+1). Moreover, from (1.9) with p = r and

p = r
0, respectively, from (1.8) and Young's inequality we �nd a constant c > 0 such that

mX
i=1

�
1+

mX
j=1

kzjkLr0
�
kzikH1(kzikLr + 1)

�
mX
i=1

�
�

mX
j=1

kzj ln zjkL1 + �
2

�
kzik2H1 + c

�
1 +

mX
i=1

kzi ln zik2r
0=(r0�1)

L1

�

with � de�ned as above. Thus we can continue our estimates by

e
t
mX
i=1

kzi(t)k2L2 �
Z t

0
e
s

mX
i=1

��
2�

mX
j=1

kzj ln zjkL1 � �
2

�
kzik2H1 + c

�
kzi ln zik2r

0=(r0�1)

L1 + 1
��

ds:

By the choice of � the factor in front of kzik2H1 is nonpositive and with (4.1) we arrive at

e
t
mX
i=1

kzi(t)k2L2 � c

Z t

0
e
s

mX
i=1

(kzi ln zik2r
0=(r0�1)

L1(S;L1) + 1) ds � c e
t 8t 2 S

which gives the estimate for ui(t). Since r
0
< 2, by (4.2) the result for v0(t) follows. �

Theorem 4.2. Additionally we assume (2.6). Then there exists a constant c4:4 > 0 de-

pending only on the data, but not on N and T , such that for the solution (u; v) to (PN)

kui(t)=uikL1 � c4:4 8t 2 S; i = 1; : : : ; m: (4.4)

The same estimate holds for the L1(�){norms of ui(t)=ui for a.a. t 2 S.

Proof. The proof is based on Moser iteration. In [14] such techniques are used for the

van Roosbroeck equations. Since our system contains more general volume and boundary

reaction terms we obtain Moser exponents di�ering from those in [14]. Let zi be de�ned
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as in the proof of Lemma 4.1, and let wi := z
p=2
i where p � 4. We use the test function

pe
t (0; z

p�1
1 ; : : : ; z

p�1
m ) for (PN) and de�ne

� := c
2r
4:3 + 1 where r = 2q=(q � 2); q from (3.2): (4.5)

Having in mind (2.6) and j�N j � 1 we obtain for all t 2 S

e
t
mX
i=1

Z


jwi(t)j2dx �

Z t

0
e
s

mX
i=1

�
� �kwik2H1

+ cp

�
krv0kLqkrwikL2(kwikLr + 1) + kwik2(p+1)=pL2(p+1)=p

+ kwik2L2(�) + 1
��

ds:

By (1.6), (1.8) and Young's inequality we obtain the iteration formula

mX
i=1

kzi(t)kpLp + 1 � c4:6p
2r
�

� mX
i=1

sup
s2S

kzi(s)kp=2Lp=2
+ 1

�2p=(p�2) 8t 2 S; p � 4 (4.6)

where c4:6 > 1 depends only on the data and �; r are de�ned in (4.5). Now we set p = 2k,

k 2 N , k � 2. From the corresponding recursion formula (4.6) we conclude that

ak � (24r� c4:6 a1)
c�2

k

; ak :=
mX
i=1

sup
s2S

kzi(s)k2
k

L2
k + 1; c� :=

1Y
j=1

2j

2j � 1
:

Passing to the limit k !1 we obtain

mX
i=1

kzi(t)kL1 � p
m

�
24r� c4:6

� mX
i=1

sup
s2S

kzi(s)k2L2 + 1
��c� 8t 2 S:

With Lemma 4.1 and (1.7) the desired estimates are veri�ed. �

We intend to estimate the concentrations from below (or the negative part of the chemi-

cal potentials from above) by Moser iteration, too. Corresponding estimates for the van

Roosbroeck equations were given in [14, Lemma 4.6].

Lemma 4.2. Let the estimate (4.4) for the solution (u; v) to (PN) be ful�lled. Then there

exists a constant c > 0 such that the recursion formula

e
tk(vi +K)�(t)kpLp � c

Z t

0
e
s
p
2r
�

�
k(vi +K)�(s)kp

Lp=2
+ 1

�
ds

8p � 2; 8t 2 S; i = 1; : : : ; m;

holds where K := max f1; ln ku1=U1kL1; : : : ; lnkum=UmkL1g, �; r from (4.5) and c depends

on the data, but not on N , T and p.

Proof. Let z := (ln (ui=ui) +K)�. For p � 2 we take the test function which has the i{th

component �petzp�1ui=ui, the other components shall be zero. From the L1{estimates

for uj=uj; j = 1; : : : ; m, and v0 on 
 and at � and from the structure of the volume
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and boundary reactions (see (2.10)) it follows that R�
��(�i � �i)z

p�1
ui=ui � c z

p�1. Since

j�N j � 1 estimates like in [14, p. 24] give the recursion formula

e
tkz(t)kpLp �

Z t

0
e
s
cp

2r
�

�
kzkp

Lp=2
+ 1

�
ds 8t 2 S; (4.7)

which proves the lemma. �

Lemma 4.3. Under the assumption of Lemma 4.2 there exists a constant c > 0 depending

only on the data, but not on N and T , such that for the solution (u; v) to (PN)

k(vi +K)�(t)kL1 � c e
cT 8t 2 S; i = 1; : : : ; m:

Proof. Using the notation of Lemma 4.2 we continue the estimation in (4.7) for p = 2 by

e
tkz(t)k2L1 � ce

tkz(t)k2L2 � c

Z t

0
e
s(kz(s)k2L1 + 1) ds 8t 2 S

and apply Gronwall's Lemma to obtain that kz(t)kL1 � c e
cT , t 2 S. �

Theorem 4.3. Let the estimate (4.4) for the solution (u; v) to (PN) be ful�lled. Then there

exists an increasing function d4:8 > 0 depending only on the data, but not on N , such that

kv�i (t)kL1 � d4:8(T ) 8t 2 S; i = 1; : : : ; m: (4.8)

The same estimate holds for the L1(�){norms of v�i (t) for a.a. t 2 S.

Proof. We use the notation of Lemma 4.2 again. Similar as in the proof of Lemma 4.6 in

[14] we �nd from (4.7) that

kz(t)kL1 � c4:9�

�
sup
s2S

kz(s)kL1 + 1
�

8t 2 S: (4.9)

Thus Lemma 4.3 supplies the estimate kz(t)kL1 � d(T ). Together with (1.7) we obtain a

lower bound for lnui(t)=ui on 
 and at � depending only on the data and on T . �

4.4 Existence result and global estimates

Theorem 4.4. Under the additional assumption (2.6) there exists a (unique) solution

(u; v) to problem (P). It holds

kui(t)=uikL1 � c4:4 8t 2 R+ ; i = 1; : : : ; m: (4.10)

The same estimate is valid for the L1(�){norms of ui(t)=ui for a.a. t 2 R+ . Moreover

ess inf
x2


ui(t) � ess inf
x2


ui e
�d4:8(t) 8t 2 R+ ; i = 1; : : : ; m: (4.11)
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Proof. We de�ne a mapping from R+ to L1(
;Rm+1)� L
1(
;Rm+1) by

(u(t); v(t)) := (u eN(t)
(t); v eN(t)

(t)) for t > 0;

(u(0); v(0)) := (U;E�1
0 U0; ln [U1=u1]; : : : ; ln [Um=um])

where (u eN(t)
; v eN(t)

) solves (PeN(t)) on S := [0; t] and fN(t) := 2maxfc4:2; ln c4:4; d4:8(t)g.
Since fN(t) � fN(s) for t � s and since the solution to each problem (PN) is unique we get

(u eN(s)
(s); v eN(s)

(s)) = (u eN(t)
(s); v eN(t)

(s)); s � t. Thus we obtain that (u; v)j[0;t] is a solution
to (PeN(t)) on [0; t]. By the choice of fN(t) we guarantee that the operators A eN(t)

and A

coincide on the solution to (PeN(t)). Therefore (u; v) is a solution to (P). Uniqueness has

been proved in Theorem 3.1. The estimates follow from Theorem 4.2, Theorem 4.3. �

The lower bound obtained in (4.11) depends on t, especially it tends to zero if t!1. But

one might ask if there is a positive constant as global lower bound for the concentrations.

This question is closely related to the asymptotic behaviour of the solution to (P) which

will be discussed in the next section.

5 Global lower bounds and asymptotics

5.1 Steady states

In this section we suppose the general assumptions (2.1){(2.5). Further assumptions will

be speci�ed later on. First, we introduce some spaces:

S := spanf�� � : (�; �) 2 R
 [ R�g;

U :=
n
u 2 X

� : u0 =
mX
i=1

qiuijH ; (hu1; 1i; : : : ; hum; 1i) 2 S
o
;

U? =
n
v 2 X : r� = 0; � 2 S? where �i = vi + qiv0; i = 1; : : : ; m

o
:

Having in mind Remark 2.7 and using the test function (0; 1; : : : ; 1) we obtain for a solution

(u; v) to (P) the following invariance property

u(t) 2 U + U 8t 2 R+ : (5.1)

Therefore it makes sense to look for steady states (u�; v�) to (P) which ful�l the property

u
� 2 U + U . As in [18, Theorem 3.1], [15, Theorem 3.2] we obtain the following result.

Theorem 5.1. There exists a unique steady state (u�; v�) to (P) in the sense that

A(v�; v�) = 0; u� = Ev
�
; u

� 2 U + U; v
� 2 W: (5.2)

The element u� is the unique minimizer of F on U +U , while the element v� is the unique

minimizer of �� hU; �i on U?. Furthermore

u
�
; v

� 2 L
1(
;Rm+1); u�i � c > 0 a.e. on 
; a�i := e

v�i +qiv
�

0 = const > 0; i = 1; : : : ; m:
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5.2 Asymptotics of the free energy

According to Theorem 3.2 we already know that the free energy along trajectories of (P)

remains bounded and decays monotonously. Now we want to investigate the asymptotic

behaviour of the free energy in more detail. Let (u�; v�) be the steady state (5.2) and let

(u; v) be a solution to (P). Because of v� 2 U? and u(t)� u
� 2 U , t 2 R+ , we get

mX
i=1

k
q
ui(t)=u

�
i � 1k2L2 + kv0(t)� v

�
0k2H1 � c (F (u(t))� F (u�)) 8t 2 R+ : (5.3)

Here we used the properties (2.7) and (2.8).

Theorem 5.2. Let (u; v) be a solution to (P) and de�ne

a(t) := (a1(t); : : : ; am(t)); ai(t) := ui(t)=ui e
qiv0(t); t 2 R+ ; i = 1; : : : ; m:

Then there exists a sequence ftkgk2N, tk 2 R+ , with tk ! 1 such that
q
ai(tk) !

q
a
�
i in

H
1(
), v0(tk)! v

�
0 in H, u(tk)! u

� in Y where (a�; v�0) belongs to the set

M :=
n
(a; v0) 2 Rm

+ �H :
mY
i=1

a
�i
i =

mY
i=1

a
�i
i 8(�; �) 2 R
 [R�

;

(E0v0; u1; : : : ; um) 2 U + U where ui := ui ai e
�qiv0 ; i = 1; : : : ; m

o

and it holds u�0 = E0v
�
0, u

�
i = uia

�
i e
�qiv

�

0 . Moreover F (u(t))! F (u�) as t!1.

Proof. Let (u; v) be a solution to (P). Then
q
ai(t) 2 H

1(
) for a.a. t 2 R+ and by

Theorem 3.2 we obtain that

D(v(t)) � cfD(a(t)) f.a.a. t 2 R+ with some c > 0; (5.4)

fD(a) :=

Z



� mX
i=1

����r
q
ai=a

�
i

����2 + X
(�;�)2R


� mY
i=1

q
ai=a

�
i

�i �
mY
i=1

q
ai=a

�
i

�i
�2�

dx

+

Z
�

X
(�;�)2R�

� mY
i=1

q
ai=a

�
i

�i �
mY
i=1

q
ai=a

�
i

�i
�2
d�:

(5.5)

Moreover, by the de�nition of ai and a
�
i (cf. Theorem 5.1)q

ai=a
�
i � 1 = e

qi(v0�v
�

0)=2 (
q
ui=u

�
i � 1) + e

qi(v0�v
�

0)=2 � 1;

which yields with (5.3) and Theorem 3.2 for i = 1; : : : ; m that

k
q
ai(t)=a

�
i � 1k2L2 + kv0(t)� v

�
0k2H1 � c(F (u(t))� F (u�)) � c 8t 2 R+ : (5.6)

Because of kD(v)kL1(R+) < 1 (cf. Theorem 3.2) and (5.4) we �nd a sequence tk ! 1
with fD(a(tk)) ! 0 as tk ! 1. This together with the relations (5.4), (5.5) and (5.6)
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enables us to show similarly to step ii) in the proof of Theorem 5.2 in [18] that, at least

for a subsequence, it holds

q
ai(tk)!

q
a
�
i in H

1
; a

�
i 2 R+ ; i = 1; : : : ; m;

mY
i=1

a
�
i
�i =

mY
i=1

a
�
i
�i 8(�; �) 2 R
 [ R�

;

v0(tk) * v
�
0 in H

1(
), v�0 2 H, u(tk) ! u
� in Y , u�i = uia

�
i e
�qiv

�

0 , i = 1; : : : ; m, and

Ev(tk) * (E0v
�
0; u

�
1; : : : ; u

�
m) in X

�. Thus u�0 = E0v
�
0 and since U + U is weakly closed we

have (a�; v�0) 2 M: Testing u0(tk) � u
�
0 = E0v0(tk) � E0v

�
0 by v0(tk) � v

�
0 and using the

convergence results just mentioned we �nd the strong convergence v0(tk) ! v
�
0 in H. By

u
� 2 H

� � L
2
+(
;R

m) and the continuity result in Lemma 3.2 we get F (u(tk)) ! F (u�).

The monotonous decay of the free energy (Theorem 3.2) gives F (u(t))! F (u�) as t!1.

�

Let us make some remarks concerning the set M. If (u; v) is a steady state in the sense

of (5.2) then ai := e
vi+qiv0 = const > 0 and it holds

Qm
i=1 a

�i
i =

Qm
i=1 a

�i
i for all (�; �) 2

R
 [R�. Moreover we have (E0v0; u1; : : : ; um) 2 U + U . Thus (a; v0) 2 M. On the other

hand, let be (a; v0) 2 M and ai > 0, i = 1; : : : ; m, then (u; v) de�ned by u0 := E0v0,

ui := ui ai e
�qiv0 , vi := lnai � qiv0, i = 1; : : : ; m, is a steady state in the sense of (5.2).

If there are elements (a; v0) 2 M with a =2 intRm
+ then we have no correspondence of such

elements to a steady state (u; v) in the sense of (5.2). To exclude such situations we might

assume that

M� intRm
+ �H: (5.7)

Then by Theorem 5.1 M = f(a�; v�0)g follows.

Remark 5.1. For the van Roosbroeck system relation (5.7) is ful�lled. But (5.7) can be

veri�ed also for more complicated reaction systems considered in [23].

5.3 Exponential decay of the free energy

The additional assumption (5.7) leads to sharper asymptotic results. Without the knowl-

edge of global a priori bounds for the concentrations from above and below away from

zero it is possible to show that the free energy along trajectories of the system (P) decays

exponentially to its steady state value. This result can be obtained by the same methods

as in [18, Theorem 5.3] (or as in [15], where the nonlinearity e0 of the Poisson equation is

included, but not the nonlocal term �).

Theorem 5.3. Let (5.7) be satis�ed. Then there exists a � > 0 depending only on the

data such that

F (u(t))� F (u�) � e
��t (F (U)� F (u�)) 8t � 0 (5.8)

if (u; v) is a solution to (P).
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Next, we collect estimates resulting from (5.8) which will be of importance for the start of

global a priori estimates for the concentrations from below by positive constants.

Corollary 5.1. Let (u; v) be a solution to (P) and let (5.8) be satis�ed. Then there exists

a constant c > 0 depending only on the data such that for i = 1; : : : ; m it holds

k
q
ui(t)=u

�
i � 1kL2; k

q
ai(t)=a

�
i � 1kL2 � c e

��t=2
;

kv0(t)� v
�
0kH1 ; kui(t)� u

�
i kL1; kai(t)� a

�
i kL1 � c e

��t=2 8t 2 R+ :

(5.9)

Moreover there exists a constant c5:10 > 0 depending only on the data such that

kv0 � v
�
0kL2(R+;H1); kv0 � v

�
0kL1(R+;L1); kv0 � v

�
0kL1(R+;L1(�)) � c5:10;

kui=u�i � 1kL1(R+;L1); kui=u�i � 1kL1(R+;L1(�)) � c5:10; i = 1; : : : ; m:
(5.10)

Proof. By the L1{estimates for v0 and v
�
0 and since ui(t)=u

�
i 2 H

1(
) f.a.a. t 2 R+ we

have f.a.a. t

jui(t)=u�i � 1j � c

�
jai(t)=a�i � 1j+ jv0(t)� v

�
0j
�

� c

����qai(t)=a�i � 1
���2 + ���qai(t)=a�i � 1

���+ jv0(t)� v
�
0j
�

a.e. in 
; �:
(5.11)

Thus all assertions in (5.9) are a consequence of (5.8), (5.3) and (5.6). From (5.9) the �rst

four estimates in (5.10) follow immediately. With (5.11) and the trace inequality (1.6) we

obtain

kui=u�i � 1kL1(�) � c

n
k
q
ai=a

�
i � 1k2H1 + k

q
ai=a

�
i � 1k2=3L2 + kv0 � v

�
0kH1

o
:

Since kD(v)kL1(R+) � c we �nd by (5.4) and (5.9) that k
q
ai=a

�
i � 1kL2(R+;H1) � c. This

together with (5.9) proves the last assertion in (5.10). �

5.4 Global lower bounds for the chemical potentials

Next we are looking for lower bounds for the chemical potentials, in other words, for

positive lower bounds for the concentrations, which do not depend on time. Corresponding

estimates for the van Roosbroeck equations were given in [14, Lemma 4.6]. But the main

di�erence to our problem is the fact that there essentially Dirichlet boundary conditions

for the continuity equations are used to �nd a start of the iteration process. This fails in

our setting.

In what follows besides of (2.1){(2.5) we shall suppose that there is a constant c5:12 de-

pending only on the data such that

kuikL1(R+;L1(
)); kui=uikL1(R+;L1(�)) � c5:12; i = 1; : : : ; m; (5.12)

and that (5.8) is satis�ed if (u; v) is a solution to problem (P). At �rst we prove a lemma

which provides a suitable start for the Moser iteration.
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Lemma 5.1. Let (u; v) be a solution to (P) and let (5.12) and (5.8) be ful�lled. Then

there exists a constant c > 0 depending only on the data such that

kv�i (t)kL1 � c; 8t 2 R+ ; i = 1; : : : ; m:

Proof. For �xed i 2 f1; : : : ; mg the functional �: H1 ! R , given by

�(w) :=

Z


u
�
i (x)#(w(x)) dx; #(y) =

8<
:� ln(1� y) if y � 0;

+1 if y > 0
; u

�
i from (5.2)

is convex and lower semicontinuous. Its conjugate G := �� : (H1)� ! R is proper, convex

and lower semicontinuous. If (u; v) is a solution to (P) then G(ui(t)) may be written as

G(ui(t)) =

Z



�
u
�
i

�
ln
ui

u�i

��
(t)� (ui � u

�
i )
�(t)

�
dx:

Since �z(t) := �(1� u
�
i =ui(t))

� 2 @G(ui(t)) for a.a. t 2 R+ Br�ezis' formula ([6]) yields

G(ui(t))�G(Ui) = �
Z t

0
hu0i(s); z(s)iH1 ds =

Z t

0
hA(v; v); (0; : : : ; z; : : : ; 0)i ds 8t 2 R+ :

Let z := (ln(ui=u
�
i ))

�. Since ��i =const (see Theorem 5.1) we can evaluate

uir(vi + qiv0)rz = uir[(vi � v
�
i + qi(v0 � v

�
0)]rz = �u�i (rz)2 + u

�
i qir(v0 � v

�
0)rz:

Taking into account the boundedness of u�i from above and below we derive for t 2 R+

G(ui(t)) �
Z t

0

�
� � krzk2L2 + ckr(v0 � v

�
0)kL2krzkL2

+

Z



X
(�; �)2R


k


��

h
e
��� � e

���
i
(�i � �i)

�
1� u

�
i

ui

��
dx

+

Z
�

X
(�; �)2R�

k
�
��

h
e
��� � e

���
i
(�i � �i)

�
1� u

�
i

ui

��
d�

�
ds+G(Ui)

(5.13)

where � > 0. By assumption (2.2) the initial value G(Ui) is �nite. We decompose 
 into


+(s) := fx 2 
 : ui(s; x) � u
�
i (x)g and 
�(s) := fx 2 
 : ui(s; x) < u

�
i (x)g. On 
+

reaction terms multiplied by the test function vanish. On 
� we have

�
e
��� � e

���
� �

1� u
�
i

ui

��
= e

����
� mY
j=1

�uj
u�j

e
qj(v0�v

�

0)
��j � mY

j=1

�uj
u�j

e
qj(v0�v

�

0)
��j��u�i

ui
� 1

�
:

The expression in the brackets as function of (u1=u
�
1; : : : ; um=u

�
m; v0 � v

�
0) is Lipschitz con-

tinuous on [0; C]m�[�C;C], and at (1; : : : ; 1; 0) its value is zero. Since uj=uj; j = 1; : : : ; m;

and v0 are globally bounded (see (5.12) and Theorem 3.2) we get for a.a. s 2 R+

���e���(s) � e
���(s)

��� j�i � �ij � c

� mX
j=1

juj(s)=u�j � 1j+ jv0(s)� v
�
0j
�

a.e. on 
�:
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Next, for �i > �i (then �i � 1) we estimate (cf. also (2.10))

�
e
��� � e

���
�
(�i � �i)

u
�
i

ui

� (�i � �i)e
����

�
e
q�� (v0�v

�

0 )
�ui
u�i

��i�1Y
j 6=i

�uj
u�j

��j � e
q�� (v0�v

�

0)
mY
j=1

�uj
u�j

��j�
:

Arguing as above we �nd for a.a. s 2 R+

�
e
���(s) � e

���(s)
�
(�i � �i)

u
�
i

ui(s)
� c

� mX
j=1

juj(s)=u�j � 1j+ jv0(s)� v
�
0j
�

a.e. on 
�:

Similar estimates are obtained for �i < �i. The same arguments hold for the boundary

terms. Applying (5.10) we continue estimate (5.13) by

G(ui(t)) � c

�
1 + kv0 � v

�
0k2L2(R+;H1) + kv0 � v

�
0kL1(R+;L1) + kv0 � v

�
0kL1(R+;L1(�))

+
mX
j=1

�
kuj=u�j � 1kL1(R+;L1) + kuj=u�j � 1kL1(R+;L1(�))

��
� c 8t 2 R+ :

Thus kz(�)kL1 as well as kv�i (�)kL1 is bounded on R+ . �

Theorem 5.4. Let (u; v) be a solution to (P) and let (5.12) and (5.8) be ful�lled. Then

there exists a constant c5:14 > 0 depending only on the data such that

kv�i (t)kL1 � c5:14; ess inf
x2


ui(t) � ess inf
x2


ui e
�c5:14 8t 2 R+ ; i = 1; : : : ; m: (5.14)

A corresponding estimate holds for the L1(�){norms of v�i (t) for a.a. t 2 R+ .

Proof. Arguing as in the proof of Theorem 4.3 with z(t) := (ln(ui(t)=ui) + K)� and K

de�ned in Lemma 4.2 we obtain inequality (4.9) for all t 2 R+ . Lemma 5.1 supplies the

global boundedness of kz(t)kL1. With (2.12) and (1.7) the other assertions follow. �

Corollary 5.2. Let (u; v) be a solution to (P) and let (5.12) and (5.14) be ful�lled. Then

by [18, Theorem 5.1] relation (5.8) is satis�ed. Thus, if global upper bounds are known

the existence of global lower bounds is equivalent to the fact that the free energy decays

exponentially to its steady state value F (u�).

5.5 Asymptotics of the densities and potentials

Theorem 5.5. Let (u; v) be a solution to (P) and let (5.12) and (5.14) be ful�lled. Then

for p 2 [1;+1) there exist constants c; �p > 0 depending only on the data such that

kui(t)� u
�
ikLp ; kvi(t)� v

�
i kLp � c e

��p t 8 t � 0; i = 0; : : : ; m:
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Proof. Because of Corollary 5.2 the estimates (5.9) are valid. From (5.12) and (5.9) we

obtain for p 2 [1;+1), i = 1; : : : ; m,

kui(t)� u
�
ikpLp � kui(t)� u

�
i kL1kui(t)� u

�
ikp�1L1 � c

p
e
�� t=2 8 t 2 R+ :

Analogously, because of (5.9) and Theorem 3.2 we estimate

kv0(t)� v
�
0kpLp � kv0(t)� v

�
0kL1kv0(t)� v

�
0kp�1L1 � c

p�1kv0(t)� v
�
0kH1 � c

p
e
�� t=2 8t 2 R+ :

The same is true for vi, i = 1; : : : ; m, since by (2.12), (5.12) and (5.14) we �nd

kvi(t)� v
�
i kL1 = klnui(t)� lnu�ikL1 � ckui(t)=u�i � 1kL1 8t 2 R+ : �

5.6 Summary

Now we summarize our results which we have obtained under the assumptions (2.1){(2.5)

completed by the growth condition (2.6) and non-degeneracy requirement (5.7).

Theorem 5.6. We assume (2.1){(2.5), (2.6) and (5.7). Then there is a unique solution

to (P). For this solution global estimates as in (5.12) and (5.14) are satis�ed. Moreover

the results on the asymptotic behaviour as in Theorem 5.3 and Theorem 5.5 are valid.
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