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Abstract

We treat a wide class of electro-reaction—diffusion systems with nonsmooth data
in two dimensional domains. Forced by applications in semiconductor technology
a nonlinear and nonlocal Poisson equation is involved. We state global existence,
uniqueness and asymptotic properties of solutions to the evolution problem. Essential
tools in our investigations are energetic estimates, Moser iteration, regularization
techniques and results for electro—diffusion systems with weakly nonlinear volume and
boundary source terms. Especially, we discuss the connection between the existence
of global lower bounds for the chemical potentials and the property that the energy
functional decays exponentially to its equilibrium value as time tends to infinity.

AMS: 35B40, 35B45, 35D05, 35K45, 35K57, 78A35

KEY WORDS: Reaction—diffusion systems, drift—diffusion processes, motion of charged particles,
global estimates, existence, uniqueness, asymptotic behaviour

1 Introduction

In this paper we state global existence, uniqueness and asymptotic properties of solutions
to evolution problems for electro—reaction—diffusion systems in heterostructures. First, we
describe some concrete model equations which we are interested in.

Let €2 be a bounded domain, ' =T'p UI'y Uy its boundary, mes 'y = 0, v the outer unit
normal. We consider m electrically charged species X; with charge numbers ¢; and initial
distributions U;: 2 — R, . Their concentrations u;: Ry x 2 — R, and their chemical
potentials v;: Ry x Q — R vary by diffusion processes, by chemical reactions running in €2
as well as on [' and, finally, by a drift which is caused by the inner electric field. The charge
density up = Y1, q;u; occurs as source term for the electrostatic potential vy = vy — (o
where vp: Ry x Q@ — R and (p: Ry — R are some auxiliary quantities (cf. [17]).
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We consider a finite number of mass action type reactions of the form
a1X1+---+ame‘:‘ﬂle—i—---—i-ﬁme

and denote by R? and R' the sets of pairs (a,3) of stoichiometric coefficients o =
(aqy...,0m), B = (Bi,...,0m) belonging to all reactions in Q and on I', respectively.
Mass conservation for each species yields the initial boundary value problem

aui

ot +V'ji+R?('aUUavla'“aUmaCO) =0 on (OaOO)XQ)

v ]z - RE(',’UU,’Ul, T )UmaCO) =0 on (0,00) X Fa (11)

ui(0) = U; onQ, i=1,...,m,

v

w=u;e”, Ji=-D;uwV(§, (G=v+qvy, i=1,...,m,
RE: Z (al—ﬂZ)Ri@,E:Q,F,Z:L,m,

(a,B)ERE
Ri@ = k’lfﬁ(‘ra Vo, V1, 5, Um, (0) (ezznl @it — BEZI ﬁi(i)a
r €Y, (vo,v1,...,0,) ER™, G ER, (a,8) € R®, ¥ =Q,T,

(1.2)

with given reference densities @;: 2 — R, diffusivities D;: @ — R, and kinetic coefficients
kys: ExR™? — R, . The remaining quantities vo, (o are obtained by the Poisson equation
and by a charge conservation relation as follows (cf. [17]):

—V - (eVug) +eo(-,v0) = Y. qiu on (0,00) x Q,
i=1
Vo = (0 on (0,00) X FD,
,(1.3)
v-(eVu) +1v0 = 7( on (0,00) x Iy,
/60(',U0) de = /quul dz on (0,00),
Q iz )
eo(z,y) = aqili(x) + fo(@) + fix) e’ — folz)e ™, € Q, y R, (1.4)
i=1

where the dielectric permittivity €: 2 — R, , the capacity 7: I'y — R, and the functions
fo: Q=R fi, fo: @ - R, are given. Here homogeneous boundary conditions for v, are
involved, since non-homogeneities not depending on time can be eliminated as in [17].

Assuming Y7 ¢;(c; — 3;) = 0 for all (o, 8) € RYURY, f; = 0,7 = 0,1,2, and setting
(o = 0 we arrive at the standard problem of electro—diffusion with multiple reacting species
as considered e. g. in [18]. The more complex form of (1.3) is motivated by problems arising
in semiconductor technology we are mainly interested in. Moreover, in such problems all
physical parameters w;, D;, kfﬁ, e, 7, f1 and fy depend on the space variable z in a
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nonsmooth way. In general besides of the kinetic coefficients kfﬁ also the diffusivities D;
depend on the state variables. But such a dependency will be neglected in this paper.

A precise formulation of our model equations (1.1), (1.3) will be given in Section 2. Here
we consider only the weak formulation of (1.3): For fixed ¢ find (v, (p) with vy — {y €
H;(QUTy), (o € R such that

/Q {EVUOVh * (eo(-, Vo) — ngul> (h+ f)} dx + /FN 7(vo — Co)hdl' =0

V(h,&) € Hy(QUT'y) x R,

(1.3

Setting Ty = h + & we easily obtain the following equivalent formulation: Find (v, (p) €
H x R such that

/ {SV’UUVWO + (60(', Uo) — Zqzuz> ﬁg} dr +
Q i=1

/FN T(vy — m(v0)) (To — 7(T0)) AT =0 Voo € H and (o = m(wo)

(1.3%)

where

|rD|—1/ wdl  if [Tp| #0,
I'p

H=H{(QUTy) +R, 7(w) =
1 .
[l Peveasey /FN Twdl if [Tp|=0,

we  HY(Q). (15)

An essential feature of the model equations (1.1), (1.3) is the fact that they allow thermal
equilibria as steady states (see Section 5). Moreover, there is a convex functional which can
be interpreted from the viewpoint of thermodynamics as free energy. This functional turns
out to be a Lyapunov function of the system and ensures exponential decay of arbitrary
perturbations of thermal equilibria, at least under some additional structural property of
the underlying reaction system (see Section 5). Energetic estimates like in Subsection 3.3
and Subsection 5.3 are the basic key in deriving further global estimates and existence
results.

If there are only two kinds of species with opposite sign of their charge (electrons and
holes) we obtain the classical drift-diffusion model of carrier transport in semiconductors
(the van Roosbroeck system, see [30]) as a special case of our model equations. Normally,
here more general boundary conditions as in (1.1), (1.3) are of interest. Then the steady
states need not correspond to thermal equilibria (see e. g. [1, 2, 24, 26, 31]). Starting from
first results of Mock (see [28]) the transient problem has been extensively investigated by
Gajewski and Groger (see [12, 13, 14, 19, 22]).

As already mentioned we are mainly interested in electro—reaction—diffusion problems aris-
ing in semiconductor technology. Here more then two kinds of charged or uncharged species
as well as a lot of chemical reactions have to be taken into account (see [23]). From this
field of applications also the choice of our boundary conditions is motivated. Often the
model equations (1.1), (1.3) are modified by assuming a local electro-neutrality condition
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to determine the electrostatic potential (see [23, 31]). Special cases of this type where only
one kind of species is electrically charged have been investigated in [16, 27].

Other applications of electro—reaction—diffusion systems come from the field of electrolysis.
Whereas in papers of Amann (see [3, 4]) and Yu [33] the continuity equations are comple-
mented by an electro-neutrality condition in papers of Choi and Lui (see [7, 8, 9]) the full
system of continuity equations coupled with the Poisson equation is considered. Resulting
from the special situation in electrolysis smooth kinetic coefficients and smooth domains
are assumed. The application of corresponding techniques to the case of nonsmooth data
in the situation of heterostructures as considered in this paper can not be expected, such
that other techniques are needed.

Our investigation of the multiple species problem is based on methods used by Gajewski
and Groger for the van Roosbroeck system in heterostructures [14]. The main difference
to [14] consists in the fact that we have in (1.1) no Dirichlet conditions and more general
reactions. From this arise complications in deriving global lower bounds which we shall
overcome by using an additional energetic estimate (see Subsection 5.3 and [15, 18]).

In Section 2 we summarize the assumptions on the data our further considerations are
based on. Besides of assumptions concerning the principal structure of diffusion, drift
and reaction terms there are requirements of a more technical character (two dimensional
domains — cf. (2.1), growth condition for the source terms in the continuity equations
— cf. (2.6), non-degeneracy condition of the reaction system — cf. (5.7)). Preliminary
results concerning estimates for the solution to the possibly nonlinear and nonlocal Poisson
equation, uniqueness of the solution to the evolution problem and first energetic estimates
are collected in Section 3. Here we make essential use of assumption (2.1). Section 4 is
devoted to existence results which are obtained by some regularization technique if the
additional assumption (2.6) is fulfilled. Under the same assumption global upper bounds
for the concentrations are established. The existence of global lower bounds as well as
results concerning the asymptotic behaviour are shown in Section 5 where assumption
(5.7) plays an important role. A more detailed representation of our investigations may be
found in the report [17].

Let us collect some notation and results which are relevant for the paper. We assume
that Q C R? is a bounded (strictly) Lipschitzian domain. The notation of function spaces
LP(Q,RY), LP(T,RF), H'(Q,R¥), k € N, LY(Q), corresponds to that in [25]. If there is no
danger of misunderstanding we shall write shortly L? instead of L?(Q, R*), and H' instead
of H'(Q, R*). With regard to the definition of the spaces H}(QUI'y), Wy (QUI y) we refer
to [20] or to [14, Appendix]. By R¥, L% we denote the cones of nonnegative elements. For
the scalar product in R* we use a centered dot. In our estimates positive constants, which
depend at most on the data of our problem, are denoted by c. Analogously, d: Ry — R,
stands for continuous, monotonously increasing functions with lim, . d(y) = oc.

We apply Sobolev’s imbedding theorems (see [25]) as well as some other imbedding results.
By a modified application of the Hdlder inequality from [25, p. 317, formula (5)] we derive

leollgey < cad lwlltt g ol Vo e H'(9), ¢>2. (1.6)
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By means of this trace inequality we get

|wl|peoqry < |wllpeo@)y Yw € H'(Q) N L®(). (1.7)
As a special case of the Gagliardo—Nirenberg inequality (see [11, 29]) we use the estimate
lwller < e ol Pl Vo € H'(9), 1< p < oo (1.8)

As an extended form of Gagliardo—Nirenberg’s inequality one obtains that for any € > 0
and any p € (1,00) there exists a ¢, > 0 such that

lwliZe < ellwlnfwll|z [lwllf:" + ceplwll Vo € HY(Q). (1.9)

In [5] this inequality is proved for bounded domains with smooth boundary and p = 3. An
inspection of that proof yields the validity of (1.9) also for bounded Lipschitzian domains
and p € (1,00), since (1.8) is true in this case, too. Finally, from Trudinger’s imbedding
theorem (see [32]) we get

||e‘“’|||Lp < dp([Jw||gr) Yw e HY(Q), 1< p< . (1.10)

2 Formulation of the problem

In the sequel we shall formulate a general evolution problem which involves the concrete
model problem introduced in Section 1. First we summarize the assumptions which our
further considerations are based on:

Q is a bounded Lipschitzian domain in R?, T := 99, )
I'p, I'y are disjoint open subsets of I', ' = 'p U Ty, s (2.1)
I'p N Ty consists of finitely many points; )
qZEZ) Uy UZGLOO(Q)a Usy UiZC>Oa )
D, e L®(Q), D;>¢>0,i=1,...,m
,,(L ) >c i m | (2.9)
Up := 21216 Us;
e€L®(Q), e>c>0,7€ LY(Cy), mesTp + ||7||L1ry) > 0; )
H is a linear closed subspace of H'(Q2), Hy(QUTy) C H; )
e L(H'(Q),R),
v—m(v) € Hy(QUTy) Vv € H,
7(h) fp,7(v —m(v))dl' = 0 Vh € Hy(QUTy), Yo € H; )
eo: {2 X R — R satisfies the Carathéodory conditions, )
leo(z,y)| < ce¥ faa z€Q VyeR, ¢>0, L (2.4)
eo(z,y) —eo(x,2) > by(z) (y — 2) faa. x € Q, Yy,z € R with y > 2,
b € L), ol > e, ¢ >0 J



RE, RY are finite subsets of L7 x 177

for ¥ =Q, I and (a, 8) € R” we define

Ryy = kyg(w,y,2) (¥ —e7), €%, y = (Yo, 41, Ym) € R™,
G =Y +qYyo, t=1,...,m, z € R, where

kfﬁ: ¥ x R™ x R — R, satisfies the Carathéodory conditions,
kfﬁ(m, -,+) is locally Lipschitz continuous uniformly with respect to z,
k2s(z,y,2) < cecWIH2) faa 2 €%, V(y,2) € R™2,

kfﬁ(x,y,z) >cp > 0faa. €%, V(y, z) € R™"? with y,z € [-R, R].

(2.5)

For the proof of existence results we shall additionally suppose that

g _ B¢ o S nx (G
(e e )Z:ml,a}’(m(ﬂz az)gc(;e J—i—l)

(2.6)
V¢ € R™, Y(a,B) € R*, =T, withng=2,np=1, c>0.

Finally, for the investigation of asymptotic properties we need a further assumption on the
structure of the reaction system which will be introduced later on (see (5.7)).

Remark 2.1. The subspace H, see (2.3), equipped with the norm of H'(2) will be re-
garded as a Hilbert space. Then it holds

H" = {UOC Uy = ﬂ0|H, 1~L0 EHI(Q)*}

If 4y € H'(2)* may be identified with a function @y € L?(S2) then uy = |, may also be
identified with the function %y since Hy (2 UTy) C H and H; (2 U T'y) is dense in L*(Q).

Remark 2.2. By the assumptions (2.2)-(2.4) it follows that there exists a ¢ > 0 such that

Vo[22 + /Qbo vda+ [ (oo~ m(v0))2dr 2 el oo € . (2.7)
N

Remark 2.3. We define the function ¢y by

Yy
¢o(z,y) == eo(z,y)y — /0 eo(z,n)dn, z€Q, yeR
Often we will write only the second argument of the functions ey and ¢y. By (2.4) we easily
find the properties
Yy

eo(y)(y —7) — /_ eo(n) dn > %bo (y—7)% ooly) > %bo y? ae. onQ, Vy,yeR (2.8)
Yy

Remark 2.4. For a special realization of H, = and ey we refer to (1.5) and (1.4).



Remark 2.5. The form of the reaction terms in (2.5) involves some important structural
properties. First, it holds

m

Rys(z,y,2) Y (i — Bi) (yi + gsyo) > 0 faa. z € 5, V(y, 2) € R™2. (2.9)

i=1

This will ensure the energetic estimates in Section 3. Furthermore, for i =1,...,m

e5 (e — ) (a; — B;) < {(ai_l)gﬁz#i ajCj} if a; > 63,

Z

(2.10)
e % (e =€) (i — B;) < B; 6{(ﬁi_1)4i+2#i ﬂjgj} if a; < ;.

These relations are used for getting lower bounds in Section 4 and Section 5.

Remark 2.6. Condition (2.6) means only restrictions on the source terms of the continuity
equations whereas sink terms may be of higher order.

In order to formulate our general evolution problem we use the variables

v = (Vo,V1,...,Um) : R X Q—R™"! (potentials),

u = (U, Uty .., Up): R X Q—R™  (densities).

Analogously we set U = (Uy, Uy, ...,U,) where Uy = >, ¢;U; (cf. (2.2)). Since we want
to take into account heterostructures the potentials must belong to a space of sufficiently
smooth functions while the densities are regarded as elements of the corresponding dual
space. We work with the function spaces

X :=HxH'(Q,R™), Y :=L*QR""), W:=XnL®Q,R"").
We define the operators A: W x X — X*, Ey: H— H* and £: X — X* by
(A(w,v),D) := /{ZDU@“”VCVC + > R (0, w,w(wo))(a—ﬂ)-Z}dx

(a, B)ER?

+/ Z Rig(wm(wy) (@ = §)-Tdl, TEX,

where §; = v; + qivo, (; =V +¢qilo, 1 =1,...,m,

(Eyvo, To) ::/

[ {svuowo + eo(w0)T }dx + [ 700 = 7(00)) (W0 — (@) dT, T € H,

'y
(Ev, ) := (Eyvg, o) —I—/ Zﬂievim de, 7€ X.
Q0

Then the problem which we are interested in reads as

u'(t) + A(v(t),v(t)) =0, u(t) = Ev(t) fa.a. t € Ry, u(0) =U, }

P
u € Hl%)c(R-i—’X*)’ CAS Lloc(R-HX) a Li)c?c(R-F>LOO(Q’Rm+1))' ( )



Remark 2.7. Problem (P) includes the precise weak formulation of the model problem
introduced in Section 1. Especially, by test functions of the form (w, —qw, ..., —gn,w),
w € H, we obtain that for solutions (u,v) to (P) it holds

uo(t) = i qui(t)|y in H* Vt e Ry, (2.11)
i=1

Remark 2.8. If (u,v) is a solution to (P) then u, v have regularity properties which can
be derived from the concept of solution only: u € C(R,,Y), u € Cy- (R, L>®(Q, R™)),
v €e€CR,H),v; € C(R, L), i=1,...,m, v € Cy (R, L®(Q, R™)). Moreover, these
regularity properties imply the validity of (2.11) in the sense of L? and the relations

EgUo(t) = Uo(t) in H* Vt € R+,

2.12
vi(t) =1n (uz(t)/ﬂz) in L*(Q)VteR,, i=1,...,m. (212)

3 Preliminary results

3.1 Estimates for the solution to the Poisson equation

First we note that because of (2.7), (2.8), (2.4) and (1.10) the operator Ey: H — H* is
strongly monotone, hemicontinuous, and therefore bijective.

Lemma 3.1. Let the assumptions (2.1)—(2.4) be fulfilled. Then there exist constants ¢ > 0,
q > 2 and a continuous increasing function d such that for vy € H with Eyvy = uy € L*(Q)

Ivollzee < e(fluoIn fuolllx + d(llvollur) + 1), (3.1)

||'U0||Wl,q S C(||U0||L2q/(2+q) + d(“U()”Hl) + 1) (32)

Proof. Let vy € H be the solution to Eyvy = ug. Then w := vy — 7(vy) € Hj(QUTy)
and for h € Hj(QUTy) it holds w(h) [ Twdl' =0, cf. (2.3). Since Hj(QUTy) C H it
follows from the weak formulation of the Poisson equation that

/SVthdx—i- TwhdF:/(ug—eg(-,Uo))hdx Vh e HL(QUTy).
Q Q

'y

Because of the last assumption in (2.2) we can now apply to this equation results of Groger
for elliptic equations [21, Theorem 1] and [20, Theorem 1] and obtain

|vol|z < c(||u0 —eo(, vo)||pw + ||UO||H1), U(s)=(1+s)ln(l+s)—sfors>0,
[vol[wa < C(“Uo - 60("UU)H(W(}"I/(‘I*”(QUFN))* + ||U0||H1) for some ¢q > 2.

Because of (2.4) and (1.10) the remaining norms of ug — ey(-, v9) can be estimated in such
a way that the assertions follow. [



3.2 Uniqueness
From now up to the end of Section 5 we suppose the assumptions (2.1)—(2.5) to be fulfilled.
Theorem 3.1. There exists at most one solution to (P) .

Proof. It suffices to prove uniqueness on every finite time interval S := [0,7]. Let
(u?,v7), j = 1,2, be solutions to (P). Then there exists a constant ¢ such that

[a? @)z, 107 (@)oo, 107 (@) |z ey, [T @G @), 1§ (@) llwro < ¢ faa te s, j=1,2,

where ¢ > 2 (cf. Lemma 3.1). Let @ := u' — u?, 0 := v' — v2 Testing Fyvl(t) — Eqvd(t) =
Uo(t) by p(t) we obtain by the strong monotonicity of Ey that

1Bo(®) < e [|T(0)]2 faa. t € S. (3.3)
=1

Let z; := U; /Ui, i = 1,...,m. We use (0,21, ...,2,) € L*(S, X) as test function for (P) and
take into account that Rfﬁ(x, -, -) is uniformly locally Lipschitz continuous. The norms of
7; in L?(Q) and L?(T") can be estimated by the corresponding norms of z;. With inequality
(3.3) and r := 2¢q/(q — 2) we conclude as follows

m

> (Il [ Ialinas) <c [ {1z

=1

Vol Le [V 2i | 2

Lr
+| Vo[l 221V 2l 2 + |2l 72 + 1Tl 7 + ||Zi||%2(r)} ds
t m
2 1 2 2
< [ S { bl + el ona ol + 1) }
=1

t m
< ['S {8zl + el as vies
=1

Gronwall’s lemma yields z; =0 on S, i = 1,...,m. With (3.3) the assertion follows. I

3.3 Energetic estimates

In this subsection we collect results on energetic estimates which can be obtained similar
to the techniques in [15, 18]. We define the functional ®: X — R,

(v) ::/Q{g|vuo|2+/0”° eo(y) dy+i§;m (e — 1) }dx+/FN = (v — m(v0))* dI”

By (1.10) this functional is continuous, Gateaux differentiable and it holds 0® = E. Since
E is strictly monotone ® is strictly convex. Its conjugate functional F': X* — R,

F(w) = sup {(u,0) — 9(0) .

is proper, lower semicontinuous and convex. It holds u = Ev = 0®(v) if and only if
v € OF(u), cf. [10]. F may be interpreted as the free energy of the reaction-diffusion
system.



Lemma 3.2. Ifu € H* x L2 (Q,R™) then the value of F(u) can be calculated as

T

F(u):/Q{%|va|2+¢0(vo)—I—i(ui(ln%—1)—|—Ei)}dx—|— = (v = m(wo))? dI

i=1 i I

where vy fulfils the relation Eyvy = ug. The functional F|H*XL3F(Q’Rm) 18 continuous.

For the proof we refer to [17, Lemma 3.2].

Along any solution (u,v) to (P) the function ¢ — F(u(t)) is absolutely continuous and it
holds (see [6])

d

th( u(t)) = —D(v(t)) fa.a. t € Ry

where the dissipation rate D is given by D(v) := (A(v,v),v), v € W. By the definition
of the operator A and by (2.9) the dissipation rate is nonnegative for all v € W. This
together with (3.1), (2.11) and (1.7) ensures the following result.

Theorem 3.2. Let (u,v) be a solution to (P). Then
F(u(t ))<F(( 1)) < F(U) forty >t >0,
oo ()| —i—ZHuZ Y Inw (1) [ 2 +/ ds<c VteR,,

[[vo(8) [l o, ||vo( Mooy, [w(vo(t))] < ¢ Vi€ Ry

where ¢ depends only on the data.

4 Existence

4.1 The regularized problem (Py)

In the sequel we consider a problem on an arbitrarily fixed time interval S := [0, T which
arises from (P) by regularizing the reaction and boundary terms. Let, for N € R,,
pn: R™2 — [0, 1] be a fixed Lipschitz continuous function such that

0 if |(y,2)lw > N,
pN(y,z) = ) |(yaz)|00 = max{|y0|, s |ym|’ |Z|}
L if |(y,2)]e < N/2

We define the operator Ay: W x X — X* by
(A (w,v),7) = / {ZDime’”iVQV@
QLo
+ % owlwym(we) B (- w,m(w) (o= §)- T} d

(o, B)ERY

+/ Y pv(w,m(wo)) Ry (-, w, m(w)) (@ = B) - ¢dl’, 7 e X.

(o, B)ERT
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The operator E is not changed. Now we are looking for solutions to the regularized problem
u'(t) + Ax(v(t),v(t)) =0, u(t) = Ev(t) fa.a. t €S, u(0) =T, }

1 2 1 (PN)
w e HY(S, X*), v e L*(S,X) N L¥(S, L®(Q, R™)).

4.2 Solvability of (Py)
Theorem 4.1. For each N € R, there exists a unique solution to (Py).

Proof. For fixed N e R, ¥ =Q,[', i =1,...,m, we define g7: ¥ x R""! x R — R by

g?(x,y,Z) = pN(yaz) Z Ri@(wayaz)(ﬂz — ai)-
(o, B)ERE

Then ¢ satisfies the Carathéodory conditions and the following properties can be verified:
97 (z,y,2)| < cs faa. v €Y, V(y,z2) € R™,
fa.a. r €%, V(y,2), (7,Z) € R"2,
Zgiz('raya 2)(yi + qiyo) > 0 faa. z € X, V(y, z) € R™2,
i=1

g7 (z,y,2) < cse¥ faa. z€X, V(y,z) € R™? with y; < 0.

Thus we can apply [17, Theorem 6.1] for electro—diffusion systems with weakly nonlinear
volume and boundary source terms to obtain the assertion. [

4.3 Estimates for the solution to (Py)

We are going to find estimates for solutions to (Px) which do not depend on N. In this
paper we prove such estimates under the additional assumption (2.6). At first, note that
for the solution to (Py) the relation (2.11) is valid. The dissipation rate corresponding
to (Px), Dn(v) := (An(v,v),v), is nonnegative for all v € W. Therefore the results of
Theorem 3.2 remain true for the solution to (Px) and with Lemma 3.1 we find that

F(u(t)) <e¢, |ui(t) Inu;(t)||z1, ||wi(®)||r <e, i=1,...,m, VYteS, (4.1)

oo @)z, l[vo(@)llzeery, [7(vo(t))] < ca,

m (4.2)
ool < e 3 Jus®) e +1) VEES.
=1

All these estimates in (4.1) and (4.2) are independent of N and T'. Next we look for upper
bounds for the concentrations. We intend to use the Moser iteration and start with some
preliminary estimate.
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Lemma 4.1. Additionally we suppose (2.6). Then there exist constants ¢, ¢4.3 > 0 depend-
ing only on the data, but not on N and T, such that for the solution (u,v) to (Py)

()2 < e, i=1,...,m, ||lvo(t)[|lwre <cu3 VEES. (4.3)
Proof. Let K := max {1, ||U1/@||r=,-- -, [|Un/TGml||r>}, zi == (ui/u; — K)*,i=1,...,m.
We use the test function 2¢*(0, 21, . . ., 2, ) for (Px). By (2.6) the source terms in the volume

and boundary reactions are of at most second and first order, respectively. Moreover
lon| < 1. With (4.2), (1.6), the Holder and Young inequalities we find that

m t m
¢Szl < [ e { bl
=1 =1
e (Il + 1 (13 legllr ) aslln (il + 1) pds Vee s
7=1

with r = 2¢/(q — 2), ' = 2q/(q + 2), ¢ from (3.2) and some § > 0. For ||z;]|3, we apply
(1.9) with p = 3, € := 0/(4 X1 ||2i In ;|| oo (s,.1) + 1). Moreover, from (1.9) with p = r and
p = ', respectively, from (1.8) and Young’s inequality we find a constant ¢ > 0 such that

(1+3 )12

i=1

- “ “ 2r' [(r' —1
< Z (ez |zj In 2|1 + %) |23 + c(l + Z ||z lnzz-||L1/( )>
=1 7 =1

1

w2l (il + 1)

m

)

with € defined as above. Thus we can continue our estimates by
m t m m it
¢Szl < [ e S { (26X Izl — )zl + (a0 +1) b as.
i=1 i=1 j=1

By the choice of € the factor in front of ||z;||%. is nonpositive and with (4.1) we arrive at
m t m Cir
e > Nlzt))i < C/O e’ > (/|ziln zi||2LT,o/((;L11)) +1)ds<ce' VteS
i=1 =1
which gives the estimate for u;(¢). Since ' < 2, by (4.2) the result for vy(¢) follows. [

Theorem 4.2. Additionally we assume (2.6). Then there exists a constant c¢44 > 0 de-
pending only on the data, but not on N and T, such that for the solution (u,v) to (Py)

i () /Tl | e < s VEES, i=1,...,m. (4.4)

The same estimate holds for the L*°(I")-norms of u;(t)/u; for a.a. t € S.

Proof. The proof is based on Moser iteration. In [14] such techniques are used for the
van Roosbroeck equations. Since our system contains more general volume and boundary
reaction terms we obtain Moser exponents differing from those in [14]. Let z; be defined

12



as in the proof of Lemma 4.1, and let w; := 27/

pet (0,207, .., 2271) for (Py) and define

where p > 4. We use the test function

K = c35 + 1 where 7 = 2¢q/(q — 2), ¢ from (3.2). (4.5)

Having in mind (2.6) and |px| < 1 we obtain for all t € S

m t m
¢S [ w)Pde < [e S { - dlhwil
=179 0 =1
\V4 Y- ) (p+1)/p 1 ds.
t ep([IVvol el el (lwillor + 1) + sl ZEEE + il Zagry +

By (1.6), (1.8) and Young’s inequality we obtain the iteration formula

u . (e /(p—2)
Szl + 1< oo™ s( X sup () [0 + 1) VieS,p>4  (46)

i=1 $€5

where ¢, > 1 depends only on the data and &, r are defined in (4.5). Now we set p = 2%,
k € N, k > 2. From the corresponding recursion formula (4.6) we conclude that

ar < (2K cygay)” 02 —ZSUPHZZ || w1, o ::sz i
i=1 S€ Jj=1 -

Passing to the limit k¥ — oo we obtain

ZHZZ Mz < v/m (2" fic4s(Zsup|lzz( 2. +1))" vtes.

=1 s€S

With Lemma 4.1 and (1.7) the desired estimates are verified. [

We intend to estimate the concentrations from below (or the negative part of the chemi-
cal potentials from above) by Moser iteration, too. Corresponding estimates for the van
Roosbroeck equations were given in [14, Lemma 4.6].

Lemma 4.2. Let the estimate (4.4) for the solution (u,v) to (Py) be fulfilled. Then there
exists a constant ¢ > 0 such that the recursion formula

t
s+ K@)l < e [ er (| o+ K) (), +1) ds
Vp>2, VteS, i1=1,...,m,

holds where K := max {1,In ||@, /Ui||pe, . . ., 10 |[Tm/Unll=}, &, 7 from (4.5) and ¢ depends
on the data, but not on N, T and p.

Proof. Let z := (In (u;/u;) + K)~. For p > 2 we take the test function which has the i—th
component —pe'zP~1%; /u;, the other components shall be zero. From the L>-estimates
for u;/w;, 5 = 1,...,m, and vy on Q and at [' and from the structure of the volume
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and boundary reactions (see (2.10)) it follows that R}s(c; — £;)2P~'u;/u; < czP~'. Since
lon| < 1 estimates like in [14, p. 24] give the recursion formula

et||2(t) / e*cp” K ||z||’£p/2 + 1) ds Vtes, (4.7)
which proves the lemma. [J

Lemma 4.3. Under the assumption of Lemma 4.2 there exists a constant ¢ > 0 depending
only on the data, but not on N and T, such that for the solution (u,v) to (Py)

|(vi + K)~(t)||2 < cet VteS, i=1,...,m.
Proof. Using the notation of Lemma 4.2 we continue the estimation in (4.7) for p = 2 by

t
e'llz®)llz: < ce'llz(B)Iz < C/ e*(lz(s)[lz: +1)ds Vte S
0
and apply Gronwall’s Lemma to obtain that ||z(¢)||;: <ce,t€ S. O

Theorem 4.3. Let the estimate (4.4) for the solution (u,v) to (Py) be fulfilled. Then there
exists an increasing function dyg > 0 depending only on the data, but not on N, such that

o (Ol < dis(T) VEES, i=1,..m. (148)

The same estimate holds for the L*°(T')—-norms of v; (t) for a.a. t € S.

Proof. We use the notation of Lemma 4.2 again. Similar as in the proof of Lemma 4.6 in
[14] we find from (4.7) that

|2(1)|| L < c4_9f{(su[S) l2(s)||: + 1) vVt e S. (4.9)
s€

Thus Lemma 4.3 supplies the estimate ||2(t)||r~ < d(T'). Together with (1.7) we obtain a
lower bound for Inwu;(t)/@; on Q and at I' depending only on the data and on 7. [

4.4 Existence result and global estimates

Theorem 4.4. Under the additional assumption (2.6) there exists a (unique) solution
(u,v) to problem (P). It holds

||U,Z(t)/UZ||Loo < C44 Vt€R+, 1=1,...,m. (410)
The same estimate is valid for the L (I")-norms of u;(t)/w; for a.a. t € R,. Moreover

esseiélf ui(t) > esseiélfﬂi e s e R,, i=1,...,m. (4.11)
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Proof. We define a mapping from R, to L*(Q2, R™*) x L>*(Q, R™*!) by

(u(t),v(t)) := (uﬁ(t) (t),vﬁ(t)(t)) for t > 0,
(u(0),v(0)) := (U, Ey Uy, In [Uy /101], . . ., In [Up, /U))
V%) solves (P

N(t) N(t) ﬁ(t)) on S := [0 t] and N() = ZmaX{c42,lnc44,d48( )}

Since N(¢) > N(s) for ¢ > s and since the solution to each problem (Py) is unique we get
(uﬁ( )( 8), Vs ( )) = (ugz ( ), v N(t)( s)), s < t. Thus we obtain that (u,v)]|j is a solution
to (Pﬁ(t)) N and A
coincide on the solution to (Pﬁ(t))' Therefore (u,v) is a solution to (P). Uniqueness has

been proved in Theorem 3.1. The estimates follow from Theorem 4.2, Theorem 4.3. [

where (u~(
on [O,t]. By the choice of N(t) we guarantee that the operators A«

The lower bound obtained in (4.11) depends on ¢, especially it tends to zero if ¢ — oo. But
one might ask if there is a positive constant as global lower bound for the concentrations.
This question is closely related to the asymptotic behaviour of the solution to (P) which
will be discussed in the next section.

5 Global lower bounds and asymptotics

5.1 Steady states

In this section we suppose the general assumptions (2.1)—(2.5). Further assumptions will
be specified later on. First, we introduce some spaces:

S :=span{a—f(: (« ﬁ) € RTUR'},
U:= {uEX*: quul|H, (u, 1), ..., {tum, 1)) ES},
UL:{UEX:V(:Q (est WhereCZ-:Ui—l-qivo,izl,...,m}.

Having in mind Remark 2.7 and using the test function (0, 1, ..., 1) we obtain for a solution
(u,v) to (P) the following invariance property

u(lt) eU+U VteR,. (5.1)

Therefore it makes sense to look for steady states (u*,v*) to (P) which fulfil the property
u* €U+ U. As in [18, Theorem 3.1], [15, Theorem 3.2] we obtain the following result.

Theorem 5.1. There ezists a unique steady state (u*,v*) to (P) in the sense that
A", v") =0, u* =Ev", v eU+U, v* € W. (5.2)

The element u* is the unique minimizer of F' on U + U, while the element v* is the unique
minimizer of ® — (U,-) on U*. Furthermore

w*, vt € LO(Q,R™), uf>c¢>0ae onQ, a :=e" 9% =const >0,i=1,...,m.
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5.2 Asymptotics of the free energy

According to Theorem 3.2 we already know that the free energy along trajectories of (P)
remains bounded and decays monotonously. Now we want to investigate the asymptotic
behaviour of the free energy in more detail. Let (u*,v*) be the steady state (5.2) and let
(u,v) be a solution to (P). Because of v* € U+ and u(t) —u* €U, t € R,, we get

> i) /ui = LI + [loo(t) — w5l < e (F(u(t)) — F(u®) Vt€R..  (5.3)
=1

Here we used the properties (2.7) and (2.8).

Theorem 5.2. Let (u,v) be a solution to (P) and define

a(t) == (a1(t),...,am(t)), a;(t) == w;(t)/u; %V t € Ry, ey T

Then there exists a sequence {tg}ren, te € Ry, with ty — oo such that \/a;(ty) ay in
HY(Q), vo(tr) = vy in H, u(ty) — u® in' Y where (a®,vg) belongs to the set

M = {(aUO)GR x H: Haal—Haﬂl a, ) € RYURT,

=1

(Eovo, U1, .., Up) € U + U where u; :=T;a;e 4™, i = 1,...,m}

and it holds uf = Egvl, uf = U;ate % . Moreover F(u(t)) — F(u®) as t — co.

Proof. Let (u,v) be a solution to (P). Then /a;(t) € H'(Q) for a.a. ¢ € R, and by
Theorem 3.2 we obtain that

D(v(t)) > ¢D(a(t)) faa.teR, with some ¢ > 0, (5.4)

(5.5)

o 5 My - Tl aja "] ar
(a,8)cRE Li=1 i=1
Moreover, by the definition of a; and af (cf. Theorem 5.1)
m ] = ptivo—v5)/2 (m — 1) + eBi0=v8)/2 _
which yields with (5.3) and Theorem 3.2 for ¢ = 1,...,m that
Iai(t)/a; = 117> + llvo() = v5llip < c(F(u(t)) = F(u)) <c VteR..  (5:6)

Because of ||D(v)||1r,) < oo (cf. Theorem 3.2) and (5.4) we find a sequence t;, — oo
with D(a(tx)) — 0 as t, — oo. This together with the relations (5.4), (5.5) and (5.6)
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enables us to show similarly to step ii) in the proof of Theorem 5.2 in [18] that, at least
for a subsequence, it holds

m

v ai(te) \/71nH1 a; € Ry, m, [[al® Ha'ﬂl (o, B) € RPUREY,
i=1
vo(te) — o) in HY(Q), v € H, u(ty) — u® in Y, u = Wale %%, i = 1,...,m, and
Ev(ty) — (EOUO, ul,...,uy) in X*. Thus uf = Eyv) and since U + U is weakly closed we

have (a®,v)) € M. Testing uo(tx) — u§ = FEovo(ty) — Eov] by vo(tx) — v] and using the
convergence results just mentioned we find the strong convergence vy (tx) — v in H. By
u* € H* x L3 (Q,R™) and the continuity result in Lemma 3.2 we get F(u(ty)) — F(u®).
The monotonous decay of the free energy (Theorem 3.2) gives F'(u(t)) — F(u®) as t — oo.
U

Let us make some remarks concerning the set M. If (u,v) is a steady state in the sense

of (5.2) then a; := e¥*%% = const > 0 and it holds [[7, a® = [, a) for all (a, ) €
R URE. Moreover we have (Egvg, uy, ..., Uy,) € U +U. Thus (a,v) € M. On the other
hand, let be (a,v9) € M and a; > 0, i = 1,...,m, then (u,v) defined by uy := Ejuvy,
Ui :=T; a; €4 v :=Ina; — gy, i = 1,...,m, is a steady state in the sense of (5.2).

If there are elements (a,vy) € M with a ¢ int R then we have no correspondence of such
elements to a steady state (u,v) in the sense of (5.2). To exclude such situations we might
assume that

M C intR” x H. (5.7)

Then by Theorem 5.1 M = {(a*, vj)} follows.

Remark 5.1. For the van Roosbroeck system relation (5.7) is fulfilled. But (5.7) can be
verified also for more complicated reaction systems considered in [23].

5.3 Exponential decay of the free energy

The additional assumption (5.7) leads to sharper asymptotic results. Without the knowl-
edge of global a priori bounds for the concentrations from above and below away from
zero it is possible to show that the free energy along trajectories of the system (P) decays
exponentially to its steady state value. This result can be obtained by the same methods
as in [18, Theorem 5.3] (or as in [15], where the nonlinearity ey of the Poisson equation is
included, but not the nonlocal term ).

Theorem 5.3. Let (5.7) be satisfied. Then there exists a A > 0 depending only on the
data such that

Fu(t)) — F(u*) < e (F(U) — F(u*)) ¥t>0 (5.8)

if (u,v) is a solution to (P).
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Next, we collect estimates resulting from (5.8) which will be of importance for the start of
global a priori estimates for the concentrations from below by positive constants.

Corollary 5.1. Let (u,v) be a solution to (P) and let (5.8) be satisfied. Then there exists
a constant ¢ > 0 depending only on the data such that for i =1,...,m it holds

i) /ug = 1z, [\ as(t)/a; = 1|2 < ce™, (5.9)
loo(t) = villars llus() = uillo, las(t) = afllr < ce ™ Vi € Ry.
Moreover there exists a constant cs.19 > 0 depending only on the data such that

||UO - US||L2(R+,H1)7 ||UO - US||L1(R+,L1)’ ||U0 - US||L1(R+,L1(F)) S 05107 (5 10)

||U7//u;k — 1||L1(R+,L1)a ||’I,I,Z/'U,;k — 1||L1(R+,L1(F)) S C5.10, 1= 1, ..,

Proof. By the L™®-estimates for vy and v§ and since u;(t)/uf € H'(Q) f.a.a. t € Ry we
have f.a.a. ¢

Jua(t) /uy — 1] < e(lai(t)/a; — 1] + vo(t) — 3]

< o(|yfas(t)/a; —1[ + [\as(t) Jai — 1] + Juo(t) = v]) ae. in @, T.

Thus all assertions in (5.9) are a consequence of (5.8), (5.3) and (5.6). From (5.9) the first
four estimates in (5.10) follow immediately. With (5.11) and the trace inequality (1.6) we

obtain
* * * 2/3 *
Jwi/uw; — 1y < C{le/az'/az- — 1% + W ai/ag — 125 + oo — Uo“Hl}-

Since ||D(v)||r1r,) < ¢ we find by (5.4) and (5.9) that ||\/a;/af — 1||;2w, m) < c. This
together with (5.9) proves the last assertion in (5.10). O

(5.11)

5.4 Global lower bounds for the chemical potentials

Next we are looking for lower bounds for the chemical potentials, in other words, for
positive lower bounds for the concentrations, which do not depend on time. Corresponding
estimates for the van Roosbroeck equations were given in [14, Lemma 4.6]. But the main
difference to our problem is the fact that there essentially Dirichlet boundary conditions
for the continuity equations are used to find a start of the iteration process. This fails in
our setting.

In what follows besides of (2.1)—(2.5) we shall suppose that there is a constant c515 de-
pending only on the data such that

||Ui||L°°(R+,L°°(Q))a ||Ui/ﬂi||Loo(R+,Loo(F)) <csi12, t=1,...,m, (5-12)

and that (5.8) is satisfied if (u,v) is a solution to problem (P). At first we prove a lemma
which provides a suitable start for the Moser iteration.
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Lemma 5.1. Let (u,v) be a solution to (P) and let (5.12) and (5.8) be fulfilled. Then
there exists a constant ¢ > 0 depending only on the data such that

lo; ()l <e, VEERy, i=1,...,m.

m} the functional ©: H' — R, given by

—1In(1 — if <0
{ n(l=y) 1 =" , u; from (5.2)
400 it y>0

Proof. For fixed i € {1,...,

O(w) = [ ui(@)d(w(x) dr, vy)

is convex and lower semicontinuous. Its conjugate G := ©*: (H')* — R is proper, convex
and lower semicontinuous. If (u,v) is a solution to (P) then G(u;(¢)) may be written as

Glu(t)) = | {ur (1073)70) = (o —ui)~(0)  da
Since —2(t) := — (1 — u} /us(t))~ € G (us(t)) for a.a. ¢ € R, Brézis’ formula ([6]) yields
Glus(®)) — G(U) = —/Ot<u;(s),2(s)>H1 ds = /Ot(A(v,v), 0,...,%...,0))ds VieR,.
Let z := (In(us/u?))". Since ¢ =const (sce Theorem 5.1) we can evaluate
vf + qi(vy — v3)]VZ = —ui(Vz)? +ufq:V (v — v3) V2

UZV(UZ + qivo)VE = UZV[(UZ
Taking into account the boundedness of u} from above and below we derive for ¢ € R,

t
< [{ =8 1vaBs + 9 (w0 = o) o2 V2]l

G (us(t))
a U’;k -
+/ Z Ko™ — (e = B) (1 - f) da (5.13)
B)ERY ’
+/ Z KD [es -C](ai—ﬁi)@—ﬂ)dr}ds+G(UZ-)
B)ERT i
where 6 > 0. By assumption (2.2) the initial value G(Uj;) is finite. We decompose 2 into
Qi(s) :={z € Q:ui(s,z) > ul(x)} and Q_(s) := {z € Q : ui(s,z) < ul(x)}. On Q
reaction terms multiplied by the test function vanish. On €2_ we have
(¢ —e#) (1-22) " =< { IT (Hemtromi)™ _ T (2 titos ))f’f] (_z' ~1).
Ui =1 Y3 =1 Y Ui
The expression in the brackets as function of (uy/uj, ..., um/uk,, vo —vg) is Lipschitz con-
[—C,C], and at (1,...,1,0) its value is zero. Since u;/u;, j =1,...,m,

tinuous on [0, C]™ x [—C,
and vy are globally bounded (see (5.12) and Theorem 3.2) we get for a.a. s € Ry

ﬁz|<0(2|u3 )/u; — 1] + [vo(s )—v(")‘|> a.e. on ()_

€400 _ B4
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Next, for a; > §; (then a; > 1) we estimate (cf. also (2.10))

*
Ui

(ea-C — eﬁ-() (Ozi — ﬁz) w.
< (g = Gy [ (U771 (M) gaatud T (%)),
j=1

u; i#i s

Arguing as above we find for a.a. s € Ry

P c(z 3 () /5 — 1] + [vo(s) — Ug|) a.e. on Q.

ui(s) j=1

(ea-c(s) _ eﬁ((S))(ai — )

U

Similar estimates are obtained for a; < ;. The same arguments hold for the boundary
terms. Applying (5.10) we continue estimate (5.13) by

G(ui(t)) <c {1 + [Jvo — v lI72m, vy + 1100 — Gl ey oy + lvo — V5l @y L)

+ 3 (s = Ulaa iy + N /g — 1||L1(R+,L1(F)))} <c¢ VieR,.

=1

Thus [|2(+)||z1 as well as ||v; (+)||z is bounded on R,. [

Theorem 5.4. Let (u,v) be a solution to (P) and let (5.12) and (5.8) be fulfilled. Then
there exists a constant cs.14 > 0 depending only on the data such that

||Uz_ (t)“Loo S C5.14, eSSeiélf U/Z(t) 2 eSSEnglfﬂi e~ MYt e R+, 1= ]_, ., M. (514)

A corresponding estimate holds for the L*>(I')-norms of v; (t) for a.a. t € R,.

Proof. Arguing as in the proof of Theorem 4.3 with z(¢) := (In(w;(¢)/w;) + K)~ and K
defined in Lemma 4.2 we obtain inequality (4.9) for all ¢ € R,. Lemma 5.1 supplies the
global boundedness of ||z(t)||z~. With (2.12) and (1.7) the other assertions follow. [

Corollary 5.2. Let (u,v) be a solution to (P) and let (5.12) and (5.14) be fulfilled. Then
by [18, Theorem 5.1] relation (5.8) is satisfied. Thus, if global upper bounds are known
the existence of global lower bounds is equivalent to the fact that the free energy decays
exponentially to its steady state value F(u*).

5.5 Asymptotics of the densities and potentials

Theorem 5.5. Let (u,v) be a solution to (P) and let (5.12) and (5.14) be fulfilled. Then
for p € [1,+00) there exist constants ¢, A, > 0 depending only on the data such that

|ui(t) — ull|r», ||Ui(t)—vf||Lp§ce_’\Pt Vt>0, 1=0,...,m.
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Proof. Because of Corollary 5.2 the estimates (5.9) are valid. From (5.12) and (5.9) we
obtain for p € [1,+00),i=1,...,m,

lus(t) = w17 < Nlui(®) = [l llus(t) = willf < e VEeR,.
Analogously, because of (5.9) and Theorem 3.2 we estimate
loo(t) = w370 < llvo(t) = woll: oo () — wollZe < @ Hlwo () — vpllmn < e X2 Wt € R,
The same is true for v;, i = 1,...,m, since by (2.12), (5.12) and (5.14) we find

|v: () = vf ||z = |Inw;(¢) — Inwuf||p < c|lui(t)/u; — 1|z VEeR,. O

5.6 Summary

Now we summarize our results which we have obtained under the assumptions (2.1)—(2.5)
completed by the growth condition (2.6) and non-degeneracy requirement (5.7).

Theorem 5.6. We assume (2.1)~(2.5), (2.6) and (5.7). Then there is a unique solution
to (P). For this solution global estimates as in (5.12) and (5.14) are satisfied. Moreover
the results on the asymptotic behaviour as in Theorem 5.3 and Theorem 5.5 are valid.
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