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Abstract

In this article, dissipative perturbations of the nonlinear Schr�odinger equation (NLS) are

considered. For dissipative equations, when determining the stability of a solitary wave,

one must locate both the point spectrum and the continuous spectrum. If the wave is to

be stable, all the spectrum must reside in the left-half plane, except for the translational

eigenvalue(s) at the origin. However, for the NLS the continuous spectrum is located on the

imaginary axis, as the NLS can be thought of as an in�nite-dimensional Hamiltonian system.

Since dissipative perturbations will destroy this feature, it is then possible for eigenvalues

to bifurcate out of the continuous spectrum and into the right-half plane, leading to an

unstable wave. Here we show that the Evans function can be extended across the continuous

spectrum, and hence it can be used to track these bifurcating eigenvalues. The extension is

done for a general class of equations, and the result should therefore be useful for a larger

class of problems than that presented here. Using the extended Evans function, we are then

able to locate the spectrum for bright solitary-wave solutions to various perturbed nonlinear

Schr�odinger equations, and discuss their stability. In addition, we discuss the existence and

stability of multi-bump solitary waves for a particular perturbation, the parametrically

forced NLS equation.

1 Introduction

Compensating for the attenuation of pulses in nonlinear optical �bers is an important issue

for the e�cacy of optical communication systems. The standard model for the propagation

of pulses in an ideal nonlinear �ber without loss is the cubic nonlinear Schr�odinger equation

(NLS)

i�t + �xx � !�+ 4j�j2� = 0; (1.1)

where ! > 0. It is known to support stable pulses. If loss is present in the �ber, these pulses

will cease to exist. Thus, ampli�ers have to be used to compensate for the loss. The e�ects

of linear loss in the �ber as well as other perturbations which account for ampli�ers located

along the �ber will then have to be incorporated into the model. The issue is whether pulses

persist under the perturbation and what their stability might be. In this article, we shall

concentrate on the stability of pulses for two di�erent perturbations of (1.1).

The �rst equation is the cubic-quintic Schr�odinger equation (CQNLS)

i�t + �xx � !�+ 4j�j2�+ 3�j�j4� = 0; (1.2)

where � < 0 is real. The CQNLS is the correct model to describe the propagation of pulses

in dispersive materials with either a saturable or higher-order refraction index ([5], [6]). An

optical �ber which satis�es this condition can be constructed, for example, by doping with

two appropriate materials ([3], [26], [27]). A physically realistic value for � is 3� � �0:1 ([7],
[10], [38]), so the CQNLS cannot really be thought of as a small perturbation of the NLS.

Equation (1.2) describes an ideal �ber; therefore, it is natural to consider the perturbed

CQNLS (PCQNLS)

i�t + �xx � !�+ 4j�j2�+ 3�j�j4� = i�(d1�xx + d2�+ d3j�j2�+ d4j�j4�); (1.3)

where � > 0 is small and the other parameters are real and of O(1). The nonnegative

parameter d1 describes spectral �ltering, d2 describes the linear gain (d2 > 0) or loss

(d2 < 0) due to the �ber, and d3 and d4 describe the nonlinear gain or loss due to the �ber.
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The second equation is the parametrically-forced Schr�odinger equation (PFNLS)

i�t + �xx � !�+ 4j�j2�+ i�(�� ���) = 0; (1.4)

where � > 0 is not necessarily small,  > 0 is the dissipation factor (linear loss), and

� > 0 is the parametric gain. It models the e�ect of linear loss and its compensation by

phase-sensitive ampli�cation ([8], [23], [25], [28], [30]). The PFNLS equation is valid when

discussing optical �ber rings in which the length of the �ber loop is much less than the

dispersion and loss lengths ([30]).

Existence of solitary waves is known for these equations; in fact, there is an analytic

expression for the wave for each of the above equations ([29], [30], [35], [39]). We shall

be interested in their stability. The nonlinear Schr�odinger equations (1.1) and (1.2) are

both in�nite-dimensional Hamiltonian systems. Their linearization around a solitary-wave

solution therefore has essential spectrum on the imaginary axis. In addition, the spectrum

will contain several isolated eigenvalues of �nite multiplicity. In particular, zero is such an

eigenvalue by translation invariance. The major tool for tracking these eigenvalues upon

adding perturbations is the Evans function (see [1]). However, the essential spectrum is

more di�cult to handle. While the essential spectrum itself is readily computed upon

perturbations ([9, appendix to Section 5]), it is possible that eigenvalues may bifurcate

from the essential spectrum. It is the problem of detecting such eigenvalues which is the

primary issue of the present paper. Note that the perturbations mentioned above are in

general not bounded and do not preserve the Hamiltonian structure of the system.

The issue is the detection of eigenvalues which are either embedded in the essential

spectrum or which bifurcate from the essential spectrum upon adding perturbations. In-

vestigating the FitzHugh-Nagumo equation, Jones [11] accomplished this task by extending

the Evans function through the essential spectrum in an analytic fashion. He then showed

that the extended Evans function has no zeros and therefore no eigenvalues can bifurcate

from the essential spectrum. Pego and Weinstein [31] generalized this idea to a large class

of equations. The interested reader should also consult Jones et al. [12], Kapitula ([15],

[16], [17]), and Rubin [34] for other problems in which an extended Evans function has been

used in stability calculations.

It is instructive to take a moment to understand the manner in which the Evans function

has been extended across the continuous spectrum. Writing the eigenvalue equation under

consideration as a �rst-order system, one obtains

Y 0 =M(�; x)Y; Y 2 IRn;

where the matrix M(�; x) is analytic in �. Since the solitary wave converges to a constant

state as jxj ! 1, the matrix M0(�) = limjxj!1M(�; x) exists and is also analytic in

�. By Henry's result [9, appendix to Section 5], � is in the essential spectrum if, and

only if, M0(�) has eigenvalues on the imaginary axis. The Evans function is a priori only

de�ned if the eigenvalues of M0(�) have nonzero real part. Generalizing an idea of Jones

[11], Pego and Weinstein [31] were able to extend the Evans function across the essential

spectrum provided M0(�) has precisely one eigenvalue with positive real part when � is to

the right of the essential spectrum. The class of equation considered in their work as well

as in subsequent articles contains the KdV equation and other related systems. If there are

several eigenvalues of M0(�) on the imaginary axis for � in the essential spectrum, and if

these eigenvalues do not move all into the same half plane when � moves o� the essential

spectrum, their method fails. In particular, the method is not applicable to equations of

Schr�odinger-type.
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Figure 1: The spectrum for the NLS. The point � = 0 is an isolated eigenvalue with

algebraic multiplicity four. The rest of the spectrum is continuous spectrum, which is the

curves j Im�j � !.

Consider the generalized perturbed NLS equation

i@t�+ (@2x � !)�+ f(j�j2)� = i�d1@
2
x�+ i�R(�; ��);

where f(�) is real-valued and smooth with f(0) = 0, � � 0, and R(�; �) is real-valued and

smooth. Suppose that there exists a bright solitary-wave solution, �(x; �), which exists for

0 � � < �0. When � = 0, the continuous spectrum is given by the curves j Im�j � !. The

Evans function is de�ned for Re� > 0 and on the strip j Im�j < !. Assuming that the

spectral structure is understood when � = 0, in order to understand the spectrum for �

nonzero we must have a way of locating the possible points for which point spectrum can

bifurcate from the continuous spectrum. As mentioned above, one such method is to extend

the Evans function across the continuous spectrum, and then locate its zeros. However, as

noted in the previous paragraph, it is not immediately clear that such an extension is

possible. This leads us to the following theorem.

Theorem 1.1 Consider the generalized perturbed NLS when � = 0. There exists an M > 0

such that the Evans function can be extended onto the strip

j Im�j > !; �M � Re� � 0

in an analytic fashion. Furthermore, it has a continuous limit at � = �i!.

Remark 1.2 The Evans function can also be extended for � 6= 0. The interested reader

should consult Theorem 2.27 for an exact statement.

Remark 1.3 The extension is valid for a large class of problems, in which the generalized

perturbed NLS is a subset (see Section 2).

Another important consideration regarding the eigenvalue problem is that one must

determine if it is possible for large eigenvalues to bifurcate out of the continuous spectrum.

This is an important consideration for numerical calculations of the spectrum. Consider

the linear operator

L = D(�)@2x +N(�; x);

where the matrices are smooth in the parameters and the matrix N(�; x) decays exponen-

tially fast to constant matrices N�(�) as x ! �1. Suppose that the di�usivity matrix
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D(�) is diagonalizable with eigenvalues 1(�); : : : ; n(�). If Re i(�) > 0 for i = 1; : : : ; n,

then by following the proof presented in Alexander et al. [1] it can be shown that there is

an M > 0 and a 0 < � � 1 such that if j�j > M with j arg�j < �=2 + �, then � is not an

eigenvalue. However, if Re i(�) = 0 for some i, which is the case for the linear operators

associated with the PCQNLS and PFNLS (for example), then the proof only works for

� = 0. Thus, it may be possible for arbitrarily large eigenvalues to bifurcate out of the

continuous spectrum for Schr�odinger-type operators represented by the linear operator L.

Theorem 1.4 Suppose that D(�) is a diagonalizable matrix whose eigenvalues satisfy

j argi(�)j � �=2; i = 1; : : :n:

There then exists an M1 > 0 and M2 > 0 such that if j�j > M1 and Re� � �M2, then �

cannot be an eigenvalue for L whose corresponding eigenfunction is localized.

With the above theorems in hand, we now know that it is su�cient to look in bounded

regions of the complex plane when looking for eigenvalues of perturbed NLS equations. The

spectrum for the NLS is completely understood. The point � = 0 is an isolated eigenvalue

with geometric multiplicity two and algebraic multiplicity four, and the rest of the spectrum

is continuous spectrum, which is the curves j Im�j � ! (see Figure 1). Furthermore, there

are no eigenvalues embedded in the continuous spectrum ([20], [21]). When considering

perturbations of the NLS, one must track the eigenvalues which are near zero in addition

to locating any eigenvalues which may bifurcate out of the continuous spectrum. For the

PCQNLS, two of the eigenvalues near zero will leave the origin and be real and of O(�),

while the other two will remain at the origin. Recently, Kapitula [14] was able to determine

the location of the O(�) eigenvalues, and showed that in a certain region of the (d1; d2; d3; d4)

parameter space they both move into the left-half of the complex plane (see Lemma 5.1 for

a complete statement). Therefore, assuming that the continuous spectrum moves into the

left-half plane under perturbation, which will be the case if d1 > 0 and d2 < 0, then in order

to determine the stability of the wave it is only necessary to locate any eigenvalues which

happen to move out of the continuous spectrum. This problem was the original motivation

for this paper.

Theorem 1.5 Suppose that 0 < � � �� � 1, where � = �!. Assume that the parameter

d3 satis�es the existence condition speci�ed in Lemma 5.1. Suppose that d1 > 0 and that

C!;�(d4 � �d1) < d2 < 0;

where

C!;� =
2

15
!2
�
1�

22

21
� +O(�2)

�
:

Then the solitary-wave solution � to the PCQNLS is orbitally exponentially stable, i.e., if

k�0 � �k is su�ciently small, then there exists a b > 0 and constants �; � 2 IR such that

k�(t; �)� �(�+ �)ei�k � Ce�bt. Here k � k denotes the L2
-norm.

Remark 1.6 It is shown in Lemma 4.4 that an eigenvalue bifurcates out of the continuous

spectrum only if � > 0. The wave will be stable for � > 0 if it can be shown that this

eigenvalue moves into the left-half plane for � > 0. The framework for this calculation is

present in this paper, and we leave the actual calculation to the interested reader.
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Remark 1.7 Since � < 0, as a consequence of the above theorem a minimal condition on

the term d4 is that it must be negative for the wave to be stable. Furthermore, there must

be a balance between the linear loss term d2 and the nonlinear loss term d4.

Now consider the PFNLS

i�t + �xx � !�+ 4j�j2�+ i�(�� ���) = 0:

The solitary-wave solution is given by

�(x; !; �) =

s
�

2
sech(

p
� x); (1.5)

where

� = ! + �� sin 2�; cos 2� =


�
:

When considering the PFNLS, three of the eigenvalues will leave the origin and be of O(�),

and only one will remain. The reason that an extra eigenvalue leaves the origin is due to

the fact that � > 0 breaks the rotational symmetry of the NLS. The location of the O(�)

eigenvalues is known for all � > 0 ([2], [24]). If � sin 2� < 0, then there will be a positive

real eigenvalue, while if � sin 2� > 0, there will be an eigenvalue located at � = �2�
and a complex conjugate pair located on the line Re� = ��. When � sin 2� > 0, we

will locate any eigenvalues which move out of the continuous spectrum, at least for � > 0

su�ciently small. In particular, we will show that only one complex conjugate pair leaves

the continuous spectrum for � > 0 su�ciently small. Due to the symmetries associated

with PFNLS, we will then be able to conclude that these eigenvalues are located on the line

Re� = ��.

Theorem 1.8 Consider the PFNLS. If 0 < � � 1 and if � sin 2� > 0, then the wave is

orbitally exponentially stable, i.e., if k�0��k is su�ciently small, then there exists a b > 0

and a constant � 2 IR such that k�(t; �)� �(�+ �)k � Ce�bt.

Remark 1.9 See Figure 2 for its spectrum.

Now suppose that spectral �ltering is added to the physical situation governed by the

PFNLS, which means that one will consider the perturbed equation

i�t + �xx � !�+ 4j�j2�+ i�(�� ���) = i��xx; (1.6)

where � > 0. Note that equation (1.6) is reversible (�(x) is a solution if and only if �(�x)
is) and admits the ZZ2-symmetry �! �� (� is a solution if and only if �� is). By exploiting
this feature, we shall be interested in obtaining and proving the stability of multiple solitary-

wave solutions. Multiple solitary waves are solutions of (1.6) which are formally constructed

by concatenating N widely spaced copies of � or ��, where � = �� is an O(�) correction to

the expression given in (1.5). Since � and �� are concatenated, N -pulses can be obtained

in a variety of ways. Denoting � and �� by \up" and \down", respectively, we may then

consider arbitrary sequences of ups and downs corresponding to whether � or �� is used.

Based upon an application of the work of Sandstede et al. ([37, Theorems 1, 2, and 4]), we

have the following theorem concerning existence and stability of multiple solitary waves of

(1.4).
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Figure 2: The spectrum for the PFNLS for � sin 2� > 0. There are four eigenvalues �-close

to the origin and two eigenvalues which are �2-close to the points �� � i! on the line

Re� = ��.

Theorem 1.10 Fix � > 0 small and N > 1. Suppose that � sin 2� > 0. For any 0 < � <

�(�; N)� 1 small there exists a unique multiple solitary wave of up-down-up-down-... type.

These pulses are orbitally exponentially stable with respect to equation (1.4). Any other

N-pulse consisting of copies of � or �� is unstable.

Remark 1.11 By Theorem 1.8, the condition � sin 2� > 0 means that the primary pulse is

stable.

Remark 1.12 There exist many other N -pulses besides the ones of up-down-up-down-...

type, and we refer to [37] for the details.

Consider the PFNLS with an added quintic term, henceforth known as the parametri-

cally forced cubic-quintic nonlinear Schr�odinger equation (PFCQNLS):

i�t + �xx � !�+ 4j�j2�+ 3�j�j4�+ i�(�� ���) = 0: (1.7)

This equation describes the periodic parametric (phase-sensitive) ampli�cation of solitary

waves for �bers with a saturable or higher-order refraction index. This equation can be

thought of as encompassing the e�ects of both the CQNLS and the PFNLS. It turns out to

be the case that a balancing of the quintic term � with the forcing amplitude � will control

the number of eigenvalues which move out of the continuous spectrum. Speci�cally, as a

consequence of Lemma 4.8, if 0 < j�j; �� 1 and

� <
8� sin 2�

!2
�;

then no eigenvalues bifurcate out of the continuous spectrum. Otherwise, the picture is

exactly as that given in Figure 2. As far as we know, this balancing e�ect between the

parametric forcing and possibly destabilizing e�ect of a positive � has not yet been docu-

mented in the literature.
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This paper is organized as follows. The Evans function is extended for Schr�odinger-type

equations in Section 2. Furthermore, some properties of the extended Evans function are

derived. This section is of interest in its own right. In Section 3, we explicitly compute

the extended Evans function for the cubic nonlinear Schr�odinger equation. Eigenvalues

bifurcating from the essential spectrum near its end points � = �i! are calculated in Section

4 for the cubic-quintic and the parametrically-forced Schr�odinger equation. In Sections 5

and 6, these results are applied to equations (1.3) and (1.4), respectively. Finally, the

existence of stable N -pulses is shown for (1.6).

Acknowledgements. The �rst author would like to extend his gratitude to Yuri Kivshar,

who pointed out the references that made the calculations in Section 3 possible. The second

author was partially supported by the Alexander von Humboldt Foundation.

2 The extension of the Evans function

In this section, the Evans function is extended across the essential spectrum. The extension

is �rst developed for � in compact sets. We then consider the case of large �.

2.1 Preliminaries

In this subsection, we consider a linear system

u0 = (B(�; �) + R(�; x))u; (2.1)

where u 2 Cn, (�; �) 2 
� IRp, and x 2 IR. Here, 
 � C is open. Assume that the following

condition is satis�ed.

Hypothesis 2.1 There exists a vector �(�; �) such that B(�; �)�(�; �) = 0 for all (�; �)

and j�(�; �)j �M for some M . Moreover, there are numbers K1 � 1, K2 � 0, � 2 IR, and

 > 0 with  > � such that

keB(�;�)xk � K1e
�x x 2 IR

kR(�; x)k � K2e
x x � 0:

We then have the following result which characterizes solutions decaying with the ex-

ponential rate  to zero as x! �1.

Lemma 2.2 Assume that Hypothesis 2.1 is true. There exists a unique solution u(�; �)(x)

of (2.1) de�ned for x � 0 such that there exists a constant C with

ju(�; �)(x)� �(�; �)j � Cex

as x! �1. In addition, we have

ju(�; �)(x)� �(�; �)j �
2K1K2M

 � �
(2.2)

uniformly for x 2 (�1; x0] with x0 � 0 such that

K1K2M

 � �
ex0 �

1

2
:
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Furthermore, u(�; �) is analytic in � if B and � are. Similarly, if B, �, and R are Cm
in

� for some m � 0 and

k
dj

d�j
R(�; x)k � Cje

x; x � 0

for j = 1; : : : ; m, then u(�; �) is Ck
in �.

Proof: We seek the desired solution u(�; �) in the form u(�; �)(x) = �(�; �) + v(x). The

function v will be sought as a solution of the integral equation

v(x) =

Z x

�1

eB(�;�)(x�y)R(�; y)(�(�;�)+ v(y)) dy; (2.3)

for x 2 (�1; x0] with x0 � 0, see also [31, Proposition 1.2]. Note that any solution v of

(2.3) satis�es (2.1) by Hypothesis 2.1. We have����
Z x

�1

eB(�;�)(x�y)R(�; y)�(�; �)dy

���� � K1K2

Z x

�1

e�(x�y)ey j�(�; �)jdy

�
K1K2M

 � �
ex:

Similarly, we obtain����
Z x

�1

eB(�;�)(x�y)R(�; y)v(y) dy

���� � K1K2

Z x

�1

e�(x�y)ey jv(y)j dy

�
K1K2

 � �
exkvk;

(2.4)

where

kvk := sup
y�x0

jv(y)j:

Set

V := C0(�1; x0):

The integral equation (2.3) can be written in the function space V as

v = F (�; �)(�(�;�) + v); (2.5)

with

kF (�; �)vk �
K1K2

 � �
ex0kvk

kF (�; �)�(�;�)k �
K1K2M

 � �
:

Choose x0 � 0 such that
K1K2

 � �
ex0 �

1

2
;

so that kF (�; �)k � 1
2
in the operator norm on V . Since F (�; �) is then a uniform contrac-

tion, we can solve (2.5) and obtain the �xed point v

v = (id�F (�; �))�1F (�; �)�(�;�):

8



In particular, we have

kvk � 2kF (�; �)�(�; �)k �
2K1K2M

 � �
:

The estimates appearing in the lemma follow now immediately using (2.4).

Finally, the statements about the dependence of the �xed point v on the parameters

(�; �) are true since the operator F (�; �) is then analytic in � and Cm in �.

2.2 Extension for � in bounded sets

Consider the linear system

Y0 = A(�; x)Y; (2.6)

where Y 2 Cn, and the matrix A is analytic in � for each �xed x. Here, � 2 
 where 


will be speci�ed later in (2.11).

Hypothesis 2.3 Assume that there exists a constant � > 0 and matrices A�(�) such that

A(�; x)� A�(�) is independent of � and

lim
x!�1

jA(�; x)�A�(�)je�5�x � C; (2.7)

where C > 0 is a �xed constant.

We begin with some hypotheses on the asymptotic matrices A�(�).

Hypothesis 2.4 If Re� > 0, then for some 1 � k < n both A�(�) have k eigenvalues of

positive real part and n � k eigenvalues with negative real part.

For Re� > 0, de�ne

�u
�
(�) = �(A�(�))\ f� 2 C; Re� > 0g

�s�(�) = �(A�(�))\ f� 2 C; Re� < 0g (2.8)

to be the sets corresponding to the k (n� k) eigenvalues of A�(�) with positive (negative)

real part.

Hypothesis 2.5 Let

� =
N[
j=1

(iaj; ibj) � iIR;

where aj � bj � aj+1 for j = 1; ::; N are real numbers, be such that if � 2 �, then the

spectrum of A�(�) is the disjoint union of two sets which are again denoted by �u�(�) and

�s�(�). Moreover, �u�(�) and �s�(�) are the limits of �u�(
~�) and �s�(

~�), respectively, as
~�! � with Re ~� > 0.

If � = i� 2 �, it therefore is required that the spectrum of A�(�) is the disjoint union

of �u�(i�) and �
s
�(i�). As a consequence, for �xed � , there are neighborhoods Uu

� and U s
�

of �u�(i�) and �
s
�(i�), respectively, in C such that any eigenvalue of A�(~�) is contained in

either Uu or U s for any ~� close to �. Indeed, eigenvalues depend continuously on parameters

([19]). Hypothesis 2.5 then states that for all ~� close to � with Re ~� > 0 any eigenvalue
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of A�(~�) which lies in Uu (U s) has positive (negative) real part. In other words, the sets

�u�(�) and �
s
�(�), which were originally de�ned for Re� > 0, can be continued as disjoint

sets for � in an open neighborhood of �, see Figure 3.

In particular, there are numbers �j(�) � 0; j = 1; : : : ; n, such that for any � 2 ~�j

de�ned by
~�j := f� : aj < Im� < bj ; ��j(�) < Re� � 0g (2.9)

the spectrum of A�(�) is the disjoint union of two sets �u�(�) and �s�(�) which are the

continuation of �u�(i�) and �
s
�(i�) for i� 2 (iaj ; ibj).

Set �j � ~�j to be such that if � 2 �j , then

minfRe� : � 2 �u
�
(�)g > �

�

n
; maxfRe� : � 2 �s

�
(�)g <

�

n
: (2.10)

Finally, set 
 to be


 =

0
@ N[
j=1

�j

1
A [ f� : Re� > 0g: (2.11)

Note that 
 is open, simply connected, and � � 
. Some of the eigenvalues in the sets

�s
�
(i�) and �u

�
(i�) might be contained in the imaginary axis and we will refer to these

eigenvalues as those with small real part. Note that their number may depend on the

interval (aj ; bj) in which i� is contained.

The goal of this subsection is to construct an Evans function for � 2 
 which is an

analytic extension of that constructed by Alexander et al. [1]. Under the current setup, the

Evans function is de�ned only for those � with positive real part. The following discussion

mirrors much of the presentation of Alexander et al. [1].

By setting

x =
1

2�
ln

�
1 + �

1� �

�
;

the equation (2.6) becomes the autonomous system

Y0 = A(�; �)Y

� 0 = �(1� �2); (2.12)

where 0 = d=d� . By Alexander et al. [1] we have the following.

Lemma 2.6 Assuming that equation (2.7) holds true, equation (2.12) is C1 on Cn �
[�1;+1].

If Y1; : : : ;Yk are solutions of (2.6), then Y1 ^ � � � ^Yk is a solution of

Y0 = A(k)(�; x)Y;

where A(k)(�; x) is the linear derivation on �kCn induced by A(�; x). As above, this equation

can be compacti�ed to

Y0 = A(k)(�; �)Y

� 0 = �(1� �2);
(2.13)

which is C1 on �kCn � [�1;+1].
Consider the asymptotic systems

Y0 = A
(k)
� (�)Y: (2.14)
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The eigenvalues of A
(k)
�
(�) are the sums of any k-tuples of eigenvalues of A�(�). For

� 2 
, the spectral sets �u�(�) and �s+(�) are well-de�ned. The spectral projection of

A�(�) associated with �u
�
(�) is denoted by P u

�
(�). If Re� > 0, it is the spectral projection

onto the sum of all generalized eigenspaces of eigenvalues with positive real part. Similarly,

P s
+(�) denotes the spectral projection of A+(�) associated with �s+(�). Both projections

depend analytically on � 2 
. Set

��(�) = trace(A�(�)P
u
�(�)); �+(�) = trace(A+(�)P

s
+(�)): (2.15)

In particular, ��(�) and �+(�) are analytic in �. Then ��(�) equals the sum of the

eigenvalues (counted with multiplicity) contained in �u�(�). Similarly, �+(�) is the sum of

the eigenvalues which lie in �s+(�). If Re � > 0, then ��(�) is the eigenvalue of A
(k)
� (�) with

largest real part, and �+(�) is the eigenvalue of A
(k)
+ (�) with least real part. In addition, if

Re� > 0, then ��(�) are simple eigenvalues.

Set

Z(�; x) = e���(�)xY(�; x): (2.16)

Then Z(�; x) satis�es the ODE

Z0 = [A(k)(�; x)� ��(�) id]Z;

which, as above, can be compacti�ed to

Z0 = [A(k)(�; �)� ��(�) id]Z

� 0 = �(1� �2):
(2.17)

This again is a C1 system on �kCn� [�1;+1]. In the invariant plane f� = �1g this reduces
to the autonomous system

Z0 = [A
(k)
� (�)� ��(�) id]Z: (2.18)

The critical points are the eigenvectors, ��(�), associated with ��(�), that is,

[A
(k)
� (�)� ��(�) id]��(�) = 0:

Since ��(�) is a simple eigenvalue of A
(k)
� (�) for Re� > 0, the associated eigenvector ��(�)

depends analytically on �. However, ��(�) is not necessarily simple if Re� � 0. Still,

there is an analytic continuation of ��(�) for � 2 
. Indeed, we may choose ��(�) as the

�kCn-representative of the generalized eigenspace R(Pu
�
(�)) associated with the eigenvalues

in �u�(�).

To be more precise, choose analytic functions e1(�); : : : ; ek(�) 2 R(Pu
�(�)) for � 2 


such that these vectors are linearly independent for any � 2 
. This is clearly possible,

since Pu
�(�) is analytic for � 2 
 and 
 is simply connected. Then de�ne

��(�) := e1(�)^ : : :^ ek(�) 2 �kCn;

and note that ��(�) is analytic and an eigenvector of A
(k)
� (�) associated with the eigenvalue

��(�).

Now linearize (2.17) at the critical point (��(�);�1). If Re � > 0, then there is exactly

one unstable eigenvalue, 2�, and the associated eigenvector lies in the � -direction. This is

the key which has been used in [1] to de�ne the Evans function. Suppose now that � 2 �j

11



for some j. We claim that if � 2 �j , any eigenvalue of A
(k)
�
(�)���(�) has real part strictly

less than 2�. Indeed, let �� be the eigenvalue of A
(k)
� (�) with largest real part. Then �� is

the sum of the k eigenvalues of A�(�) with largest real part. We number the eigenvalues

of A�(�) according to

�u�(�) = f��1 (�); : : : ; �
�

k (�)g
�s
�
(�) = f��k+1(�); : : : ; �

�
n (�)g

and counted with multiplicity. Then �� can be estimated by

Re �� �
X

i2J�(�)

Re ��i (�) <
k

n
�; (2.19)

where J�(�) denotes the set of indices 1 � i � k which correspond to eigenvalues with

positive real part. Indeed, for � 2 �j , some of the �
�

i (�) with i � k may have crossed the

imaginary axis. They are then possibly replaced by eigenvalues ��i (�) with i > k. However,

the real part of each of these eigenvalues is less than �=n by the choice of �j , see (2.10).

Therefore, their real parts adds up to at most k
n
�, and (2.19) is proved. Let

��c = �� � ��(�): (2.20)

For � 2 �j , using the estimate (2.19) and (2.10), we obtain

Re ��c = Re �� �
kX

i=1

Re ��i (�) <
2k

n
�: (2.21)

This proves our claim.

Therefore, if � 2 �j , the unstable eigenvalue with largest real part is 2�, with the

eigenvector still pointing in the � -direction. Thus, for � 2 
 the point (��(�);�1) has
a one-dimensional strong unstable manifold. Since the tangent vector to this manifold

points in the � -direction, the manifold can be written as a function of � , say Z�(�; �), for

�1 � � � 0. It follows from Lemma 2.2 that Z�(�; �) is analytic in � for � 2 
. By

applying the ow associated with (2.17), the solution Z�(�; �) is well-de�ned and analytic

in � for � 2 [�1;+1). By equation (2.16), this then de�nes a solution

Y�(�; x) = Z�(�; x)e
�
�

(�)x; (2.22)

which has the property that if Re� > 0, then jY�(�; x)j ! 0 exponentially fast as x! �1.

Note that Y�(�; x) is analytic in � for � 2 
.

Now set

Z = e��+(�)xY(�; x);

where Y 2 �n�kCn. Then Z(�; x) satis�es the ODE

Z0 = [A(n�k)(�; x)� �+(�) id]Z;

and in a manner similar to that described above a solution, Z+(�; �), can be constructed as

the strong stable manifold of the point (�+(�);+1), where �+(�) is an analytic eigenvector

of A
(n�k)
+ (�)� �+(�) id constructed as before using P s

+(�) instead of Pu
�(�). This in turn

yields a solution

Y+(�; x) = Z+(�; x)e
�+(�)x; (2.23)

12



which has the property that if Re� > 0, then jY+(�; x)j ! 0 exponentially fast as x! +1.

Again, Y+(�; x) is analytic in � for � 2 
.

De�ne the Evans function to be

E(�) = exp

�
�
Z x

trace A(�; s) ds

�
Y�(�; x)^Y+(�; x); (2.24)

which for � 2 
 has values in �nCn �= C. It follows that E(�) is analytic for � 2 
. We

close with the following proposition.

Proposition 2.7 Suppose that Hypotheses 2.3, 2.4 and 2.5 are true. Then the Evans

function as described by equation (2.24) is analytic for � 2 
, where 
 is described by

equation (2.11). If � is such that Re� > 0, then E(�) is the Evans function as constructed

by Alexander et al. [1].

Corollary 2.8 Assume that the matrix A(�; �; x) depends in addition on a parameter � 2
IRp

. Suppose that Hypothesis 2.3 is met for any � and that Hypotheses 2.4 and 2.5 are

satis�ed for � = 0. In addition, suppose that A(�; �; x) is Cm
in � for some m � 0 and

k
dj

d�j
(A(�; �; x)� A�(�; �))ke�5�x � Cj ; x! �1

for j = 1; : : : ; m. Take any open subset ~
 of 
 with clos ~
 � 
. The Evans function E(�; �)

exists then for � close to zero and � 2 ~
. Moreover, E(�; �) is analytic in � and Cm in �.

Proof: The statements follow easily from the above discussion and Lemma 2.2.

2.3 Extension through branch points

Thus far, we considered regions in the complex plane such that the spectrum of the matrices

A�(�) was the disjoint union of the sets �u�(�) and �
s
�(�). In this subsection, we consider

the case that the decomposition ceases to exist at an isolated point � 2 C. In other words,

we study neighborhoods of the points iaj and ibj appearing in the de�nition of the set � in

Hypothesis 2.5.

We do not strive for the most general result possible, but instead restrict ourselves to

cases which will arise in the analysis of perturbations of the cubic nonlinear Schr�odinger

equation. Therefore, let n = 4. Consider the linear system

Y0 = A(�; �; x)Y; (2.25)

where Y 2 C4, and the matrix A is analytic in � and smooth in � 2 IRp for each �xed x.

We assume that Hypotheses 2.3 and 2.4 are met with k = 2 for any small �. In addition,

suppose that A�(�; �) = A(�; �).

We start with the following assumption on the asymptotic matrix A(�; �). Set

K := f� : j�� i!j � �; Re� � 0g; K̂ := K n fi!g:

The point i! should be thought of as a point aj = bj = ! in Hypothesis 2.5.

13



Hypothesis 2.9 For � 2 K̂ and any � close to zero, the eigenvalues of A(�; �) can be

written as continuous functions such that

�1(�; �); �2(�; �) 2 �u(�; �); �3(�; �); �4(�; �) 2 �s(�; �)

are disjoint. Moreover,

Re �2(�; �) � � > 0; �Re �4(�; �) � � > 0

uniformly in � 2 K and �. Suppose that �1(�; 0); �3(�; 0) ! 0 as � ! i! such that the

kernel of A(i!; 0) is one-dimensional. Also, assume that

Re �1(�; �) > 0; �Re �3(�; �) > 0

for � 6= 0 and � 2 K.

We can then extend the Evans function E(�; �) as a continuous function in � 2 K and

�.

Lemma 2.10 Assume that Hypothesis 2.9 is met. There exists then an extension of the

Evans function E(�; �) de�ned for � 2 K and any � close to zero such that E(�; �) is

continuous in � 2 K and �.

Proof: The eigenvalues of the matrix A(�; �) are simple for (�; �) 6= (i!; 0) by Hypothesis

2.9. For (�; �) 6= (i!; 0), denote the normalized eigenvectors of the matrixA(�; �) associated

with �j(�; �) by v
u
j (�; �), where j = 1; 2. It is clear from Hypothesis 2.9 that the eigenvector

vu2 (�; �) is continuous in (�; �) 2 K � IRp.

The kernel of A(i!; 0) is one-dimensional by Hypothesis 2.9 and therefore spanned by

the normalized vector v̂u1 . We have

(A(�; �)�A(i!; 0))vu1(�; �) +A(i!; 0)vu1(�; �) = A(�; �)vu1(�; �) = �1(�; �)v
u
1(�; �):

Since �1(�; �) ! 0 as (�; �) ! (i!; 0), jvu1 (�; �)j = 1, and A(�; �) is smooth in (�; �), we

see that A(i!; 0)vu1(�; �)! 0 as (�; �)! (i!; 0). Therefore, possibly after multiplying v̂u1
with �1, the limit

lim
(�;�)!(i!;0)

vu1 (�; �) = v̂u1

exists. Indeed, without loss of generality, the restriction of A(i!; 0) to its generalized kernel

is given by  
0 1

0 0

!
;

and so the sign of hvu1 (�; �); v̂
u
1i is not zero for � small.

Therefore, we can extend vu1 (�; �) continuously to (�; �) = (i!; 0) by setting vu1 (i!; 0) =

v̂u1 . We can then proceed as in Section 2.2 upon de�ning

��(�; �) = vu1 (�; �)^ v
u
2 (�; �):

Continuity of the resulting Evans function follows from Lemma 2.2.

Finally, we consider di�erentiable extensions of the Evans function. Set

U := f�; j�� i!j � �g n f�; Im� = i!; Re� < 0g; Û := U n fi!g:

14



Hypothesis 2.11 For � 2 U and any �, the eigenvalues of A(�; �) are independent of �.

They can be written as continuous functions such that

�1(�); �2(�) 2 �u(�); �3(�); �4(�) 2 �s(�)

are disjoint for � 2 Û . Moreover,

Re �2(�) � � > 0; �Re �4(�) � � > 0

uniformly in � 2 U . Suppose that �1(�); �3(�) ! 0 as � ! i! such that the kernel of

A(i!; 0) is one-dimensional and spanned by the nonzero vector v̂1(�).

Lemma 2.12 Assume that Hypothesis 2.11 is met. There exists then an extension of the

Evans function E(�; �) de�ned for � 2 U and � close to zero such that E(�; �) is continuous

in � 2 U and �. Moreover, E(�; �) is di�erentiable in �, and its derivative is continuous

in (�; �).

Proof: Again, we want to extend the 2-form ��(�; �) = vu1 (�; �) ^ v
u
2 (�; �) in a smooth

fashion to the point � = i!. A priori, the above 2-form is de�ned for � 2 Û and � 2 IRp,

and it is C1 in � with its derivative being continuous in �. We can extend ��(�; �) to

� = i! by

��(i!; �) := v̂1(�)^ vu2 (i!; �):

Note that v̂1(�) is smooth in �. It su�ces therefore to show that ��(�; �) is C
1 in � for

any � 2 U with its derivative being continuous in (�; �).

On account of Hypothesis 2.11, we may assume that

A(i!; �) =

 
0 1

0 0

!
;

for any small � with v̂1(�) = (1; 0)�. Writing vu1 (�; �) = (1; 0)� + w(�; �), we shall show

that w(�; �) can be chosen such that it is C1 in � and continuous in �. Set

B(�; �) := A(�; �)� A(i!; �);

and consider the following system

h(1; 0)�; wi = 0" 
0 1

0 0

!
+ B(�; �)� �1(�) id

#
w = (B(�; �) + �1(�) id)(1; 0)

�:

Since �1(�) is a simple eigenvalue of A(�; �) for � 2 Û and any �, we know that the

above system has a unique solution. This solution can be easily obtained using the implicit

function theorem and the claim follows. We omit the details.

2.4 No large eigenvalues

Consider the linear eigenvalue problem LP = �P , where

L = D(�)@2x +N(�; x): (2.26)
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The goal of this subsection is to show that if � is large, then the Evans function can be

constructed as in Section 2.2. Furthermore, it will be shown that the extended Evans

function will be nonzero for � large uniformly in �. We assume that the n � n matrix

N(�; x) is smooth in x, and that there exist asymptotic matrices N�(�) and a � > 0 such

that

lim
x!�1

jN(�; x)�N�(�)je�5�x � C: (2.27)

Assume that the matrices N(�; x), N�(�), and D(�) are continuous in �.

Hypothesis 2.13 The eigenvalues 1(�); : : : ; n(�) of D(�) are nonzero and satisfy

j argi(�)j � �=2

for all �. Furthermore, assume that D(�) is diagonalizable for any �.

If Y = [P;Q]T , where Q = P 0, the eigenvalue problem can be rewritten as the system

Y0 = A(�; �; x)Y; (2.28)

where

A(�; �; x) =

"
0 idn

D�1(�)(� idn�N(�; x)) 0

#
:

As a consequence of (2.27), the matrix A(�; �; x) satis�es equation (2.7); therefore, (2.28)

can be compacti�ed as
Y0 = A(�; �; �)Y

� 0 = �(1� �2):
(2.29)

Set

r = j�j�1=2; z =
x

r
; ~Q = rQ:

Upon setting ~Y = [P; ~Q]T , equation (2.29) becomes

~Y0 = A(�; �; r; �)~Y

� 0 = r�(1� �2);
(2.30)

where now 0 = d=dz and

A(�; �; r; �) =

"
0 idn

D�1(�)(eiarg� idn�r2N(�; �)) 0

#
: (2.31)

Note that A(�; �; r; �) is smooth in the last three parameters. Letting �i(�) = 1=i(�); i =

1; : : : ; n; denote the eigenvalues of D�1(�), we have the following lemma. Note that arg �i =

� argi, and that j�ij = 1=jij.

Lemma 2.14 Set

A�(�; �; r) = lim
�!�1

A(�; �; r; �):

The eigenvalues of A�(�; �; 0) are given by

��j (�; �; 0) = +j�j(�)j1=2 exp(i (arg�j(�) + arg�)=2); j = 1; : : : ; n

��j (�; �; 0) = �j�j(�)j1=2 exp(i (arg�j(�) + arg�)=2); j = n+ 1; : : : ; 2n

�+j (�; �; 0) = ��j (�; �; 0); j = 1; : : : ; 2n:

Furthermore, for j = 1; : : : ; n

��j (�; �; r) = ��j (�; �; 0)+O(r2):
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Proof: The eigenvalues � of A�(�; 0) satisfy the characteristic equation

j(earg�D�1(�)� r2N�(�))� �2 idn j = 0;

from which one immediately gets the �rst part of the proposition. The second part follows

from [19, Theorem II.5.11], since by Hypothesis 2.13 the matrix D�1(�) is diagonalizable.

As a consequence of Lemma 2.14, if Re � > 0, then the eigenvalues ��j (0; �; 0) are ordered

according to equation (2.8), that is, Re ��j (0; �; 0)> 0 for j = 1; : : : ; n and Re ��j (0; �; 0)< 0

for j = n + 1; : : : ; 2n. Following the previous argument, in order to extend the Evans

function across the imaginary axis, we must have the following: there exists a smooth

positive function �(r), with �(r)! 0 as r ! 0+, such that if j arg�j < �=2 + �(r), then

min
j=1;:::;n

Re ��j (�; �; r)> �
�

2n
r; max

j=n+1;:::;2n
Re ��j (��; r) <

�

2n
r (2.32)

uniformly in �.

Lemma 2.15 There exists an r0 > 0 such that for any � with

j arg�j < �=2 +
�

4n��
r

and r < r0, equation (2.32) is satis�ed. Here,

�� = max
j=1;:::n

j�j j1=2 = min
j=1;:::n

jjj1=2: (2.33)

In other words, we may take

�(r) =
�

4n��
r:

Proof: Without loss of generality, assume that 1 � j � n. As a consequence of Lemma

2.14,

Re ��j (�; �; r) = j�j j1=2 cos(
1

2
(arg �j + arg�)) + O(r2);

so that equation (2.32) will be satis�ed if for 0 � r � 1,

cos(
1

2
(arg �j + arg�)) > �

�

4nj�j j1=2
r: (2.34)

Equation (2.34) will in turn be satis�ed if

j arg�j < 2Cos�1
 
�

�

4j�j j1=2n
r

!
� j arg�j j

= � � j arg �j j+
�

2j�j j1=2n
r+ O(r2):

(2.35)

Using the de�nition

�� = max
j=1;:::n

j�j j1=2 = min
j=1;:::n

jjj1=2;

17



one can immediately see that if

j arg�j <
�

2
+

�

4n��
r; (2.36)

then (2.35) is satis�ed. Thus, the function �(r) discussed previously can be written as

�(r) =
�

4n��
r; (2.37)

and the lemma is proved.

Remark 2.16 Note that the de�nition of arg� yields that����Re�Im�

���� < �(r)() j arg�j <
�

2
+ �(r): (2.38)

With Lemma 2.15 in hand, the n-form Y�(�; �; r; x) can now be constructed as in

Section 2.2. In a similar manner, the n-form Y+(�; �; r; x) can be constructed. Thus, for

0 � r < r0 and j arg�j < �=2 + �(r) the Evans function

E(�; �; r) = Y�(�; �; r; x)^Y+(�; �; r; x)

is well-de�ned. Since � 0 = 0 when r = 0, the n-formsY�(�; 0; x) can be constructed for any

�. As another consequence of Lemma 2.14, it is not di�cult to see that if j arg�j � �=2,

then E(�; �; 0) 6= 0. We claim that the Evans function is nonzero for all r su�ciently small

and j arg�j � �=2 + �(r).

To prove this claim, we proceed as in Section 2.2 and consider the equation

Z0 = [A(n)(�; �; r; �)� ��(�) id]Z
� 0 = r�(1� �2):

(2.39)

Here A(n)(�; �; r; �) is induced by the matrix A(�; �; r; �) given in (2.31). When r = 0

the vector �eld (2.39) is autonomous and a solution is given by (��(�); �) for � 2 [�1; 1].
As in Section 2.2, for r 6= 0 the eigenvector ��(�; �; r) extends. We seek the strong un-

stable manifold of the point (��(�; �; r);�1) and claim that it is a small perturbation of

f(��(�); �); � 2 [�1; 0]g.
Going back to the time variable z, we obtain the system

Z0 = [ ~A(n)(�; �; r; rz)� ��(�; �; r) id]Z (2.40)

on �2nCn, where

~A(�; �; r; rz) =

"
0 idn

D�1(�)(eiarg� idn�r2N(�; rz)) 0

#
: (2.41)

Let ~A
(n)
� (�; �; r) be the limit of ~A(n)(�; �; r; rz) as z ! �1. It is a consequence of the

de�nition of the derivation A(n) and equation (2.27) that

k ~A(n)(�; �; r; rz)� ~A(n)(�; �; r)k � Cr2e5r�z (2.42)

as z ! �1, where the constant C can be chosen independently of (�; �; r). In other words,

we may write (2.40) according to

Z0 = [B(�; �; r) +R(�; �; r; z)]Z;
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with
B(�; �; r) = ~A(n)(�; �; r)� ��(�; �; r) id

kR(�; �; r; z)k � Cr2e5r�z :

For j arg�j < �=2+ �(r), any eigenvalue of the matrix B(�; �; r) has real part less than r�;

therefore,

jeB(�;�;r)zj � Cer�z :

Also, zero is an eigenvalue of B(�; �; r) with eigenvector ��(�; �; r).

We may therefore apply Lemma 2.2 with K1 = C, K2 = Cr2, � = r�, and  = 5r�. As

the result, the strong unstable manifold of ��(�; �; r) is given by

��(�; �; r) +O(r)

on (�1; 0], since with the above choices we have

K1K2

 � �
= C2r

1

4�

and ��(�; �; r) is bounded uniformly in (�; �; r).

Thus, since Y� = e��zZ�, we have that

Y�(�; �; r; 0) = ��(�; �; r) +O(r):

In a similar manner, one can show that

Y+(�; �; r; 0) = �+(�; �; r) +O(r):

Therefore, from the de�nition of the Evans function we have that

E(�; �; r) = (Y� ^Y+)(�; �; r; 0)

= (�� ^ �+)(�; �; 0)+O(r)

6= 0

for r su�ciently small (a consequence of Lemma 2.14).

Note that the above approach is still valid if the initial estimate on R is weakened to

kR(�; �; r; z)k � Cre5r�z;

for in this case a unique solution is initially guaranteed for z < z0 = O((ln r)=r)� 0, and

can be continued for z > z0 by applying the ow. However, the error term in the above

identity of E(�; �; r) is then O(1) instead of O(r).

Upon going back to the original variables, we can close the discussion in this subsection

with the following proposition which is a consequence of Lemma 2.15, (2.38) and the above

discussion.

Proposition 2.17 Suppose that Hypothesis 2.13 and equation (2.27) are met. There then

exists an L > 0 such that if

j�j > L;

����Re�Im�

���� < �

4n��
j�j�1=2;

where �� is de�ned in (2.33), then the extended Evans function is well-de�ned and nonzero.

Remark 2.18 In particular, the Evans function can then be extended in a nonzero fashion

into the strip

0 � Re� � �
q�

4n��
; j Im�j � L

for some q = q(L) < 1.
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2.5 Example: perturbed nonlinear Schr�odinger equations

Consider the generalized perturbed nonlinear Schr�odinger equation

i@t� + (@2x � !)�+ f(j�j2; �)� = i�d1@
2
x� + i�R(�; ��); (2.43)

where f(�; �) is real-valued and smooth function with f(0; �) = 0, � is nonnegative, and

R(�; �) is real-valued and smooth. Let � = (�; �). Note that this equation encompasses

both the perturbed cubic-quintic NLS and the parametrically-forced NLS.

Hypothesis 2.19 There exists a smooth function �(x; �) which is a steady-state solution

to (2.43) and satis�es the condition that j�(x; �)j ! 0 at rate O(e�5�jxj) as jxj ! 1.

The same estimate is true for the derivative of �(x; �) with respect to �. Furthermore,

�0(x) = �(x; 0) is real-valued.

Remark 2.20 In order for the wave to decay exponentially fast, it must be true that when

� is small, then ! > 0.

By setting � = u + iv, where u and v are real, equation (2.43) can be rewritten as the

system
@tu+ (@2x � !)v + f(u2 + v2; �)v = �d1@

2
xu+ �R1(u; v)

@tv � (@2x � !)u� f(u2 + v2; �)u = �d1@
2
xv + �R2(u; v);

(2.44)

where

R1(u; v) = ReR(u+ iv; u� iv); R2(u; v) = ImR(u+ iv; u� iv):

It will be assumed that d1 � 0, so that (2.44) will have a well-posed initial-value problem.

Upon setting P = [u; v]T and linearizing, we get the eigenvalue problem

�P = D(�)@2xP + (N0(x; �) + �N1(x))P; (2.45)

where

D(�) =

 
�d1 �1
1 �d1

!
; N0(x; �) =

 
0 ! � f(�2

0; �)

�! + f(�2
0; �) + 2�2

0 + f 0(�2
0; �) 0

!
;

and N1(x) is uniformly bounded and approaches an asymptotic matrix N0
1 exponentially

fast as jxj ! 1. When � = 0, the continuous spectrum is given by

�ess = f�; Re � = 0; j Im�j > !g: (2.46)

Indeed, we have that

N0(x; �)!

 
0 !

�! 0

!
; jxj ! 1;

and the limiting matrix is independent of �. We are now ready to prove the following

lemma.

Lemma 2.21 Assume that d1 � 0. There exist �0 > 0 and �0 > 0 (not necessarily small)

and positive constants L1 and L2 which are independent of � and � such that in the region

j�j � L1; Re � � �L2; 0 < � < �0; j�j < �0;

the Evans function E(�; �; �) for equation (2.43) is de�ned and nonzero.
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Proof: It is a simple matter to check that the eigenvalues of D(�) satisfy Hypothesis 2.13.

The extension of the Evans function and the fact that it will be nonzero for large � then

follows immediately from Proposition 2.17.

Remark 2.22 Since the zeros of the Evans function locate those eigenvalues with localized

eigenfunctions , we know that there will be no large eigenvalues, even if there is no di�usion

present.

Following the procedure of the previous subsection, the matrix A(�; �; x) is given by

A(�; �; x) =

 
0 id2

D�1(�)(� id2�N0(x; �)� �N1(x)) 0

!
;

where � = (�; �), and as before set

A0(�; �) = lim
jxj!1

A(�; �; x):

Note that A0(�; �) does not depend on �.

For the moment, assume that � = 0. A routine calculation shows that the eigenvalues

of A0(0; �) are given by

��1 (0; �) = �
p
j! � i�j e

i
2
arg(!�i�); arg(! � i�) 2 [�

3�

2
;
�

2
)

��2 (0; �) = �
p
j! + i�j e

i
2
arg(!+i�); arg(! + i�) 2 [�

�

2
;
3�

2
):

(2.47)

A simple observation reveals that if Re� > 0, then for i = 1; 2

Re �+i (0; �)> 0; Re ��i (0; �)< 0;

and ��i (0; �) are analytic across �ess. As a consequence of Proposition 2.7, we now have

the following lemma.

Lemma 2.23 Assume that � = 0. Then the Evans function E(�; �) can be extended across

�ess onto the strip

! < j Im�j � L1; �L3 < Re � � 0;

for some L3 > 0.

Corollary 2.24 Assume that � = 0, and set

L4 = minfL2; L3g;

where L2 is given in Lemma 2.21. Then the Evans function can be extended across �ess

onto the strip

! < j Im�j; �L4 < Re� � 0:

Furthermore, the extended Evans function will be nonzero for j�j > L1.

Remark 2.25 As it will be seen in the next section, if f(�; �) = 4�, i.e., if one looks at

the cubic NLS, then L4 =1.
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Figure 3: Here, the location of the eigenvalues ��j (0; �) of A0(0; �) with j = 1; 2 is indicated

for � in various regions of the complex plane. Eigenvalues inside the dotted ellipsoids belong

to the unstable spectral set �u(�). The point � = i! corresponds to a branch point where

the spectral decomposition ceases to exist. The dashed line emanating from the branch

point indicates the cut de�ned in (2.47).

When � = 0, it is straightforward to prove that Hypotheses 2.9 and 2.11 are met with

respect to the parameter �. Indeed, the limiting matrix does not depend on � at all. Ap-

plying Lemmata 2.10 and 2.12 then shows that the Evans function E(�; �) is di�erentiable

in � and can be extended to � = i!. Combining the results obtained so far, we have the

following theorem.

Theorem 2.26 Assume that � = 0. Let

�1 = f� : Re � > 0g
�2 = f� : j Im�j < !g
�3 = f� : j Im�j > !; �L4 � Re � � 0g;

and set


 = �1 [ �2 [ �3: (2.48)

The Evans function E(�; �) is de�ned and analytic for � 2 
, and is an analytic extension

of that constructed by Alexander et al. [1]. It is nonzero for su�ciently large j�j, and has

a continuous limit at � = �i!. Finally, it is C1
in � for � 2 
 [ fi!g, and the derivative

with respect to � is continuous in �.

Now suppose that � > 0 is small. As a consequence of Corollary 2.8 and Lemma 2.21,

the following theorem is true.

Theorem 2.27 Let � > 0 be given and small. Choose ~
 � 
 such that clos ~
 � 
 where


 is given in (2.48). There then exists an �0 > 0 such that the Evans function E(�; �; �)

is de�ned for 0 < � < �0 and for � 2 ~
. It is analytic for � 2 ~
, smooth in �, and is

an extension of that constructed by Alexander et al. [1]. Furthermore, it is nonzero for

su�ciently large j�j.

Now suppose that the Evans function can be shown to be nonzero if � = 0 and j Im�j > !.

Then it will necessarily be true that for 0 < � < �0 there exists a � = �(�) > 0 such that
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the extended Evans function will be nonzero for j Im�j > ! + �. Under this scenario

it will only be possible for eigenvalues to bifurcate out of the continuous spectrum near

� = �i!. It turns out that the Evans function can be extended up to � = �i! such that it

is di�erentiable in �. A local bifurcation analysis near � = �i! will then reveal whether and

how many eigenvalues bifurcate out of the essential spectrum. This idea will be exploited

in the upcoming sections.

3 The Evans function for the cubic NLS

Instead of using the formulation in equation (2.44), we will write the cubic NLS as the

system
i�t + (@2x � !)�+ 4�2 = 0

�i t + (@2x � !) + 4� 2 = 0;
(3.1)

where  is de�ned by  = ��. The system is written in this way so that the results of Kaup

[20] and Kaup et al. [21] can be more easily exploited.

The bright solitary-wave solution is given by

�(x; !) =

r
!

2
sech(

p
! x): (3.2)

Linearization yields the system

iPt + LP = 0;

where

L = (@2x � !)�3 + 4�2(2�3 + i�2): (3.3)

Here �2 and �3 are the Pauli spin matrices

�2 =

"
0 �i
i 0

#
; �3 =

"
1 0

0 �1

#
:

Setting P (x; t)! P (x)e�t, one then gets the linear eigenvalue problem

(L+ i�)P = 0:

Upon setting

� = �i�;

we then get the more conventional eigenvalue problem

(L� �)P = 0: (3.4)

It is important to note here that the wave will be unstable if there exists an eigenvalue with

Im� < 0; hence, we will want to de�ne the Evans function for Im� < 0, and extend it

across Im� = 0.

Let Y = [P;Q]T , where Q = P 0. Then Y satis�es the equation

Y0 =M(�; x)Y; (3.5)

where

M(�; x) =

2
6664

0 0 1 0

0 0 0 1

! + �� g(x) �h(x) 0 0

�h(x) ! � �� g(x) 0 0

3
7775 ; (3.6)
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and
g(x) = 8�2(x; !)

h(x) = 4�2(x; !):

Set

M0(�) = lim
jxj!1

M(�; x):

The eigenvalues of M0(�) are given by �f(�) and �s(�), where

s(�) =
p
j! � �j e

i
2
arg(!��); arg(! � �) 2 [�

�

2
;
3�

2
)

f(�) =
p
j! + �j e

i
2
arg(!+�); arg(! + �) 2 [�

3�

2
;
�

2
);

(3.7)

and the associated eigenvectors are [1; 0;�f(�); 0]T and [0; 1; 0;�s(�)]T . The branch cuts
of the above functions are being taken so that s(�) > 0 for � 2 (�1; !), while f(�) > 0

for � 2 (�!;1). Note that

Re � > 0 ) Re f(�) > Re s(�)

Re � < 0 ) Re f(�) < Re s(�);

and that the functions are analytic if Im� < 0.

As a consequence of Theorem 2.26, we have the following lemma.

Lemma 3.1 Let

�1 = f� : Im� < 0g
�2 = f� : jRe�j < !g
�3 = f� : jRe�j > !; 0 � Im� < Lg;

and set


 = �1 [ �2 [ �3:

There is an L > 0 such that the Evans function is de�ned and analytic for � 2 
, and is

an analytic extension of that constructed by Alexander et al. [1]. Furthermore, it is nonzero

for su�ciently large j�j. Finally, it has a continuous limit at � = �!.

The goal in this section is to explicitly construct the extended Evans function. Once

this is accomplished, we will then be able to locate its zeros, and hence be able to determine

the location of the eigenvalues which may bifurcate out of the continuous spectrum. Before

continuing, we need a couple of preliminary results.

Lemma 3.2 Let Y(�; x) = [P (�; x); Q(�; x)]T be a solution to (3.5). Another solution to

(3.5) is then Y(�; x) = [P (�;�x);�Q(�;�x)]T. A solution to

Y0 =M(��; x)Y

is given by Y�(�; x). Finally, if � 2 IR, then a solution to the adjoint problem

Z0 = �MT (�; x)Z

is given by Z(�; x) = [�Q(�; x); P (�; x)]T.
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Proof: The �rst part follows immediately from the fact that both g(x) and h(x) are even

functions. The second part follows as soon as one notices that

M(��; x)� =M(�; x):

The third part is a simple calculation, and is left to the interested reader.

Lemma 3.3 (Kaup [20], Kaup et al. [21]) When Re� > 0, a solution to (3.4) is given

by

P+(�; x) = �
es(�)x

(s(�)�
p
!)2

(
(�� 2! + 2

p
! s(�) tanh(

p
! x))

"
0

1

#

+2�2(x; !; 0)

"
1

1

#)
:

When Re � < 0, a solution to (3.4) is given by

P�(�; x) =
e�f (�)x

(f(�) +
p
!)2

(
(�+ 2! + 2

p
! f (�) tanh(

p
! x))

"
0

1

#

�2�2(x; !; 0)

"
1

1

#)
:

Furthermore, besides the functions P+(! + k2; x) and P�(�(! + k2); x), where k 2 IR+
,

along with the eigenfunctions of L at � = 0, there are no other bounded eigenfunctions of

L.

Since � is be an eigenvalue if and only if �� is, it is su�cient to calculate the Evans

function only for Re� > 0. For the rest of this discussion assume therefore that Re� > 0.

The following arguments can easily be modi�ed for the case Re� < 0.

There exists a unique solution Y�

f to (3.5) such that

lim
x!�1

Y�

f
(�; x)e�f(�)x =

2
6664

1

0

f (�)

0

3
7775 : (3.8)

This is due to the fact that f (�) is the positive eigenvalue of M0(�) with largest real

part. Similarly, there exists a unique solution Z+
f
(�; z) to the adjoint problem with the

asymptotics

lim
x!1

Z+
f (�; x)e

f(�)x =

2
6664
f(�)

0

1

0

3
7775 : (3.9)

De�ne the reduced Evans function

Ef(�) = Y�

f (�; x) � Z
+
f (�; x): (3.10)

Before continuing, we need the following information regarding the reduced Evans function.
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Lemma 3.4 Ef(�) is analytic and nonzero for Re� > 0.

Proof: The analyticity follows from the fact that the eigenvalue f(�) is simple and thus

analytic for Re� > 0 (see Lemma 2.2). In the following, it is important to note that if

Ef(�) = 0, then

lim
x!1

jY�

f (�; x)e
�f(�)xj = 0:

First suppose that � 2 (!;1). If Ef (�) = 0, then Y�

f
is a uniformly bounded function

which decays exponentially fast as x! �1. However, Lemma 3.3 precludes the existence

of such a solution.

Now suppose that � = !. If Ef(!) = 0, then

lim
x!1

jY�

f (!; x)e
�f(!)xj = 0:

Consider the 3-form Y�

f ^Y
�
s ^Y

+
f . This 3-form induces a solution to the adjoint equation,

Z. Since Y+
f
(�; x) = �[P�

f
(�;�x);�Q�

f
(�;�x)]T for some nonzero constant �, where

Y�

f (�; x) = [P�f (�; x); Q
�

f (�; x)]
T , the adjoint solution then satis�es

lim
jxj!1

jZ(!; x)j = 0:

By Lemma 3.2, this then implies that there exists a solution to (3.5) which decays as

jxj ! 1. However, this contradicts Lemma 3.3.

Now suppose that � 2 f� 2 C : Im� � 0; � 62 [!;1)g. It is known that there are no

eigenvalues to L, which implies by the result of Alexander et al. [1] that

lim
x!1

Y�

f (�; x)^Y
�

s (�; x)e
�(f(�)+s(�))x = �[1; 0; f(�); 0]

T ^ [0; 1; 0; s(�)]
T (3.11)

for some nonzero constant �. By equation (3.16) we have

lim
x!1

Y�

s (�; x)e
�s(�)x =

�� 2! � 2
p
! s(�)

�� 2! + 2
p
! s(�)

[0; 1; 0; s(�)]
T :

If Ef (�) = 0, then

lim
x!1

jY�

f
(!; x)e�f(!)xj = 0:

Thus, in this case

lim
x!1

jY�

f (�; x)^Y
�

s (�; x)e
�(f(�)+s(�))xj = 0;

which violates (3.11).

It is now known that Ef(�) 6= 0 for Im� � 0. By Lemma 3.2

Ef (�
�) = Y�

f (�
�; x) � Z+

f (�
�; x)

= (Y�

f (�; x))
� � (Z+

f (�; x))
�

= Ef(�)
�:

Thus, Ef(�) 6= 0 for Im� � 0 necessarily implies that the same holds true for Im� � 0.

Remark 3.5 The function Ef(�) can be extended to include the imaginary axis.
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Remark 3.6 Ef(�)! 0 as �! 0+.

Using the de�nition of Ef (�) it is easy to check that

lim
x!1

Y�

f
(�; x)e�f(�)x =

Ef(�)

2f(�)
[1; 0; f(�); 0]

T : (3.12)

Since Ef(�) 6= 0, the solution

Y+
f (�; x) = 2f(�)[P

�

f (�;�x);�Q
�

f (�;�x)]
T ; (3.13)

where Y�

f (�; x) = [P�f (�; x); Q
�

f (�; x)]
T , is well-de�ned for Re� > 0. Note that

lim
x!�1

Y+
f (�; x)e

f(�)x = Ef(�)[1; 0;�f(�); 0]T : (3.14)

Set

Y�

s (�; x) =

"
P+(�;�x)

�Q+(�;�x)

#
; Y+

s (�; x) =

"
P+(�; x)

Q+(�; x)

#
; (3.15)

where P+(�; x) is de�ned in Lemma 3.3. Note that

lim
x!�1

Y�

s (�; x)e
�s(�)x = [1; 0;�s(�); 0]T

lim
x!�1

Y�

s (�; x)e
�s(�)x =

�� 2! � 2
p
! s(�)

�� 2! + 2
p
! s(�)

[1; 0;�s(�); 0]T :
(3.16)

For Re� > 0 the Evans function is given by

E(�) = (Y�

f ^Y
�

s ^Y
+
f ^Y

+
s )(�; x): (3.17)

Based upon the above discussion, the Evans function can be explicitly calculated.

Proposition 3.7 For Re� > 0 the Evans function is given by

E(�) = 4Ef(�)f(�)s(�)
�� 2! � 2

p
! s(�)

�� 2! + 2
p
! s(�)

:

The analytic function Ef(�) is nonzero for Re� > 0, and can be scaled such that Ef(!) = 1.

Proof: By equations (3.8), (3.16), and (3.14), the behavior as x! �1 is well-understood

for all the functions comprising E(�). The result then follows immediately after evaluating

lim
x!�1

(Y�

f ^Y
�

s ^Y
+
f ^Y

+
s )(�; x);

and rescaling Z+
f
(!; x) such that Ef(!) = 1.
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4 Bifurcations from the essential spectrum near � = !

As a consequence of Proposition 3.7, we now know that an eigenvalue may bifurcate out

of the continuous spectrum only at � = �! for perturbations of the cubic NLS. Let ~�

represent the perturbation parameter for the cubic NLS, and let the perturbed extended

Evans function be represented by E(�;~�).

In the following discussion, we assume the following, which will later be veri�ed for

speci�c perturbations using the results presented in Section 2.3.

Hypothesis 4.1 The Evans function E(�;~�) can be de�ned for � 2 U in a continuous

fashion, where

U := f� : j�� !j � �g n f� : Re� = !; Im� > 0g:

It is C1
in ~�, and its derivative with respect to ~� is continuous in � 2 U .

By using a Taylor expansion, we can then write

E(�;~�) = E(�; 0)+ @~�E(�; 0)~�+ o(~�) = E(�; 0)+ (@~�E(!; 0)+ g1(�;~�))~�

for � 2 U , where g1 is continuous and g1(!; 0) = 0. Using the expression for the Evans

function for ~� = 0 given in Proposition 3.7, we then see that for � 2 U the Evans function

is given by

E(�;~�) = (@~�E(!; 0)+ g1(�; ~�))~�+ 4
p
2! s(�)(1 + g2(�)); (4.1)

where g2(�) is continuous and g2(!) = 0.

Due to the branch cut taken for s(�), we then see that

@~�E(!; 0)~� > 0 =) E(�;~�) 6= 0 (4.2)

for � 2 U , and hence no eigenvalue bifurcates out of the continuous spectrum. Otherwise,

a single eigenvalue bifurcates out of the continuous spectrum, and E(��(~�); ~�) = 0, where

�� = !

 
1�

(@~�E(!; 0))
2

32!2
~�2
!
+ o(~�2)(= @~�E(!; 0)~� < 0: (4.3)

In order to perform the above calculation, we need an expression for @~�E(!; 0). Write

the perturbed eigenvalue equation as

Y0 =M(�; x;~�);

whereM(�; x; 0) is the matrix given in equation (3.6). This equation induces the perturbed

solutions Y�

f (�; x;~�) and Y�
s (�; x;~�), where Y

�

f (�; x; 0) and Y�
s (�; x; 0) are those given in

the previous section. Since Y�
s (!; x; 0) = Y+

s (!; x; 0), a routine calculation shows that

@~�E(!; 0) = �@~�(Y�

s �Y+
s )(!; x; 0)^ (Y�

f
^Y+

f
^Y+

s )(!; x; 0):

The 3-form (Y�

f ^Y
+
f ^Y

+
s )(!; x; 0) is uniformly bounded as jxj ! 1, with

lim
x!�1

(Y�

f ^Y
+
f ^Y

+
s )(!; x; 0) = 2f(!) e123; (4.4)

where eijk = ei ^ ej ^ ek. Writing

�(Y�

f ^Y
+
f ^Y

+
s )(!; x; 0) = a1(x)e123+ a2(x)e124 + a3(x)e134+ a4(x)e234;
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this 3-form induces a solution to the adjoint equation, Zs(!; x; 0), which is given by

Zs(!; x; 0) = [a4(x);�a3(x); a2(x);�a1(x)]T

(Kapitula [13]). In other words,

@~�E(!; 0) = @~�(Y
�

s �Y+
s )(!; x; 0) � Zs(!; x; 0): (4.5)

Using (4.4) and Lemma 3.2, one can compute explicitly that

Zs(!; x; 0) = 2f(!)

"
�@xP+(!; x)

P+(!; x)

#
; (4.6)

where P+(!; x) is de�ned in Lemma 3.3. Unfortunately, the evaluation of @~�(Y
�
s �Y+

s ) is

not as straightforward. The following lemma gives us a computable quantity.

Lemma 4.2 Assume that Hypothesis 4.1 is satis�ed. The derivative of the Evans function

is then given by

@~�E(!; 0) = h@~�M(!; x; 0)Y+
s (!; x; 0);Zs(!; x; 0)i;

where

hf(x); g(x)i=
Z
1

�1

f(x) � g(x) dx:

Proof: Let ~Y be any solution to (3.5) at � = ! such that

D = ~Y �Zs 6= 0:

If @~�E(!; 0) 6= 0, then ~Y = @~�(Y
�
s �Y+

s ). Following the ideas in Kapitula [13], it can be

shown that

@~�(Y
�

s �Y+
s ) =

1

D

�
h@~�MY+

s ;Zsi~Y+ h@~�MY+
s ;
~ZiY+

s

�
; (4.7)

where ~Z is a solution to the adjoint equation induced by the 3-form Y�

f
^ ~Y ^Y+

f
. Since

Y+
s � Zs = 0,

@~�(Y
�
s �Y+

s ) � Zs =

 
h@~�MY+

s ;Zsi
D

!
~Y � Zs

=

 
h@~�MY+

s ;Zsi
D

!
D

= h@~�MY+
s ;Zsi:

Upon examination of (4.5), one gets the desired conclusion.

Remark 4.3 A similar formulation of the derivative is given in the work of Rubin [34].
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4.1 Evaluation at � = ! : CQNLS

For the CQNLS,

i�t + �xx � !�+ 4j�j2�+ 3�j�j4� = 0;

the solitary-wave solution is given by

�2(x; !; �) =
!

1 +
p
1 + �! cosh(2

p
! x)

(4.8)

([32]).

Following the formulation in Section 3, for the eigenvalue problem we get the matrix

M(�; x; �) =

2
6664

0 0 1 0

0 0 0 1

! + �� g(x; �) �h(x; �) 0 0

�h(x; �) ! � �� g(x; �) 0 0

3
7775 ;

where
g(x; �) = 8�2 + 9��4

h(x; �) = 4�2 + 6��4:

Theorem 2.26 shows that Hypothesis 4.1 is met. By Lemma 4.2, we therefore know that

@�E(!; 0) = h@�M(!; x)Y+
s (!; x);Zs(!; x)i: (4.9)

Using the fact that

@��
2 = �

1

2
�2(! � �2);

which can be readily veri�ed using the representation given in (4.8), it is easy to show that

@�g = �4!�2 + 13�4

@�h = �2!�2 + 8�4:

Since

@�M(!; x) = �

2
6664

0 0 0 0

0 0 0 0

@�g(x) @�h(x) 0 0

@�h(x) @�g(x) 0 0

3
7775 ;

and

P+(!; x) =

"
0

1

#
�

2

!
�2(x; !; 0)

"
1

1

#
;

a tedious calculation then shows that

@�MY+
s � Zs = �2f(!)

�
168

!2
�8 �

132

!
�6 + 37�4 � 4!�2

�
:

Thus, upon using (4.9) and integrating,

@�E(!; 0) = �
2

3
f(!)!

3=2

= �
2
p
2

3
!2:

(4.10)
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Now set � = �!. Equation (4.10) can then be rewritten as

@�E(!; 0) = �
2
p
2

3
!:

As a consequence of equations (4.2) and (4.3), it can be seen that if � < 0, then E(�; �) 6= 0

for � 2 U , while if � > 0, then E(��; �) = 0, where

�� = !(1�
1

36
�2) + o(�2) 2 IR: (4.11)

Thus, if � > 0 an eigenvalue moves out of the continuous spectrum. Note that �� 2 IR due

to the symmetries of the eigenvalue problem. Indeed, � is an eigenvalue if and only if �� is,

see Section 3. Since we are in the region where the Evans function has not been extended

arti�cially, any eigenvalue corresponds to a zero of E(�; �). Thus, since there is precisely

one eigenvalue bifurcating, it must be real. The following lemma has now been proved.

Lemma 4.4 Let � = �!. If 0 < � � 1, then one and only one eigenvalue moves out of

the continuous spectrum, with that eigenvalue being real and its location given by (4.11).

Furthermore, �� is the only zero of the Evans function in the half-plane Re� > 0. If

0 < �� � 1, then the Evans function is nonzero for all � such that Re� > 0.

Remark 4.5 Equation (4.11) agrees with the result of Pelinovsky et al. [32] in the case

that � = 1.

4.2 Evaluation at � = ! : PFNLS

The PFNLS is given by

i�t + (@2x � !)�+ 4j�j2� + i�(�� ���) = 0; (4.12)

where � � 0 is not necessarily small. By setting �! �e�i� , where

cos 2� =


�
; (4.13)

equation (4.12) can be rewritten as

i�t + (@2x � !)�+ 4j�j2�+ i�(�� ���e�i2�) = 0: (4.14)

The solitary-wave solution is given by

�(x; !; �) =

s
�

2
sech(

p
� x); (4.15)

where

� = ! + �� sin 2�: (4.16)

It is known that if � sin 2� < 0, then the wave is unstable (Barashenkov et al. [4]).

As a system, equation (4.14) can be written as

i�t + (@2x � !)�+ 4�2 + i�(�� � e�i2�) = 0

�i t + (@2x � !) + 4� 2 � i�( � ��e+i2�) = 0;
(4.17)
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where  = ��. Linearization yields the system

iPt + LP + i�P = 0;

where

L = (@2x � !)�3 + 4�2(2�3 + i�2) + �� cos 2� �2 � �� sin 2� �1: (4.18)

Here the �i are the Pauli spin matrices, i.e.,

�1 =

"
0 1

1 0

#
; �2 =

"
0 �i
i 0

#
; �3 =

"
1 0

0 �1

#
:

By setting P (x; t)! P (x)e�t, one then gets the linear eigenvalue problem

(L+ i(�+ �))P = 0:

Setting

� = �i(�+ �);

we then get the eigenvalue problem

(L� �)P = 0: (4.19)

Note that the eigenvalue problem again admits a symmetry: � is an eigenvalue if and only

if �� is.

Letting Y = [P;Q]T , where Q = P 0, the eigenvalue equation can be rewritten as the

�rst-order system

Y0 =M(�; x; �)Y; (4.20)

where

M(�; x; �) =

0
BBB@

0 0 1 0

0 0 0 1

! + �� 8�2 �4�2 + �� sin 2� 0 0

�4�2 � �� sin 2� ! � �� 8�2 0 0

1
CCCA : (4.21)

We want to apply Lemma 4.2 and calculate the derivative of the Evans function E(�; �)

with respect to �. It su�ces to verify Hypothesis 2.11 in Section 2.3, since Lemma 2.12

then shows that Hypothesis 4.1 is met. Thus, we have to show that the eigenvalues of the

limiting matrix

M(�; x; �) =

0
BBB@

0 0 1 0

0 0 0 1

! + � �� sin 2� 0 0

��� sin 2� ! � � 0 0

1
CCCA

are independent of �. It is easy to check that they are independent of � after replacing � by

� =

q
~�2 + (�� sin 2�)2 (4.22)

for ~� 2 U . This transformations accounts for the fact that the essential spectrum, which is

located on the real axis, moves towards zero as � increases. Note that we have

~E(~�; �) = E(

q
~�2 + (�� sin 2�)2; �):
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for the new Evans function ~E(~�; �), and that ~E(~�; �) satis�es Hypothesis 4.1.

By Lemma 4.2 we have that

@� ~E(!; 0) = h@�M(!; x)Y+
s (!; x);Zs(!; x)i:

A routine, yet tedious, calculation shows that

@�MY+
s � Zs = 16

p
2! (�1 +

6

!
�2 �

12

!2
�4)@�(�

2):

Since

@�(�
2) =

� sin 2�

!
(�2 +

1

2
x@x(�

2));

and Z
1

�1

x�2k(x)@x(�
2(x)) dx =

1

k + 1

Z
1

�1

x@x(�
2(1+k)(x)) dx

= �
1

k + 1

Z
1

�1

�2(1+k)(x) dx;

upon integrating we see that

@� ~E(!; 0) = �
16
p
2

3
� sin 2�: (4.23)

As a consequence of equations (4.2) and (4.3), we see that if � sin 2� < 0, then ~E(~�; �) 6= 0

for ~� near !, while if � sin 2� > 0, then ~E(~��; �) = 0, where

~�� = !

�
1�

16

9!2
(�2 � 2)�2

�
+ o(�2):

In the above equation, the relation � sin 2� = �
p
�2 � 2 was used. Going back to the

original variable � given in (4.22), we have E(��; �) = 0, where

�� = !

�
1�

23

18!2
(�2 � 2)�2

�
+ o(�2): (4.24)

Note that �� 2 IR on account of the symmetries of (4.19) mentioned above. Summarizing

the above discussion, we have the following lemma.

Lemma 4.6 Let 0 < � � 1. If � sin 2� < 0, then the Evans function is nonzero for all �

such that Re� > O(�) > 0. If � sin 2� > 0, then one and only one eigenvalue moves out of

the continuous spectrum. This eigenvalue is real and given by (4.24). Furthermore, �� is

the only zero of the extended Evans function in the half-plane Re� > O(�) > 0.

Remark 4.7 The Evans function will have four discrete zeros which are of O(�) (see Sec-

tion 6).
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4.3 Evaluation at � = ! : PFCQNLS

Consider the PFCQNLS

i�t + �xx � !�+ 4j�j2�+ 3�j�j4�+ i�(�� ���) = 0:

The Evans function will be given by E(�; �; �), where � = �!. As a consequence of the

results of the previous subsections, we know that after changing variables according to (4.22)

@�E(!; 0; 0) = �
2
p
2

3
!

@�E(!; 0; 0) = �
16
p
2

3
� sin 2�:

Therefore, as a result of equations (4.2) and (4.3), we get the following lemma.

Lemma 4.8 Let 0 < �; j�j � 1. If

� <
8� sin 2�

!2
�;

then the Evans function is nonzero for all � such that Re� > O(�) > 0, and hence no

eigenvalues bifurcate out of the continuous spectrum. Otherwise, one eigenvalue bifurcates

out of the continuous spectrum.

Remark 4.9 From a physical viewpoint, this means that parametric forcing can overcome

the possibly destabilizing e�ect that a positive � represents.

5 The cubic-quintic nonlinear Schr�odinger equation

The PCQNLS is given by

i�t + �xx � !�+ 4j�j2�+ 3�j�j4� = i�(d1�xx + d2�+ d3j�j2�+ d4j�j4�); (5.1)

where � > 0 is small and the other parameters are real and of O(1). In this section, we will

investigate the stability of the solitary wave �(x; !; �), where

�2(x; !; 0) =
!

1 +
p
1 + �! cosh(2

p
! x)

:

The wave �(x; !; �) is a smooth perturbation of �(x; !; 0) ([39]). In Kapitula [14], it is

shown that in order for the wave to persist, it must be true that d3 = d�3, where

d�3 = d1 � Cd2d2 � Cd4(d4 � �d1) +O(�); (5.2)

and the constants are given by

Cd2 =
3

!

�
1 +

4

15
� +O(�2)

�
; Cd4 =

2

5
!

�
1�

9

35
� + O(�2)

�
:

The interested reader should consult [14] to get expressions for the constants when � is not

small.

When locating the eigenvalues, it is �rst necessary to locate those eigenvalues near the

origin. This study was undertaken in [14], and the following result was derived.
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Lemma 5.1 Consider the PCQNLS. Set � = �!, and assume that 0 < � � 1. Assume

that d3 = d�3, that d1 > 0, and that d4 < �d1. Now set

d�2 = C!;�(d4 � �d1);

where

C!;� =
2

15
!2
�
1�

22

21
� +O(�2)

�
:

If d2 < d�2 < 0, then there is one positive real eigenvalue, and one negative real eigenvalue,

both of which are O(�). If d�2 < d2 < 0, then there are two negative real eigenvalues which are

O(�). Furthermore, except for the double eigenvalue at zero, there are no other eigenvalues

of O(�).

Remark 5.2 The condition d1 > 0 means that the PCQNLS is a well-posed PDE. The

condition d�2 < 0 means that the solution � = 0 is stable for the PCQNLS.

Remark 5.3 The constants given above are discussed in detail in Kapitula [14], in that an

expression is given when �1 < � � 0 is not necessarily small.

Remark 5.4 One should consult Kodama et al. [22] for a formal calculation when � =

O(�).

For the rest of the discussion, assume that d�2 < d2 < 0, so that there are no unstable

eigenvalues near � = 0. In order to determine the stability of the wave, it is then necessary

to locate all eigenvalues which are close to the curves j Im�j � !.

Since d1 > 0 and d2 < 0, when � > 0 the continuous spectrum is contained in the

left-half plane and bounded away from the imaginary axis. It is then straightforward to

verify Hypothesis 2.9 in Section 2.3. On account of Lemma 2.10, the Evans function can

be extended continuously for � � 0 and all � with Re � � 0. As a consequence of Lemma

4.4, if 0 < �� � 1, then when � = 0 the Evans function is nonzero for j Im�j > O(j�j) > 0.

Therefore, if 0 < � � ��, the Evans function will continue to remain nonzero. Since the

zeros of the Evans function locate eigenvalues if � is to the right of the essential spectrum,

this then means that there are no eigenvalues close to the imaginary axis except those near

the origin. Observing that the linear operator is sectorial, we can now conclude that the

wave is stable. Theorem 1.5 has now been proved.

Now that the primary pulse for the PCQNLS has been shown to be stable, it is natural to

inquire as to the existence and stability of multiple-pulse solutions. The existence question

has been partially answered in Kapitula et al. [18]. There the existence of N -pulses which

are evenly spaced has been shown. However, other types of N -pulses certainly do exist,

and the existence of these will be the topic of another paper. Sandstede [36] has developed

a program to study the stability of the N -pulse solutions in the case that @�E(0) 6= 0. In

order to determine the stability of the multiple-pulse solutions for the PCQNLS, these ideas

must be extended to cover the case that @�E(0) = 0, but @2�E(0) 6= 0. This extension is

also possible and will be the focus of a future paper.

6 The parametrically-forced nonlinear Schr�odinger equation

The parametrically-forced nonlinear Schr�odinger equation (PFNLS) is given by

i�t + (@2x � !)�+ 4j�j2� + i�(�� ���) = 0; (6.1)
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where ! > 0 and � � 0. Initially, no size restriction on the size of � will be made. By setting

�! �e�i� , where

cos 2� =


�
; (6.2)

equation (6.1) can be rewritten as

i�t + (@2x � !)�+ 4j�j2�+ i�(�� ���e�i2�) = 0: (6.3)

The solitary-wave solution is given by

�(x; !; �) =

s
�

2
sech(

p
� x); (6.4)

where

� = ! + �� sin 2�: (6.5)

Note that if � satis�es (6.2), so does � + �. Thus the sign of the sine term in (6.5) can be

chosen positive or negative as we wish.

It is known that if � sin 2� < 0, then the wave � is unstable (Barashenkov et al. [4]). We

will show that the wave is stable for all � > 0 su�ciently small if � sin 2� > 0. Of interest

is then the existence of multiple pulses resembling N copies of the stable primary wave �.

Using results from [37], we prove that stable N -pulses exist provided a small dissipative

term is added to the (6.1):

i�t + (@2x � !)�+ 4j�j2�+ i�(�� ���) = i�@2x�; (6.6)

0 < � � �. The dissipative term models spectral �ltering of the signals in the optical �ber.

6.1 Stability of �

We consider equation (6.3)

i�t + �xx � !�+ 4j�j2� + i�(�� ���e�i2�) = 0 (6.7)

and investigate the stability of the primary solitary-wave

�(x; !; �) =

s
�

2
sech(

p
� x)

with � = ! + �� sin 2� and � sin 2� > 0.

Theorem 6.1 Let  > 0, � 6= 0, and ! > 0. Assume that � is chosen such that � sin 2� > 0.

The solitary wave � given in (6.4) is then orbitally exponentially stable with respect to

equation (6.7) for all � > 0 su�ciently small.

Proof: First, we determine the spectrum of the linearization of (6.7) around the wave �

for small � > 0. It is convenient to write equation (6.7) as a system by writing down the

equations for the real and imaginary part of �. Setting � = u+ iv, we obtain

ut = �
�
vxx � (2! � �)v + 4(u2 + v2)v

�
vt = uxx � �u+ 4(u2 + v2)u� 2�v:

(6.8)
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The eigenvalue problem of the linearization of (6.8) about the wave � reads

LP = �P;

where

L =

 
0 �L�

L+ �2�

!
; (6.9)

and

L� = @2x + 4�2 � (2! � �); L+ = @2x + 12�2 � �:

This eigenvalue problem has been considered in Section 4.2. By Lemma 4.6, the spectrum

outside a small neighborhood of zero is contained in the line Re� = ��. Therefore, it

su�ces to consider eigenvalues near zero.

For that purpose, we rescale y :=
p
�x and denote the resulting operators again by L�.

We then have the equivalent eigenvalue problem 
0 �L�

L+ �2�
�

! 
P1
P2

!
=

1

�
�

 
P1
P2

!
(6.10)

with

L� = @2y + 2sech2y � q2; L+ = @2y + 6sech2y � 1; (6.11)

and

q2 =
2! � �
�

=
! � �� sin 2�
! + �� sin 2�

< 1: (6.12)

The eigenvalue problem (6.10) can be written as the fourth-order equation

L�L+P1 = �
�(�+ 2�)

�2
P1: (6.13)

In passing, we note that the spectrum is symmetric with respect to the axis Re� = ��,
i.e., �� 2� is an eigenvalue whenever � is.

It has been shown by Kutz and Kath [24] (see also [2]) that zero and ��(�) = O(�) > 0

are all of the eigenvalues of the equation

L�L+P1 = �P1 (6.14)

inside a small neighborhood of zero for � > 0 small. Therefore, the eigenvalues of (6.13)

near zero are simple and given by

�1 = 0; �2 = �2�; �3;4 = �� �
q
�22 � �2��(�)

In particular, since ��(�) > c� for some c > 0, the eigenvalues �3;4 have nonzero imaginary

part with Re�3;4 < 0 (see Figure 2).

Summarizing the above discussion, the spectrum of the operator L is contained in the

left-half plane with the exception of a simple eigenvalue at zero. Unfortunately, however,

L will generate only a C0-semigroup. For these groups, the spectral theorem does not

hold in general and therefore we cannot conclude asymptotic stability from the knowledge

of the spectrum of L alone. However, it follows from a result by Pr�u� [33, Corollary 4]

that if the resolvent (L � �)�1 is bounded uniformly in the right-half plane outside any
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small neighborhood of zero as an operator in L2(IR), then the spectral theorem holds. In

particular, the wave � and its translates form an exponentially attracting set in L2(IR).

Let � be such that Re� � 0. Set

~� =
�

�
; ~ =

�

�
; � = ~�(~�+ 2�~):

In the following, we will omit the tilde. In order to estimate the resolvent, we must solve 
�� �L�
L+ �(�+ 2�)

! 
P1
P2

!
=

 
G1

G2

!
; (6.15)

that is, (L� �)P = G, where Gi 2 L2(IR). Since 0 < q2 < 1, the operator L� is invertible

([2, Section 2]); therefore, we can solve the �rst equation for P2 to get

P2 = �L�1� (�P1 + G1); (6.16)

and substitute this result into the second equation to get

(L+ + �L�1� )P1 = G2 � (�+ 2�)L�1� G1: (6.17)

In solving equations (6.16) and (6.17) it is su�cient to consider the case that j�j is large,
since the resolvent is bounded in bounded sets. De�ne the fourth-order operator

A = L+L�;

and note that A� = L�L+. We know from the results above that the fourth-order operators

A + � and A� + � are invertible for any large j�j with Re� � 0. Therefore, we can solve

equations (6.16) and (6.17) to get

P1 = �(�+ 2�)(A�+ �)�1G1 + L�(A+ �)�1G2

P2 = �L+(A
� + �)�1G1 � �(A+ �)�1G2:

(6.18)

We shall obtain estimates for P = (P1; P2) in terms of G = (G1; G2) when j�j is large.
We claim that for j�j large

k(A+ �)�1k � M=j�j
kL�(A+ �)�1k � M;

(6.19)

with analogous estimates for the adjoint operators. The constant M > 0 may depend on �

but not on �. Assume for a moment that the claim is true. We then have from equations

(6.18) and (6.19) that

(jP1j+ jP2j) � (M + 1)(jG1j+ jG2j)

for all � with Re� � 0 and j�j large.
It remains therefore to prove the above claim, which means that we must estimate the

norm of the operator (A+�)�1. The operators A and A� are sectorial, so that their resolvent

can be estimated in a sector. However, � = �(�+ 2�) is not contained in any sector near

the positive axis, but instead forms a parabola. A priori, it is then not obvious why the

estimates (6.19) should be true.
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The key is that the operatorA is self-adjoint up to terms involving �rst-order derivatives.

Indeed, it is easy to check that

Au = (@2y + 6sech2y � 1)(@2y + 2sech2y � q2)u

= @4yu+ 4sech2y@2yu+ @2y (4usech
2y)� (1 + q2)@2yu+

+2(sech2y)yuy + (2(sech2y)yy + (2sech2y � q2)(6sech2y � 1))u:

In other words, we have

Au = Bu +Ru

where

Bu = @4yu+ 4sech2y@2yu+ @2y (4usech
2y) +

(2(sech2y)yy + (2sech2y � q2)(6sech2y � 1))u

is self-adjoint and RB�
1

4 is a bounded operator.

Using the spectral family associated with B, we see that

k(B + �)�1k � M=j�j
kB

1

4 (B + �)�1k � M=j�j1=2

kB
1

2 (B + �)�1k � M

(6.20)

uniformly for Re� � 0 and j�j large. We obtain

(A+ �)�1u = (B + R+ �)�1u

= (B + �)�1(id+R(B + �)�1)�1

= (B + �)�1(id+RB�
1

4B
1

4 (B + �)�1)�1:

It follows from (6.20) and the boundedness of RB�
1

4 that the terms appearing in the above

equation are well-de�ned for all j�j su�ciently large. Note that it is crucial that R is only

of �rst order. Otherwise, it would not be clear whether the operator
�
id+R(B + �)�1

�
is

invertible; for instance, for R = B
1

2 the operator R(B + �)�1 can only be estimated by a

constant. The estimates (6.19) are now an immediate consequence of (6.20), and the proof

of Theorem 6.1 is complete.

Remark 6.2 Since � = 0 is a simple eigenvalue of (6.14) for all � > 0 (see [2]) and the

eigenvalues � of (6.10) satisfy � = �(�+2�), we know that if the wave is to become unstable

as � increases, it must do so through a Hopf bifurcation.

Remark 6.3 If � sin 2� < 0, it follows from [24] that the eigenvalue ��(�) is negative and

hence the pulse � is unstable for all small �. Thus, one gets another proof of the local

instability result presented in Barashenkov et al. [4]. From [2], one can conclude that the

wave will never stabilize.

6.2 Existence and stability of multiple pulses

Consider equation (6.6)

i�t + (@2x � !)�+ 4j�j2�+ i�(�� ���) = i�@2x�
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for � > 0 small. The associated steady-state equation reads

�xx � !�+ 4j�j2�+ i�(�� ���) = i��xx: (6.21)

Note that (6.21) is reversible, that is, �(x) satis�es (6.21) if and only if �(�x) does. Since
zero is simple eigenvalue of the linearization of (6.1) around �, it follows from the results

of Vanderbauwhede et al. [40] that the pulse � persists for � > 0. Moreover, since the

linearization of (6.6) around the perturbed wave is sectorial, the pulse will be stable for

� > 0 small. Therefore, we have the following corollary of Theorem 6.1.

Corollary 6.4 Equation (6.6) has a stable solitary-wave solution for all � > 0 su�ciently

small which approaches � as � ! 0.

Consider the steady-state equation

�xx � !�+ 4j�j2�+ i�(�� ���) = i��xx (6.22)

of equation (6.6) for � � 0. By Theorem 6.1, equation (6.6) admits the stable solitary-wave

solution � for � > 0, which by Corollary 6.4 persists for 0 � � � �. Note that equation

(6.22) is reversible (�(x) is a solution if and only if �(�x) is) and admits the ZZ2-symmetry

�! �� (� is a solution if and only if �� is). We are interested in the existence and stability

of multiple solitary waves. These are solutions of (6.22) resembling N widely spaced copies

of � or ��. There are several ways to obtain N -pulses of di�erent shapes, since � and

�� are concatenated. Denoting � and �� by \up" and \down", respectively, we may then

consider arbitrary sequences of ups and downs corresponding to whether � or �� is used.

It has recently been proved in [37] that multiple pulses are expected to occur near so-

called orbit-ip bifurcations. This bifurcation is characterized by the property that when

� = 0, the wave � is contained in the strong stable manifold of the equilibrium � = 0, with

this no longer being true for � 6= 0. Now, the eigenvalues of the linearization of (6.22) at

� = 0 for � = 0 are given by
p
! + �� sin 2� with � given by cos 2� = =�. As mentioned

previously, depending on the choice of �, sin � may be positive or negative. The stable

primary pulse �(x) satis�es (6.22) for � = 0 and converges to zero exponentially with ratep
! + �� sin 2� for sin � > 0 as jxj ! 1. Thus, it converges with the largest exponential

rate possible. Since � is contained in the strong stable manifold when � = 0, an orbit-ip

bifurcation is possible.

We have the following theorem concerning existence and stability of multiple solitary

waves of (6.22). It is based on an application of [37, Theorems 1, 2, and 4].

Theorem 6.5 Fix � > 0 small and N > 1, then for any 0 < � < �(�; N) small, there exists

a unique multiple solitary wave of up-down-up-down-... type. These pulses are stable with

respect to equation (6.6). Any other N-pulse consisting of copies of � or �� is unstable.

Remark 6.6 There exist many other N -pulses besides the ones of up-down-up-down-...

type, and we refer to [37] for the details.

Proof: As mentioned above, the theorem is an application of results proved in [37]. In

particular, we shall verify the hypotheses of Theorems 1 and 2 in that paper. Most of

the hypotheses are concerned with the linearization of (6.22) for � = 0 around the wave �.

However, this equation can be written as the fourth-order equation studied in [37, Section 4]

(see (6.13) with � = 0 and [37, (4.9)]). Thus, it turns out that most of these hypotheses
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have already been veri�ed in [37, Theorem 4]. The only assumption which we have to

consider here is Hypothesis (H4)(ii) in [37]. Assumption [37, (H4)(ii)] is used to compute

the sign of a certain constant J2 which determines the bifurcation direction. In fact, J2 > 0

corresponds to the pulses bifurcating for � > 0.

The constant J2 arises as follows. Recall that the steady-state equation of (6.6) written

as a system for real and imaginary part is given by

�uxx = �(vxx � (2! � �)v + 4(u2 + v2)v)

�vxx = uxx � �u+ 4(u2 + v2)u� 2�v:

Let �� denote the stable primary pulse of (6.6), with �0 = �. We need to calculate the �rst-

order expansion of ��. Since �� is smooth, we can substitute �� into the above equation

and take the derivative with respect to � at � = 0. The function (u; v) = d
d�
��j�=0 satis�es

�xx = �(vxx � (2! � �)v + 4�2v)

0 = uxx � �u+ 12�u� 2�v:

Solving the second equation for v and substituting the resulting expression into the �rst

equation, we get

(@2x + 4�2 � (2! � �))(@2x + 12�2 � �)v = �2��xx;

i.e., L�L+v = �2��xx. It is now clear that the fourth-order equation investigated in [37],

that is, the left-hand side of the above equation, and the parametrically-forced NLS are

related.

Substituting the expression for � and rescaling y =
p
�x, we obtain

(@2x + 2sech2y � q2)(@2x + 6sech2y � 1)v = �

s
2

�
�(sechy � 2sech3y) =: G(y);

where q < 1 has been de�ned in (6.12). The crucial point is that the constant J2 is given

by

J2 =

Z
1

�1

G(y)eqy(q � tanh y) dy

= �

s
2

�
�

Z
1

�1

(sechy � 2sech3y)eqy(q � tanh y) dy

([37, Section 4.1]). A straightforward calculation following [37] yields

J2 = 4

s
2

�
�

Z
1

�1

e
y

q sech3y tanh y dy > 0;

which is positive since q > 0. This coincides with the sign computed in [37], and hence the

multiple pulses bifurcate for � > 0. The conclusion of the theorem follows now from [37,

Theorem 4].

Remark 6.7 In fact, we have not used the assumption that � > 0 is small for the existence

part of Theorem 6.5. It has only been used for concluding stability since then stability of

the primary pulse � is required. This, however, has been shown in Theorem 6.1 only for

� > 0 small. Therefore, for all � > 0, multiple solitary waves of up-down-up-... type exist

for � > 0 small, and they are stable as long as � is stable for � = 0.
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