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Abstract

In this paper we deal with a mathematical model for the description of heat conduction and carrier

transport in semiconductor heterostructures. We solve a coupled system of nonlinear elliptic di�erential

equations consisting of the heat equation with Joule heating as a source, the Poisson equation for the

electric �eld and drift�di�usion equations with temperature dependent coe�cients describing the charge

and current conservation, subject to general thermal and electrical boundary conditions. We prove the

existence and uniqueness of Hölder continuous weak solutions near thermodynamic equilibria points using

the Implicit Function Theorem. To show the continuous di�erentiability of maps corresponding to the weak

formulation of the problem we use regularity results from the theory of nonsmooth linear elliptic boundary

value problems in Sobolev�Campanato spaces.

1 Introduction

We consider the following stationary drift�di�usion model (1), (2) with recombination and generation for

self-heating semiconductors (cf. Wachutka [7]) consisting of continuity equations of electron and hole �ow,

Poisson's equation and a heat equation with Joule heating, but no thermoelectric e�ects. All functions are

suitably scaled, especially we have set q = 1 for the elementary charge:

−∇ · (µn∇u) = R on Ω,
−∇ · (νp∇v) = R on Ω,
−∇ · (ε∇ψ) = p− n+D on Ω,
−∇ · (κ∇θ) = µn|∇u|2 + νp|∇v|2 − (u+ v)R on Ω.

 (1)

Let us complete these equations with mixed boundary conditions for the electrical and thermal boundary

behaviour:

u = uo on ∂Ω \ Γ and e · (µn∇u) = 0 on Γ,
v = vo on ∂Ω \ Γ and e · (νp∇v) = 0 on Γ,
ψ = ψo on ∂Ω \ Γ and e · (ε∇ψ) = 0 on Γ,
θ = θo on ∂Ω \ Σ and e · (κ∇θ) = 0 on Σ.

 (2)

Here and later on Ω is a bounded domain of the m-dimensional Euclidean space IRm for m ≥ 2. We denote by e

the outward unit normal vector �eld on the boundary ∂Ω, by ∇a the gradient of a function a : Ω→ IR, by ∇· a
the divergence of a vector �eld a : Ω→ IRm and for the scalar product in IRm we use a centered dot. Finally, Γ,
Σ ⊂ ∂Ω are the possibly di�erent Neumann parts of ∂Ω and ∂Ω \ Γ, ∂Ω \Σ the corresponding Dirichlet parts.

There occur several variables and related quantities in the model equations (1), namely,

−u quasi�Fermi level of electrons, n concentration of electrons,

v quasi�Fermi level of holes, p concentration of holes,

ψ electrostatic potential, R recombination rate,

θ thermal voltage, D concentration of dopants.
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To get a self-consistent system of equations we have to formulate constitutive laws:

n = N F

(
u+ ψ −En

θ

)
,

p = P F

(
v − ψ +Ep

θ

)
,

R = r

{
1− exp

(
u+ v

θ

)}
.


(3)

In order to involve the very important situation of heterogeneous materials we assume that the coe�cients

occuring in (1) and (3) depend on spatial variables and some other arguments

µ = µ(x, θ) mobility of electrons, En = En(x, θ) band edge quantity,

ν = ν(x, θ) mobility of holes, Ep = Ep(x, θ) band edge quantity,

N = N(x, θ) electron state density, ε = ε(x) dielectric permittivity,

P = P (x, θ) hole state density, κ = κ(x, θ) thermal conductivity,

F = F (t) distribution function, r = r(x, u, v, ψ, θ) relaxation rate.

Our aim is to prove existence and uniqueness of Hölder continuous weak solutions to problem (1), (2) near

thermodynamic equilibria points. The main tool in our investigations is a regularity result from the theory of

nonsmooth linear elliptic problems with mixed boundary conditions in Sobolev�Campanato spaces (see Recke

[4]), which works also in space dimensions m > 2 in contrast to the W 1,p-theory (cf. Gröger [2]). Working in

these spaces we are able to derive di�erentiability properties of operators corresponding to the weak formulation

of our problem and to show that the Implicit Function Theorem can be applied to ensure the announced existence

and uniqueness result.

The paper is organized as follows. In Section 2 we specify the assumptions on the data of our prob-

lem. Section 3 is devoted to the functional analytic background. Here we collect some properties of Sobolev�

Campanato spaces and some results of the regularity theory for nonsmooth linear elliptic boundary value

problems. It also contains di�erentiability properties for superposition operators connected with the weak

formulation of problem (1), (2). In Section 4 we de�ne the appropriate Banach spaces and the open set for

the application of the Implicit Function Theorem. Furthermore, we formulate our problem in a weak sense

and develop an equivalent formulation. Section 5 contains our main result. Here we show the validity of the

assumptions for the application of the Implicit Function Theorem.

2 Assumptions on the data

To specify the assumptions on the coe�cients we de�ne a special class of Carathéodory functions (cf. Recke

[5]):

De�nition 1 Let l ∈ IN, I ⊂ IR an open interval and Q ⊂ IRl be a domain. We call a function a : Ω×Q→ I
admissible if and only if it ful�ls the following properties:

y �→ a(x, y) is continuously di�erentiable for almost all x ∈ Ω,
x �→ a(x, y) and x �→ D2a(x, y) are measurable for all y ∈ Q.

For every compact set C ⊂ Q there exist a compact interval IC ⊂ I
and a compact set JC ⊂ IRl such that

a(x, y) ∈ IC for almost all x ∈ Ω and all y ∈ C,
D2a(x, y) ∈ JC for almost all x ∈ Ω and all y ∈ C.

For every compact set C ⊂ Q and τ > 0 there exists a δ > 0
such that for all y, z ∈ C it holds

|y − z| < δ =⇒ |a(x, y)− a(x, z)| < τ for almost all x ∈ Ω,
|y − z| < δ =⇒ |D2a(x, y)−D2a(x, z)| < τ for almost all x ∈ Ω.



(4)

To work with regularity results for nonsmooth linear elliptic equations de�ned in nonsmooth domains we want

to use the following very general concept of regular sets (see Gröger [2]).
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De�nition 2 A bounded set H ⊂ IRm is called regular if and only if

for every point x ∈ ∂H of the boundary there exist two open

neighborhoods U ⊂ IRm of x and V in IRm and a bijective

transformation B from U onto V, such that B and B−1 are
Lipschitz continuous and B(U ∩H) is one of the sets:

E1 =
{
x ∈ IRm

∣∣ |x| < 1 , xm < 0
}
,

E2 =
{
x ∈ IRm

∣∣ |x| < 1 , xm ≤ 0
}
,

E3 =
{
x ∈ E2

∣∣xm < 0 or x1 > 0
}
.


(5)

For all further considerations we will assume that

Ω ⊂ IRm is a bounded domain (m ≥ 2) and Γ,Σ ⊂ ∂Ω such that

G = Ω ∪ Γ and S = Ω ∪ Σ are regular,

∂Ω \ Γ and ∂Ω \ Σ contain nonempty open subsets,

µ, ν, κ,N, P : Ω× (0,+∞)→ (0,+∞) are admissible,
En, Ep : Ω× (0,+∞)→ IR are admissible,

r : Ω× IR3 × (0,+∞)→ (0,+∞) is admissible,

F : IR→ (0,+∞) is monotonously increasing, continuously

di�erentiable on IR and it holds lim
t→+∞

F (t) = +∞,

D : Ω→ IR is measurable and bounded on Ω,
ε : Ω→ (0,+∞) is measurable and bounded on Ω,
0 < ε� ≤ ε ≤ ε� < +∞ almost everywhere on Ω.



(6)

The above general assumption on F includes the most physically relevant Boltzmann and Fermi�Dirac distri-

bution functions. Furthermore, the nonsmoothness of the coe�cients in the spatial variables is devoted to the

situation of heterogeneous semiconductor devices.

3 Functional analytic background

Now, for every regular set H ⊂ IRm and its interior Ω we de�ne the following subspaces of the usual Sobolev

space W 1,2(Ω):

C∞o (H) :=
{
w|Ω
∣∣w ∈ C∞o (IRm) with supp(w) ∩ (H \H) = ∅

}
and

W 1,2
o (H) as the closure of C∞o (H) in W 1,2(Ω).

Let λm the usual Lebesgue measure on the Lebesgue measurable sets of IRm. We denote by W−1,2(H) the
dual space to W 1,2

o (H) and by 〈 , 〉H and JH : W 1,2
o (H) −→W−1,2(H) the dual pairing and the corresponding

duality map

〈JHw, h〉H =

∫
H

(∇w · ∇h+ wh) dλm for all w, h ∈W 1,2
o (H), (7)

respectively. We introduce suitable Banach spaces connected with the Campanato spaces L2,ω(Ω) for real

numbers ω ∈ (m− 2,m):

L2,ω(Ω) :=
{
w ∈ L2(Ω)

∣∣ [w]L2,ω(Ω) <∞} ,
Wω(Ω) :=

{
w ∈W 1,2(Ω)

∣∣∇w ∈ L2,ω(Ω, IRm)} ,
Xω(H) :=

{
w ∈W 1,2

o (H)
∣∣∇w ∈ L2,ω(Ω, IRm)} ,

Yω(H) :=
{
h ∈W−1,2(H)

∣∣ ∃w ∈ Xω(H) : JHw = h
}
,

[w]2
L2,ω(Ω) := sup

x∈Ω
r>0

(
r−ω

∫
Ω∩B(x,r)

∣∣∣w − 1

λm(Ω ∩B(x, r))

∫
Ω∩B(x,r)

w dλm
∣∣∣2 dλm),
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‖w‖2
L2,ω(Ω) := ‖w‖

2
L2(Ω) + [w]2

L2,ω(Ω),

‖w‖2Wω(Ω) := ‖w‖
2
W1,2(Ω) + ‖w‖

2
L2,ω(Ω),

‖w‖Xω(H) := ‖w‖Wω(Ω),

‖h‖Yω(H) := ‖J
−1
H h‖Xω(H).

Now, we collect some properties of the Sobolev�Campanato spaces Wω(Ω) (see, for instance, Troianiello [6],

Hong Xie [8]):

Theorem 1 Let Ω ⊂ IRm be the interior of a regular set H ⊂ IRm and ω ∈ (m− 2,m), then
(1) there exists a constant c∞ = c∞(ω) > 0 such that for all w ∈ L2,ω(Ω) and z ∈ L∞(Ω) the product zw
belongs to L2,ω(Ω) and can be estimated by

‖zw‖L2,ω(Ω) ≤ c∞‖z‖L∞(Ω)‖w‖L2,ω(Ω),

(2) there exists a cW = cW (ω) > 0 such that for all w ∈Wω(Ω) we have w ∈ L2,ω+2(Ω) and it holds the norm

estimate

‖w‖L2,ω+2(Ω) ≤ cW‖w‖Wω(Ω),

(3) the space L2,ω+2(Ω) is isomorphic to the space C0,η(Ω) of Hölder continuous functions, where the Hölder

exponent is η = (ω −m+ 2)/2.

Now, we formulate a regularity result for diagonal systems of nonsmooth linear elliptic equations (for a proof

see Recke [4], compare also with Troianiello [6] and Hong Xie [8]). Let l ∈ IN, γ ∈ (0, 1) and denote by

Ml and Sl the spaces of all real l × l-matrices and real symmetric l × l-matrices, respectively and, �nally, by

L∞γ (Ω,Sm) the set of all matrices M ∈ L∞(Ω,Sm) such that

γ|ξ|2 < M(x)ξ · ξ <
1

γ
|ξ|2 for all ξ ∈ IRm \ {0} and for almost all x ∈ Ω.

Theorem 2 Let k ∈ IN, γ ∈ (0, 1) and H1 = Ω∪Γ1, . . . ,Hk = Ω∪Γk with Γ1, . . . ,Γk ⊂ ∂Ω be regular sets with

the common interior Ω ⊂ IRm. For

A = (Ai) ∈ L∞γ (Ω, (Sm)
k), d = (dij) ∈ L∞(Ω,Mk),

b = (bij) ∈ L∞(Ω, (Mk)m), c = (cij) ∈ L∞(Ω, (Mk)m)

we de�ne the linear bounded operator

L(A, b, c, d) :W 1,2
o (H1)× . . .×W 1,2

o (Hk) −→W−1,2(H1)× . . .×W−1,2(Hk) by

〈L(A, b, c, d)w,ϕ〉 :=
k∑

i,j=1

∫
Ω

((Ai∇wi + bijwj) · ∇ϕi + (cij · ∇wj + dijuj)ϕi) dλ
m

for all w = (w1, . . . , wk), ϕ = (ϕ1, . . . , ϕk) ∈W 1,2
o (H1)× . . .×W 1,2

o (Hk).

Then there exist constants ω1 ∈ (m− 2,m) and ωo = ωo(γ) ∈ (m− 2, ω1) such that

(1) the operator L(A, b, c, d) maps Xω(H1)× . . .×Xω(Hk) continuously into the space Yω(H1)× . . .× Yω(Hk)
for all ω ∈ [0, ω1]. Moreover, the following map is continuous:

(A, b, c, d) ∈ L∞γ (Ω, (Sm)
k)× L∞(Ω, (Mk)m)× L∞(Ω, (Mk)m)× L∞(Ω,Mk) �−→

L(A, b, c, d) ∈ L(Xω(H1)× . . .×Xω(Hk), Yω(H1)× . . .× Yω(Hk)).

(2) For all j ∈ {1, . . . , k} and ω ∈ [0, ω1] the space Yω(Hj) equals the set of all functionals h ∈W−1,2(Hj) such
that there exist functions z ∈ L2,ω(Ω, IRm) and zo ∈ L2,ω−2(Ω) with

〈h, ϕj〉 =

∫
Ω

(z · ∇ϕj + zoϕj) dλ
m for all ϕj ∈W

1,2
o (Hj).

Moreover, in that case there exists a constant cY = cY (ω) > 0 such that

‖h‖Yω(Hj) ≤ cY
(
‖z‖L2,ω(Ω,IRm) + ‖zo‖L2,ω−2(Ω)

)
,

where the constant cY does not depend on z and zo.
(3) L(A, b, c, d) is a Fredholm operator (index zero) from Xω(H1)× . . .×Xω(Hk) into Yω(H1) × . . .× Yω(Hk)
if ω ∈ (m− 2, ωo].
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For further considerations we have to ensure the continuous di�erentiability of several operators containing

superposition operators. Here we will apply the following di�erentiability result of Recke [5]:

Lemma 3 Let Q ⊂ IRl be a domain and l ∈ IN. Furthermore, let Ω ⊂ IRm be a bounded domain and

a : Ω×Q→ IR an admissible function. Then the following superposition operator is continuously di�erentiable:

Sa :
{
w ∈ C(Ω, IRl)

∣∣ ∀x ∈ Ω : w(x) ∈ Q
}
−→ L∞(Ω) de�ned by

(Sa(w))(x) := a(x,w(x)) for almost all x ∈ Ω.

4 Weak formulations

Now, we are in the situation to specify the functional analytic setting of the problem (1), (2). In order to apply

the Implicit Function Theorem we have to consider suitable continuously di�erentiable maps resulting from a

weak formulation of the problem (1), (2) and de�ned on an open subset of an appropriate Banach space.

De�nition 3 We choose the Banach spaces for the problem (1), (2) as Cartesian products of function spaces

de�ned above:

T∞ :=W 1,2
o (G, IR3)× (W 1,2

o (S) ∩ L∞(Ω)) space of test functions for problem (9),

T :=W 1,2
o (G, IR3)×W 1,2

o (S) space of test functions for problem (10),

Wω :=W 1,∞(Ω, IR2)×Wω(Ω, IR
2) space of boundary value functions,

Xω := Xω(G, IR
3)×Xω(S) space of the homogeneous parts,

Yω := Yω(G, IR
3)× Yω(S) space of functionals.

De�nition 4 We will decompose solutions of the problem (1), (2) into a sum of given boundary value functions

in Wω and the homogeneous parts of solutions which we want to �nd in Xω:

((uo, vo, ψo, θo), (U, V,Ψ,Θ)) ∈Wω ×Xω �−→

(u, v, ψ, θ) = (uo + U, vo + V, ψo +Ψ, θo +Θ) ∈Wω .

De�nition 5 Assume, that ω ∈ (m − 2,m), c > b > 0 and 0 < θ� < θ�. Then we de�ne the open subset

Mω =Mω(b, c, θ�, θ
�) ⊂Wω ×Xω by the following rule:

((uo, vo, ψo, θo), (U, V,Ψ,Θ)) ∈Mω if and only if

((uo, vo, ψo, θo), (U, V,Ψ,Θ)) ∈Wω ×Xω,

|uo + U | < b, |vo + V | < b, |ψo +Ψ| < c and

θ� < θo +Θ < θ� on Ω.

 (8)

De�nition 6 For ((uo, vo, ψo, θo), (U, V,Ψ,Θ)) ∈Mω and all φ = (φu, φv, φψ, φθ) ∈ T∞ we de�ne by

〈g((uo, vo, ψo, θo), (U, V,Ψ,Θ)), φ〉 :=

=

∫
Ω

(µn∇(U + uo) · ∇φu −Rφu) dλ
m +

∫
Ω

(νp∇(V + vo) · ∇φv −Rφv) dλ
m+

+

∫
Ω

(ε∇(Ψ + ψo) · ∇φψ − (p− n+D)φψ) dλ
m+

+

∫
Ω

(κ∇(Θ + θo) · ∇φθ + (U + uo + V + vo)Rφθ) dλ
m−

−

∫
Ω

µn|∇(U + uo)|
2φθ dλ

m −

∫
Ω

νp|∇(V + vo)|
2φθ dλ

m
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a functional g((uo, vo, ψo, θo), (U, V,Ψ,Θ)) on T∞. We call (u, v, ψ, θ) a weak solution of the problem (1), (2) to

the boundary value functions (uo, vo, ψo, θo) if and only if

((uo, vo, ψo, θo), (U, V,Ψ,Θ)) ∈Mω and

〈g((uo, vo, ψo, θo), (U, V,Ψ,Θ)), φ〉 = 0 for all φ ∈ T∞.

}
(9)

Analogously to the thermistor problem (see Howison, Rodrigues, Shillor [3]), it is now possible to �nd an

equivalent formulation to (9) replacing the quadratic terms |∇(U + uo)|2 and |∇(V + vo)|2 by ∇(U + uo) · ∇uo
and ∇(V + vo) · ∇vo and further lower order terms:

Theorem 4 For ((uo, vo, ψo, θo), (U, V,Ψ,Θ)) ∈ Mω and all ϕ = (ϕu, ϕv, ϕψ, ϕθ) ∈ T we de�ne the map

f :Mω → W−1,2(G, IR3)×W−1,2(S) in the following way:

〈f((uo, vo, ψo, θo), (U, V,Ψ,Θ)), ϕ〉 :=

=

∫
Ω

(µn∇(U + uo) · ∇ϕu −Rϕu) dλ
m +

∫
Ω

(νp∇(V + vo) · ∇ϕv −Rϕv) dλ
m+

+

∫
Ω

(ε∇(Ψ + ψo) · ∇ϕψ − (p− n+D)ϕψ) dλ
m+

+

∫
Ω

(κ∇(Θ + θo) · ∇ϕθ + (uo + vo)Rϕθ) dλ
m−

−

∫
Ω

µn∇(U + uo) · ∇uo · ϕθ dλ
m +

∫
Ω

µnU∇(U + uo) · ∇ϕθ dλ
m−

−

∫
Ω

νp∇(V + vo) · ∇vo · ϕθ dλ
m +

∫
Ω

νpV∇(V + vo) · ∇ϕθ dλ
m.

Then (u, v, ψ, θ) is a weak solution of problem (1), (2) to the boundary value functions (uo, vo, ψo, θo) if and

only if

((uo, vo, ψo, θo), (U, V,Ψ,Θ)) ∈Mω and

〈f((uo, vo, ψo, θo), (U, V,Ψ,Θ)), ϕ〉 = 0 for all ϕ ∈ T.

}
(10)

Proof: Let (u, v, ψ, θ) be a weak solution of the problem (1), (2) to the given boundary value functions

(uo, vo, ψo, θo), that means by de�nition:

((uo, vo, ψo, θo), (U, V,Ψ,Θ)) ∈Mω and

〈g((uo, vo, ψo, θo), (U, V,Ψ,Θ)), φ〉 = 0 for all φ ∈ T∞.

Now, we consider a test function ϕ = (ϕu, ϕv, ϕψ, ϕθ) ∈ T . Since W 1,2
o (S) is the closure of C∞o (S) in W 1,2(Ω)

we can choose a convergent sequence {ϕiθ}i∈IN ⊂ C
∞
o (S) with ϕiθ → ϕθ in W

1,2(Ω). Obviously, then

φi = (φiu, φ
i
v, φψ, φ

i
θ) := (ϕu + Uϕ

i
θ, ϕv + V ϕ

i
θ, ϕψ, ϕ

i
θ) ∈ T∞

is a sequence of test functions in T∞ and for ϕi = (ϕu, ϕv, ϕψ, ϕ
i
θ) we easily obtain:

〈f((uo, vo, ψo, θo), (U, V,Ψ,Θ)), ϕi〉 = 〈g((uo, vo, ψo, θo), (U, V,Ψ,Θ)), φi〉 = 0.

Finally, the limiting process i→∞ yields 〈f((uo, vo, ψo, θo), (U, V,Ψ,Θ)), ϕ〉 = 0.
To proof the opposite direction let us now assume, that

((uo, vo, ψo, θo), (U, V,Ψ,Θ)) ∈Mω and

〈f((uo, vo, ψo, θo), (U, V,Ψ,Θ)), ϕ〉 = 0 for all ϕ ∈ T.
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Fixing a test function φ = (φu, φv, φψ, φθ) ∈ T∞ we can �nd a sequence {φiθ}i∈IN ⊂ C
∞
o (S) which converges to

φθ in W
1,2(Ω) and, furthermore, ‖φiθ‖L∞(Ω) ≤ 2‖φθ‖L∞(Ω) for all i ∈ IN. Then φ

i = (φu, φv, φψ, φ
i
θ) ∈ T∞ and

ϕi = (ϕiu, ϕ
i
j , ϕψ, ϕ

i
θ) := (φu − Uφiθ, φv − V φ

i
θ, φψ, φ

i
θ) ∈ T

are test functions in T and it holds

〈g((uo, vo, ψo, θo), (U, V,Ψ,Θ)), φi〉 = 〈f((uo, vo, ψo, θo), (U, V,Ψ,Θ)), ϕi〉 = 0.

Again the limiting process i→∞ yields 〈g((uo, vo, ψo, θo), (U, V,Ψ,Θ)), φ〉 = 0. �

5 Local existence and uniqueness

Theorem 5 There exists a constant ω1 ∈ (m− 2,m) such that for all parameters c > b > 0, 0 < θ� < θ
� and

exponents ω ∈ (m− 2, ω1] the map f :Mω(b, c, θ�, θ
�) −→ Yω is continuously di�erentiable.

Proof: First of all, because of the assumptions (6) and Theorems 1 and 2 there exists a number ω1 ∈ (m−2,m)
such that the map f :Mω(b, c, θ�, θ

�) −→ Yω is continuous for ω ∈ (m− 2, ω1].
For the proof of existence and continuity of the partial Fréchet derivatives D1f : Mω −→ L(Wω , Yω) and

D2f : Mω −→ L(Xω , Yω) we want to utilize an argument of Recke [5]. To do so, we consider admissible

functions a : Ω×Mω → IR and introduce with the help of the associated superposition operators (see Lemma 3)

the following operators

Aijαβ , A
o
ijαβ , Aiαβ , A

o
iαβ , Ajβ , Aβ :Mω −→ Yω by

〈Aijαβ(wo,W ), ϕ〉 :=

∫
Ω

Sa(wo,W )DiWαDjϕβ dλ
m,

〈Aoijαβ(wo,W ), ϕ〉 :=

∫
Ω

Sa(wo,W )DiwoαDjϕβ dλ
m,

〈Aiαβ(wo,W ), ϕ〉 :=

∫
Ω

Sa(wo,W )DiWα · ϕβ dλ
m,

〈Aoiαβ(wo,W ), ϕ〉 :=

∫
Ω

Sa(wo,W )Diwoα · ϕβ dλ
m,

〈Ajβ(wo,W ), ϕ〉 :=

∫
Ω

Sa(wo,W )Djϕβ dλ
m,

〈Aβ(wo,W ), ϕ〉 :=

∫
Ω

Sa(wo,W )ϕβ dλ
m

for all ϕ ∈ T , where i, j ∈ {1, . . . ,m}, α, β ∈ {1, . . . , 4} and

(wo1, . . . , wo4) = (uo, vo, ψo, θo), (W1, . . . ,W4) = (U, V,Ψ,Θ) and (ϕ1, . . . , ϕ4) = (ϕu, ϕv, ϕψ, ϕθ).

Except of the two operators fu, fv :Mω −→ Yω de�ned as

〈fu(wo,W ), ϕ〉 := −

∫
Ω

Sµn(wo,W )∇(U + uo) · ∇uo · ϕθ dλ
m,

〈fv(wo,W ), ϕ〉 := −

∫
Ω

Sνp(wo,W )∇(V + vo) · ∇vo · ϕθ dλ
m,

and to be considered separately, each part of the map f can be splitted into a sum of operators of the type

Aijαβ , A
o
ijαβ , Aiαβ , A

o
iαβ , Ajβ , Aβ :Mω −→ Yω. Because of the continuous embedding ofWω×Xω into the space
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of bounded continuous functions we are able to prove the continuous di�erentiability of the map f − fu − fv :
Mω −→ Yω for ω ∈ (m − 2, ω1] in the same manner as in the announced paper of Recke [5]. This argument

also yields the existence and the continuity of the partial Fréchet derivatives D2f
u, D2f

v :Mω −→ L(Xω, Yω).
It remains to consider the partial Fréchet derivatives D1f

u, D1f
v. Let (wo,W ) be an arbitrarily chosen

point of Mω. Now, we will prove that the linear map D1f
u(wo,W ) :Wω −→ Yω de�ned as

〈D1fu(wo,W )ŵo, ϕ〉 :=

=

∫
Ω

SD2(µn)(wo,W )ŵo∇(U + uo) · ∇uo · ϕθ dλ
m+

+

∫
Ω

Sµn(wo,W ) (∇U + 2∇uo) · ∇ûo · ϕθ dλ
m

for all ϕ ∈ T and ŵo = (ûo, v̂o, ψ̂o, θ̂o) ∈Wω yields the sought-for partial Fréchet derivative of fu. To do so, we

de�ne for (wo + ŵo,W ) ∈Mω the functional Λu ∈ Yω by

〈Λu, ϕ〉 := 〈fu(wo + ŵo,W )− fu(wo,W )−D1fu(wo,W )ŵo, ϕ〉 for ϕ ∈ T

and split it into the three parts Λu = Λu1 +Λu2 +Λu3 as follows

〈Λu1 , ϕ〉 :=

∫
Ω

(
Sµn(wo + ŵo,W )− Sµn(wo,W )− SD2(µn)(wo,W )ŵo

)
∇(U + uo) · ∇uo · ϕθ dλ

m,

〈Λu2 , ϕ〉 :=

∫
Ω

(Sµn(wo + ŵo,W )− Sµn(wo,W )) (∇U + 2∇uo) · ∇ûo · ϕθ dλ
m,

〈Λu3 , ϕ〉 :=

∫
Ω

Sµn(wo + ŵo,W ) |∇ûo|
2 ϕθ dλ

m.

Because of Theorem 1 and 2 there exists a constant cΛ = cΛ(ω) > 0 such that the following norm estimates

hold

‖Λu1‖Yω ≤ cΛ‖Sµn(wo + ŵo,W )− Sµn(wo,W )− SD2(µn)(wo,W )ŵo‖L∞(Ω)‖∇uo‖
2
L∞(Ω)

+ cΛ‖Sµn(wo + ŵo,W )− Sµn(wo,W )− SD2(µn)(wo,W )ŵo‖L∞(Ω)‖∇uo‖L∞(Ω)‖∇U‖L2,ω(Ω),

‖Λu2‖Yω ≤ 2 cΛ‖Sµn(wo + ŵo,W )− Sµn(wo,W )− SD2(µn)(wo,W )ŵo‖L∞(Ω)‖∇uo‖L∞(Ω)‖∇ûo‖L∞(Ω)

+ cΛ‖Sµn(wo + ŵo,W )− Sµn(wo,W )− SD2(µn)(wo,W )ŵo‖L∞(Ω)‖∇U‖L2,ω(Ω)‖∇ûo‖L∞(Ω)

+ cΛ‖SD2(µn)(wo,W )ŵo‖L∞(Ω)
(
2‖∇uo‖L∞(Ω) + ‖∇U‖L2,ω(Ω)

)
‖∇ûo‖L∞(Ω),

‖Λu3‖Yω ≤ cΛ‖Sµn(wo + ŵo,W )‖L∞(Ω)‖∇ûo‖
2
L∞(Ω).

Now, with Lemma 3 it follows that D1f
u(wo,W ) : Wω −→ Yω is the partial Fréchet derivative of fu in

(wo,W ) ∈Mω. Analogously, we prove existence of the partial Fréchet derivative D1fv(wo,W ) :Wω −→ Yω for

ω ∈ (m− 2, ω1].

Let {(wio,W
i)}i∈IN ⊂ Mω be a convergent sequence with (wio,W

i) → (wo,W ) in Mω. From Theorem 2(2)

it follows the norm estimate

‖
(
D1f

u(wio,W
i)−D1fu(wo,W )

)
ŵo‖Yω ≤

≤ c ‖SD2(µn)(w
i
o,W

i)∇(U i + uio) · ∇u
i
o − SD2(µn)(wo,W )∇(U + uo) · ∇uo‖L2,ω(Ω)‖ŵo‖L∞(Ω)

+ c ‖Sµn(wio,W
i)(∇U i + 2∇uio)− Sµn(wo,W )(∇U + 2∇uo)‖L2,ω(Ω)‖∇ûo‖L∞(Ω).



5 Local existence and uniqueness 9

Again, Theorem 1 and 2 yield a constant cL = cL(ω) > 0 such that we are able to estimate

‖
(
D1f

u(wio,W
i)−D1fu(wo,W )

)
‖L(Wω,Yω) ≤

≤ cL‖SD2(µn)(w
i
o,W

i)‖L∞(Ω)
(
‖∇(uio − uo)‖L∞(Ω) + ‖∇(U

i − U)‖L2,ω(Ω)
)
‖∇uio‖L∞(Ω)

+ cL‖SD2(µn)(w
i
o,W

i)‖L∞(Ω)‖∇(u
i
o − uo)‖L∞(Ω)‖∇(U + uo)‖L2,ω(Ω)

+ cL‖SD2(µn)(w
i
o,W

i)− SD2(µn)(wo,W )‖L∞(Ω)‖∇(U + uo)‖L2,ω(Ω)‖∇uo‖L∞(Ω)

+ cL‖Sµn(wio,W
i)‖L∞(Ω)

(
2‖∇(uio − uo)‖L∞(Ω) + ‖∇(U

i − U)‖L2,ω(Ω)
)

+ cL‖Sµn(wio,W
i)− Sµn(wo,W )‖L∞(Ω)

(
2‖∇uo‖L∞(Ω) + ‖∇U‖L2,ω(Ω)

)
.

According to Lemma 3 the limiting process i → ∞ yields ‖
(
D1f

u(wio,W
i)−D1fu(wo,W )

)
‖L(Wω,Yω) → 0.

Analogously, we get the continuity of the partial Fréchet derivative D1f
v :Mω −→ L(Wω , Yω). �

Theorem 6 Let σ ∈ (m− 2,m) and

(uo, vo, ψo, θo) ∈Wσ such that

∇uo = ∇vo = ∇θo = 0 and uo + vo = 0 on Ω.

}
(11)

We take positive constants θ�, θ
�, b, κ� = κ�(θ�, θ

�), µ� = µ�(θ�, θ
�), N� = N�(θ�, θ

�), e� = e�(θ�, θ
�) ful�lling

|uo|, |vo| < b and θ� < θo < θ� on Ω and κ� < κ <
1

κ�
almost everywhere on Ω× [θ�, θ

�],

µ� < µ <
1

µ�
and µ� < ν <

1

µ�
almost everywhere on Ω× [θ�, θ

�],

N� < N <
1

N�
and N� < P <

1

N�
almost everywhere on Ω× [θ�, θ

�],

e� > |En| and e� > |Ep| almost everywhere on Ω× [θ�, θ
�].

Finally, using the properties of F (see (6)) we choose a constant c = c(b, θ�, θ
�) > 0 such that

c > b+ e� and c > |ψo| on Ω,

N�F

(
c− b− e�

θ�

)
−

1

N�
F

(
b+ e� − c

θ�

)
− ‖D‖L∞(Ω) > 0.

Then, there exists a constant ω = ω(b, c, θ�, θ
�, ε�, ε

�) ∈ (m− 2, σ) such that

(1) f((uo, vo, ψo, θo), (U, V ,Ψ,Θ)) = 0 has a unique solution in Mω(b, c, θ�, θ
�) and it holds

U = V = Θ = 0 (thermodynamic equilibrium point),

(2) D2f((uo, vo, ψo, θo), (U, V ,Ψ,Θ)) is a linear isomorphism from Xω onto Yω,

(3) there exist open sets Ko,K and a uniquely determined map s ∈ C1(Ko, Xω) such that

Ko ⊂Wω is an open neighborhood of (uo, vo, ψo, θo),

K ⊂ Xω is an open neighborhood of (0, 0,Ψ, 0),

Ko ×K ⊂Mω(b, c, θ�, θ�) and

(U, V,Ψ,Θ) = s((uo, vo, ψo, θo)) if and only if

(uo, vo, ψo, θo) ∈ Ko, (U, V,Ψ,Θ) ∈ K and f((uo, vo, ψo, θo), (U, V,Ψ,Θ)) = 0.
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Proof: 1. At �rst we look for a solution (0, 0,Ψ, 0) to the given boundary value functions (uo, vo, ψo, θo). That
means, we have to deal with the remaining nonlinear Poisson equation. To do so, we follow closely the methods

of Gröger [1]. Because of the properties of F (see (6)) we can �nd a constant c1 ∈ (0, c) such that

c1 > b+ e� and c1 > |ψo| on Ω,

N�F

(
c1 − b− e�

θ�

)
−

1

N�
F

(
b+ e� − c1

θ�

)
− ‖D‖L∞(Ω) > 0.

Let us de�ne for this constant c1 > 0 and a function a : Ω→ IR the cut-o� operator Π as

(Πa)(x) :=


c1 for x ∈ Ω, c1 ≤ a(x),

a(x) for x ∈ Ω, −c1 ≤ a(x) ≤ c1,

−c1 for x ∈ Ω, a(x) ≤ −c1

and an operator fΠ for a corresponding regularized problem

fΠ :W 1,2
o (G) −→W−1,2(G) by

〈fΠ(Ψ), ϕψ〉 :=

∫
Ω

ε∇(Ψ + ψo) · ∇ϕψ dλ
m+

+

∫
Ω

(
NF

(
uo +Π(Ψ + ψo)−En

θo

)
− PF

(
vo −Π(Ψ + ψo) +Ep

θo

)
−D

)
ϕψ dλ

m

for all ϕψ ∈W 1,2
o (G).

Note, that here and later on coe�cients considered in a thermodynamic equilibrium point are overlined. Ob-

viously, by (6) the so de�ned operator fΠ is strongly monotone and Lipschitz continuous. Therefore, the

regularized problem

〈fΠ(Ψ), ϕψ〉 = 0 for all ϕψ ∈W 1,2
o (G) (12)

admits a unique solution Ψ ∈W 1,2
o (G). To show the boundedness of Ψ we consider the test function

ϕψ = max
{
Ψ+ ψo − c1, 0

}
∈W 1,2(Ω).

Because of ψo < c1 we have

Ψ+ ψo − c ≤ Ψ and 0 ≤ ϕψ ≤ max
{
Ψ, 0
}
almost everywhere on Ω.

With Ψ ∈W 1,2
o (G) it follows that

ϕψ ∈W 1,2
o (G) and ∇(Ψ + ψo) · ∇ϕψ = |∇ϕψ|2.

Inserting ϕψ in (12) we get for ΩΠ =
{
x ∈ Ω

∣∣Ψ+ ψo ≥ c1
}

∫
Ω

ε|∇ϕψ|
2 dλm =

∫
Ω

Dϕψ dλ
m +

∫
ΩΠ

(
PF

(
vo − c1 +Ep

θo

)
−NF

(
uo + c1 −En

θo

))
ϕψ dλ

m ≤

≤

∫
ΩΠ

(
1

N�
F

(
b− c1 + e�

θ�

)
−N�F

(
c1 − b− e�

θ�

)
+ ‖D‖L∞(Ω)

)
ϕψ dλ

m ≤ 0.

Hence, we have proved the estimate Ψ+ ψo ≤ c1 < c almost everywhere on Ω. Analogously, testing with

ϕψ = min{Ψ+ ψo + c1, 0} ∈W
1,2
o (G),

we see that Ψ+ ψo ≥ −c1 > −c and �nally, |Ψ+ ψo| ≤ c1 < c almost everywhere on Ω. Therefore, it holds∫
Ω

ε∇Ψ · ∇ϕψ dλ
m = −

∫
Ω

ε∇ψo · ∇ϕψ dλ
m +

∫
Ω

(p− n+D)ϕψ dλ
m
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for all ϕψ ∈W 1,2
o (G).

Having in mind Theorem 1(1), Theorem 2(2) and assumption (6) it is easy to see, that there exists a constant

ω1 ∈ (m− 2, σ) such that the integral terms on the right hand side de�ne a functional in Yω1(G). Furthermore,

by Theorem 2(3) there exists a constant ωo = ωo(ε) ∈ (m − 2, ω1) such that the integral on the left hand side

de�nes an injective Fredholm operator from Xωo(G) into Yωo(G), which is then even a linear isomorphism from

Xωo(G) onto Yωo(G). Therefore, to the given boundary value functions it exists a thermodynamic equilibrium

point

((uo, vo, ψo, θo), (0, 0,Ψ, 0)) ∈Mωo(b, c, θ�, θ
�), f((uo, vo, ψo, θo), (0, 0,Ψ, 0)) = 0.

To show its uniqueness let (U, V ,Ψ,Θ) ∈ Xωo be any homogeneous solution to the given boundary value

functions. Inserting at �rst the test function (U, V , 0, 0) ∈ T and then (0, 0, 0,Θ) ∈ T in (10) it follows

immediately from (11) that

U = V = Θ = 0.

Finally, we consider two homogeneous solutions (0, 0,Ψ1, 0) ∈ Xωo and (0, 0,Ψ2, 0) ∈ Xωo . Testing (10) with

(0, 0,Ψ1 −Ψ2, 0) ∈ T and subtracting the remaining integral identities the monotonicity of F yields Ψ1 = Ψ2.
2. Now, Theorem 5 gives us a constant ω2 ∈ (m− 2, ωo] such that the partial Fréchet derivative

D2f((uo, vo, ψo, θo), (0, 0,Ψ, 0)) ∈ L(Xω2 , Yω2)

exists. After a little computation we obtain the following matrix formulation of this derivative:〈
D2f((uo, vo, ψo, θo), (0, 0,Ψ, 0))(Û , V̂ , Ψ̂, Θ̂), (ϕu, ϕv, ϕψ, ϕθ)

〉
=

=

∫
Ω


∇Û

∇V̂

∇Ψ̂

∇Θ̂



µn 0 0 0
0 ν p 0 0
0 0 ε 0
0 0 0 κ



∇ϕu
∇ϕv
∇ϕψ
∇ϕθ

+


Û

V̂

Ψ̂

Θ̂



r/θo r/θo a13 0
r/θo r/θo a23 0
0 0 a33 0
0 0 a43 0



ϕu
ϕv
ϕψ
ϕθ

 dλm

for all (Û , V̂ , Ψ̂, Θ̂) ∈ Xω2 and (ϕu, ϕv, ϕψ, ϕθ) ∈ T.

Noting the diagonal structure of the �rst matrix under the integral we can apply the regularity theory (Theorem

2(3)) for weakly coupled systems to get a constant ω ∈ (m− 2, ω2] such that the partial Fréchet derivative

D2f((uo, vo, ψo, θo), (0, 0,Ψ, 0))

is a Fredholm operator (index zero) from Xω into Yω . Considering the equation

D2f((uo, vo, ψo, θo), (0, 0,Ψ, 0))(Û , V̂ , Ψ̂, Θ̂) = 0

from the structure of the second matrix under the integral it follows at �rst

Û = V̂ = Θ̂ = 0

because of r/θo ≥ 0 on Ω. In the third column of the second matrix then only the element a33 is of interest.
Indeed, with the monotonicity of F we get

a33 =
N

θo
F ′
(
uo + ψo +Ψ−En

θo

)
+
P

θo
F ′
(
vo − ψo −Ψ+Ep

θo

)
≥ 0 on Ω

and therefore Ψ̂ = 0. Hence, D2f((uo, vo, ψo, θo), (0, 0,Ψ, 0)) is injective and thus a linear isomorphism from

Xω onto Yω .

3. The third assertion is an immediate consequence of the above results and the Implicit Function Theorem.

�
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