
IMAGE DENOISING: POINTWISE ADAPTIVE APPROACH

SPOKOINY, V.G.

Weierstrass Institute for Applied Analysis and Stochastics,
Mohrenstr. 39, 10117 Berlin

1991 Mathematics Subject Classi�cation. 62G07; Secondary 62G20.
Key words and phrases. edge, design, grid, image, pointwise estimation, rate of image and

edge estimation, data-driven window .
1



IMAGE DENOISING: POINTWISE ADAPTIVE APPROACH 1

Abstract. The paper is concerned with the problem of image denoising. We
consider the case of black-white type images consisting of a �nite number of
regions with smooth boundaries and the image value is assumed to be piecewise
constant within each region. New method of image denoising is proposed which
is adaptive (assumption free) to the number of regions and smoothness properties
of edges. The method is based on a pointwise image recovering and it relies on an
adaptive choice of a smoothing window. It is shown that the attainable quality
of estimation depends on the distance from the point of estimation to the closest
boundary and on the smoothness properties of this boundary. As a consequence,
it turns out that the proposed method provides the optimal rate of the edge
estimation.

1. Introduction

One of the main problem of image analysis is reconstruction of an image (a picture)
from noisy data. It has been intensively studied last years, see e.g. the books
of Pratt (1978), Grenander (1976, 1981), Rosenfeld and Kak (1982), Blake and
Zisserman (1987), Korostelev and Tsybakov (1994). There are two special features
related to this problem. First, the data is two-dimensional (or multidimensional).
Second, the image is usually composed of several regions with rather sharp edges.
Within each region the image preserves a certain degree of uniformity while on the
boundaries between the regions it has considerable changes. This leads to edge
estimation problem.
A large variety of methods has been proposed for solving the image and edge

estimation problem in di�erent contexts. The most popular methods of image
estimation are based on Bayesian approach for certain parametric image modelling
Haralick (1980), Geman and Geman (1984), Ripley (1988) among other. Some
nonparametric methods based on penalizing and regularization technique have been
developed in Titterington (1985), Shiau, Wahba and Johnson (1986), Mumford and
Shah (1989), Girard (1990).
The edge detection methods mostly do not assume any underlying parametric

model. The methods based on a kernel smoothing with a special choice of kernels
have been discussed in Pratt (1978), Marr (1982), Lee (1983), Huang and Tseng
(1988), M�uller and Song (1994). Korostelev and Tsybakov (1994) developed the
general asymptotic minimax theory of edge estimation. In particular, they showed
that linear methods are not optimal for images with sharp edges. Imposing some
smoothness restrictions on the boundary they have described the optimal rate of
estimation and rate-optimal estimators for images with the structure of a boundary
fragment. The proposed methods are essentially nonlinear and they involve linewise
change-point analysis.
In the present paper, we propose another approach which is based on direct

image estimation at each design point. We apply a simple linear estimator which is
the average of observations over a window selected in a data-driven way. Then we
study which accuracy of edge estimation is provided by this procedure. It has been
already mentioned that linear methods are only suboptimal in edge estimating.
The results of this paper show that a non-linearity which is incorporated in the
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linear method by an adaptive choice of an averaging window allows to get optimal
quality of edge recovering.
The presented approach can be viewed as one more application of the idea

of pointwise adaptive estimation, see Lepski (1990, 1992), Lepski, Mammen and
Spokoiny (1997), Lepski and Spokoiny (1997), Spokoiny (1996) where pointwise
adaptive procedures were applied to estimating a function with heterogeneous
smoothness properties, allowing, for instance, jumps or jumps of derivatives. The
methods based on pointwise (or local) adaptation are especially fruitful in such
situations since a complex object like a function with heterogeneous smoothness
properties admits a simple description in a small neighborhood of each point and
the procedure, being applied at this point, adapts exactly to the underlying local
structure. In essence, the procedure searches for a largest local vicinity of the point
of estimation in which the local structural assumption �ts well to the data.
Now we apply this idea to the problem of image estimation. We focus on the case

of a piecewise constant images i.e. we assume that the image consists of a �nite
number of regions and the image value is constant within each region. The image
is observed with a noise on the regular grid in the unit square and we estimate
the image value separately at each design point via a data-driven choice of the
averaging window. The bene�t of this approach is that it is very general in nature
and it is not required to specify the number of regions, di�erence between values of
the image function f for di�erent regions or regularity of each edge. Moreover, this
method can be applied to estimating any function which can be well approximated
by a constant function in a local vicinity of each point. Further developments of
this approach lead to local approximation by a linear function or, more generally,
by a polynomial.
We consider the regression model

Yi = f(Xi) + �i; i = 1; : : : ; n; (1.1)

where Xi 2 [0; 1]d , i = 1; : : : ; n , are given design points and �i are individual
independent random errors. Below we will suppose that �i , i = 1; : : : ; n , are i.i.d.
N (0; �2) with a given noise level � .
Next we suppose that the cube [0; 1]d is split into M regions Am , m =

1; : : : ;M each of them is a connected set with an edge (boundary) Gm . We
suppose also that the function f is constant within each region Am , i.e.

f(x) = am1(x 2 Am) (1.2)

where a1; : : : ; aM are unknown constants. The problem is to estimate the image
function f(x) or, equivalently, to estimate the values a1; : : : ; aM and to decide
for each point Xi which the corresponding region is.
The idea of the proposed method is quite simple and natural. We search for

a maximal possible window U containing x0 in which the function f is well
approximated by a constant which is exactly the resulting estimate. Of course, the
key role for such an approach plays the choice of the considered class of windows.
We will discuss this problem a little bit later. Now for a moment we suppose
that we are given a class U of windows U each of them is a subset of the unit
cube [0; 1]d containing the point of interest x0 . By NU we denote the number of
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design points in U . The assumption that f is constant in U leads to the obvious

estimator f̂U of f(x0) which is the mean of observations Yi over U .
To characterize the quality of the window U we calculate the residuals "U;i =

Yi � f̂U and we test the hypothesis that these residuals "U;i can be treated within
the window U as a pure noise. Finally the procedure selects the maximal (in
number of points NU ) window for which this hypothesis is not rejected.
The paper is organized as follows. In the next section we present the procedure,

Section 3 contains the results describing the quality of this procedure. In Section 4
we specify the general results to the case of the equidistant design.

2. Estimation Procedure

Let data Yi;Xi , i = 1; : : : ; n obey model (1.1). We will estimate f(x0) for a
given x0 .
Given a family of windows U and U 2 U , set NU for the number of the points

Xi falling in U ,

NU = #fXi 2 Ug: (2.1)

We will suppose that NU � 2 for each U 2 U . We assign to each U 2 U the

estimator f̂U of f(x0) by

f̂U(x
0) = f̂U =

1

NU

X
U

Yi: (2.2)

Here the sum over U means the sum over design points in U .

Our adaptation method is based on the analysis of the residuals "U;i = Yi � f̂U .
We introduce another family V(U) of windows V , each of them is a subwindow
of U , i.e. V � U . We require only that NV := #fXi 2 V g � 2 for all
V 2 V(U) . One example of the choice of the families U and V(U) for the case of
the equidistant design is presented in Section 4.
Below we need an upper estimate of the cardinality of V(U) in the form

#V(U) � n� (2.3)

with some � > 0 .
For each V 2 V(U) set

TU;V =
1

�U;VNV

X
V

"U;i =
1

�U;VNV

X
V

(Yi � f̂U) =
f̂V � f̂U

�U;V

where
P

V means summation over the index set fi : Xi 2 V g and �U;V is the

standard deviation of the di�erence f̂V � f̂U ,

�2U;V =
NU �NV

NUNV

�2: (2.4)

De�ne now

%U;V = 1

�
jTU;V j > t

p
log n

�
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where

t =
p
2(� + r):

The parameter r has meaning of the norm in which we measure losses of estimation.
Typically r is taken equal to 2.
We say that U is rejected if %U;V = 1 at least for one V 2 V(U) i.e. if %U = 1

where

%U = sup
V2V(U)

%U;V = 1

 
sup

V2V(U)

jTU;V j > t
p
log n

!
:

The adaptive procedure selects among all non-rejected U from U such one which
maximizes NU ,

Û = argmax
U2U

fNU : %U;V = 0 for all V 2 V(U)g (2.5)

and

f̂(x0) = f̂Û (x
0) = f̂Û : (2.6)

3. Main results

Below we describe some properties of the above proposed estimation procedure and
state the result about the corresponding accuracy of estimation.
We begin with the following remark. An \ideal" window for estimating f(x0)

coincides clearly with the region Am containing x0 . Hence the idea of the proposed
procedure is to select adaptively the largest window among the considered class U
which is contained in Am . A necessary property of every such procedure is to
accept with a high probability each window contained in Am . Our �rst result
shows that the above procedure possesses this properties.

Proposition 3.1. Let x0 2 Am for some m = 1; : : : ;M and let U 2 U be such
that U � Am . Then

P f(%U = 1) � n�r:

Proof. Let some U with the above property be �xed and let V 2 V(U) . The
function f is constant on U and hence on V and using the model equation (1.1)
we obtain

TU;V = ��1U;V

 
1

NV

X
V

�i �
1

NU

X
U

�i

!
:

Obviously ETU;V = 0 . Recall now that the multiplicator �U;V was de�ned as

the standard deviation of the stochastic term of the di�erence f̂V � f̂U . Hence
ET 2

U;V = 1 . Since also TU;V is a linear combination of Gaussian variables �i , then
TU;V is also a Gaussian zero mean random variable with the unit variance and
therefore it is standard normal. Now

P f

�
jTU;V j >

p
2(� + r) log n

�
� expf�(�+ r) log ng = n�(�+r):
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This estimate and condition (2.3) allow to bound the probability of rejecting U in
the following way

P f (%U = 1) �
X

V2V(U)

P f

�
jTU;V j >

p
2(� + r) log n

�
� #V(U)n�(�+r) � n�r:

Remark 3.1. The above result prompts the following de�nition of an \ideal" win-
dow U� from U containing a given point x0 from region Am : it is the largest (in
the number of design points) window from U which is contained in Am . Set

N� = maxfNU : U 2 U ; U � Amg:
If there is no any window with this property, then we simply set N� = 0 .

The next statement can be viewed as a complement to Proposition 3.1. We con-
sider now the case of a \bad" window containing two non-intersecting subwindows
V1 and V2 with di�erent values of the image function f . We intend to show that
our procedure rejects with a high probability every such a window if both V1 and
V2 contain enough design points.

Proposition 3.2. Let U 2 U and let V1; V2 2 V(U) be such that the function f
is constant within each Vj ,

f(x) = aj; x 2 Vj; j = 1; 2:

If

ja1 � a2j � (�U;V1 + �U;V2) t
p
log n + �

q
N�1
V1

+N�1
V2

p
2r log n (3.1)

with t =
p
2(� + r) and �2U;V = �(N�1

V �N�1
U ) , then

P f(%U = 0) � n�r:

Remark 3.2. In view of the trivial inequalities �U;V � �N
�1=2
V and

q
N�1
V1

+N�1
V2

�
N
�1=2
V1

+N
�1=2
V2

, condition (3.1) is ful�lled if

ja1 � a2j � �
p
log n

�p
2(� + r) +

p
2r
��

N
�1=2
V1

+N
�1=2
V2

�
: (3.2)

Proof. By de�nition

P f (%U = 0) � P f(%U;V1 = %U;V2 = 0):

Next, the event f%U;V = 0g means jTU;V j � t
p
log n or equivalently

jf̂U � f̂V j � t�U;V
p
log n:

This yields in particular

jf̂V1 � f̂V2j � t(�U;V1 + �U;V2)
p
log n:

Now using the fact that V1 \ V2 = ; , we get the following decomposition, cf. the
proof of Proposition 3.1,

f̂V1 � f̂V2 = a1 � a2 +N�1
V1

X
V1

�i �N�1
V2

X
V2

�i = a1 � a2 + s1;2�1;2
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where s1;2 = �(N�1
V1

+N�1
V2
) and �1;2 is a standard normal random variable. There-

fore,

P f (%U = 0) � P (ja1 � a2 + s1;2�1;2j � t(�U;V1 + �U;V2)
p
log n)

� P

�
s1;2j�1;2j � ja1 � a2j � t(�U;V1 + �U;V2)

p
log n

�
:

Using the condition of the proposition, we obtain

P f (%U = 0) � P (j�1;2j >
p
2r log n) � n�r

and the assertion follows.

We need one more result concerning the situation when x0 2 Am , a window U
from U is not contained in Am but there is a subwindow V of U which is in Am .

Proposition 3.3. Let x0 2 Am , U 2 U and let V from V(U) be such that
V � Am . If %U;V = 0 , then

Ef jf̂U � f(x0)jr � (C�2N�1
V log n)r=2

with C = (t+ 1)2 .

Proof. The event f%U;V = 0g means that jf̂U � f̂V j � t�U;V
p
log n . Therefore,

jf̂U � amj � jf̂U � f̂V j+ jf̂V � amj � t�U;V
p
log n+ jf̂V � amj:

Next, �U;V � �N
�1=2
V and � = ��1N1=2

V (f̂V � am) is a standard Gaussian random
variable, see the proof of Proposition 3.1. This gives

Ef jf̂U � f(x0)jr � E
����t�
q
N�1
V log n+ �N

�1=2
V �

����
r

�
�
(t+ 1)�

q
N�1
V log n

�r

as required.

To state the results about the quality of estimation by our adaptive procedure,
we have to be more de�nitive with the choice of the class U . However, we would
like to keep some freedom in speci�cation of this class which might be helpful for
applications. We impose therefore some rather mild conditions on this class and
then formulate the results under these conditions.
Recall that U is de�ned as a set of windows containing the point of interest x0 ,

and for each U 2 U , the family V(U) is assigned for testing U . Below we assume
that these families ful�ll the following conditions:

(U:1) every set U from U contains x0 ;
(U:2) there is a natural number K such that for every U;U 0 2 U , the intersection

U \ U 0 contains a testing window V 2 V(U) with

NV � K:

The choice of the constant K will be discussed later.

Discussion 3.1. Condition (U:2) from the above did not appear in the univariate
case, see Spokoiny (1996), but it is rather essential in the multivariate situation.
This can be illustrated by the following example. Let the point of interest x0 lie
near the boundary of a region, say A1 , with another region, say A2 . Then it might
be possible that there is a thin near x0 set U containing x0 but all or almost all
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the remaining design points in U belong to A2 . If additionally the total number

of such points in U is large, it may happen that we estimate f̂(x0) � a2 while
really f(x0) = a1 . Condition (U:2) is just to prohibit U from U to be thin near
x0 .

Conditions (U:1) and (U:2) rely only on the structure of the set U of considered
windows. We need one more condition which relies also on the properties of the
edge of the region Am containing x0 .

(U:3) There is a constant " > 0 such that if U 2 U and if for every V from V(U)
with NV � K , it holds

V \Am 6= ;;
then either NU < N� or there is V1 2 V(U) such that V1 � Am and

NV1 � �NU :

Discussion 3.2. The reason for introducing this condition can be explained by the
following considerations. Let x0 2 Am and let U� be the corresponding \ideal"
window. Suppose that NU� � K . By Proposition 3.1, our procedure rejects U�

with a very small probability. Let now the procedure selects a window Û . Then,
conditionally %U� = 0 , we have NÛ � NU� . By condition (U:2) there is a window

V 2 Û \ U� with NV � K . Since U� � Am , then also V � Am . If Û contains
another subwindow V 0 with NV 0 � K which lies outside of Am and if K is
large enough, then by Proposition 3.2 such a window U will be rejected with a

high probability. Therefore, typically we have for the window Û that NÛ � NU�

and every V 0 from V(Û) has a non-trivial intersection with Am . Exactly for
this situation, we suppose in addition that it contains a subwindow V1 2 V(U)
which is in Am and NV1 is of order N� = NU� . Then Proposition 3.3 ensures a
considerable quality of estimation.

Now we are in a position to state the main result.

Theorem 3.1. Let the image function f(x) be piecewise constant due to (1.2)
with jamj � 1 , m = 1; : : : ; n . Let some K > 0 be �xed and let the conditions
(U:1) through (U:3) be satis�ed. If for all m0 6= m , it holds

jam � am0j � 2�
p
log n

�p
2(� + r) +

p
2r
�
K�1=2; (3.3)

then

Ef jf̂(x0)� f(x0)jr �
�
C
�2 log n

�N�

�r=2

(3.4)

with C from Proposition 3.3.

Discussion 3.3. Condition (3.3) gives some information about a reasonable choice
of the parameter K entering in condition (U:2) . To be able to provide a high
quality of image recognition, we have to allow small values � for the di�erence
jam � am0j . This results in increasing the required value of K , namely K should
be at least C(�; r)��2�2 log n where the constant C(�; r) depends on �; r only.
In particular, to be able to proceed with images with essentially di�erent values
am , we need to take K of a logarithmic order. At the same time, a large value
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of K decreases the quality of estimation near the boundary, see the next section.
Therefore, the choice of this parameter is a rather delicate problem which needs
some further study.

Discussion 3.4. Suppose that for each point x0 of the cube [0; 1]d , we are given
adjusted families U and V(U) (depending, of course, on x0 ) satisfying conditions
(U:1) through (U:2) with some �xed integer K . Similarly to the above, we may
de�ne for every x the corresponding `ideal' window U� = U�(x) and the data-

driven window Û = Û(x) . This leads to the global image estimator f̂(x) = f̂Û(x) .

Denote, given K and � > 0 , by D(K; �) the set of point x for which NU�(x) � K
and condition (U:3) holds with a prescribed � . Then the result of Theorem 3.1
can be stated uniformly in x .

Theorem 3.2. Under the condition (3.3),

Ef sup
x2D(K;�)

���pNU�(x)(f̂(x)� f(x))
���r � (C�2��1 log n)r=2:

Now we present the proof of Theorem 3.1. Theorem 3.2 can be proved in the
same line.

3.1. Proof of Theorem 3.1

Let x0 2 Am and let U from U be such that U � Am and NU = N� . Then due
to Proposition 3.1 the window U will be rejected only with a very small probability,
namely

P f(%U = 1) � n�r:

Denote

a� = maxfjam � am0j; m0 = 1; : : : ;Mg;
�� = maxfj�ij; i = 1; : : : ; ng:

By the conditions of the theorem, a� � 2 . Next, see e.g. Petrov (1975), for each
z � log n ,

P (�� >
p
2z) � ne�z

2

that yields

E(2 + ��)r1
�
�� >

p
2(r + 1) log n

�
� C(r)n�r

with a constant C(r) depending on r only. Since obviously

jf̂(x0)� f(x0)j � a� + �� � 2 + ��;

then we get

Ef jf̂ (x0)� f(x0)jr1(%U = 1)

� E(2 + ��)r1
�
�� >

p
2r log n

�
+
�
2 +

p
2r log n

�r
P f (%U = 1)

� C(r)n�r +
�
2 +

p
2(r + 1) log n

�r
n�r:
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This bound is essentially smaller that is required in the theorem and we may
therefore focus on the case when U is accepted i.e. %U = 0 .

Let window Û be selected by the procedure. Then %Û = 0 and, assuming also

%U = 0 , by de�nition of Û

NÛ � NU :

Next, due to condition (U:2) , there is a subwindow V in Û with at least K

design points which is contained in Am . If also Û contains another subwindow
V 0 with NV 0 � K which lies outside of Am , then we observe by Proposition 3.2,

see also Remark 3.2, that the probability to accept Û is very small,

P f(%Û = 0) � n�r;

and arguing as above we reduce our consideration to the case when ÛnAm does
not contain any such V 0 .
By condition (U:3) , there is V 2 U such that V � Û \Am and NV � �NÛ �

�NU . The de�nition of Û and (U:1) ensure that %Û ;U 0 = 0 and by Proposition 3.3

Ef jf̂Û � f(x0)jr � (C�2��1N�1
U log n)r=2

as required.

4. The case of an equidistant design

In this section we specify our procedure and results to the case of a regular equidis-
tant design in the unit square [0; 1]2 .
Suppose therefore that we are given n design points X1; : : : ;Xn with Xi =

(Xi;1;Xi;2) 2 [0; 1]2 . Without loss of generality we may assume that
p
n is an

integer and we denote � = n�1=2 . Now each design (or grid) point Xi can be
represented in the form Xi = (k1�; k2�) with nonnegative integers k1; k2 .
As above, we consider the problem of estimating the image value at a point x0

by observations Y1; : : : ; Yn described by the model equation (1.1). We suppose
additionally that x0 is a grid point.
We begin by describing one possible choice of the set of windows U . Then we

specify the result of Theorem 3.1 to this case and compare it with the existing in
the literature.

4.1. An example of the set of windows

Shortly our set U can be characterized as a set of parallelograms containing x0

and such that two sides of each parallelogram are vertically or horizontally oriented
and all its vertices are grid points.
To present a formal description, we need some more notation. Our procedure

involves two external parameters K and D . The integer K enters in condition
(U:2) and in Theorem 3.1 and we have to ensure in our construction that the num-
ber of design points in the intersection of every two windows of the constructed
family is at least K . The parameter D controls the number of considered orien-
tations.
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Denote by PD the set of all pairs of integers with absolute values at most D
and such that the fraction p=q is unreducible,

PD = f(p; q) : jpj; jqj � D; p=q is unreducibleg:
To get a unique representation of elements from PD by a pair (p; q) , we addi-
tionally suppose that maxfjpj; jqjg = maxfp; qg . Obviously the number P �

Q of

elements in PD is at most D2 ,

P �
D = #PD � D2:

Each element (p; q) from PD determines a line passing through x0 and another
grid point, namely the point with coordinates (x01+p�; x

0
2+q�) . If SD is the square

with the center at x0 and with the side length 2�D , then PD can be identi�ed
with the set of lines passing through x0 and another grid point in SD . Motivated
by this reasoning, we will call each element from PD an orientation. For each
(p; q) 2 PD , introduce two vectors �p;q and �0p;q by

�p;q = (Kp�;Kq�); �0p;q =

(
(�; 0) jpj � q;

(0; �) p > jqj: (4.1)

Note that the vector �p;q passes through K + 1 grid points and the vector � 0p;q
connects two neighbor horizontal or vertical points.
Now for each orientation (p; q) from PD , we introduce a family �p;q of (p; q) -

oriented parallelograms. First, given two integers l1 and l2 , denote by Ip;q(l1; l2)
the interval connecting two points x0 + l1�p;q and x0 + l2�p;q . This interval has

the length jl1 � l2jr�
p
p2 + q2 . Next, given two more integers w1 and w2 , de�ne

a parallelogram Pp;q(l1; l2; w1; w2) whose two sides are the shifts of the interval
Ip;q(l1; l2) in the direction �0p;q by w1 (respectively w2 ) grid points. In other
words, this parallelogram has its vertices at

x0 + l1� + w1�
0 x0 + l1� + w2�

0

x0 + l2� + w1�
0 x0 + l2� + w2�

0

all of them are grid points. Clearly, the other two sides of this parallelogram are
either horizontal or vertical in accordance with �0p;q and they are of the length
jw1 �w2j� . This value will be called the width of the parallelogram.
Now we de�ne the set U of considered windows which we take in the form of

parallelograms. Let L+ be a diadic geometrical grid de�ned by

L+ = fl = 1; 2; 4; 8; : : : : l �
p
n

K
g:

Let also L� = �L+ = f�l : l 2 L+g , and
L = L+ [ f0g [ L� = fl = 0;�2j; j = 0; 1; 2; : : : : jljK �

p
ng:

Below we assume that the numbers l1 and l2 take values in the sets L+ and L�
respectively. Similarly we de�ne

N+ = fw = 0; 1; 2; 4; 8; : : : : w �
p
ng;

N� = �N+;

N = N+ [N� = fw = 0;�2j ; j = 0; 1; 2; : : : : jwj �
p
ng
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and suppose that w1 2 N+ , w2 2 N� and w1 + jw2j � K . Therefore,

U = fPp;q(l1; l2; w1; w2) :

(p; q) 2 PD; l1;�l2 2 L+; w1;�w2 2 N+; w1 + jw2j � Kg: (4.2)

Obviously, the minimalwindows in this family are Pp;q(1;�1;K; 0) , Pp;q(1;�1;K�
1;�1) , : : : Pp;q(1;�1; 0;�K) . The cardinality of U can be roughly estimated in
the following way,

#U � #PD(#L+)
2(#N+)

2 � P �
D

�
log2

�p
n

K

�
log2(

p
n)
�2
:

De�ne also another set of windows

U 0 = fPp;q(l1; l2; w1; w2) : (p; q) 2 PD; l1 > l2 2 L; w1 � w2 2 Ng:
This set is larger than U since it is not required for windows U 2 U 0 to contain
x0 and there is no constraints on the minimal width: even zero width is allowed;
in this case the window is simply a shift of the interval Ip;q(l1; l2) .
Note that by construction, every window U = Pp;q(l1; l2; w1; w2) from U 0 con-

tains at least K(l1 � l2)(w1 �w2 + 1) grid points.
De�ne now for a given U from U the testing set V(U) as the set of all paral-

lelograms from U 0 which are contained in U ,

V(U) = fV 2 U 0 : V � Ug: (4.3)

Clearly

#V(U) � #PD (#L=2)2(#N=2)2 � 4P �
D

�
log2

�p
n

K

�
log2(

p
n)
�2

and the constraint in (2.3) is satis�ed with say � = 2 .
Condition (U:1) is ful�lled by construction for the above de�ned set U . Now

we are checking (U:2) .

Lemma 4.1. The sets U and V(U) ful�ll (U:2) .

Proof. Let U and U 0 be two di�erent windows from U with orientations (p; q)
and (p0; q0) respectively. Obviously it su�ces to consider minimal windows with
these orientations. Using the fact that the grid is invariant under shifts by vectors
�0p;q we can reduce the problem to the case of two parallelograms of the form

Pp;q(1;�1;K; 0) and Pp0;q0(1;�1; w1; w2) with w1 � w2 = K . Moreover, it is
easy to see that the smallest intersection corresponds to the case when w1 = 0 ,
w2 = �K and p=q is close to p0=q0 . But even in this situation, if, for instance,

p2 + q2 � p02+ q02 , this intersection contains an interval of the form [x0; x0� �p;q]
which passes through K + 1 grid points.

4.2. The accuracy of estimation for the case of a boundary

fragment

Now we are going to apply Theorem 3.1 to the case of the regular design.
Assume that the point of interest x0 belongs to a region A with the edge G .

To apply Theorem 3.1 to the considered situation we have to show that there is a
window U from U which is contained in A . First we note that our construction of
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the family U is oriented to the case when the point x0 lies near the boundary of the
region and this boundary is regular in the sense that it can be well approximated
by a straight line in some vicinity of the point x0 .
Let d(x;G) denote the distance from a point x to the edge G ,

d(x;G) = inf
x02G

jx� x0j

where jx � x0j means the usual Euclidean distance between x and x0 . The fact
that x0 is near the boundary means that the distance d(x;G) is small.
Next, let us �x for a moment an orientation (p; q) 2 PD and integers l1 2 L+

and l2 2 L� . Given b , denote by Ip;q(l1; l2; b) the shift of the interval Ip;q(l1; l2)
by the vector b�0p;q . In particular, Ip;q(l1; l2; 0) coincides with Ip;q(l1; l2) . All

such intervals form the band (or the fragment) which is horizontally or vertically
oriented in accordance with �0p;q . Set

�p;q(l1; l2) = inf
b

sup
x2Ip;q(l1;l2;b)

d(x;G): (4.4)

A small value of �p;q(l1; l2) means that the edge G can be well approximated by
a straight line with an orientation (p; q) from PD in a neighborhood of x0 .

Proposition 4.1. If (p; q) 2 PD is such that d(x0; G) > 2�p;q(l1; l2) , then the
interval Ip;q(l1; l2) does not intersect G .

Proof. Let b be such that

d(x;G) � �p;q(l1; l2)

for all x 2 Ip;q(l1; l2; b) .
Denote for every point x by x(b) the point x + b�0p;q . If x 2 Ip;q(l1; l2) , then

x(b) 2 Ip;q(l1; l2; b) . By the triangle inequality one has for all x 2 Ip;q(l1; l2)
d(x;G) � jx� x(b)j � d(x(b); G) = b� d(x(b); G) � b��p;q(l1; l2):

At the same time, again by the triangle inequality

d(x0; G) � jx0 � x0(b)j+ d(x0(b); G) = b+ d(x0(b); G)

which implies along with the theorem condition that b � d(x0; G)� d(x0(b); G) >
�p;q(l1; l2) . Combining the above estimates we get d(x;G) > 0 and the assertion
follows.

Now we optimize the choice of the orientation (p; q) over PD and de�ne

�D(l1; l2) = inf
(p;q)2PD

�p;q(l1; l2): (4.5)

The above assertion means that the condition d(x0; G) > 2�D(l1; l2) ensures the
existence of a window of zero width which lies in A . To guarantee the existence of
a window of the width r� , we assume in addition that x0 is an internal point of
the unit square [0; 1]2 and that the region A has, at least locally in some vicinity
of the point x0 , the structure of a smooth boundary fragment. More precisely, let
two integers l1 from L+ and l2 from L� be �xed and let the orientation (p; q)
minimize the value �p;q(l1; l2) or, equivalently, �p;q(l1; l2) = �D(l1; l2) . Suppose
also without loss of generality that jpj > jqj and hence, the vector �0p;q is vertical,

and consider the vertical band (the fragment) which is formed by all the shifts
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Ip;q(l1; l2; b) of the interval Ip;q(l1; l2) in the vertical direction. We suppose that the
curve G can be parametrized within this fragment by the equation x2 = g(x1) with
some continuous univariate function g . If jpj � jqj , then the horizontal fragment
should be considered instead of the horizontal one and the other parametrization
of the curve G in the form x1 = g1(x2) is to be used.
Now we apply Theorem 3.1 to the case of a smooth boundary fragment.

Theorem 4.1. Let the image function f(x) be of the form

f(x) =

(
a; x 2 A0 = fx2 > g(x1)g;
0; x 2 A = fx2 � g(x1)g;

and let the point x0 belong to A with the distance d(x0; G) to the edge G described
by the equation x2 = g(x1) . Let K satisfy the condition

K � 4�2a�2
�p

2(� + r) +
p
2r
�2

log n:

Also we assume that condition (U:3) with some � > 0 is ful�lled for the region A
and for the above de�ned set of windows U . If there are two integers l1 2 L+ and
l2 2 L� such that

d(x0; G) > 2�D(l1; l2);

and if minfx01; x02g � { with some { > 0 , then

Ef jf̂(x0)jr �
�
C
�2 log n

�N�

�r=2

where N� � {n1=2(l1 + jl2j) .
Proof. The statement of this theorem is a direct application of Theorem 3.1. We
only need to verify that N� � {�(l1 + jl2j) . Let (p; q) be such that �D(l1; l2) =
�p;q(l1; l2) . Then Proposition 4.1 ensures that the interval Ip;q(l1; l2) does not
intersect the boundary curve G and the structure of the image yields that every
window of the form Pp;q(l1; l2; 0; w2) is in the region A . Making use of the condition
x02 � { , we can easily check that the number of grid points in such a window with

jw2j � {

p
n is about {n1=2(l1 + jl2j) as required.

4.3. Edge estimation

Now we discuss the problem of edge estimation. Note that the above procedure is
assigned for estimating the image function f and there is no any edge estimation
subroutine. However, in the case of an image with the structure of a boundary
fragment, the procedure estimates the value f(x0) consistently and even with

the rate n�1=4 if the point x0 is bounded away from the edge, more precisely,
if d(x0; G) > 2�D(l1; l2) with some l1; l2 . The minimal distance between the
point x0 and edge G which is su�cient for consistent estimation of f(x0) can
be regarded as the accuracy of edge estimation. The result of Theorem 4.1 gives
some information about the accuracy provided by our procedure. Now we aim to
transfer this result into a more readable form and then to compare with the earlier
results on edge estimation.
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The problem of the edge estimation was considered in details in Korostelev and
Tsybakov (1994). They have shown that the rate of edge estimation critically
depends on the smoothness properties of the function g de�ning the edge. In
particular, if g belongs to a H�older class �(
; L) , then the accuracy of edge

estimation, being measured in the Hausdor� metric, is (n=log n)
�
=(
+1)

. We are
going to show that our procedure provides essentially with the same rate. Note
however, that Korostelev and Tsybakov (1994) stated their results under a random
or jittered design, see p.92. Under the regular design, the rate of edge estimation is
equal to the grid step � = n�1=2 , Korostelev and Tsybakov (1994, p.99). This can
be explained, for example, by the fact that if the edge G is a straight horizontal
line, then for any shift of this line within an interval between two neighbor grid
lines, we have the same distribution on the space of observations. To get a better
rate of edge estimation, it is required to `randomize' the design in some way.
We proceed under the regular design but we estimate the value of the image at

a grid point. We will see that this fact also allows us to get a better accuracy of
estimation. We discuss only the situation with 
 2 [1; 2] . To cover the case when

 > 2 , the construction of the class U is to be modi�ed.
In view of the result of Theorem 4.1, we have to estimate the value of �D(l1; l2)

which characterizes the quality of approximation of the edge G by a straight line
with an orientation from PD in a vicinity of the point x0 . The size of this vicinity
is determined by the values l1 and l2 and obviously it is su�cient to consider the
case of the smallest vicinity with l1 = jl2j = 1 .
Let the function g(x1) describe the edge G . We suppose that this function

belongs to a H�older ball �(
; L) with some 
 2 (1; 2] . This implies for all h > 0

sup
jtj�h

jg(x01 + t)� g(x0)� g0(x0)tj � Lh
:

Here g0 stands for the derivative of g . Denote also c = g0(x01) .

Lemma 4.2. For every integer D0 � D ,

�D(1;�1) � L(K�D0)
 +K��(c;D0)

where

�(c;D0) = inf
(p;q)2P

D0

jcp� qj:

Proof. Let us �x some D0 � D and let (p; q) from PD0 be such that jcp � qj =
�(c;D0) . The de�nition of PD0 and the assumption jcj � 1 imply jqj � p � D0 .
Set b = g(x01) . We will estimate the value d(x;G) for a point x = (x1; x2)

from the interval Ip;q(1;�1; b) . By de�nition, jx1 � x01j � h � K�p and x2 =
g(x01) + (x1 � x01)q=p) . Denote also by xG the point on the boundary curve G
with the same �rst coordinate as x , i.e. xG = (x1; g(x1)) . We obtain

d(x;G) � jx� xGj = jg(x1)� g(x01) + (x1 � x01)q=pj
� jg(x1)� g(x01) + (x1 � x01)cj+ hjc� q=pj � Lh
 + �(c;D0)h=p:

Now, using h = K�p along with p � D0 , we get

d(x;G) � L(K�D0)
 +K��(c;D0)

and the assertion follows.
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The next statement shows that the value �(c;D0) can be estimated by 1=D0 .

Lemma 4.3. For every integer D0 and for all c 2 [�1; 1]
�(c;D0) � 1=Q:

Proof. Suppose without loss of generality that c is an irrational number from the
interval [0; 1] . Denote by (qk=pk)k�1 the sequence of rational numbers which gives
the best rational approximation of c , see Khintchine (1949). It can be de�ned as
a sequence of continued fractions: we begin with r0 = c�1 and de�ne inductively
ak = brk�1c , rk = (rk�1 � ak)

�1 for k = 1; 2; : : : ; then qk=pk can be described as
the following continued fraction

qk

pk
=

1

a1 +
1

a2 + � � � 1

ak�1 +
1

ak

:

This approximation has the following properties, Khintchine (1949, Section 3,4):����c� qk

pk

���� � 1

pkpk+1
; (4.6)

pk � 2(k�1)=2; k � 0: (4.7)

Given an integer D0 , denote

k� = maxfk : pk � D0g
so that pk�+1 > D0 .
By (4.6), jcpk� � qk�j � 1=pk�+1 < 1=D0 and the assertion follows.

Putting together the last two results, we get for an arbitrary orientation c of
the edge near x0 the following bound

�D(1;�1) � L(K�D0)
 +K�=D0:

An optimization of the choice of D0 leads to the following

Proposition 4.2. If D � (n=K2)

�1

2(
+1) , then

�D(1;�1) � (L+ 1)(n=K2)�




+1 :

Proof. We simply plug D0 = (n=K2)

�1

2(
+1) in the above bound.

4.4. Rate-optimality

We have seen that the accuracy of edge estimation provided by the proposed
method coincides in order with the optimal rate  n = (n= log n)�
=(
+1) of edge
estimation. But this coincidence is at this stage only formal since the above pre-
sented results are concerned with the estimation at grid points under the regular
grid and the optimal results from Korostelev and Tsybakov (1994) are stated for
a random design. Therefore, we cannot refer to them when studying the problem
of optimal estimation under the regular design. The next assertion shows that the
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accuracy  n which is attained by our procedure, cannot be essentially improved
by any estimation method.
Let some grid point x0 be �xed and let an image have the structure of a smooth

boundary fragment (at least locally near the point x0 ) with an edge G determined
by a function g = g(x1) from the H�older ball �(
; L) with 
 2 (1; 2] . The function
g determines the image function fg with fg(x) = 1(x2 � g(x1)) for x = (x1; x2) .
We stand also G = Gg for the corresponding edge i.e. G = fx : x2 = g(x1)g .
We are interested in the minimal distance between the point x0 and the edge G

which allows a consistent estimation of f(x0) for image functions f of the form
fg with g from �(
; L) .

Theorem 4.2. Let K;D be integers and (p; q) 2 PD . Then there are two func-

tions g0 and g1 from �(
; 1) such that g00(x
0
1) = q=p , g01(x

0
1) = q=p ,

d(x0; Ggk) � minf�=p; (�Kp)
g; k = 0; 1; (4.8)

and for any estimator ~f

max
n
Eg0j ~f(x0)� fg0(x

0)j; Eg1j ~f(x0)� fg1(x
0)j
o
� c > 0; (4.9)

where c is a positive constant depending on K only.

We defer the proof of the theorem to the Appendix.

Discussion 4.1. The maximal value of the right hand-side of (4.8) is attained for

p = p� = ��(
�1)=(
+1)K�
=(
+1) and this value is of order n�
=(
+1) . Therefore,
the rate of estimation of f(x0) cannot be better than n�
=(
+1) and our procedure
is at least near rate-optimal.

4.5. Computational discussion

At the conclusion we shortly discuss computational e�orts corresponding to the
above procedure. The procedure is speci�ed to estimating the value f(x0) at a
given grid point x0 but now we assume that this procedure is carried out for each
grid points of the unit square. To reduce the required number of operations, it is
reasonable to make a preprocessing for each orientation (p; q) 2 PD . This means
that we reorder all the grid points from this square due to their projections on the
vectors �p;q and �0p;q . Suppose for simplicity that jpj > jqj and therefore �0p;q is

the horizontal vector. For each grid point x = (x1; x2) set

zp;q(x) = px1 + qx2

z0p;q(x) = (x; �0p;q) = x1

and de�ne two values Np;q(x) and Fp;q(x) such that Np;q(x) is the number of
points x0 of the grid with smaller coordinates zp;q and z0p;q ,

Np;q(x) =

nX
i=1

1
�
zp;q(Xi) � zp;q(x); z

0
p;q(Xi) � z0p;q(x)

�
;
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and Fp;q(x) is the sum of the observations Yi over the same index set,

Fp;q(x) =

nX
i=1

Yi1
�
zp;q(Xi) � zp;q(x); z

0
p;q(Xi) � z0p;q(x)

�
:

The expressions for (p; q) with jpj � jqj di�er only in the place (x; �0p;q) = x2 .

It is not di�cult to see that the calculation of the arrays Np;q(Xi) and Fp;q(Xi)
for i = 1; : : : ; n requires of order n operations. Therefore, the �rst step (the
initialization) of the algorithm requires const. nP �

D operations where P �
D = #PD

is the total number of considered orientations from PD .
Having done this preprocessing, the number NU of design points in each par-

allelogram U = Pp;q(l1; l2; w1; w2) and the sum SU of observations Yi over this
parallelograms can be calculated by a �nite number of operations:

NU = Np;q(x
0 + l1� + w1�

0)�Np;q(x
0 + l1� + w2�

0)

�Np;q(x
0 + l2� + w1�

0) +Np;q(x
0 + l2� + w2�

0);

SU = Fp;q(x
0 + l1� + w1�

0)� Fp;q(x
0 + l1� + w2�

0)

�Fp;q(x0 + l2� + w1�
0) + Fp;q(x

0 + l2� + w2�
0):

Therefore, the total number of operations for estimating the whole image can be
very roughly bounded by

const. n#(U)#(V(U)) � const. n(P �
D)

2
�
log2

�p
n

K

�
log2(

p
n)
�4
:

We see that the computational di�culty of the algorithm is of a smaller order than
nD4(log n)8 which is still feasible for realization by modern computers.

Appendix. Proof of Theorem 4.2

Di�erent methods for obtaining the lower bounds in edge estimation are presented
in Korostelev and Tsybakov (1994). We cannot directly apply these methods since
they are developed for a random design and we operate with the regular design.
But we follow the same route and thus we present here only a sketch of the proof
concentrating on the points speci�c for our situation.
Let some 
 from the interval (1; 2] and some integers K;D be �xed. Let also

(p; q) 2 PD . Set

h = minfpK�; (�=p)1=
g;
where � = n�1=2 .
Let now � be a smooth function satisfying the conditions

(a) � is symmetric and nonnegative;
(b) �(0) = sup

t

�(t) and 0 < �(0) � 1 ;

(c) � is compactly supported by [�1; 1] ;
(d) � belongs to the H�older ball �(
; 1) .

Denote

�h(t) = h
�(t=h):
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Then (d) ensures that �h 2 �(
; 1) for all h > 0 . Next, set

g0(x1) = x1q=p � �h(0)=2

g1(x1) = x1q=p + �h(0)=2 � �h(x1 � x01):

Each function gk determines the boundary fragment Ak with the edge Gk ,

Ak = fx = (x1; x2) : x2 � gk(x1)g;
Gk = fx = (x1; x2) : x2 = gk(x1)g; k = 0; 1:

Set also

B = A1nA0 = fx = (x1; x2) : g0(x1) < x2 � g1(x1)g:
Below we make use of the following technical assertion.

Lemma 4.4. The following assertions hold

(i) g0; g1 2 �(
; 1) and g00(x
0
1) = g01(x

0
1) = q=p ;

(ii) d(x0; Gk) � {h
 , k = 0; 1 , for some { > 0 depending on � only;
(iii) The number N of design points in the set B is at most 2K � 1 ,

N = #fXi 2 Bg � 2K � 1:

Proof. Assertions (i) and (ii) are obvious. We comment on (iii) .
Let us �x on the line x2 = x1q=p the open interval corresponding to x1 2

(x01�h; x01+h) . Since h � pK� , then this interval passes at most through 2K�1
design points. We intend to show that there is no other design points in B that
implies the assertion in view of property (c) of � .
Let x be a design point with coordinates (p0�; q0�) such that q0=p0 6= q=p .

Denote x1 = p0� . To verify that x 62 B , it su�ces to check that

jq0� � x1q=pj > j�h(x1 � x01)� �h(0)=2j:
Since q0=p0 6= q=p , then

jq0 � p0q=pj = p�1jq0p� p0qj � p�1

and hence jq0�� x1q=pj � �=p . In view of (b) , we have �h(x1� x01) � �h(0) � h


and by de�nition of h we have h
 � �=p and (iii) follows.

Denote fk(x) = 1(x 62 Ak) = 1(x2 > gk(x1)) for x = (x1; x2) . Note that

f0(x
0) = 0 and f1(x

0) = 1 and we have to show that for any estimator ~f(x0)

max
n
E0j ~f(x0)j; E1j ~f(x0)� 1j

o
� c > 0; (4.10)

where Ek stands for Egk , k = 0; 1 , and c is some �xed positive constant.

Let Z = dP1=dP0 . It is easy to show that the optimal decision ~f (x0) for the

latter two-point problem is of the form ~f(x0) = 1(Z � 1) and hence

maxfE0j ~f(x0)j; E1j ~f(x0)� 1jg � E01(Z � 1) = P0(Z � 1):

Next, making use of the model equation (1.1) we get the following representation
of the likelihood Z ,

Z = exp

(
��2

X
B

�i �
N��2

2

)
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where the sum over B means the sum over design points Xi falling in B and the
random errors �i are normal N (0; �2) . If we set

� =
1

�
p
N

X
B

�i;

then � is a standard normal random variable and Lemma 4.4, (ii) and (iii), implies
that

P0(Z > 1) = P0

�
exp

n
��1

p
N� � ��2N=2

o
> 1
�

= P0

�
� > ��1

p
N=2

�
� P0

�
� > ��1

p
K=2

�
= 1� �

�
��1
p
K=2

�
> 0

where � is the Laplace function and the required assertion follows.
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