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Abstract 

The paper introduces implicitness in stochastic terms of numerical meth-
ods for solving of stiff stochastic differential equations and especially a class of 
fully implicit methods, the balanced methods. Their order of strong conver-
gence is proved. Systematic numerical experiments compare the numerical 
behaviour of these schemes with that of different other schemes. A wide 
class of model equations are also provided as one by-product in order to test 
numerical methods in the case of stochastic stiffness in the given system. 
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1 Introduction 

During the last years several authors have proposed implicit numerical methods 
for stochastic differential equations with respect to strong and weak convergence 
criterions. We refer here to the papers of Talay ((14],1982), Klauder and Petersen 
((5],1985), Milstein ((9],1988), Hernandez and Spigler ([4],1990), Mitsui and Saito 
([11],1991), Drummond and Mortimer ([2],1991), Kloeden and Platen ([6],(7], 1992) 
just to mention few of them. 
As in the deterministic case implicit methods are necessary to integrate stiff sys-
tems. However, the introduction of implicitness is restricted in the above mentioned 
papers to the deterministic terms, e.g. to the drift term in the Euler scheme. Let 
us call such methods deterministically implicit (or drift-implicit) and otherwise 
stochastically implicit. Deterministically (drift-) implicit methods are well adapted 
for stiff systems with small stochastic noise intensity or additive noise. But in those 
cases in which the stochastic part plays an essential role in the dynamics, e.g. as it 
is with large multiplicative noise, the application of fully implicit methods involving 
also implicit stochastic terms is unavoidable. A good illustration for such a situa-
tion is provided by the following one-dimensional Ito equation with multiplicative 
n01se 

dXt = a Xt dWt t ~ 0 (1.1) 

starting at X 0 = x 0 • Here W = {Wt, 0 < t} is a standard Wiener process. 
The solution of (1.1) decreases rapidly to zero for jl7j >> 1 because its Lyapunov 
exponent .A = -a2 /2 is negative. 

X<t> 

3 

e 0.2 0.4 0.6 0.8 

Figure 1.1 : A trajectory of the solution of equation (1.1) 

The one-dimensional equation (1.1) cannot be simply called stiff (in the physical 
sense), but it has to be interpreted as an equation for one component in a multi-
dimensional system, at least embedded in a two-dimensional system. From this 
view point we are going to consider the numerical solutions for the one-dimensional 
equation (1.1). For large parameters jaj in equation (1.1) one observes that explicit 
methods work unreliably and have large errors for not too small time step sizes. 
They even lead to computer overflows (for having an idea see figure 1.2). On the 
other hand using very small time step sizes may require too much computational 
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time. In stiff situations this is the crucial point where one has to look for other 
more suitable methods. For example, these difficulties occur in the estimation 
of the top Lyapunov exponent and in parametric estimation where the long-time 
behaviour of the numerical solution is decisive for the calculations. One way is to 
use the Ito formula to transform the solutions to reduce or remove the fastly varying 
property of both the exact and numerical solution. However this rarely works in 
more complicated multi-dimensional systems (see section 5 for an example). By 
the common transformation Zt = ea.t Xt with a E JR+ we obtain the linear Ito 
differential equation 

t ~ 0, Zo = x (1.2) 

which, for a close to a 2 /2 , can be integrated sufficiently accurate by explicit 
methods. Thus transforming is a useful idea when one can expect more stable 
behaviour of the explicit methods for the numerical solution of the original model. 
But the direct application of explicit methods for equation ( 1.1) yields as in the de-
terministic case for time step sizes larger than a critical value (more precisely, there 
even exists a critical random interval for a =/:- 0) suddenly to an explosion of the 

. numerical solution and its global error. A natural task is to achieve control in nu-
. merical approximations for a larger range of integration step sizes and to overcome 
constructively this dilemma by introducing new numerical scheme techniques, such 
as the balanced methods. Obviously one cannot apply deterministically (drift-) 
implicit schemes to improve the stability of the numerical solution for the stochas-
tic equation (1.1) which does not contain any drift component. Demonstrating the 
mentioned dilemma with a simple example the explicit Euler scheme provides poor 
results for time step sizes larger than 2-4 as it can be seen from figure 1.2, and 
later from figure 2.1 which show its poor global error behaviour. 

X<t>,V<t> 
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-3 \ 
Figure 1.2 : Exact solution and Euler approximation for equation (1.1) with 

parameter a = 4 and time step size !::i,, = 2-3 and 2-5 
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Equation ( 1.1) is useful as a model equation that can be solved numerically by dif-
ferent methods with different features. With it we can discuss problems and typical 
properties encountered with explicit and implicit methods. Of course one could use 
smaller integration step sizes here, but the problem is still getting worse with larger 
noise intensities parameters a because large a requires extremely small step sizes 
for numerical integration. Which integration step size should be chosen to obtain 
reliable (explicit) approximations? This question can be decided experimentally. 
In our example (1.1) we have obtained experimentally that for integration step sizes 
smaller than 2-5 the explicit Euler method works reliably in the sense of having 
no explosions for a = 4 and thereby the critical step size for the one Wiener path 
used for the figure 1.2 should be no larger than 2-5 . 

We thus have to construct fully implicit methods which involve implicitness in 
the deterministic as well as in the stochastic terms, that is, stochastically implicit 
methods. In this paper we restrict ourselves to the construction of (fully) im-
plicit methods with low order of strong convergence. In section 2 we will apply 
some numerical methods to equation (1.1). Among the methods of this section 
there is a new method which we call balanced method. Besides we will introduce 
an implicit method which has implicitness even in a stochastic term by analysing 
of the multiple Ito integral J J dWsdWt. It turns out that this method provides 
numerical solutions converge to the exact solution with strong order 1.0. Its path-
wise behaviour seems to be similar to that of the balanced method in the range 
of large time step sizes, but in this range its accuracy is actually worse than that 
of the balanced method. Naturally, for sufficiently small .time step sizes one ob-
tains the strong order 1.0 and thereby the asymptotical error behaviour confirmed 
experimentally. This may be explained by the fact that the order of accuracy 
( asymptotical property) and the stability (property for 'real time step sizes') of the 
numerical solution are qualitative different assertions about the numerical method 
used, although both properties are related to each another to some extent. In 
section 3 we will state the structure of the class of balanced methods for multi-
dimensional stochastic differential equations driven by multi-dimensional Wiener 
processes and also prove a convergence theorem. 
The balanced methods can be interpreted as a large family of specific methods 
providing a kind of balance between stochastic terms. One can hope that by an 
appropriate choice of the parameters involved in this family of schemes one is able 
to find an acceptable scheme for the integration of a given stiff stochastic differen-
tial equation. Numerical experiments have convinced us about the good behaviour 
of the balanced method, at least in comparison with the explicit Euler method, for 
example, having a larger range of step sizes where this new numerical method still 
works without any explosions in contrast with the explicit Euler method. This can 
be easily seen, for example, from figure 1.3 where the same parameters and Wiener 
path have been used. There is thus hope for treating successfully a wide class of 
stiff equations without any explosion. Actually the last two sections 4 and 5 will 
provide some justification for this hope in more complicated situations. 
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Figure 1.3 Exact solution and numerical result of the balanced method simula-
ting equation (1.1) with CJ'= 4 and~= 2-3 and 2-5 

Several numerical experiments in section 4 and 5 show the effects of stiffness in 
multi-dimensional stochastic systems, the failure of explicit methods in a certain 
range of time step sizes and the successful treatment by the balanced methods with 
suitable parameters for a very large range of time step sizes (e.g. the range where 
the roundoff error does not influence decisively the calculations). The formulation 
of specific recommendations for the choice of suitable parameters in these implicit 
methods for some given class of stochastic differential equations is a rather difficult 
task. It is closely related to the construction of appropriate classes of test equations 
and its parameters. In the deterministic case, by the Jordan theorem we have a 
rather simple linear complex valued equation which allows ~he characterization of 
stable numerical methods. The situation is similar for additive noise, see Milstein 
([9],1988). But in the stochastic case with multiplicative or general noise so far no 
comparable result is known. Thus it still remains an open problem to find suffi-
ciently simple, but also rich families of test equations which characterize numerical 
methods for stiff stochastic differential equations. 
In this paper we understand stiffness in the physical sense involving the simul-
taneous appearence of relatively fast and slow velocities in the dynamics of the 
system, for example, as it occurs in this two-dimensional decoupled system (with 
its Lyapunov exponents ,\1 = -50.0 and ,\2 = -0.28) 

driven by two independent Gaussian noise sources Wl and Wt2 and having first 
· component Xf = XJ * exp { -50 * t + 10 * Wl} which converges extremely rapidly 
to zero in contrast to its second component Xf = xg *exp { -0.28 * t + 1.6 * W?} 
which converges to zero slowly. We will put great emphasis in section 2, 4 and 
5 on the systematic study of corresponding numerical experiments and on what. 
stiffness could mean and imply in stochastic systems. However, it must be pointed 
out that all we have done is to provide some first steps for a class of model equations 
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analogous to the deterministic theory. As in the deterministic theory the intuitive 
meaning of stochastic stiffness is clear to all specialists, but there is still much 
controversy about its correct mathematical definition (compare Hairer and Wanner 
( [3], 1991)). What does stochastic stiffness really mean? At the moment we are . 
unable to provide an exact definition, but at least a class of model equations can 
be systematically developed, several numerical effects are studied. and these model 
equations are successfully treated by a new class of implicit methods which have 
no deterministic counterpart. 
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2 Experiments for Multiplicative Noise 

As already mentioned above there exists a well developed literature proposing and 
investigating different numerical methods using a time step size /1 in order to. 
construct discrete time approximations converging to the solution X of the given 
stochastic differential equation as the step size /1 converges to zero. For simplicity 
in this paper numerical methods on a given time interval (0, T] are fixed by schemes 
based on equidistant time discretization points rn = n !1, n = 0, 1, ... , N with step 
.size l1 = T / N, N = 1, 2, .... Here we shall use the abbreviation Yn instead of Ynti. 
to denote the value of the approximation at time nfi. To classify different methods 
with respec;:t to the rate of strong convergence as in Kloeden and Platen ([6f,1992) 
we say that a discrete time approximation yti. converges with strong order / > 0 
if there exist constants /10 E (0, oo) and K < +oo, not depending on !1, such that 

(2.1) 

for all !1 E (0, !10 ). The simplest useful method is the Euler met.hod, which is 
sometimes called the Euler-Maruyama method, see Maruyama (1955). For equation 
(1.1) it has the form 

(2.2) 

where t1Wn = W'Tn+i - W'Tn' n = 0, 1, ... , N - 1 and Yo = Xo. The Euler 
method is an explicit method. In fact there is no counterpart of the deterministic 
implicit Euler method because JEl(l + ut1Wnt1 1 does not exist. Nevertheless, to 
introduce implicitness in the numerical treatment for this special equation within 
the Ito calculus an outway could be to look at the next higher order method and 
try to introduce implicitness there. For this purpose we start from the scheme 

which represents a numerical method of strong order 1.0 (see Milstein (9], Kloeden 
and Platen [6]). Again the introduction of implicitness in uYnt1Wn as for the 
explicit Euler metho.d above fails, but one can analyse the stochastic term 

and introduce partial implicitness in it because of ~cr2 /1 2:: 0. This leads to the 
scheme · 

which is a stochastically implicit method in the Ito sense. For the special equation 
(1.1) it is identical with a scheme stated in Kloeden and Platen ((6],1992, p. 400), 
which was derived using the Stratonovich calculus, where it is a deterministically 
(drift-) implicit scheme for the corresponding Stratonovich equation. The numerical 
approximation discribed by the scheme (2.3) converges to the exact solution with 
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strong order / = 1.0 . This statement can be verified by the use of a convergence 
theorem (see Theorem 2 of section 3) proved in Milstein ([9], [10], 1988). We note 
that in both (2.2) and (2.3) no stochastic diffusion term is implicit. 
In this paper the main emphasis is focused on a class of fully implicit schemes 
converging strongly and also allowing random terms to be made implicit. In a · 
natural way the method we are proposing can be called balanced method. For 
equation (1.1) it takes the form 

starting in Yo = X 0 and using 6. Wn as in (2.2). 
It makes it possible to introduce implicitness also in the stochastic terms. We are 
proving in section 3 that the balanced method converges with the same strong 
order / = 0.5 as the Euler method does. There we will see the balanced method 
described by (2.4) is a special member of the class of balanced methods. 
Let us perform several numerical experiments for the linear equation (J .1) which 
has the explicit solution 

(2.5) 

In the previous section 1 the attention has been drawn to the pathwise behaviour 
of the numerical solution driven by different schemes for the integration of equation 
(1.1). Now we are investigating the dependence of the global error IXt - Ytl of the 
above described numerical schemes on the time step size 6. at the discretization 
points t = nl:i, n = 0, 1, ... , N. For this purpose estimated mean errors are plotted 
and corresponding error bars ( 903 confidence intervals) at the discretization points 
are added in the next three figures. To identify the errors corresponding to one 
and the same time step size we interpolate the estimated mean errors linearly. At 
first we look at the results of the Euler method. 

Figure 2.1 

Eps<t> 

15 

0.2 0.4 0.6 O.B 1 

Estimated mean global error Eps(t) of the Euler method at _time 
t for different time step sizes using sample size 40 x 1000 and a ~ 4 
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Both the estimate of the mean global error and its corresponding variance increase 
monotonically int, e.g. we observe a worsening error behaviour of the Euler method 
for the time step sizes fl = 2-4 and = 2-5 • On the base of figure 2.1 one suspects 
it exists a critical time. step size fl 0 such that for step sizes smaller than flo :::;; 2-5 

the error propagation in the Euler method remains under control. Beyond this 
random boundary for the time step size, e.g. for fl larger fl 0 , the global error 
explodes in practice and the scheme becomes useless for such large time step sizes. 
We repeated the above simulations for the stochastically implicit scheme (2.3) 
which has a kind of implicitness only in the higher order term occuring by a purely 
stochastic multiple Ito integral. 

Eps<t> Delta = Z"'-4 -> 

J.O 

0.2 0.4 0.6 0,8 J. t 

Figure 2.2 : Results of the numerical method (2.3) 

Here we observe a slightly improved behaviour of the global error at the discretiza-
tion points for time step size fl = 2-5 • This stochastically implicit method is able 
to reduce the variance of the global error estimates and keeps the mean global 
errors itself under control for time step sizes smaller than 2-5 • But for time step 
sizes larger than 2-4 it has no control on the mean global error. 
Finally we apply the balanced method (2.4) representing a fully implicit method 
to the linear equation (1.1) and for the same step sizes. By the way, looking ahead 
to its general formulation in section 3, this method uses the functions c0 ( t, x) = 0 
and c1(t, x) = lal. 

E;ps(t) 

J.5 

J.O 

0.2 0.4 0.6 o.s J. 

Figure 2.3 : Global error estimates Eps(t) of the balanced method (2.4) at time t 
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In the last two figures the same equation and parameters as well as sample size 
were used as in figure (2.1 ). Comparing the numerical experiments for the ba-
lanced method (2.4) with those where we applied the methods (2.2) and (2.3) it 
turns out that only the scheme (2.4) yields a significant improvement in limiting the 
~rror propagation. For the given stochastic differential equation (1.1) the balanced 
scheme is able to keep the propagation of errors under control if the time step size 
was increased to larger values and thereby for almost the whole range of possible 
time step sizes (except for too small /:':i,., where the roundoff error dominates). Be-
sides this method causes a decisive variance reduction of the corresponding giobal 
error estimates. In additional we have seen that the global error could not be 
controlled successfully by one stochastically implicit method (see experiments for 
(2.3)) and thereby the accuracy of the method for large time step sizes. However, 
this does not mean this stochastically implicit method was useless here. Rather the 
stability region of the numerical solution has been extended in comparison with the 
'explicit Euler' solution. Besides it indicates that one has to be very careful with 
the introduction of implicitness in numerical solutions (The discussion 'where' and 
'which intensity' we omit here.). Now, as the first experiments have been done, the 
convergence of the balanced method has to be justified mathematically and not 
only experimentally. 
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3 Convergence of the Balanced Methods 

To formulate the balanced methods in general we suppose the cl-dimensional stocha-
stic process {Xt : t 2:: O} with JE(X0 ) 2 < oo satisfies the cl-dimensional stochastic 
differential equation 

'm 

dXt = a(t,Xt) dt + L lJ(t,Xt) dW/ (3.1) 
j=l 

where a, b1 , ... , bm are d - dimensional Lipschitz continuous vector valued functions 
which fulfil also a linear growth condition. The processes Wi = {W/; t 2:: O}, j = 
1, ... , m represent independent standard Wiener processes on a filtered probability 
space (n, :F, (:Ft)t>o, JP) with its filtration (:Ft)t>o satisfying the usual conditions, 
see Kloeden and Platen ([6],1992). Usually one- takes :Ft = cr{Ws, 0 ~ s ~ t} as 
the given filtration. Furthermore for 0 ~ s ~ t < 00 and y E IRd x:·Y denotes the 
value of a solution of (3.1) at time t which starts in y E IRd at time s . 
Now the balanced methods applied to (3.1) can be written in the form 

m 

Yn+l = Yn + a(Tn, Yn)Li + L lJ(Tn, Yn)LiW~ + Cn:(Yn - Yn+1) (3.2) 
j=l 

where 
m 

Cn = c0 (Tn, Yn)Li + L d(TnYn)jLiW~j (3.3) 
j=l 

"Wi Wi - Wi A - - - 0 1 N - 1 cl O 1 m L.J. n Tn.+l Tn.' L.J. - T n+ 1 T n ' n - ' ' ... ' an c ' c ' ... ' c 
represent d x cl - matrix valued functions. We assume that for any sequence of real 
numbers ( ai) with a:0 E [O, a], a:1 2:: 0, ... , am 2:: 0, a < oo and ( t, x) E [O, oo] x IRd 
the matrix 

m 

M(t,x) =I+ a0 c0 (t,x) + ,Eaid(t,x) 
j=l 

where I is unit matrix has only positive eigenvalues and it holds M(t, x) = MT ( t, x ), 
e.g. M( t, x) is symmetric. Such matrices are invertible and fulfil the condition 

(3.4) 

Obviously (3.4) can be easily fulfilled in keeping c0 , c1 , .•. , cm all positive definite. 
Thus under these coI).ditions one obtains directly the one-step increment Yn+l - Yn 
of the balanced method via the solution of a system of linear algebraic equations. 
Furthermore we suppose that the corpponents of the matrices c0 , c1 , •.• , cm are 
uniformly bounded (if even the components of a are uniformly bounded, then it is 
sufficient to demand that c0 , c1 , ..• , cm have components satisfying a linear growth 
condition). The latter condition will be necessary to prove the convergence of the 
balanced methods via a theorem stated in Milstein ([9],1988). 
We remark that method (3.2) - (3.3) turns out to be rather general. In the purely 
deterministic case it covers for instance the implicit Euler method with one or more 
Newton iteration steps. Now we are able to stat~ the corresponding convergence 
theorem for the general balanced methods. 
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Theorem 1: 

Under the above assumptions the balanced methods (3.2) converge with strong 
order I= 0.5, that is for all k = 0, 1, ... , N and step size /j,_ = T/N, N = 1, 2, .... 

(3.5) 

where K' does not depend on /j,_ •. 

To prove Theorem 1 we recall a theorem concerning the order of strong convergence 
formulated in Milstein ([9],[10],1988) . 

Theorem 2 (Milstein [9]) : 

Assume for a one-step discrete time approximation Y that the local mean error 
and mean square error for all N = 1, 2, ... , and n = 0, 1, ... , N - 1 satisfy the 
estimates 

IE(XT,,.,Y,,. - Y. l:F )I < K (l + IY.12)1/2 fj,_PL Tn.+L n+l Tn. _ n (3.6) 

and 
(E(IX;:~~" - Yn+112IF,.,J)112 ~ K (1+1Ynl2)112 fj,_P2 (3.7) 

with P2 ~ ~ and P1 ~ P2 + ~ . Then 

(E(IX~~Xo - Ykl 21Fo))112 ~ K'(l + IX012)1l 2 fj,_P2 -~ 
holds for each k = 0, 1, ... , N. 

(3.8) 

Pointing out the basic assertion for the proof of Theorem 1, we note that under the 
above assumptions on the local error Theorem 2 provides the global error bound 
and the strong order r = p2 - ~ for the underlying one-step method. The proof of 
Theorem 1 consists of checking the validity of the assumptions of Theorem 2 for 
the balanced methods (3.2) assuming the boundary condition (3.4) for the matrix 

. M( t, x) and applying finally the Theorem 2. 

Proof of Th~orem 1 : 

Firstly we show that the estimate (3.6) holds for the balanced methods (3.2) with 
P1 = ~ . For this purpose the local Euler approximation step 

m 

Yk1!1 = Yk + a(Tk, Yk)jj,_ + L bi(Tk, Yk)!j,_WZ, (3.9) 
i=l 
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k = 0, 1, ... , N - 1 is introduced and one can deduce for n = 0, 1, ... , N - 1 that 

with 

H1 ·- jIE(X;:~~" - Yn+1IF,.,.)j 

\JE(X;:~~n - Yn~i IF,-n) + JE(Yn~l - Yn+i IF,-n)I 
< K (1 + IYnj2)1! 2 ti2 + H 2 

(3.10) 

(3.11) 

H2 ·- jJE(Yn~l - Yn+i IF,-n)I (3.12) 

. IE ((I - (I+ C.)-1 )(a(T., Y.)D. + t, il(Tn, Y.)D.WDl.Fr.) (3.13) 

IE ((I+ C.t'C.(a(Tn, Y.)L'>. + t, il(Tn, Y.)D.WDl.Fr.) . (3.14) 

Exploiting above the symmetry property of ti W~, j = 1, ... ,min those expressions 
involving this zero mean Gaussian variable we obtain 

and it follows with (3.4) that 

H2 < K IE(ICna(rn, Yn)tillF,.n) 
< K (1 + !Ynl2)1/2 ti 3/2 

(3.15) 

(3.16) 
(3.17) 

Thus the assumption (3.6) with p1 = 1.5 in Theorem 2 is satisfied for the balanced 
methods. 
Similarly we check assumption (3. 7) for the local mean square error of the balanced 
methods (3.2) and obtain for n = 0, 1, ... , N - 1 by standard arguments 

(3.18) 

< 

Thus we can choose in Theorem 2 the exponent p2 = 1.0 together with p1 = 1.5 
and apply it to prove finally the strong order I = 0.5 ( = p2 - ~) of the balanced 
methods, as was claimed in Theorem 1 . 
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4 Experiments for a Simple System 

In this and the next section some numerical experiments for multi-dimensional 
systems are reported. For simplicity we are going to only illustrate phase plane 
figures of the systems. For this we have chosen 'typical' trajectories driven by the 
stochastic system components. Further experiments such as the examination of 
first and second moments of the global error and their propagation for increasing 
time t are left to the reader. Already the phase plane figures will be sufficient to 
indicate graphically explosions in the numerical solution and better behaviour of 
the balanced methods. We start from the decoupled system of two equations 

dXi = a Xi dW/ and dXi = pXi dWt2 

and use the transformations 

Y/ = ~(Xi +Xi) and Yi2 = ~(Xi - Xi) 

to obtain the system 

dY:l t 

dY:2 t 

( 4.1) 

It has already been seen in the introduction section that the Euler approximation 
explodes in contrast to that of the balanced method. For system ( 4.1) this is also 
clearly apparent from figure 4.1 where 'typical' trajectories for the same Wiener 
path have been plotted in the phase plane (Yi1 , Yi2 ) on a time interval 0 ::; t ::; 2 . 

Figure 4.1 Numerical solution of ( 4.1) of the Euler and balanced method for. 
the parameter set (.6.,a,p) = (0.04,4, 1) starting at (1,0) 
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The corresponding trajectory of the exact solution is not included here, but from 
multi-coloured computer experiments we know that the solution of the balanced 
method is close to the exact solution. For the balanced method with simply func-
tions c0 ( t, x) = 0, c1 ( t, x) = a and c2 ( t, x) = p the trajectories (thick line) are 
attracted by a submanifold of the phase plane (Y/ = -Y?) and stay closely to the 
zero point (0, 0), which replicates the behaviour of the exact solution. In contrast 
the Euler trajectories do not show this attraction and have large oscillating values, 
at least for time step sizes larger than 10-2 considered here. Of course the results 
need to be confirmed for other Wiener paths. In any case more reliable assertions 
can only be concluded from the error propagation graphs as in section 2. N everthe-
less, figure 4.1 is confirmed in several experiments and one suspects that the global 
error of the Euler method behaves badly and has an unbounded error propagation 
for step sizes that are too large. 
The same effects are obtained if there is a rotation in the system. For this purpose 
we add linear drift terms (JY/dt and -(JY/dt to system (4.1) to obtain the system 

dY:1 t 

dY:2 t 

ay:2 dt + !a(Y:l + y:2) dW1 + !p(Y:l _ y:2) dW2 
tJ t 2 t t t 2 t t t 

_ay:1 dt + !a(Y:1 + y:2) dW1 _ !p(Y.1 _ y:2) dW2 
tJ t 2 t t t 2 t t t 

(4.2) 

in which the solution is forced to rotate in the phase plane (Y/, Y°?) depending 
on the magnitude of the drift parameter (3. In this model the balanced method 
also stabilizes the numerical solution, as is shown in figure 4.2, compared with the 
'Euler solution'. For time step sizes larger than 10-2 one can expect explosions in 
the Euler approximation as in this figure. 

-J.O 

V2(t) 

8 

6 

// // 
// // 

4 // /· 

;;12 / 
~ 4<- Linearly int,.{polated path of 

1 1 1 ~· / , the balan d "ethod 

-8 

Figure 4.2 : Numerical solution of ( 4.2) of the Euler and balanced method 
using b.. = 0.02 and (a, (3, p) = ( 4, 5, 0.5) on (0, 1] 
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Of course the figures depend strongly on the parameter choice ( £1, a, /3, p, T), but 
we are only demonstrating what can happen in numerical solutions, especially in 
stiff situations. Figure 4.2 displays the poor behaviour of the 'Euler solution' in 
comparison with that of the 'balanced solution' on the time interval [O, 1]. If one 
observes it for larger times T then very large :fluctuations in the 'Euler solution' 
will occur and even result in overflow, but the exaCt solution and the 'balanced nu-
merical solution' are moving closely to the zero point. That the 'balanced solution' 
better reflects the exact solution in fact can be easily checked by the use of very 
small step sizes t1. 

5 Experiments for a Linear Three-dimensional 
System 

Let us consider the two-dimensional system 
m 

dXt = AXt dt + L:aiXt dW/ (5.1) 
j=l 

with A=( a b) -b a and j ) 0"12 

0"~2 . 

where a{1 a~2 and a~1 = -a{2 , j = 1, ... , m This' system was studied in 
Auslender and Milstein ([1],1982) and has Lyapunov exponent 

,\=a+~ I)(a{2)2 -(a{1)2]. 
2 j=l 

(5.2) 

But the system ( 5.1) is not stiff in the physical sense. We can always apply a 
transformation to the system to shift its Lyapunov exponent to a reasonable value 
which allows explicit integration methods to be used. But for ,\ < < 0, if we add 
the equation 

dyt (5.3) 
m 

+ (T1Xt1+12X;) dt + L(µ{Xi + µ~X;) dW/ 
j=l 

to the system (5.1) we obtain a new three-dimensional system, which for a-".i2 >> 
,\ or a - ~2 < < ,\ can be interpreted as being stiff. 
Once again numerical experiments indicate that the balanced method has a larger 
range of step sizes where the corresponding balanced algorithm of the form (3.2) 
provides no explosions and that the Euler method fails for large step sizes. For a 
special parameter set and m = 2 we have the following 'typical' plot in the phase 
plane (Y;1, Y?) which describes graphically numerical solutions of the equations 
(5.1) for (Xf ,Xi) components of the three-dimensional system (5.3) starting at 
(1, 0, 0) . Note that while these components effect the dynamics of the Yi compo-
nent, they are not themselves effected by the yt values. 
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/\ ~' 
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Figure 5.1 : Trajectories of the Euler and balanced method using /:}.. = 2-5 

6 Some Final Remarks 

The results of this paper show that new numerical methods also involving implicit 
stochastic terms can be implemented successfully. The class of balanced methods 
introduced here stabilizes the numerical solution for a larger range of step sizes 
than explicit methods .. While a number of model equations (e.g. (1.1) (1.2), (4.1), 
(4.2) and (5.1) with (5.3)) stiffness.in stochastic systems have been considered, a 
suitable class of test equations has not been determined. 
Stochastically implicit methods are necessary for the successful numerical treat-
ment of stiff systems. Our results show that one has to be very careful about how 
one introduces implicitness in numerical solutions. Often it is not sufficient simply 
to introduce implicitness just in one term of the scheme. One must also take into 
consideration the influence played in the dynamics by both the stochastic and de-
terministic terms. Implicit methods can be classified in fully implicit (such as the 
balanced methods (3.2)), deterministically implicit (drift-, see Kloeden and Platen 
([6], 1992)) or pure-stochastically implicit (for example, a subclass of the balanced 
methods) methods. This interpretation depends on the calculus which one is work-
ing with, that is Ito or Stratonovich. In the balanced methods the type of implicit-
ness can be chosen by appropriate weight functions d(t, x ), j = 1, 2, ... , m + 1. The 
appropriate choice of weights in a balanced method was not described construc-
tively here and requires further investigation. This problem is closely connected 
with the problem of determining a suitable test equation for such methods. 
Many questions remain open for the use of balanced methods for the numerical 
treatment of stiff stochastic systems. For instance, how can one generalize the con-
cept of balanced methods to higher order methods? Do the higher order methods 
already have an inbuilt property of balancing stochastic terms? 
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Stability considerations will also be necessary to provide qualitive statements about 
the behaviour of stochastic numerical methods, to calculate the corresponding sta-
bility region of the balanced method, to distinguish between the methods regarding 
their reliability and error behaviour and to provide rules for the practical imple-
mentation. In stochastic numerics the introduction of a suitable stability concept 
and criteria have proven to be extremely difficult tasks. 
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