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Abstract 

The existence of a sequence of periodic trajectories of a general one-step 
numerical scheme corresponding to a null sequence of constant time-steps is 
established under the assumption that the autonomous ordinary differential 
equation has an isolated periodic solution with non-zero topological index. The 
convergence of the linearly interpolated numerical curve to the original invariant 
curve with respect to the Hausdorff metric is also shown. 

1 Introduction 
We consider an autonomous dynamical system described by a nonlinear differential 
equation 

dx 
dt = f(x}, (1) 

with smooth right-hand side and suppose that this system has a periodic solution of 
minimal period T* > 0 for which the corresponding invariant curve is denoted by r. 
Beyn [l], Doan [2] and Eirola [3] have established the existence of a nearby invariant 
curve for a pth order one step numerical scheme [6] with sufficiently small constant 
step size h > 0 applied to (1) under the assumption of hyperbolicity of the original 
periodic solution; see also van Veldhuizen [7]. Numerical evidence suggests that the 
discretized system itself has a nearby periodic solution for certain step sizes. The aim 
of this paper is to prove that this is true for a certain null sequence of constant step 
sizes. Our main tool is degree theory and we assume only that the original periodic 
solution is isolated and has nonzero topological degree, which includes the hyperbolic 
case. 

We construct a polygonal curve L approximating r by linearly interpolating the 
successive iterates of a pth order one step scheme. Let h > 0 be a fixed step size and 
defin'e-:the mapping A(·; h) : JR,N-+ JR,N by 

A(x; h) := x + h fh(x), 

where fh is the increment function of the pth order one step scheme [6] under consid-
eration applied to the differential equation (1). We then construct a polygonal curve 
L = L(h, x0 ) with nodes at the iterated points of the numerical scheme, that is at 

k = 0, 1, ... , (2) 

by linear interpolation. Such a polygonal curve represents a periodic solution or cycle 
of the discretized system (2) if for some integer n the nodes x0 , x1 , ... , Xn-l are all 
different and Xn = x 0 . In this case we will call it a cyclic polygonal curve. 

If the initial approximation Xo lies in an appropriate c-neighborhood of the cycle I', 
then fork= 0, 1, ... , LT*/hJ the curve L(h, x 0 ) lies in the (c1c + c2hP)-neighborhood 
of the cycle r where the constants c1 and c2 depend only on the right-hand side of the 
differential equation (1) and the corresponding increment function of the numerical 
scheme in a neighbourhood of r. We will show that there exists a null sequence of 
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step sizes { hn} and a sequence of initial values { x~n)} such that the polygonal curves 
Ln = L(hn, x~n)) are cyclic with Ln converging to r in the Hausdorff metric as n -+ 
00. 

2 Main result 
Suppose that the periodic curve r of system (1) is isolated, fix a point x* E r, let 
IT be a transversal hyperplane to the curve r at x*, and denote by P the Poincare 
mapping defined in a vicinity V of the point x* on the hyperplane II. The point x* 
is thus an isolated zero of the vector field 

cp(x) = x - P(x), x EV. (3) 

Let ind (x*; '¢) be the topological index [5] of this zero. This index does not depend 
either on the choice of the specific point x* or on the choice of the hyperplane IT. It 
will be called the topological index of the periodic curve r, or for simplicity the index 
of r' and denoted by ind (r). 

Theorem 1. Suppose that the autonomous system ( 1) has an isolated cycle r with 
minimal period T* such that ind (r) i= 0. Then for any pth order one step numerical 
scheme and each integer n sufficiently large there exists a cyclic polygonal curve Ln 
with exactly n -nodes corresponding to iterates of the numerical scheme with step size 
hn > 0 such that hn -+ 0 as n ---+ oo and 

lim H(Ln, r) = 0, 
n-+oo 

(4) 

where H ( ·, ·) is the Hausdorff metric between nonempty compact subsets of JR,N. 

The proof will be given in the section 4 following the proofs of several lemmas in 
the rtext section. 

3 Several lemmas 
In what follows we denote by ( ·, ·) and I · I a scalar product and the corresponding 
norm in JR,N, repectively, and denote by p(t, x) the unique solution of the system (1) 
satisfying the initial p(O, x) = x. 

Fix some sufficiently small h > 0 and consider the map 

B(x; h) = p(h, x), (5) 

which is defined on every sufficiently small neighborhood U(r) of the cycle r. Let 
us suppose that U(r) does not intersect any other cycle of system (1) and that ali 
iterations Bn(., h) for n = 1, 2, .. ., l2T*/hj are defined on U(r), which is possible 
by continuity considerations if the neighbourhood U(r) is sufficiently small. From 
general results on the global discretization error of a pth order one step scheme (see, 
e.g. [6]) we have 
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Lemma 1. There exists a constant C = C(f; fh; U(I'); T*) such that 

(6) 

Now choose some point x* E r, which we can suppose without loss of generality 
satisfies (x*, f (x*)) -=/=- 0, and define 

Write I10 = {x E IRN : E(x) = O} and let P0 be the orthogonal projector onto I10 , 

with P 0 =I - P0 . Fix r > 0 sufficiently small so that the cylinder 

is a subset of U(r). In view of the periodicity of the solution p(t, x*) in r, a continuous 
function t(x) can thus be defined on on f'(r, x*) such that 

t(x*) = T*, p(t(x), x) E IT, (8) 

where IT= x* + I10 • Now consider the vector field 

'lf;(x) = x - p(t(x), x) (9) 

on f'(r, x*). It is easy to see that the point x* is the unique zero of this. vector field 
'ljJ on f'(r, x*). Let ind (x*; 'lf;) denote its the topological index. 

Lemma 2. ind (x*; 'lf;) = ind (r). 
Proof. The map p(t(·), ·)acts from T(r, x*) to IT, so the topological index ind (x*; 'lf;) 
of the point x* equals that of the restriction p( t( ·), ·)Irr of the map p( t( ·), ·) on IT. But 
p(t(·), ·)Irr= P. Therefore 

ind (x*; 'lf;) = ind (x*; cp) = ind (r) 

and Lemma 2 is proved. D 

Now fix an integer n ~ 2 and define the interval 

(10) 

Let nn = f'(r, x*) x ln c JRN+l = JR,N x JR and define on On the vector field 

u = { x, h} E On. 

Direct verification shows that the point u* = {x*, T*/n} is the unique zero of the 
vector field q>n(u) in On. Let ind (u*; ~n) denote the topological index of this zero. 

Lemma 3. ind ( u*; ~n) = ind (r). 
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Proof. Consider the auxiliary vector field 

x(u) = {x - p(t(x), x), h - T*/n}, (11) 
which is the Cartesian product of the field 'lj; defined on T(r, x*) and the one dimen-
sional field Bn(h) = h - T*/n defined on Jn. The theorem on the rotation of the 
product of vector fields [4] gives 

ind (u*; Xn) = ind (x*; 'l/;) · ind (T*/n; Bn)· 
Since ind (T*/n; Bn) = 1, Lemma 2 implies the equality 

ind ( u*; Xn) = ind (r). 
Now consider the deformation 

8(u; A)= {x - p(Anh - (1 - A)t(x), x) A(i(x) - T*) + (1 - A)(h - T*/n)}, 
u = { x, h} E On, O :::; A :::; 1. 

(12) 

(13) 

We will show that the point u* = {x*; T*/n} is the unique zero of the field 8(·, A) for 
every A in On. 

If, otherwise, for some u0 = {x0 , ho} E On and Ao E [O, 1] the equality 8(u0 ; Ao)= 0 
holds, then 

xo = p(Aonho + (1 - Ao)t(xo), xo) (14) 
and 

A(i(xo) - T*) + (1 - Ao)(ho - T*/n) = 0. (15) 
Equality (13) implies 

Xo EI' (16) 
and 

Aonho + (1 - Ao)t(xo) = T*. (17) 
Suppose that l(x0 ) > T*. Then equality (15) guarantees that nh0 < T*, so by (17) 
we must have t(x0 ) > T*, but this is impossible since our construction implies that 

for x ~ II. Hence 
(18) 

Analogously it is possible to prove that i(x0 ) 2:: T*. Hence £(x0 ) = t(x0 ) = T*, so 

X-0 E II (19) 

and h0 = T*/n. Relations (16) and (19) imply that x0 = x* and, consequently, 
u 0 = u*. 

Hence we have proved the uniqueness of the zero of the unique zero of the field 
8(·; A) for every A, which means that the deformation 8(·, A) is non-degenerate on 
the boundary 80n of the cylinder n. Therefore 

ind (u*; 8(·, 0)) = ind (u*; 8(·, 1)). (20) 

On the other hand, the equalities 8(·; 0) = Xn and 8(·; 1) = <Pn hold. Thus (20) 
together with (12) complete the proof of Lemma 3. D 
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4 Proof of Theorem 1 
As above, let T(r, x*) be the cylinder defined by (7), let Jn be the interval (10) and 
let Dn = T(r, x*) x Jn. Together with the fields q>n, consider the sequence of the fields 

u = { x, h} E Dn. 

We will prove that for n large enough the fields Wn and q>n are homotopical on 8Dn. 
For the proof we need to formulate some estimates. The boundary 8T(r, x*) of the 
cylinder T(r, x*) can obviously be decomposed as 8T(r, x*) = M 0 U Mi, where 

If x E M0 , then 

Mo= {x E IRN: IPo(x - x*)I ~ r, IP0 (x - x*)I = r }, 

Mi= {x E IRN: IPo(x - x*)I ~ r, IP0 (x - x*)I ~ r }. 

(21) 

If x E Mi then, since the cycle r is isolated, there exists an a(r) > 0 such that for 
every h E Jn the inequality 

holds. Relations (21) and (22) imply that 

{ u E x, h}, x E 8T ( r, x*), h E Jn, 

where 
. { rT*IJ (x*)l 2 

} 
f3(r) =mm (x*, f(x*)), a(r) . 

Now the boundary ann can be decomposed as ann = N~ UN~, where 

N~ = { u = { x' h} E IRN +1 : x E T ( r' x*)' h E a Jn} ' 

N~ = {u = {x,h} E JRN+l: x E 8T(r,x*), h E Jn}. 

(22) 

(23) 

If u E N~, then for r > 0 small enough, the minimality of the period T* of the cycle 
r guarantees that 

lq>n(u)I ~ r(r). 
If u E N~, then the field q>n satisfies (23), so 

(24) 

where 5(r) = min{f3(r), r(r)}. 
Let us now estimate the norm lq>n(u) - wn(u)I on 8Dn· According to (6) 
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Estimates (24) and(25) and the Rouche theorem [4] imply that for n 2:: 3CT*/28(r) 
the fields <I?n and '11 n are homotopical, which means that the rotations 'Y( <I?n; ann) 
and 'Y(Wn; 8Dn) of these fields on 8Dn coincide. Thus Lemma 3 guarantees that 

Hence every field Wn for sufficiently large n has at least one zero Un= {xn, hn} E Dn. 
By the definition of the mapping B(·, ·), the point Xn defines a closed, that is cyclic, 
polygonal curve Ln = L(hn, Xn) with nodes Xn, B(xn, hn), ... , Bn-1(xn, hn)· Since 
Un E nn we have lhn -T*/nl :S T*/(2n) and hn--+ 0 as n--+ 00. The limit (4) foliows 
immediately from the estimate (6). The theorem is proved. D 
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