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Abstract. We develop a stability and convergence analysis of Galerkin-Petrov schemes
based on a general setting of multiresolution generated by several refinable functions for
the numerical solution of pseudodifferential equations on smooth closed curves. Particular
realizations of such a multiresolution analysis are trial spaces generated by biorthogonal
wavelets or by splines with multiple knots. The main result presents necessary and suffi-
cient conditions for the stability of the numerical method in terms of the principal symbol
of the pseudodifferential operator and the Fourier transforms of the generating multiscal-
ing functions as well as of the test functionals. Moreover, optimal convergence rates for
the approximate solutions in a range of Sobolev spaces are established.

1 Introduction

In the last two decades a significant number of papers has been devoted to Galerkin
and collocation methods for the numerical solution of periodic boundary integral and
pseudodifferential equations with various special choices of trial and test functions such
as trigonometric polynomials, B-splines or biorthogonal wavelets. In particular, a stability
and convergence analysis in Sobolev spaces has been developed in the papers [PS], [AW1],
[AW2], [SW], [S], [PSr| for Galerkin and collocation methods using smoothest splines (see
also [PSi] for the state of the art in this field) and in [DPS] for generalized Galerkin-
Petrov methods in the framework of multiresolution, i.e. ascending sequences of nested
spaces which are generated by translates and scaled versions of a single refinable function
(interesting genuinely multivariate examples are given by various notions of multivariate
splines).

However, until recently no rigorous convergence analysis was available for boundary ele-
ment methods in which the trial functions are splines with multiple knots, e.g. Hermite
quadratics or Hermite cubics that are often preferred to smoothest splines in engineer-
ing applications (cf. [MP], Section 6). Such an analysis has been provided in [MP] for
the collocation of pseudodifferential equations on smooth closed curves and is based on
a recurrence relation for the Fourier coefficients of the numerical solution. In particular,
sufficient stability conditions and superconvergence results (with special choices of the
collocation points) have been obtained [MP].

The results of the present paper constitute a natural generalization of the aforementioned
results. They are concerned with a stability and convergence analysis of Galerkin-Petrov
schemes based on a general setting of multiresolution generated by several refinable func-
tions. Such a multiresolution analysis contains splines with multiple knots as well. The
main result (Theorem 2.6) presents necessary and sufficient conditions for the stability of
the numerical method in terms of the principal symbol of the pseudodifferential operator
in consideration and the Fourier transforms of the generating multiscaling functions as
well as of the test functionals. In the particular case of boundary element collocation
methods using splines with multiple knots, Theorem 2.6 (together with Theorem 2.8)
provides even the necessity of the stability conditions derived in [MP]. Moreover, the
range of Sobolev spaces for which stability holds has been extended to 8 < s < (3 + %
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The proofs are essentially based on a thorough Fourier analysis of the corresponding
stiffness matrices and on a new result concerning the equivalence between periodic Sobolev
norms and certain discrete Sobolev norms.

The paper is organized as follows. In Sect. 2 we collect some important definitions on
refinable functions and projection methods and formulate the main stability results which
will be proved in Sect. 3.1 for the case of periodic pseudodifferential equations with con-
stant symbols. In the remainder of Sect. 3 these results are applied to the biorthogonal
Galerkin method and to the collocation. In Sect. 4 we give a characterization of the
Strang-Fix condition which is a characterization of the approximation order of the trial
spaces generated by a finite number of refinable functions. Then we prove the Jack-
son type approximation property as well as the Bernstein type inverse property for the
orthogonal projectors onto the trial spaces and for the test projectors. In Sect. 5 we es-
tablish corresponding optimal convergence rates for the approximate solutions in a range
of Sobolev spaces. Some of the theoretical results of Theorems 5.1 and 5.2 have been
confirmed by numerical experiments in [MP].

2 Notation and the main stability results

Let us start with introducing a class of numerical methods for solving a periodic pseu-
dodifferential equation of the form

Lu=f. (1)

Here L : H*(T) — H® #(T) is a periodic pseudodifferential operator (¥DO) of order
B € R defined by

(Lu)(z) = 3¢ o) (),

€7
1

i(z) = / e 2™ u(y) dy
0

for u € C>°(T), and f € H*7A(T) is given. The symbol o of the operator L can be written
as

[ (ay+a_sign(@)) e for z#0
a(x)._{ v 1 for 240

where ay,a_ € C. As usually H*(T) is the periodic Sobolev space of order s € R which
coincides with the completion of C*°(T) in the norm

lall2 = (0> 1)’ (2)

IEZ

where

(z) = {|x| for z € R\ {0}

1 for z=0
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In what follows we require the ellipticity of the operator L , which means a, +a_ # 0.

In order to setup on numerical methods for (1), we have to introduce a finite dimensional
trial space of approximating functions and a set of test functionals. For M € N let

- M M
Ay =ZN0[-5,5F).
We choose a sequence ¢ := (¢’);ca,, of generators for the space of approximation functions

with

¢’ € Ly = {f € LX(R) : ) _If(-+ k)| e L*(o, 1])}

keZ

for j € Ay It is easy to see that £, C L*(R) and therefore f € C(R) for f € L,, where

f(z) = /R e f(y) dy

is the Fourier transform on L?(R). For the stepsize h :=
introduce the trial spaces

%, N := 2™ with m € Ny, we

Sm(9) = Lin {4}, =27 [¢(2™ - —k)] : k € Aw, j € A} .

Hereby the periodization operator | - | is defined by

DGR

leZ

for f S Eg.

Now we turn to the test functionals. Choose a family 7 := (7/);es,, € (H™*(R)) " , s’ >
0, with compact support to define the test functionals

m
2

Mem(f) =275 ' (f27"(-+ k) , 1€ Au, k€ Ay, (3)

for f € H*(T). The numerical method which we are going to investigate is the Galerkin-
Petrov method corresponding to the just introduced trial spaces and test functionals.
This method reads as follows:

Find an approximate solution u,, € S,,(¢#) such that

nllc,m(Lum) = nllc,m(f) ) le AM) k€ AN (4)

for any sufficiently large m € Ny. The scheme (4) corresponding to the trial and test
spaces generated by ¢ and 7, respectively, is called numerical method {7, ¢} for the
operator L. The following two examples are special realizations of the scheme (4).
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Example 2.1 Collocation method: Choose a strictly increasing sequence (€;)jen,, €
[0, )M and define the test functionals by

P (f) = f(e)
for j € A

Example 2.2 Biorthogonal Galerkin method: Let (7¥)jca,, € L3 be a family of functions
biorthogonal to (¢?)jen,,, €-g-

<¢T7 ﬁs( - k)>L2(R) = 67‘,360,141
forr,s € Ay and k € Z. Then
ﬂj(f) = (f, ﬁj>L2(R) , J € Aw,

for f € L*(T).

It turns out that the convergence analysis of the numerical method (4) essentially depends
on the behavior of the matrix valued function [no@| defined by

2l

(nod(z) = Z (77" (2 H=)) ol + z) ¢° (1 + x)) , T € [—

= (r,s)EAZ,

N [—=
N [—=

This function [no¢] will be called numerical symbol of the numerical method {7, ¢} for
the operator L with symbol o. Using the notation

7(z) = n(e),

ip () (ﬁT(pM +1+ x))(l,r)EA?M ’

Ap(x) = ((bAT (pM + l + .’E)) (l,r)EAZ )

fo(x) = diag(f(pM + 1+ 2))icay (5)

for f : R — R, the numerical symbol gets the simple form

mogl(z) = Y (@) 0p(2) p(x) - (6)

PEZL

Now we are ready to define a class of admissible numerical methods.

Definition 2.3 The numerical method {n, ¢} is called s—admissible for WDO'’s of order
B R, seR, if the following is satisfied:

i) the matrices QASU and 7y are invertible on [—%, %],



S. Préssdorf, J. Schult / Multiwavelet approximation methods 5

i) Y0 ||(x);qu(x)qgg(x)_1<x)as||2 is uniformly bounded on [—3, 1|;
W) D,z ||ﬁp(x)*|:z:|£gz3p(x)|| is uniformly convergent on [—%, 3].

Here the matrices (-), , |- |0 arising in ii) and iii) are defined by (5) and || - || means any
matrix norm. The letter s denotes the Sobolev index of the space H*(T).

Remark 2.4 Properties i) and ii) are sufficient conditions for a certain discrete Sobolev
norm to be equivalent to the continuous Sobolev norm (2) (see Section 3). Condition i)
ensures the linear independence of the integer translates and is stronger than the Riesz
stability (cf. [JM], Theorem 5.1). Property ii) is a uniform Strang-Fiz condition combined

with a growth condition for the (¢?)jea,, (see Section 4). The last condition ensures the
continuity of the numerical symbol for x # 0.

We assume

Hypothesis H: There exist functions ¢ := (¢?);ea,, € £ with

e conditions i) and ii) of Definition 2.3 are fulfilled with replacing s and ¢ by s —
and v, respectively;

e 1 satisfies the duality conditions n"(?(- — k)) = 6,00 forr,j € Ay, k € Z;

o |leli P do@yin(@)2f | < ¢ and ||loli P (Do(@)in(e)) Hald ™| < c
for z € [-3, 3]\ {0} where c is a positive constant' independent of z.

Sufficient conditions for the above hypothesis are formulated in Section 3. At the end of
Section 4 we will give some hints how to construct such functions ¥ in a general situation.
Note that the last condition of Hypothesis H is a uniform Strang-Fix condition, too (see
Section 3). Moreover, the second property implies that the operators

Qn(f) =D Mhm(f) Yhm (7)

kEAN
Iy

are projectors defined for sufficiently smooth functions f. Using this notation of @,, and
representing u, € S,,(¢) as

ux' =) Y uj b (8)
JEAN kEAN

with the coefficient vector u := ((ul)jen, Jkcay € CMY, the numerical scheme (4) is
equivalent to the projection equation

Qm(L(u ¥ ¢)) = Qm(f) -

!From now on we use the letter c to denote a general positive constant the value of which varies from
instance to instance
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Definition 2.5 The numerical method {n, ¢} is called stable for L : H*(T) — H*P(T)
if
1@m Ltmlls—p > cllum|ls

for any un, € Sp(¢) and m € Ny sufficiently large.

Theorem 2.6 Let {n, ¢} be s—admissible for WDO’s of order 3 and let n fulfil Hypothesis
H. Then the numerical method {n, ¢} is stable for L : H*(T) — H* P(T) if and only if

<Uo($)<$>oﬁ+z<x>3ﬁ (ﬁp(x)ﬁo(-’ﬂ)_l)*Up($)¢p(x)</3o(x)_1<x>as> <c (9)

for any x € [—%, %]

Definition 2.7 The numerical symbol [no¢| is called elliptic of order B for s if condition
(9) is fulfilled.

In the case M = 1, the Definition 2.7 coincides with the definition of ellipticity given in
[DPS], Section 4. The next theorem claims that Theorem 2.6 applies to the collocation
method when M =2 and 0 <e_; < %, € = €_1+ % )

Theorem 2.8 Let n be defined by the above choice of (€;)jca, (cf- Example 2.1). Further
let ¢ == (¢")jen, € LZ2N (HPFY2H(R))? | § > 0, be functions with compact support.
Suppose {n, ¢} is s—admissible for WDO’s of order 3. Then the collocation method is
stable for L : H*(T) — H*P(T) , s — 8 > 0, if and only if the numerical symbol [no¢]
is elliptic of order 3 for s.

The proofs of Theorems 2.6 and 2.8 will be postponed to the next section.

3 Stability

3.1 General results
Our next concern is the proof of Theorem 2.6. Later on we will apply it to collocation

and to the biorthogonal Galerkin method. First we examine the linear system (4). The
stiffness matrix is of the form

(nZ’m(qu:L’m)) ((k7T)a(nas))E(AN ><AM)2 )

Since ¢y, ,,, is the shift of ¢ ,,, 7, is the shift of 77, and since L commutes with the
shift operator, we conclude
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Tom(Lbhm) = 272 07 (Lo} m) (27" (- + K)))
275 0" (L) (2™ ( + [k — n])))
= W[Tk—n],m(L¢3,m)

with [k] := k mod N. Hence we see that

(n;:,m(L¢:L,m)) ((kyr)y(n,8))E(An X Apg)? = ((n{kfn},m(quS,m))(T,S)EA?M)

= (A[k—n])(k,n)eAfv = A

(k,n)eAy

is a block circulant with

Ar = (LD m)) (g yen,

Such matrices can be diagonalized by the unitary matrix

U :— 2—% (621riknh ]-M) (k,n)EA?V

where 1;; denotes the M-dimensional unit matrix. We obtain
A=UDU*

with a block diagonal D = diag(D(kh))ken, € (CM*XM)NXN_ The diagonal entries are
given by

N-1

D(kh) =) Aje ®riakh (10)

J]=

To compute these elements of the block diagonal we use

Grm(€) =277 R Gl(R) | €€, (11)

for k € Ay, | € Ay and

0 else

szle—?lrihjk o { 2m Zf k= 2m§ with fE Z

j=0

Thus we obtain
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D(kh) _ 2_:22—% (Tlr (627rihl(-+j)) o 2mijkh O'(Z) gZ(s)’m(l)>

i=0 1€Z (r) €Ay
= ) 2% (nr (2 ONERY) (N1 + k) 65 (N1 + k))
’ (r,s)EA?M
ez
= Y o (nr (e2mi0+R1) (1 + kh) (1 + kh))
17 (r,s)EA2,
= 2™ [nog](kh) . (12)

The above computation reveals the fundamental role of the numerical symbol.

To investigate the stability we need discrete norms equivalent to the Sobolev norm over
Sm(¢). Using (12) with o replaced by (-)** and 7/ := (-,¢")2(x), a straightforward
computation shows that (cf. (8))

lux’ ¢|l; = 2" (diag([¢ (-)**@l(kh)kery U™ v, U w)qurn - (13)

Now we introduce the discrete Sobolev norm defined by (cf. (5))

||u *' (b”z,h = 22ms <dlag([¢ <'>28¢]0(kh))k€AN U u ’ U* u>(CMN ) (14)
(6 (V0] (2) = doz)* (z)§" do(x) .

To examine the stability of the numerical method it is important to know the conditions
under which the discrete and continuous Sobolev norms are equivalent on Sy, ().

Theorem 3.1 Lets € R, and ¢ := (¢/)jen,, € LM with do(z) invertible for z € [—3,3].
Suppose that the sum

> IK); $o(2) dol2) ™ (2)y”|I? (15)

p#0
11

is bounded on [—3, 5]. Then the norms ||-+'@||s and ||-¥'¢||, » are equivalent with equivalence

constants independent of h.

Remark 3.2 The invertibility of QASU is even necessary if the translates of ¢ form a Riesz
basis (for the definition cf. [JM]). For the meaning of (15) see Remark 2.4.

Proof of Theorem 3.1: i) It is obvious that

(6 (V28] (z) < [ (9] (z)

for z € [—3, 3], hence || - ¥'¢

sh <0l -

i) For u := (u#)jen,, € CM and ty,(z) == ¢,(x)do(z)~" we have
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2

3 <¢p(x)*<x>55¢p(x)u , u>CM == Z W il z)| (4 )
< (_Z i+ )] ) ()
[+ )2 + z)> i 2

< Z(R M) (p o)

) [0+ )L+ ) o

) (leZ\AMjgi (§+ )% M <¢0( ) (@)5" (2], ><CM

- ( @iy + M) (e (@), v)

p#0

< c ﬁg(x)*(x%szﬁg(x)u, u><cM'

Therefore we obtain
9 ()%8] (2) <c [6 ()*¢], (=)

for z € [—3, 3]. Hence || - ¥'¢[|, < c || - ¥'@|| for any h > 0. n

The following example shows that the assumptions of Theorem 3.1 are fulfilled for splines
with multiple knots.

Example 3.3 Let (¢7);ca,, € LY be a family which generates the periodic multiresolution
analysis of splines with degree r and defect M, 1 < M < r, which means

Sm(®) :={f € CTMUT) : flnh,n+1)n) is @ polynomial of degree <r —1, n € Ay} .

In the case M = 2 and r = 3, the generators are given by

r  for z€][0,1] z? for z€]0,1]
o (z):= 2—2 for z€[1,2] , ¢(x):=¢ (2—x)* for z€]1,2]
0 else 0 else

For Hermite cubic splines, i.e., M = 2 and r = 4, the generators are given by

3z? — 22° for z€]0,1]
¢ z):=¢ 32—-2)2-202-12)* for z€]l,2]

0 else

Y
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r? —7? for z €]0,1]
P'(z) :=¢ —(2—z)2+(2—2)* for z€L,2]
0 else

Let us turn to the general case. From [MP], Theorem 8.2 and (11) we obtain

bp(2) = (2)," Wy ()5 do(x) ,p € Z\ {0}, (16)

where W, is an M x M matriz such that ||W,|| < c|p|M~" for p € Z \ {0} and Wy = 1y
(see [MP]). The equivalence of the norms || - %" ¢||s and || - ¥ @||s,n independent of h is

shown in [MP], Theorem 3.2. Hence ngg( ) is invertible for x € [—5,% (see also Remark
3.2). Further we have for s <r— M+ 3, s € R,

> @) dole) dola) ™ ()| < e Y Iy ® [plP Y

p7#0 p#0

S e Z |p|2(M—T+S—1) < 00
p#0

for z € [—3,1]. Thus the functions (¢')jen,, fulfil the assumptions of Theorem 3.1 for
any s <r— M + %

Now we are ready for the

Proof of Theorem 2.6: For any m € Ny and u := ((ul)jer, Jeeay € CMY we conclude
from (12) that

Qu(L(u+ ¢)) = 2™ (U diag ([nog](kh))yep, Uu) ¥ ¥

Moreover, using Theorem 3.1 and (14), we obtain

1Qm (L @))II; 5 =2 | Qu(Llu ' D)} g (17)
= 2 (diag ([ ()™ Plo(kh) [no@](kh)) ., U'u, diag (Inog](kh))yer, U'u)

and
s’ §I2 = s’ §|2, = 2™ (diag (1) ¢lo(kh)), .y, U, UTw) . (18)

(18) we get that {n, ¢} is stable for L : H*(T) — H*7P(T) if and only if

From (17) and
[=2:3]

for any z €

no)()* ()2 1lo(z) [nogl(z) > ¢ [é () dlo(z) -

>We write || - ||s=|| - ||¢,» if and only if there exist positive general constants c1, ¢z such that e; ||« ||¢,n <
- lle < e - llen -
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Hence the stability is equivalent to

~ ~

¢ =z (Z@)Sﬁ Yo (2) p(2)" 0p() dp(2) ¢o($)1<w>os>

PEZ

= (0'0(-%)(-%)0[j + Y (@) 7 (Bp(2)in(@) )" 0p(2) dy(2) $o(x)1<w>os>

p#0

In the remainder of this subsection we give some general remarks concerning the validity
of Hypothesis H of Section 2. Let us start with a proposition on the Poisson summation
formula.

Proposition 3.4 Let one of the following conditions be fulfilled

i) [ Fe L, F(g) = <9,F>L2(R) forge Ly ;
i) 0<e<1, F(g):=g(e) forgeC(R),
f € L'(R) such that there exists s > 3 with
S lfU+ 0P+ <c for we [-5,1] and (F((— B))ees € ()

Then the Poisson summation formula

Y Fl+a)f(l+z)=) F(f(-—k) " (19)

leZ keZ

is valid for any z € [—1,1].

Proof. If condition i) is fulfilled then the assertion follows from [JM], Theorem 3.2.
Now let ii) be valid for F' and f. Using |F(z)| = 1, we get

1
2
1
2

Y Fl+az)f(l+2)

lez

_|_

dz < ¢ /_ (Z‘(Z+x)sf(l+x)(l+x)s

1
3 \1£0

2

Sc/z1 (Z|l—|—x|25+1) (Z‘f(l+x)(l+x)s 2) dr < c.
-2 140

+ | f(z)
1£0

Hence there exists (a7)iez € [2(Z) such that
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ZF l—l—x Za e?wwk

lez keZ

in the L%-sense. Further we get f € H*(R) because of

/'f (4 |2f?) de = Z/_ FU+ )P0+ |1+ 2?)° da

Zlflﬂr WU+ + [f(e)) (1+Ix|2)s> dr < oo .
10

[\
\\
D=
/\ N

Therefore f € C(R) by Sobolev’s embedding theorem.
Now we compute ax, k € Z. We get

ap = /ZF + ) f(l + z) e72mke gy
0

IEZ

_ / S F+ o) f(- - k)l +2) da

=
= [ i =R dy
= fC—=k)(e)=F(f(- k),
since f € L*(R). Hence (19) is true in the L?*-sense. However the right hand side of

the identity is a continuous function. So we only have to show that the left hand side is
continuous too. This follows from the estimate

(l—lrx)f(l—lrx) <cll4+z[™ <c|l|™*

for z € [-1,%] and [ # 0. ]

272

Remark 3.5 Condition i) of Proposition 3.4 is fulfilled in the case of the biorthogonal
Galerkin method and ii) in the case of collocation.

Using Poisson’s summation formula, the biorthogonality condition of Hypothesis H can
be expressed in terms of the Fourier transforms.
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Corollary 3.6 Let the Poisson summation formula be valid for n and 1 in the L?-sense,
i.e.,

> (@) Pp(x) =D (0" (W (- — ) ppens €

PEZL keZ

in the L2-sense. Then the following conditions are equivalent

Z Tp (T =1y in L?, (20)

PEZL

i) (W (-—k)) =610k, l,jEAy, kEZ.

In particular, the assumption of Corollary 3.6 is valid in the case i) or ii) of Proposition
3.4. In the following we require

sel-1

( sup ]I|ﬁp(-’ﬂ)l|> € 1%(2) (21)

as well as that 7y is invertible and the inverse is uniformly bounded on [—3,2]. This is
valid for the biorthogonal Galerkin method with n € £} and for collocation. Now it
turns out that the last condition of Hypothesis H follows from the first two conditions

and some additional assumptions.

Proposition 3.7 Let v, 7y be invertible on [—5, 5] t>0,

~

>0 19p(2) 90 (@) |zl < e s Epenin(@) vp(2) = 1u
for z € [—1,1]\ {0}. Then we have for any z € [—3, 1]\ {0}

2lf (do(e) i(@)*)  laly*

<ec.

)

|11t do(e) ()" Jol*

Proof. For z # 0 we find that

| (1=ds(@)in(@)") Iof*

Because of (22) we get
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H (1 B (Qﬁo(x)ﬁo(l‘)*)ﬂ) Eihs

R -1
< | (ho@rnier)
From (22) it follows that

<c

Y

|1alto (@) (2)"|o5*

| (1= do(@ne)) Il

and from (23)

ofs (do(@)in(@)?)  left| <.

]

By the same arguments we obtain

Proposition 3.8 Let 9y, fly be invertible on [—1,3], ¢ <0,

5o (@) fo(@) Hlaltll S ¢ s e @) o) = L
for z € [—3,3]\ {0}. Then we have for any z € [—3, 3]\ {0}
|12lt do(e) ey Jely|| < e, |lalh (do(@) (@) lal’]| <

]

In the next two subsections we apply the results of 3.1 to the particular special cases of the
biorthogonal Galerkin method and of collocation with special choices of the collocation
points. In particular, we consider the case M = 2 in some more detail.

3.2 The biorthogonal Galerkin method

Suppose (77)jea,, is as in Example 2.2 and L : H*(T) — H* ?(T) with s = 0. In this case
it is possible to apply Theorem 2.6, Corollary 3.6 and Proposition 3.7 or 3.8 with ¢ = ¢.
For other choices of s one can get analogous results.

Theorem 3.9 Suppose that flo and ¢ are invertible on [—1 %,3], that > p0 |6y ()| is

uniformly bounded on [—1 2 2] and let one of the following conditions be fulfilled:

) Yoo |[B6(@) do(2) ! p(@)" al] dola) | <

in case B3 > 0;

‘<c and Y |0
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2
<cand )

) Cpso |[(@)” Bole) dol2) * (2 () o(2) * ()f | < e

in case B < 0.

Then the biorthogonal Galerkin method {n, ¢} is stable if and only if the numerical symbol
is elliptic of order 3 for s = 0.

Proof. For the admissibility of the numerical method we only have to show property iii)
of Definition 2.3 in case 8 < 0. We obtain

>

p#0

<c.

(@) lalf 6@) | < e Y |lelf (Aple) (@) )’
p#0

Now the assertion follows from Theorem 2.6 and from Proposition 3.7 in case 8 < 0 or
Proposition 3.8 if 3 > 0. (]

3.3 Collocation method

In the first part of the present subsection we prove Theorem 2.8 and then we obtain the
admissibility of collocation for splines with multiple knots. In the last part we show the
equivalence between the stability in the sense of [MP] for splines with multiple knots and
the stability defined in this paper.

Suppose (€;)jen,, and (mj)jea,, are as in Example 2.1. It is easy to check that 7 is
invertible on [—3, 3].
Proof of Theorem 2.8: First we have to show the existence of functions ¢ as required in
the Hypothesis H. Then we apply Theorem 2.6.

i) We define the B-splines of order r € Ny by

where * is the convolution. It is known that the functions

®,(u) =Y M,(l) ™

lez

have no zeros on R (cf. [DeVL] Chapter 13, Theorem 6.2). Hence there exists the inverse

(I);l(’u,) — Zw; 621rilu ,

IEZ

where (w] )iz is a sequence of exponential decay, because ®, is a polynomial.

For fixed r € N we define 9 by



16 S. Préssdorf, J. Schult / Multiwavelet approximation methods

v =L 20+ 1 —e)), ¥ i=L (2(-—1—ey)), (24)

Zwl -z —1)

IEZ

where

Because of the exponential decay of L, we get 1 € £2. Moreover, we have

L.(k)="060x, k€L,
and
Y e +k)=L,2k+1)=0 , (e 1+k)=L(2k—1)=0;

’gbil(ﬁ_l + k) == LT(2k) = 5O,k , wO(CO + k) = LT(2I€) = 60’]“ y

for any k € Z. Here we have used ¢y = €_; + % Therefore the second condition of
Hypothesis H in Section 2 is valid.

ii) The Fourier transforms of ¢ are given by

T mi(—L+eo)z —1/z T
Yt (z) = 5 ST 1 (2) M,(5)

i(L4e 1)z §—1(z T
Y(z) = 5 7GR @ N(S) M(3) -

For any z € [—1, 1] we have det Yo(z) # 0 if and only if
6,1 (252) N (552) 6771 (2) W1, (3) (672 — e2vie) 0.
Therefore 1)y(z) is invertible on [—3, 3], since
N (z) = sin(mz)\"
" T

has no zeros in (—1,1).

iii) All we have to show is a sufficiently strong uniform Strang-Fix condition (see Remark
2.4). Indeed, we claim

Up(e) = TP (2),7 (2)f do(2) - (25)
If this is true for sufficiently large r, we obtain the third condition of Hypothesis H by
Corollary 3.6 and Proposition 3.7. The assertion of Theorem 2.8 follows by Theorem 2.6.

Now we show assertion (25). For any p #£0, [ € Z, z € [—3, 3] we have
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2 2p+l+x

2
i(—lie z _ T T
%e%ﬂ 2+OXH')@TIG%—)AL(%T)

—  phmipe (I)T—l(ZerzlJrZ) @, (42) ( Itz ) zﬂfl(l—l-x).

&‘1(2p+l+x) _ 2l 3teo)2p o1 (Ztlte) (L ( I+z )r

Hence

71 dmipe e ) -1
YT (2p+1l+x) =P (zpfm) v+,
since ®, is 1—periodic. A similar computation shows that

P (2p + 1+ ) = etmire (ﬁ) (1 + z)

and (25) is proved. n

For the following theorem we refer the reader to the definition of periodic splines with
multiple knots in Example 3.3.

Theorem 3.10 Letr — M — (3 >0, T—M—I—%—S>0, r>M>1.
Then the collocation method for periodic splines of defect M is s—admissible for WDO'’s
of order (.

Remark 3.11 The assumption r — M + 3 — s > 0 ensures that Sy,(¢) C H*(T). Further
one has the continuity of Lu,, for Uy, € Sy, (¢) sincer — M — (3 > 0.

Proof of Theorem 3.10: The invertibility of ggo and condition ii) of Definition 2.3 have
been shown in Example 3.3. It remains to prove property iii) of 2.3. We choose ¢,d > 0,
such that r—M —3—30 >0 and 1 <t<3i+2. Then forany z € [—1,1] we have (cf.
(21), (16))

S (@) 12l G@)| < ¢ - ||lel dula) do(a)
p#0 p#0
< e |lel, Il (@), Wy (@)t
p#0
< c (Z |p|2t) (Z |p|2(t+ﬁr+Ml)> <00,
p#0 p#£0
since 2(t+F—r+M —1) < —-1—4. .

In the last part of this section we show the connection with the paper [MP]. The spaces
Sm(®#) are defined as in Example 3.3. For the definition of stability in the sense of [MP],
we need the matrix valued function D defined by
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D(z) = ) ®,(€) op(a) (z)," W, (2)f 00() ", @ € [-3,3], (26)
<I>p(e) — Z (627ri(Mp+sfr)e]-)(T’s)€A%/I. (27)

Recall that the M x M matrices W, (cf. (16)) satisfy ||W,|| < ¢ |p|™~! for p # 0. Moreover
we remark that D is defined for 8 < r. Hence D has a continuous extension to zero, since
Wy = 1. The collocation method for periodic splines of defect M is called stable in the

sense of [MP] if D is invertible on [—1, 1] and the inverse is uniformly bounded.

Theorem 3.12 Let s—3>0, r— M —(3 >0, T—M—i—%—8>0, r>M>1
and consider L : H*(T) — H*P(T). Then the collocation method for periodic splines of
defect M is stable in the sense of [MP] if and only if the numerical symbol [no¢| is elliptic
of order B for any s.

Proof. Fix § > 0 such that r — 3 —§ > 0and r —s — 60 > 0. Let D be invertible and
suppose the inverse is uniformly bounded. Using (26) and the invertibility of ®q(€) , we
obtain for x # 0

Bo(e) ' D(z) = 1+ o(e) Y y(e) 0p(2) (2),” W, ()5 00(2) "
p#0

Therefore
(@0(6)_1 D(az:))l,0 = o(|x|"_ﬁ_‘s) , e Ay \{0}.

Now use the adjugate for representing the inverse of D to conclude that

(@00 * D(@) ™), =ollal #) 1€ Au\ {0}
Remark that we have used the boundedness of (®¢(e)! D(z))"!. Hence

(@00 * D@) ™ (@5 *), =0(1) 1€ hu\ {0},

-1

since s — 3 < r — (3 —§. Therefore we get
(@) 0@ (@00 D)™ (@)™) = 0()

for | € Ajp. Using once more the boundedness of D(z)™!, we obtain

<ec. (28)

(@37 20 D) ulo) (@57)

Taking into account (26), (16) and (6), we have
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D(z) = io(z) nog](z) do(2) ™" oo(z) . (29)

Therefore, using

®o(e) " o(z) = (o(2)") ",

we conclude from (28) that the numerical symbol is elliptic of order g for s.

The converse assertion follows from formula (29) and the definition of the ellipticity for

s = 0. (]

4 Strang-Fix condition and approximation property

First we give a characterization of the Strang-Fix condition. Then we show the approx-
imation properties for the orthogonal projectors onto the trial spaces and for the test
projectors Qy, (cf. (7)).

The Strang-Fix condition (cf. [P] or [JL]) is a characterization of the approximation order
of the spaces S,,(¢) generated by a family of functions (¢7);ca,,. The integer translates
of such functions reproduce algebraic polynomials up to a certain degree. Now we give
the precise definition.

Definition 4.1 The functions ¢ := (¢?)jen,, salisfy the Strang-Fiz condition of order
d € Ny if there exist a vector of trigonometric polynomials h € (C®(T))™ such that for

fo() := (f(pM +1+ x))lEAM = ¢, () h(z) the following conditions are valid:

fo0) = Goidpeny > f(0) =0, pez\ {0}
: (30)
((D)"5) =0, pez, n=1,....d.

The following theorem gives a new explicit characterization of the Strang-Fix condition
under some mild assumption. The theorem reveals the connection of the Strang-Fix
condition and property ii) of Definition 2.3.

Theorem 4.2 Suppose that ¢, is invertible on [—%, %] where ¢ := (¢?)jen,, € LY and
() jen, € (catt (U))M for a neighborhood U of zero. Then the Strang-Fiz condition of
order d € N is valid for ¢ if and only if

lim (6,(@) do@) " (@)5?), =0 (31)

z—0 leAn,0

for anyp € Z\ {0} .

For the proof of Theorem 4.2 we need two auxiliary lemmas.
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Lemma 4.3 Let ¢ := (¢7)jcn,, € LY be as in Theorem 4.2, h € (C=(T))" be a vector of
trigonometric polynomials and fp(x) = (f(pM +1+ x)) = gzp(x) h(z). If [ fulfils

lEAM
condition (30) then

(£) 10 = () (567),,.,©

forn=0,...,d.

Proof. For n = 0 we have ¢,(0) h(0) = (8o ) . Since ¢(0) is invertible it follows that

keEA s

h(0) = ($0(0)™")

leAy,0

For 1 < k < d we have

(%)k o h(0) =0 = <%>k B0 (Qg“(')_l)leAM,o (0).

Therefore we obtain for 0 < n < d by the induction hypothesis

o = ()7 (0 (- (00, 0
— 4(0) (di) (h= (80) ., ) O

The following lemma is a consequence of Taylor’s theorem.

Lemma 4.4 Let f € CY(U) where U is a neighborhood of zero, d € Ny. Then we have
limg o2& =0 if and only if (%)kf(O) =0 fork=0,...,d. "

T

Proof of Theorem 4.2: First we show that (31) is necessary for the Strang-Fix condition.
For any p € Z \ {0} we have

lim (ép(x) do(z) " ()p?

z—0

~tindy(a) (o) *) = h@)) o+ limdy(o) hlo) o ¥ =0

>ZEAM,U

by the assumption and by Lemmas 4.3 and 4.4.

Now we show the converse. Choose h such that
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(&) 1= () (867),, ,© (32)

forn =0,...,d. Such choice is possible since ((27rz'n)’“)k »—0__q 18 @ Vandermonde matrix.
From (32) we obtain

(5) b0 = () b (6007) . ©

forn =0,...,d. In case p # 0 the assertion follows from the assumption and Lemma 4.4.
For p = 0 the right hand side equals to zero for n = 1,...,d and to (dox)kea,, for n=0.
Hence the assertion follows. "

Now we turn to the approximation properties. For the remainder of this section we require

_ M
Hypothesis A: (¢/);c,,, € (CSH'O(R)) , deNy, 0<p<1, fulfills

e the Strang-Fix condition of order d ;

e Su(0) C Spmi1(@p) for m € Ng;

e ¢ is invertible on [—1,1].

Therefore, for the orthogonal projectors P,, meNN,, onto
Sm(9) := clrewyLin {¢'(2™ - k) : j € Ay, k€ Z}

we obtain from [JL] or [P] the relation

(1= Pa) fllog < 2 ™4 | fllasiz

for f € H¥*'(R). Here | - ||4+1.x denotes the Sobolev norm on R. Using a partition of
unity we get for the orthogonal projectors P,, onto S,,(¢)

(0= Pu)flly < e 2™ ([ fllasr, £ € HYNT). (33)
Next we introduce the norm ||| - |||g41 defined by |||f||lax1 = |F@ Vo + |£(0)] for f €
H4(T). Using the norm equivalence of || - ||4;1 and ||| - |||¢z1 and the fact that the

constants are contained in S,,(¢), we obtain from (33) the relation

(1= Pa)flly < e 27™HD | {8y f € HTY(T) (34)

Now we extent the approximation property (34) to other orders of Sobolev spaces. To
this end we need the Ith forward differences of u defined by
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for h € R. As usually |- [|o(R2) denotes the L? norm relative to Q@ C R. The corresponding
[th order modulus of continuity is given by

wi(u,t,Q) := sup ||Alh ullo(Qny) ,

|p|<t
where
Qh’liz{.’EEQ cr+jh e, ]:0,,1}

For Q = T we write w;(u,t) instead of w;(u,t, ). From (34) we get similarly to the proof
of Proposition 4.1 in [DK]

11 = Pu)flly < cwaa(f,27) (35)
for f € H*'(T). Repeating the proof of Lemma 5.1 in [DPS] we obtain from (35) that
forany 0 <t<d+1,

1L = Pu)fllg < c27™ [Iflle, f € H(T). (36)

Lemma 4.5 For any u € Sp(¢) and t > 0 we have
wapi(u,t) < ¢ (min{1, 2"} |lullo -

Proof. For j € Ay and h > 0 we get

(AR GLn(@)| = |AR Sz + ) — AL 6],,(2)]
= 2" h)? (¢4, ) — (1..) D (9)]
< c (2™ h)|2mE —2m9|P < c (2™ h)4TP

where &, 0 € T and | — 0| < ¢ h. The constant does not depend on z € T. Hence

HAZ+1 ¢‘I7c’mH0 <c (2m h)d+P 2*% ,

since supp ¢’ is compact. Now let ((U"i)jeAM)keAN € CMYN Then we have
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. o
|aituxelly < D0 il AL ahmll,

JEA N
kEA N
1 1
2 2
< |’U,j|2 HAdJrl ¢j H2
> k h Pemll
jE€AN JEAN,
k€A kEA

< cllux gllo (2™ h)*
where we have used the Riesz stability in the last step. Hence the assertion follows. =

Now we introduce the norm || - ||4+ on Umen, Sm(4) by

[ull, == llull§ + > 22™|(Pm — Proy) wllf -
meN

In view of (35) and Lemma 4.5, Theorem 4.1 of [DK] applies and yields

ulle=llullge € Umeng Sm(9)

for 0 <t < d+ p. By (36) the smooth functions are contained in cl|., , Unen, Sm(®)
Hence the norm equivalence is valid even on H*(T). Arguing as in the proof of Theorem
5.1 of [DPS], we obtain

Theorem 4.6 Let —d—1<s<d+p, —d—p<t<d+1ands <t. Then the Jackson
estimate

If = Puflls < c2mE70 | f||;

holds for f € H*(T) and m € Ny. Moreover, when s < t < d + p we have, for any
Um € Sm(¢) and m € Ny, the Bernstein estimate

lumlle < 2707 Jlum|, .

To prove the approximation property for the projectors @,, it is necessary to require

_ M
Hypothesis B: There exist functions v := (/) ¢, ,, € (C{)””(R)) , deNy, 0<p<l,
which fulfil

e the Hypothesis A for ¢ replaced by 7;
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e there exist a sequence of M x M matrices w := (w;);ez with exponential decay such
that both II(z) := Y, , w; €™ is invertible on [0, 1] and

(’pj)jeAM = w Ky ('Vj)jeAM = Zw’ (v'(- - l))jeAM : (37)

leZ

Remark 4.7 1. If one can choose 1) = ¢ then Hypothesis B reduces to Hypothesis A
for ¢. This is the case for the biorthogonal Galerkin method. For the special choice
of (€j)jen,, in Theorem 2.8, 1 has been constructed in Section 3.3 (see formula (24)).
In this case Hypothesis B is valid too, as we will see later.

2. A simple computation shows that 1&0 is invertible on [—% 1] if and only if this is

T 202
valid for %y and I1.

Since IT™" is of the form Y, a; €™ where (a;)icz € I'(Z)M*M we obtain Sy, () = Sm(¥)
for any m € Ny. The linear independence of the integer translates of y ensures (cf. [B-AR))
the existence of dual functionals with compact support as required in the proof of Theorem
5.2 in [DPS]. Therefore the same proof implies

Theorem 4.8 Lets, s <d+p, 0<s<tand0<s <t<d+1 wheres' is defined by
n (cf. (3))-

Then there exist a constant ¢ > 0 independent of m € Ny such that

1f = Quflls < 29 |1 £,

holds for any f € HY(T). n

Example 4.9 A straightforward computation shows that, in case of Theorem 2.8, the
functions ¢ defined by formula (24) fulfil

(o) =2k o) (et )

where (w] )iz, is defined as in the proof of 2.8 in Section 3.3. Therefore ¢ fulfills Hypothesis
B by Remark 4.7.

Remark 4.10 The assertion of Theorems 4.6 and 4.8 remains valid when replacing the
third property of Hypothesis A by the weaker assumption of linear independence of the
integer translates of ¢ resp. 7.

Reduced Hypothesis H: Choose sufficiently smooth functions (y/);ea,, with compact
support such that

e 7 and ~ fulfil the Poisson summation formula;
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o ke (T (Y (= k)i jpenz, €% #0 forz € [0,1];

o >0 @) Ap()F0(2) H(z)g l|? < ¢ for a sufficiently large s € N.

The second condition ensures the existence of a sequence of M x M matrices (w;);ez with
exponential decay such that

(@) " =) w et

lez

Now we define ¢ by (cf. (37))

(W)jeAM =W Ky (’yj)].GAM :

Straightforward computations show that if y satisfies condition ii) of Definition 2.3 and the
assumption of Proposition 3.7 then so does 1. Further we get the second and therewith
the complete set of conditions of Hypothesis H in Section 2. Hence, all we have to do is
to choose v with the above properties and Hypothesis A for 7y replaced by ¢. Obviously,
the aforementioned functions « satisfy Hypothesis B.

5 Error estimates

In this section we derive Sobolev norm estimates of the error between the approximate
solution u,, (cf. (4)) and the exact solution u* of the pseudodifferential equation

Lu* = f (38)

where L : H*(T) — H* #(T) is as in Section 2, s € R is fixed, and f € HYT) with
t > s— [ is given. Let us start with the assumptions on ¢ and 7. First we consider those
M
dl /
P <1 ,s— [ <d + psatisfying Hypothesis A for  replaced by ¢ and

ones on 7. For n we require that there exist (17)

e 7 and ~y fulfil the Poisson summation formula;

e property ii) of Definition 2.3 for s and ¢ replaced by s — 8 and ~, respectively;
© Dker (M (V (- = k) rjyenz, €278 #0 for z € [0,1];
o 3o (@) Ao@) ™ Jzlo " Pl < con [, 3] in case s~ f> 0 or

3o 17ip(2) 10 (2) ™" [z]s ?|l < c on [—3, 3] in case s — 5 < 0.

In the previous sections we have stated examples fulfilling the above conditions. In par-
ticular, for the choice of collocation points mentioned in Theorem 2.8, these conditions
are valid for any s — 3 > 0.
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Now we turn to the assumptions on ¢. For the trial spaces defined by ¢ := (¢) €

JEAM
M
(C{)””(R)) , d €Ny, 0<p<1,wehave to require that s < d+ p, Sp(¢) C Spi1(d)

for m € Ny and that ¢ fulfills the Strang-Fix condition of order d. If d < s < d+ p
this is a consequence of property ii) of Definition 2.3 and of Theorem 4.2; in this case no

additional assumption is needed because we require the numerical method {7, ¢} to be
s—admissible for ¥DO’s of order 3.

Suppose all the aforementioned are satisfied. Then the numerical method is stable for
L : H(T) — H* P(T) if and only if the numerical symbol [no¢] is elliptic of order 3 for
s (Theorems 2.6 and 2.8). Now we are ready to prove

Theorem 5.1 Let —d —1 < s <min{d+p, d+p} and0 < s—p <d +p. In
case of the classical Galerkin method, i.e., if Qn = P, it is sufficient to require that
—d—1<s—-p<d+p. Suppose u* is the solution of (38) and u,, is the approximate
solution of the numerical method {n, ¢} (cf. (4)), which is assumed to be stable. If s’ is
defined by n (cf. (3)) and s’ <d+p—0,s <t—p0<d+1, —-d—p<t<d+1, t>s,
then we have for any f € H'(T)

lu — s < €27 [lu?l, .

Proof. From Theorems 4.6 and 4.8 we obtain

(Q@umLPrm — L) w*||s—p I(1 = Q) L P w*[|s—p + [ L(Prn — 1) u[[5—p

<
< e2 ™t (39)

Using once more Theorem 4.8, we get

¢ 27 || flle—g = ¢ 2707 || L w*1—g
e 2 |y, 1o

||me - f||5—ﬂ

<
<

Moreover, applying (39), (40) and the stability, we conclude that

| P (0" — um)|[s N QmLPr(u™ — um)||s—p
c||QmLPru* — Lu*||s—g + ¢ || Lu* — QmLPnun||s—ps
|| QmLPru™ — Lu*||sp +c||f — Qmfllsp

¢ 2—m(t—s) ||U*||t )

VANV

IN



S. Préssdorf, J. Schult / Multiwavelet approximation methods 27
Now the assertion follows from

[0 = umlls < [[(1 = Pr)u"[|s + | Pm(u” — um) s
and Theorem 4.6. "

The next Theorem gives an error estimate with respect to the norm of H*(T) with § < s
provided s’ < s — 3 and the stability holds for s.

Theorem 5.2 Let s be as in Theorem 5.1 and suppose, in addition, s' < s—pf (cf. (3)). If
the numerical method {n, ¢} is stable for L : H*(T) — H* P(T), then for any f € H(T)
withs <t—p<d+1, -d—p<t<d+1, t>s we have

o = wmlls < e 2™ Jlulle, maz{-d-1, B} <5<,

where un, is the approximate solution defined by (4) and u* is the exact solution of (38).
For the classical Galerkin method, i.e., if Q. = Py, one has to require maz{—d—1, —d—
1 -8} <5<t instead of mazx{—d —1, B} <§<s .

We skip the proof, because it is the same as the second part of the proof to Theorem 6.3
in [DPS]. "

Acknowledgment: We are greatly indebted to J. Elschner, D. Peterhof, A. Rathsfeld
and G. Schmidt for helpful discussions and hints.
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