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Abstract

We develop a Hungarian construction for the partial sum process of independent, non-

identically distributed random variables. The process is indexed by functions f from a

functional class H, but the supremum over f 2 H is taken outside the probability. This

nonstandard form is a prerequisite for the functional Koml�os-Major-Tusn�ady inequality in

the space of bounded functionals l1(H), but contrary to the latter it essentially preserves

the classical n�1=2 logn approximation rate over large functional classes H such as the

H�older ball of smoothness 1=2. The nonstandard form has a speci�c statistical application

in the asymptotic equivalence theory for experiments.

1 Introduction

Let Xi; i = 1; :::; n be a sequence of independent random variables with zero means and �nite

variances. Let H be a class of real valued functions on the unit interval [0; 1] and ti =
i
n ;

i = 1; :::; n: The partial sum process indexed by functions is the process

X(n)(f) = n�1=2
nX
i=1

f(ti)Xi; f 2 H:

Suppose f 2 H are uniformly bounded; then X(n) may be regarded as a random element

with values in l1(H)- the space of real valued functionals on H, equipped with the sup-normX(n)

H
= supf2H

��X(n)(f)
��. The class H is Donsker if X(n) converges weakly in l1(H) to a

Gaussian process. We are interested in associated coupling results, i. e. in �nding versions of

X(n) and of this Gaussian process on a common probability space which are close as random

variables. The standard coupling results of the type "nearby variables with nearby laws" (cf.
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Dudley [4], sec. 11.6) naturally refer to the metric k�k
H
. For an appropriate version of X(n)

(X(n) , say) and of a Gaussian process N(n) we might then obtain that

P �

�X(n) � N(n)

H

> x
�
! 0 (1)

where P � refers to outer probability on the common probability space (cf. van der Vaart and

Wellner [20], 1.9.3, 1. 10. 4).

We are here interested in a di�erent type of coupling. We are looking for versions X(n);

N
(n) such that

sup
f2H

P
����X(n)(f)� N(n) (f)

��� > x
�
! 0 (2)

such that in addition exponential bounds of the Koml�os, Major and Tusn�ady type are valid.

Note that (2) is weaker than (1) since the supremum is taken outside the probability, but

there is the further exponential bound requirement. More speci�cally, we are interested in a

construction involving also a rate sequence rn ! 0 such that

sup
f2H

P
����X(n)(f)� N(n)(f)

��� > x rn

�
� c0 expf�c1xg (3)

Here c0; c1 are constants depending on the class H:
The classical results of Koml�os, Major and Tusn�ady [11] and [12] refer to a sup inside the

probability for a function class H = H0; where H0 is the class of indicators f(t) = 1(t � s);

s 2 [0; 1]: The following bound was established: for rn = n�1=2 logn

P

�X(n) � N(n)

H0

> x rn

�
� c0 expf�c1xg; (4)

provided X1; :::; Xn is a sequence of i.i.d. r.v.'s ful�lling the Cram�er condition

E expftXig <1; jtj � t0; i = 1; :::; n; (5)

where c0; c1 are constants depending on the common distribution of the Xi. Note that rn in

(4) can be interpreted as a rate of convergence in the CLT over l1(H0). The main motivation

for our paper is that an extension of (4) to larger functional classes H in general implies a

substantial loss of approximation rate rn (cp. Koltchinskii ([10], theorem 11.1). Our aim is a

construction where the almost n�1=2-rate of the original KMT result is preserved despite the

passage to large functional classes H like Lipschitz classes.

Couplings of the type (3) have �rst been obtained by Koltchinskii ([10], theorem 3.5)

and Rio [18] for the empirical process of i.i.d. random variables, as intermediate results.

They can be extended to a full functional KMT result, i.e. to a coupling in l1(H) with
exponential bounds, but a reduced approximation rate rn determined by the size of H in

terms of entropy conditions. We thus carry over Koltchinskii's theorem 3.5 from the empirical

to the partial sum process, but under very general conditions: the distributions of Xi are

allowed to be nonidentical and nonsmooth. That setting substantially complicates the task

of a Hungarian construction. We can rely on the powerful methodology of Sakhanenko [19]

who established the classical coupling (4) for the nonidentical and nonsmooth case. We stress

however that for the functional version (3) we need to perform the construction entirely anew.

Our results relate to Sakhanenko's [19] as Koltchinskii's theorem 3.5 relates to Koml�os, Major

and Tusn�ady [11] and [12].
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Our further discussion can be arranged into three points.

A. Statistical motivation. The Koml�os-Major-Tusn�ady approximation has found

an application recently in the asymptotic theory of statistical experiments. In [14] the clas-

sical KMT inequality for the empirical process was used to establish that a nonparametric

experiment of i.i.d. observation on an interval can be approximated, in the sense of Le Cam's

de�ciency distance, by a sequence of signal estimation problems in Gaussian white noise. The

two sequences of experiments are then asymptotically equivalent for all purposes of statisti-

cal decision with bounded loss. This appears as a generalization of Le Cam's theory of local

asymptotic normality, applicable to ill-posed problems like density estimation.

The Hungarian construction had been applied in statistics before, mostly for results on

strong approximation of particular density and regression estimators (cf. Cs�org}o and R�ev�esz

[3]). It is typical for these results that the supremum inside the probability is needed; for

such an application of the functional KMT cf. Rio [18]. However for asymptotic equivalence

of experiments, it became apparent that it is su�cient to have a coupling like (3) with the

"supremum outside the probability". Applying theorem 3.5 from Koltchinskii [10], it became

possible in [15] to extend the scope of asymptotic equivalence, for the density estimation

problem, down to the limit of smoothness 1=2. Analogously, the present result can be used for

establishing asymptotic equivalence of smooth nongaussian regression models to a sequence

of Gaussian experiments, cf [7].

B. Nonidentical and nonsmooth distributions. The assumption of identically

distributed r.v.'s substantially restricts the scope of application of the classical KMT in-

equality for partial sums. However this assumption happens to be an essential point in the

original proof by Koml�os, Major and Tusn�ady and also in much of the subsequent work. The

original bound was extended and improved by many authors. Multidimensional versions were

proved by Einmahl [5] and Zaitsev [21] with a supremum over the class of indicators H0. A

transparent proof of the original result was given by Bretagnolle and Massart [1]. We would

like to mention the series of papers by Massart [13] and Rio [16], [17]. They treat the case

of Rk-valued r.v.'s Xi; indexed in Zd
+ with a supremum taken over classes H of indicator

functions f = 1S of Borel sets S satisfying some regularity conditions. Condition (5) is also

relaxed to moment assumptions, but identical distributions are still assumed.

Although there are no formal restrictions on the distributions of Xi when performing a

Hungarian construction, it is not possible to get useful quantile inequalities if the r.v.'s Xi are

non-identically and non-smoothly distributed. (Recall that in the coupling of a r.v. with a

Gaussian via the two distribution functions, a quantile inequality refers to the distance of the

two random variables, cf. section 4.) This can be argued in the following way (see Sakhanenko

[19]). Let us consider the sum S = X1 + ::: +Xn; where Xi takes values �(1 + 2�i): Then

we can identify each realization Xi by knowing only S: In the dyadic Hungarian scheme, the

conditional distribution of X1+ :::+X[n=2] given S is considered and used for coupling with a

Gaussian random variable. However this distribution is now degenerate and hence not useful

for coupling. This problem does not appear in the i.i.d. case, due to the exchangeability of

the Xi. Quantile inequalities are an essential ingredient in the results of Koml�os et al. [11]

and [12].

We take a way to overcome this di�culty proposed by Sakhanenko [19]. In his original

paper Sakhanenko treats the case of independent non-identically distributed r.v.'s for a class

of intervals H = H0. The particularly simple structure of functions in the set H0 simpli�es

the problem substantially. Here we consider the problem in another setting: H = H(1
2
; L);
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where H(1
2
; L) is a H�older ball with exponent 1

2
and the sup is outside the probability, i.e.

we give an exponential bound for the quantity (3) uniformly in f over the set of functions

H(1
2
; L): This setting makes the problem more complicated. In particular this is related to

the fact that the pairs ( eXi;fWi); i = 1; :::; n; of r.v's eXi
d
= Xi and fWi

d
= Wi; i = 1; :::; n

constructed on the same probability space by the KMT method are no longer independent.

C. Coupling from marginals. A weaker coupling of X(n) and N(n) can be obtained

as follows. Assume for a moment that the Xi are uniformly bounded: jXij � L, i = 1; : : : ; n

and also that kfk
1
� L, f 2 H. Take a �nite collection of functions H00 = (fj)j=1;:::;d � H

and consider Zi = (f(ti)Xi)f2H00
as random vectors in Rd. Reasoning as in Fact 2.2 of

Einmahl and Mason [6] (using the result of Zaitsev [22] on the Prokhorov distance between

the law of
Pn

i=1 Zi and a Gaussian law) we infer that for all such H00 there are versions X
(n),

N
(n) such that

P

�
max
f2H00

n1=2
���X(n)(f)� N(n) (f)

��� � x

�
� c0(d) exp(�c1(d)xL�1), x � 0: (6)

This yields (3) with rate rn = n�1=2 for every �nite class H00 � H of size d, but with

constants c0(d); c1(d) depending on d. Hence any attempt to construct X(n) and N(n) on the

full class H from (6) is bound to entail a substantial loss in rate rn, but laws of the iterated

logarithm can be established in this way (cf. Einmahl and Mason [6]). Thus, to obtain (3) for

rn = n�1=2 log2 n and a full H�older class H(1
2
; L), the shortcut via (6) appears not feasible,

and we revert to a direct KMT-type construction.

In order to make the proof more transparent we prefer to give a non-optimal (up to

a logarithmic term) result, but we believe that it is possible to get the optimal rate by

using the very delicate technique of the paper [19]. The main idea is, roughly speaking,

to consider some smoothed sequences of r.v.'s instead of the initial unsmoothed sequence

X1; :::; Xn; and to apply the KMT construction for the smoothed sequences. This we perform

by substituting normal r.v.'s Ni for the original r.v.'s Xi; for even indices i = 2k in the initial

sequence. Thus we are able to construct one half of our sequence and combine it with a Haar

expansion of the function f: For the other half we apply the same argument, which leads to

a recursive procedure. It turns out that this kind of smoothing is enough to obtain "good"

quantile inequalities although it gives rise to an additional logn term. On the other hand the

usual smoothing technique (of each r.v. Xi individually) fails. Unfortunately even the above

smoothing procedure applied with normal r.v.'s is not su�cient to obtain the best power

for log n in the KMT inequality for non-identically distributed r.v.'s. An optimal approach

is developed in the paper of Sakhanenko [19] and uses r.v.'s constructed in a special way

instead of normals. Roughly speaking it corresponds to taking into consideration the higher

terms in an asymptotic expansion for the probabilities of large deviations, which dramatically

complicates the problem. For more details we refer the reader to this beautiful paper.

Nevertheless we would like to point out that the additional logn term which appears

in our KMT result does not a�ect the eventual applications that we have in mind, i. e. the

asymptotic equivalence of sequences of nonparametric statistical experiments. We also believe

that that a stronger version of this result (with a sup inside the probability) might be of use

for constructing e�cient kernel estimators in nonparametric models. But such an extension

is beyond of the scope of the paper.
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2 Notations and main results

Suppose that on the probability space (
0;F 0; P 0) we are given a sequence of independent

r.v.'s X1; :::;Xn such that for all i = 1; :::; n

E0Xi = 0; nCmin � E0X2
i � Cmaxn (7)

with some constants 0 < Cmin < Cmax < 1; where n is a sequence of real numbers 0 <

n � 1; n � 1: Hereafter E0 is the expectation under the measure P 0: Assume also that the

following condition due to Sakhanenko [19]

�0E
0 jXij3 expf�0 jXijg � E0X2

i (8)

holds true for i = 1; :::; n with some constant �0 > 0:

Along with this assume that on another probability space (
;F ; P ) we are given a

sequence of independent normal r.v.'s N1; :::; Nn such that

ENi = 0; EN2
i = E0X2

i ; (9)

for i = 1; :::; n: Hereafter E is the expectation under the measure P:

Let H(1
2
; L) be the H�older ball with exponent 1

2
; i.e. the set of real valued functions f

de�ned on the unit interval [0; 1] and satisfying the following conditions

jf(x)� f(y)j � L jx� yj1=2 ;
where L > 0 and

kfk
1
� L=2:

Let ti = 1=n; i = 1; :::; n be a uniform grid in the unit interval [0; 1]: The notation Y
d
= X for

random variables means equality in distribution.

Theorem 1 A sequence of independent r.v.'s eX1; :::; eXn can be constructed on the probability

space (
;F ; P ) such that eXi
d
= Xi; i = 1; :::; n and

sup
f2H( 1

2
;L)

P

 �����
nX
i=1

f(ti)( eXi �Ni)

����� > x log2 n

!
� c0 expf�c1xg; x � 0;

where c0; c1 are constants depending only on Cmin; Cmax; �0; L:

Remark 1 In the above theorem the r.v.'s Xi; i = 1; :::; n are not supposed to be identically

distributed nor to have smooth distributions, although the result is new even in the case of

i.i.d. r.v.'s.

Remark 2 In the notation of (3), we have a rate rn = n�1=2 log2 n:

Remark 3 The lower bound in condition (7) cannot be relaxed under the uniform design

ti = 1=n; i = 1; :::; n. We conjecture that E0X2
i could be arbitrarily small if, for instance, the

design is chosen to be

ti =
B2
i

B2
n

; B2
i =

iX
k=1

E0X2
i ; i = 1; :::; n;

but this does not follow directly from our proof.
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Theorem 1 can be formulated in an equivalent but a little bit more compact form.

Theorem 2 A sequence of independent r.v.'s eX1; :::; eXn can be constructed on the probability

space (
;F ; P ) such that eXi
d
= Xi; i = 1; :::; n and

sup
f2H( 1

2
;L)

E exp

(
c0

1

log2 n

�����
nX
i=1

f(ti)( eXi �Ni)

�����
)
� c1;

where c0 and c1 are constants depending only on Cmin; Cmax; �0; L:

It is easy to see that Theorems 1 and 2 follow from Theorem 3 below.

Theorem 3 A sequence of independent r.v.'s eX1; :::; eXn can be constructed on the probability

space (
;F ; P ) such that eXi
d
= Xi; i = 1; :::; n and for any t satisfying jtj � c0

sup
f2H( 1

2
;L)

E exp

(
t

1

log2 n

 
nX
i=1

f(ti)( eXi �Ni)

!)
� exp

�
t2c1

	
;

where c0 and c1 are constants depending only on Cmin; Cmax; �0; L:

The proof of Theorem 3 is given in Section 6.

Now we turn to a particular case of the above results. Assume that the sequence of

independent r.v.'s X1; :::;Xn is such that for all i = 1; :::; n

E0Xi = 0; Cmin � E0X2
i � Cmax (10)

for some constants 0 < Cmin < Cmax <1: Assume also that the following Cram�er condition

E0 expfC0 jXijg � C1 (11)

holds true for i = 1; :::; n with some constants C0 > 0 and 1 < C1 <1:

We establish that Sakhanenko's condition (8) holds true under (10) and (11). This

follows from the next almost obvious assertion.

Proposition 4 Let Xi; i = 1; :::; n be r.v.'s satisfying (10) and (11). Then (8) is also

satis�ed with some �0 > 0:

Proof. Assume w. l. o. g. that C0 � 1 and put �0 = C3
0 min

�
1=2; C�1

1 Cmin=48
	
: Since

y3 � 6 exp fyg ; we have for any y � 0; with t = C0=2

�0E
0 jXij3 exp f�0 jXijg = �0t

�3E0 jtXij3 exp f�0 jXijg � 48�0C
�3
0 E0 exp fC0 jXijg

� 48�0C
�3
0 C1 � 48�0C

�3
0 C1C

�1
minE

0X2
i � E0X2

i :
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3 Haar expansion

We will make use of some elementary facts on Haar expansions (see for instance Kashin and

Saakjan [9]).

The Fourier-Haar basis on the interval [0; 1] is introduced as follows. Consider the

dyadic system of partitions by setting

sk;j = j2�k;

for j = 1; :::; 2k and

�k;1 = [0; sk;1]; �k;j = (sk;j�1; sk;j]; (12)

for j = 2; :::; 2k ; where k � 0: De�ne Haar functions via indicators 1(�k;j)

h0 = 1(�0;1); hk;j = 2k=2(1(�k+1;2j�1)� 1(�k+1;2j));

for j = 1; :::; 2k and k � 0:

If f is a function from L2([0; 1]) then the following Haar expansion

f = c0(f)h0 +

1X
k=0

2kX
j=1

ck;j(f)hk;j;

holds true with Fourier-Haar coe�cients

c0(f) =

Z 1

0

f(u)h0(u)du; ck;j(f) =

Z 1

0

f(u)hk;j(u) du; (13)

for j = 1; :::; 2k and k � 0: Along with this, consider the truncated Haar expansion

fm = c0(f)h0 +

m�1X
k=0

2kX
j=1

ck;j(f)hk;j; (14)

for some m � 1.

Proposition 5 For f 2 H(1
2
; L) we have

jc0(f)j � L=2; jck;j(f)j � 2�3=2L2�k;

for k = 0; 1; ::: and j = 1; :::; 2k :

Proof. It is easy to see that

ck;j = 2k=2(

Z
�k+1;2j�1

f(u) du�
Z
�k+1;2j

f(u) du);

= 2k=2
Z
�k+1;2j�1

(f(u)� f(u+ 2�(k+1))) du:

Since f is in the H�older ball H(1
2
; L) we get

jck;jj � 2k=2 sup
u2�k+1;2j�1

jf(u)� f(u+ 2�(k+1))j
Z
�k+1;2j�1

du

� 2k=2L2�(k+1)=22�(k+1) � 2�3=2L2�k:

Now we give an estimate for the uniform distance between f and fm:
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Proposition 6 For f 2 H(1
2
; L) we have

sup
0�t�1

jf(t)� fm(t)j � L2�m=2:

Proof. It is easy to check (see for instance Kashin and Saakjan [9], p. 81) that whenever

t 2 �m;j

fm(t) = 2m
Z
�m;j

f(s) d s;

for j = 1; :::; 2m, which gives us fm(t) = f(etm;j), with some etm;j 2 �m;j: Since f(t) is in the

H�older ball H(1
2
; L), we obtain for any j = 1; :::; 2m and t 2 �m;j

jf(t)� fm(t)j = jf(t)� fm(etm;j)j � Ljt� etm;jj1=2 � L2�m:

4 Background on quantile transforms

Assume that on the probability space (
0;F 0; P 0) we are given a sequence of independent

r.v.'s X1; :::;Xn which satis�es for any i = 1; :::; n the conditions

E0Xi = 0; (15)

and

E0 jXij4 exp f�Xig <1; (16)

for some � > 0: For any h satisfying jhj � � introduce the r.v.'s with conjugate distributions,

i.e. the r.v.'s Xi(h); i = 1; :::; n whose distributions are Cram�er transforms

P (Xi(h) � x) =
1

E0 exp fhXig
Z x

�1

ehydFi(y); x 2 R1;

of distributions Fi(y) = P (Xi � y) ; y 2 R1; i = 1; :::; n: Put for brevity

B(h)2 =

nX
i=1

E0Xi(h)
2; B2 = B(0)2 =

nX
i=1

E0X2
i

L(h) =

nX
i=1

E0 jXi(h)j3 ; T (h) =
1

4

B(h)2

L(h)
:

Let X = X1 + :::+Xn and X(h) = X1(h) + :::+Xn(h): The characteristic function of X(h)

is

' (t; h) = E0 exp
�p�1 tX(h)

	
=
E0 exp

�
(h+

p�1 t)X	
E0 exp fhXg :

For any r > 0 denote

U (r) = sup
jhj�r

Z
jtj>T (h)

j' (t; h) jdt;

K (r) = sup
jhj�r

nX
i=1

E0 jXi(h)j4 :
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De�nition 1 Let r > 0: The r.v. X is said to be in the class D0(r) if 0 < E0X2 < 1 and

there are independent r.v.'s X1; :::; Xn; satisfying conditions (15) and (16) with � = r; such

that X = X1 + :::+Xn and r2U(r) � B�3; 4r2K(r) � B2:

We now introduce the quantile transform and the associated basic inequality (see

Lemma 7). Let X be an arbitrary r.v. on a probability space (
0;F 0; P 0) and N be a nor-

mal r.v. on another probability space (
;F ; P ) with distribution functions F (x) and �(x)

respectively. Note that the r.v. U = �(N) is distributed uniformly on [0; 1].

De�nition 2 A r.v. eX on (
;F ; P ) is said to be the quantile transform of the r.v. N if it

satis�es the equation

F ( eX) = �(N) = U:

It is easy to see that a solution eX exists if and only if F is continuous, and in that caseeX is unique a. s. and has distribution function F . Note that for X in D0(r), F is continuous.

The following assertion is due to Sakhanenko [19] (see Lemma 1, p. 32).

Lemma 7 In addition to the above suppose that X 2 D0(1) and N are such that E0X2 =

EN2 = B2
. Then ��� eX �N

��� � c1

(
1 +

eX2

B2

)
;

provided j eX j � B2=2 and B � 4: Here c1 is an absolute constant.

Let us now introduce the conditional quantile transform and the associated basic in-

equality ( Lemma 8 below).

Let X1, X2 be independent r.v.'s on a probability space (
0;F 0; P 0) and N1, N2 be

independent normal r.v.'s on another probability space (
;F ; P ): Put X0 = X1 + X2 and

N0 = N1 + N2: Suppose that we have constructed a r.v. eX0 with the same distribution as

X0; which depends only on N0 and on some random vector W . Suppose that the r.v.'s N1

and N2 do not depend on W: Let F (xjy) be the conditional distribution function of the r.v.

X1 w.r.t. X0 and �(xjy) be the conditional distribution function of the r.v. N1 w.r.t. N0:

De�nition 3 A r.v. eX1 is said to be a quantile transform of N1 conditionally w.r.t. eX0 and

N0 if it satis�es the equation

F ( eX1j eX0) = �(N1jN0) = U:

Remark 4 The r.v.'s eX1 and eX2 � eX0 � eX1 are independent and eX1
d
= X1; eX2

d
= X2:

Moreover the r.v.'s eX1 and eX2 are functions of the r.v.'s eX0; N1 and N2 only.

Proof. Consider the r.v. U = �(N1jN0): It is easy to see that the distribution of U

given N0 = y; for any real y; is uniform on [0; 1]: This means that the r.v.'s U and N0 are

independent. Since N1 and N2 do not depend on W; we conclude that t U does not depend

on N0 and W: But eX0 is a functionof N0 and W only: Hence U and eX0 are also independent.

Next, since the uniform r.v. U does not depend on eX0; we can easily check that the

distribution of eX1 given eX0 = y; for any real y; is exactly F (�jy): Taking into account thateX0
d
= X0; we conclude the two-dimensional distributions of the pairs ( eX1; eX0) and (X1;X0)

coincide. From this we obtain in particular that eX1 and eX2 are independent r.v.'s and thateX1
d
= X1; eX2

d
= X2: Moreover it is obvious by construction that eX1 and eX2 are functions ofeX0; N1 and N2 only.
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Remark 5 We point out that the r.v. eX2 = eX0 � eX1 de�ned above is in fact the quantile

transform of the r.v. N2 conditionally w.r.t. X0 and N0.

The following assertion is due to Sakhanenko [19] (see Lemma 3, p. 32).

Lemma 8 In addition to the above suppose that X1;X2 2 D0(1) and N1, N2 are such that

E0X1 = EN1 and E0X2 = EN2. Put

�i =
E0X2

i

E0X2
0

; B2 =
E0X2

1E
0X2

2

E0X2
0

:

Then for i = 1; 2

��� eXi �Ni � �i

� eX0 �N0

���� � c2

(
1 +

eX2
i

B2
+
eX2
0

B2

)
;

provided j eXij � B2=6; j eX0j � B2=6 and B � 4: Here c2 is an absolute constant.

The following remark is easy to check, so the proof is left to the reader.

Remark 6 If X 2 D0(r) for some r > 0; then rX 2 D0(1):

Remark 7 If the r.v.'s X and X1; X2 in Lemmas 7 and 8 are in the class D0(r) for some

r > 0; then the assertions of Lemmas 7 and 8 hold true with c1(r) = r�1c1 and c2(r) = r�1c2
replacing c1 and c2 respectively.

In the sequel we will give some su�cient conditions for a r.v. X to be in the class D0(r):

Assume that on the probability space (
0;F 0; P 0) we are given a sequence of independent

r.v.'s X1; :::;Xn which for i = 1; :::; n satis�es the conditions

E0Xi = 0; E0X2
i � Cmax (17)

and

�0E
0 jXij3 exp f�0 jXijg � E0X2

i ; (18)

for some �0 > 0: Put X = X1 + :::+Xn:

Proposition 9 Assume that for any " 2 (0; 1] and any � 2 (0; 1] there is a constant c1
depending only on "; �; �0 and Cmax such that

"2 sup
jhj�"

Z
jtj>�

j'(t; h)j dt � c1
�
E0X2

�
�3=2

:

Then X 2 D0(r) for some constant r > 0 depending on �0 and Cmax:
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Proof. Condition 0 < E0X2 < 1 follows from the independence of X1; :::; Xn and (17).

Condition (18) with � = �0=2 follows from (18) and the inequality y � exp fyg ; y � 0 :

E0 jXij4 exp f�0Xi=2g �
1

�0
E0 jXij3 exp f�0 jXijg �

1

�0
E0X2

i <1:

Now we proceed to check condition r2U(r) � B�3: First we will show that T (h) � �0 if

jhj � "0 for some "0 and �0 depending on �0 and Cmax: To this end put  i (h) = E0 exp fhXig
for jhj � �0: A three term Taylor expansion yields for jhj � �0

 i (h) = 1 +
1

2
h2E0X2

i +
1

6
h3E0X3

i exp f�hXig ;

with 0 � � � 1: Hence by (18) and (17) we have for jhj � min
n
�0; C

�1=2
max

o
 i (h) � 1 +

2

3
h2E0X2

i � 1 +
2

3
h2Cmax �

5

3
: (19)

In the same way we show that for jhj � �0=2

1

2
E0Xi �  00i (h) �

3

2
E0Xi: (20)

For this we note that by Taylor expansion

 00i (h) =  00i (0) + h 000i (�h) = E0X2
i + hE0X3

i exp f�hXig ;

where 0 � � � 1; and make use of the inequalities (18) and (17). Inequalities (19) and (20)

yield

E0Xi(h)
2 =

 00i (h)

 i(h)
� 3

10
E0X2

i :

Hence for jhj � "0 = min
n
�0=2; C

�1=2
max

o
B(h)2 =

nX
i=1

E0Xi(h)
2 � 3

10

nX
i=1

E0X2
i =

3

10
B2: (21)

On the other hand by (18) for jhj � �0

L(h) =

nX
i=1

E0 jXi(h)j3 �
1

�0

nX
i=1

E0X2
i =

1

�0
B2: (22)

Put �0 = min
�

3
40
�0; 1

	
: Then from (21) and (22) we have for jhj � "0

T (h) =
1

4

B(h)2

L(h)
� 3

40
�0 � �0:

This bound implies

U("0) � sup
jhj�"0

Z
jtj>�0

j'(t; h)j dt � U�("0; �0):

11



By the assumptions of the proposition for these "0 and �0 there is a constant c1 depending only

on "0; �0 and �0 such that "20U
�("0; �0) � c1(E

0X2)�3=2 = c1B
�3: From the last inequality

we get that for r � r1 = "0min
n
1; c

�1=2
1

o
r2U(r) � c�11 "20U("0) � c�11 "20U

�("0; �0) � B�3:

It remains only to check the condition 4r2K(r) � B2; this can easily be obtained from (18)

and the inequality y � exp fyg ; y � 0; if we take r � r2 = �0=4 :

4r2K(r) � 4r2
nX
i=1

E0 jXij4 exp fr jXijg

� 4r

nX
i=1

E0 jXij3 exp f2r jXijg

� �0

nX
i=1

E0 jXij3 exp f�0 jXijg

�
nX
i=1

E0X2
i = B2:

Now the assertion follows if we put r = minfr1; r2g :

5 A construction for non-identically distributed r.v.'s.

In this section we assume that we are given a sequence of independent r.v.'s Xi; i = 1; :::; n

satisfying the relations (7) and (8) for all i = 1; :::; n. We will construct this sequence on the

same probability space with a sequence of independent normal r.v.'s Ni; i = 1; :::; n satisfying

(9) so that they are as close as possible. More precisely, the construction is performed so that

the quantile inequalities in Section 4 are applicable. The sequences obtained are dependent.

5.1 Some notations

Put M = [log2 n]: It is clear that 2
M � n < 2M+1: Introduce uniform design points ti =

i
n ;

i = 1; :::; n on the unit interval [0; 1]: For any �xed m = 1; :::;M de�ne

Jm =
�
j : 1 � j2M�m � n

	
:

Denote the number of elements in Jm by nm; i.e. nm = #Jm: For any m = 0; :::;M and

j 2 Jm put for brevity hm; ji = j2M�m: Let tmj = t
hm;ji and X

m
j = X

hm;ji for j 2 Jm:
Put �m(0) = 0 and �m(s) = E0(Xm

j )2 if s 2 (tmj�1; t
m
j ]; j 2 Jm: If t

m
nm < 1 then de�ne

�m(s) = E0(Xm
nm)

2 for s 2 (tnnm ; 1]: Introduce the increasing function bm : [0; 1] ! [0; 1] as

follows:

bm(t) =

R t
0
�m(s)dsR 1

0
�m(s)ds

; t 2 [0; 1]:

Let am(t) be the inverse of bm(t); i.e.

am(t) = inf fs 2 [0; 1] : bm(s) > tg : (23)

12



It is easy to see that condition (7) implies that both bm(t) and am(t) are Lipschitz functions:

for any t1; t2 2 [0; 1] we have

jbm(t2)� bm(t1)j � Lmax jt2 � t1j
and

jam(t2)� am(t1)j � Lmax jt2 � t1j (24)

with Lmax = Cmax=Cmin:

Consider the dyadic scheme of partitions �k;j; j = 1; :::; 2k ; k = 0; :::M of the interval

[0; 1] as de�ned by (12). For any m = 0; :::;M denote by Imk;j the set of indexes i 2 Jm for

which bm(t
m
i ) falls into �k;j; i.e.

Imk;j = fi 2 Jm : bm(t
m
i ) 2 �k;jg ; j = 1; :::; 2k ; k = 0; :::;m:

Since �k;j = �k+1;2j�1[�k+1;2j and �k+1;2j�1\�k+1;2j = ;; it is clear that Imk;j = Imk+1;2j�1+

Imk+1;2j�1 for j = 1; :::; 2k : In particular JM = Im0;1:

It is not hard to see that each set Imk;j contains at least one element, if we choose n to

be large enough.

Note that we have introduced the above sets of indices such that the sequence Xm
j =

X
hm;ji; j 2 Jm is split into blocks with "almost" the same variances. This turns out to be

one of the crucial points in the proof of our results, as we will see later. Indeed, if we set now

Xm
k;j =

X
i2Im

k:j

Xm
j ; (25)

then it is easy to see that the following holds true.

Proposition 10 For any k = 0; :::; 1 and j = 1; :::; 2k we have��E0(Xm
k;2j�1)

2 �E0(Xm
k;2j)

2
�� � 2Cmaxn:

Proof. Let �(�k;j) be the length of the interval �k;j and ��

k;j = am(�k;j) be the image

of �k;j by the map am(t): Then

�(�k;j) =

R
��
k;j
�m(s)dsR 1

0
�m(s)ds

: (26)

By the de�nition of �m(s) and (7) we haveZ
��
k;j

�m(s)ds = hm
X
i2Im

k;j

E0 (Xm
i )2 + �hmCmaxn;

where hm = tmi � tmi�1 = 2M�m=n and j�j � 1: This and (26) imply

h�1m

Z 1

0

�m(s)ds�(�k;j) =
X
i2Im

k;j

E0 (Xm
i )2 + �Cmaxn;

from which we easily obtain the assertion if we note that

E0
�
Xm

k;j

�2
=
X
i2Im

k;j

E0 (Xm
i )2 ;

due to the independence of the r.v.'s Xm
i ; i 2 Imk;j:
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5.2 The construction

Recall at this moment that we are given just two sequences of independent r.v.'s: Xi;

i = 1; :::; n on the probability space (
0;F 0; P 0) and Ni; i = 1; :::; n on the probability space

(
;F ; P ): We would like to construct on the probability space (
;F ; P ) a sequence of inde-
pendent r.v.'s eXi; i = 1; :::; n such that each eXi has the same distribution as Xi: We now

describe an appropriate version of the Koml�os-Major-Tusn�ady construction.

� KMT procedure. Let �m;j; j = 1; :::; 2m be a sequence of independent r.v.'s de�ned on

a probability space (
0;F 0; P 0) and �m;j j = 1; :::; 2m be a sequence of independent normal

r.v.'s on the probability space (
;F ; P ): We want to construct a sequence independent r.v.'se�m;j; j = 1; :::; 2m on (
;F ; P ); such that e�m;j
d
= �m;j ; j = 1; :::; 2m: Put �k;j = �k+1;2j�1 +

�k+1;2j; �k;j = �k+1;2j�1 + �k+1;2j ; j = 1; :::; 2k ; for k = 0; :::;m � 1: First de�ne e�0;1; to be

the quantile transform of �0;1 (see Section 4). Supposing that for some k = 0; :::;m � 1 we

have already constructed the r.v.'s e�k;j; j = 1; :::; 2k ; let e�k+1;2j�1 be the quantile transform

of �k+1;2j�1 conditional w.r.t. e�k;j and �k;j; for j = 1; :::; 2k (see Section 4). Finally, lete�k+1;2j = e�k;j � e�k+1;2j�1; j = 1; :::; 2k ; this completing the KMT procedure.

The following lemma, due to Komlos et al. [11], [12] and Sakhanenko [19], shows thate�m;j; j = 1; :::; 2m is the required sequence.

Lemma 11 For any k = 0; :::;m the r.v.'s e�k;j; j = 1; :::; 2k are independent and e�k;j d
= �k;j;

j = 1; :::; 2k : Moreover the r.v.'s e�k;j; j = 1; :::; 2k are functions of the sequence �k;j; j =

1; :::; 2k only.

Proof. The case with k = 1 follows from the Remark 4. Assume that the assertion holds

true for some k � 1 and let us prove it for k + 1 � m:

For the sake of brevity put Xk = fe�k;j : j = 1; :::; 2kg and Yk =
�
�k;j : j = 1; :::; 2k

	
:

Only the independence needs to be checked, the equality in distributions being obvious by

Remark 4. Again by Remark 4 it follows that the r.v.'s Xk+1 are functions of the r.v.'s

Yk+1 only. Note that each pair (e�k+1;2j�1; e�k+1;2j) is a function of the r.v.'s e�k;j and Uk;j =

�(�k+1;2j�1j�k;j) only, while the r.v. Uk;j does not depend on the r.v.'s Yk and, in particular,

on the r.v. e�k;j: Hence for any real x; y

P
�e�k+1;2j�1 � x; e�k+1;2j � y jYk

�
= P

�e�k+1;2j�1 � x; e�k+1;2j � y je�k;j� : (27)

Since the r.v.'s Xk+1 are independent conditionally w.r.t. Yk , taking into account (27) we

obtain

P

0@2k+1Y
j=1

ne�k+1;j � xj

o1A = E

2kY
j=1

P
�ne�k+1;2j�1 � x2j�1; e�k+1;2j � x2j

o
jYk

�

= E

2kY
j=1

P
�ne�k+1;2j�1 � x2j�1; e�k+1;2j � x2j

o
je�k;j� ;

for any reals xj; j = 1; :::; 2k+1. By the induction assumption the r.v.'s e�k;j; j = 1; :::; 2k are
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independent, hence

P

0@2k+1Y
j=1

ne�k+1;j � xj

o1A =

2kY
j=1

P
�e�k+1;2j�1 � x2j�1; e�k+1;2j � x2j

�
:

To complete the proof it su�ces to make use of the independence of r.v.'s e�k+1;2j�1 ande�k+1;2j:

It turns out that these properties are enough for proving a KMT result if the "indexing"

functions belong to the class of indicators. However for proving our functional version of the

KMT approximation we need more properties of this construction. To formulate them we

introduce the following notations:

�k+1;2j�1 =

 
E�2k+1;2j

E�2k+1;2j�1

!1=2

; �k+1;2j =

 
E�2k+1;2j�1

E�2k+1;2j

!1=2

;

eVk;j = �k+1;2j�1�k+1;2j�1 � �k+1;2j�k+1;2j;

Zk;j = e�k+1;2j�1 � e�k+1;2j; �k;j = Zk;j � eVk;j:
Lemma 12 For any k = 0; :::;m the r.v.'s �k;j; j = 1; :::; 2k are independent.

Proof. The proof is similar to that of Lemma 11. We also keep the same notations. First

we note that the r.v.'s eVk;j and �k;j = �k+1;2j�1 + �k+1;2j are independent since they are

normal and uncorrelated. Obviously each r.v. �k;j is a function of the r.v.'s e�k;j; Uk;j and eVk;j
only. Also Uk;j and eVk;j do not depend on the r.v.'s Yk and, in particular, on the r.v. e�k;j:
Hence for any real x

P (�k;j � xjYk) = P (�k;j � xje�k;j):
Since r.v.'s �k;j j = 1; :::; 2k are independent conditionally w.r.t. Yk

P

0@ 2kY
j=1

f�k;j � xjg
1A = E

2kY
j=1

P (�k;j � xj jYk) = E

2kY
j=1

P (�k;j � xjje�k;j);
for any reals xj; j = 1; :::; 2k : Now we make use of the independence of the r.v.'s e�k;j; j =
1; :::; 2k to obtain the assertion. .

In the sequel we shall need also an auxiliary procedure which is not as powerful as

the KMT construction, but permits us to construct somehow the components inside an al-

ready constructed arbitrary sum of independent r.v.'s. Below we present one of the possible

methods.

� Auxiliary construction. We start from an arbitrary sequence of independent r.v.'s

�1; :::; �n given on (
0;F 0; P 0): Put Sn = �1 + ::: + �n: Suppose that on another probability

space (
;F ; P ) we have constructed only the r.v. eSn d
= Sn; which corresponds to the sum

Sn and we wish to construct its components, i.e. the independent r.v.'s e�1; :::; e�n such thate�1 d
= �n and eSn = e�1 + ::: + e�n: As a prerequisite we assume that on the probability space

(
;F ; P ) we are given independent normal r.v.'s �1; :::; �n: First we de�ne e�1 to be the quantile
transform of �1 conditional w.r.t. eSn and Un; where Un = �1 + ::: + �n: If for some k < n
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the r.v. e�1; :::; e�k�1 are already constructed, we de�ne e�k to be the quantile transform of �k
conditional w.r.t. eSn � e�1 � ::: � e�k�1 and Un � �1 � ::: � �k�1: Finally for k = n we pute�n = eSn � e�1 � :::� e�n�1; this completing our procedure.

The easy proof of the following assertion is left to the reader.

Remark 8 The r.v.'s e�1; :::; e�n just constructed are independent and such that e�i d
= �i; i =

1; :::; n: Moreover the r.v.'s e�1; :::; e�n are functions of the r.v.'s �1; :::; �n and eSn only.

The KMT procedure described above allows us to make use of the quantile inequalities

proved in Section 4. It should be pointed out however, that in order to get precise quantile

inequalities, one has to assume the r.v.'s �m;i; i 2 Jm to be in the class D0(r) for some r > 0

(see Section 4 for more details) or to be identically distributed (see Koml�os etc. [11], [12]). We

will avoid such type of assumptions by using a construction which goes back to the paper of

Sakhanenko [19]. The idea is to substitute the initial sequence with some smoothed sequences

and to apply the above KMT procedure to them. We proceed to describe formally this

construction. Consider the product probability space (
00;F 00; P 00) = (
0;F 0; P 0)� (
;F ; P )
on which sequences Xi; i = 1; :::; n and Ni; i = 1; :::; n are independent.

� M -th step. For any i 2 JM put

XM
i = Xi; WM

i = Ni (28)

and

YM
i =

�
XM

i ; if i is odd;

WM
i ; if i is even:

(29)

The meaning of these notations is: XM
i ; i 2 JM is the sequence Xi; i 2 JM which we wish

to construct on (
;F ; P ); WM
i ; i 2 JM is the corresponding sequence of normal r.v.'s given

on (
;F ; P ) and YM
i ; i 2 JM is the smoothed sequence which we will construct at this

step. First we split the sequences YM
i ; i 2 JM and WM

i ; i 2 JM into blocks as follows: for

j = 1; :::; 2k and k = 0; :::;M put

YM
k;j =

X
i2IM

k;j

YM
i ; WM

k;j =
X
i2IM

k;j

WM
i :

Then obviously for j = 1; :::; 2k and k = 0; :::;M � 1

YM
k;j = YM

k+1;2j�1 + YM
k+1;2j;

WM
k;j = WM

k+1;2j�1 +WM
k+1;2j:

We are now prepared to apply the KMT procedure as described above with m = M; �m;i =

YM
M;j and �m;j = WM

M;j; j = 1; :::; 2M to construct a sequence of independent r.v.'s eYM
M;j;

j = 1; :::; 2M such that eYM
M;j

d
= YM

M;j; j = 1; :::; 2M : For this let eYM
0;1 be the quantile transform

of WM
0;1: Having de�ned eYM

k;j ; j = 1; :::; 2k for some k = 0; :::;M � 1; let eYM
k+1;2j�1 be the

quantile transform of WM
k+1;2j�1 conditional w.r.t.

eYM
k;j and WM

k;j; for j = 1; :::; 2k : For even

indexes 2j we put eYM
k+1;2j = eYM

k;j � eYM
k+1;2j�1; j = 1; :::; 2k : By Lemma 11 the r.v.'s eYM

M;j;

j = 1; :::; 2M are independent and such that

eYM
M;j

d
= YM

M;j; j = 1; :::; 2M :
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It remains to construct the components inside each sum eYM
M;j: For this we make use of the

auxiliary procedure for an arbitrary sequence presented above. For each �xed j = 1; :::; 2M

this construction provides a sequence of r.v.'s eYM
i ; i 2 IMM;j such that

eYM
M;j =

X
i2IM

M;j

eYM
i

and eYM
i

d
= YM

i ; i 2 IMM;j: (30)

Moreover each r.v. eYM
i is a function of eYM

M;j and WM
i ; i 2 IMM;j only. This completes the

initial step of our construction.

Let us remark that actually we have constructed only half of the initial sequence, that

is we have constructed the r.v.'s Xi only for odd i 2 JM : In order to construct the second

part of the sequence, we will repeat the same procedure. More generally, we proceed now to

describe formally the m-th step of our construction.

� m-th step. Suppose that for some m = M � 1; :::; 0 we have already constructed the

r.v.'s Y m+1
i ; Wm+1

i and eY m+1
i ; i 2 Jm+1: Then we de�ne Xm

i ; W
m
i and Y m

i ; for i 2 Jm; as

follows

Xm
i = Xm+1

2i ; Wm
i = eY m+1

2i ; (31)

and

Y m
i =

�
Xm

i ; if i is odd;

Wm
i ; if i is even:

(32)

The meaning of these notations is: Xm
i ; i 2 Jm is the part of the sequence Xi; i 2 JM which

is not yet constructed, Wm
i ; i 2 Jm is the corresponding sequence of normal r.v.'s given on

(
;F ; P ) and Y m
i ; i 2 Jm is the smoothed sequence which we will construct at this step. First

we split the sequences Y m
i ; j 2 Jm and Wm

i ; j 2 Jm into blocks as follows: for j = 1; :::; 2k

and k = 0; :::;m put

Y m
k;j =

X
i2Im

k;j

Y m
i ; Wm

k;j =
X
i2Im

k;j

Wm
i :

Then obviously for j = 1; :::; 2k and k = 0; :::;m � 1

Y m
k;j = Y m

k+1;2j�1 + Y m
k+1;2j;

Wm
k;j = Wm

k+1;2j�1 +Wm
k+1;2j:

We will apply the KMT procedure with �m;j = Y m
m;j; and �m;j = Wm

m;j; j = 1; :::; 2m to

construct a sequence of independent r.v.'s eY m
m;j; j = 1; :::; 2m satisfying eY m

m;j
d
= Y m

m;j; j =

1; :::; 2m: Let eY m
0;1 be the quantile transform of Wm

0;1: Having de�ned eY m
k;j; j = 1; :::; 2k for

some k = 0; :::;m � 1; let eY m
k+1;2j�1 be the quantile transform of Wm

k+1;2j�1 conditionally

w.r.t. eY m
k;j and W

m
k;j; for j = 1; :::; 2k : For even indexes 2j we put eY m

k+1;2j =
eY m
k;j � eY m

k+1;2j�1;

j = 1; :::; 2k : By Lemma 11 we have that the r.v.'s eY m
m;j; j = 1; :::; 2m are independent and

such that eY m
m;j

d
= Y m

m;j; j = 1; :::; 2m:
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It remains to construct the components inside each sum eY m
m;j; j = 1; :::; 2m : Again we make

use of the auxiliary construction described above. For each �xed j = 1; :::; 2m it provides a

sequence of r.v.'s eY m
i ; i 2 Imm;j such that

eY m
m;j =

X
i2Imm;j

eY m
i

and eY m
i

d
= Y m

i ; i 2 Imm;j: (33)

Moreover each r.v. eY m
i is a function of eY m

m;j and W
m
i ; i 2 Imm;j only. This completes the m-th

step of our construction.

5.3 Some useful properties

Let us discuss some properties of the r.v.'s introduced above. In analogy to Xm
j (see Section

5.1) set Nm
j = N

hm;ji; where m = 0; :::;M; j 2 Jm and hm; ji = j2M�m:

Proposition 13 For all m = 0; :::;M and i 2 Jm

Wm
i

d
= Ni:

Proof. Indeed by (28) WM
j = Nj ; j 2 JM and by (31) Wm

j = eY m+1
2j

d
= Wm+1

2j ; if

m = 1; :::;M � 1: The last equality in distribution is due to (33), (30) and (32), (29) for

i = 2j even. A simple recursion argument completes the proof.

Proposition 14 For all m = 0; :::;M the r.v.'s eY m
i ; i 2 Jm are independent and such that

for any i 2 Jm eY m
i

d
=

�
Xm

i ; if i is odd;

Nm
i ; if i is even:

Proof. The independence follows from the Lemma 11. Next, it follows easily from (30) and

(29) in the case m =M; and from (33) and (32) for m = 0; :::;M � 1 that eY m
i

d
= Y m

i =Wm
i

if i is even and eY m
i

d
= Y m

i = Xm
i if i is odd, i 2 Jm: It remains only to apply the previous

Proposition 13.

Proposition 15 The vectors

neY m
i : i 2 Jm; i-odd

o
; m =M; :::; 0 are independent.

Proof. It is easy to see that according to Lemma 11 and Remark 8 the r.v.'s eY m
i ; i 2 Jm are

functions of the normal r.v.'s Wm
i ; i 2 Jm only. By (31) this implies that the r.v. eY m

i ; i 2 Jm
depend only on the vector

neY m+1
k : k 2 Jm+1; k-even

o
: Since eY m+1

k ; k 2 Jm+1 is a sequence

of independent r.v.'s, this means that the vector
neY m

i : i 2 Jm
o
does not depend on the vectorneY m+1

k : k 2 Jm+1; k-odd
o
: Applying this recursively we get that

neY m
k : k 2 Jm; k-odd

o
;

m =M; :::; 0 is a sequence of independent random vectors.

18



The desired sequence eXi; i = 1; :::; n can be constructed on the probability space

(
;F ; P ) in the following way. For any i = 1; :::; n let (m; j) be the unique pair such that

i = j2M�m; where 0 � m �M and j is odd in Jm: Then we seteXi = eY m
j : (34)

Proposition 16 The r.v.'s eXi; i = 1; :::; n are independent and such thateXi
d
= Xi; i = 1; :::; n:

Proof. It is clear thatn eXi : i = 1; :::; n
o
= [m

k=0

neY m
j : j 2 Jm; j -odd

o
:

Let J1m be the set of odd numbers in Jm: Note that for any �xedm 2 f0; :::;Mg by Proposition
14 the r.v.'s eY m

j ; j 2 J1m are independent and such that eY m
j

d
= Xm

j ; j 2 J1m: The assertion

is immediate if we note that the sequences eY m
j ; j 2 J1m are independent for di�erent m by

Proposition 15.

The following elementary representation is essential in the proof of our results.

Proposition 17 For any function f(t) : [0; 1]! R1

nX
i=1

f(ti)
� eXi �Ni

�
=

MX
m=0

X
i2Jm

f(tmi )
�eY m

i �Wm
i

�
:

Proof. Put for brevity eXm
i = eX

hm;ji; (35)

where hm; ji = j2M�m; j = 1; :::; 2m; m = 0; :::;M and

Sm =
X
i2Jm

f(tmi )
� eXm

i �Wm
i

�
:

We will show that for any m =M; :::; 0

Sm =
X
i2J1m

f(tmi )
�eY m

i �Wm
i

�
+ Sm�1; (36)

where S�1 = 0: Fix an m 2 f0; :::;Mg : By (35) and (34) eXm
i = eY m

i for any i 2 J1m: Hence

Sm =
X
i2J1m

f(tmi )
�eY m

i �Wm
i

�
+
X
i2J2m

f(tmi )
� eXm

i � eY m
i

�
; (37)

where J2m is the set of even indexes in Jm: It is easy to see that i = 2j 2 J2m if and only

if j 2 Jm�1 and that tmi = tm�1
j : Moreover for i = 2j 2 J2m we have by (35) and (34)eXm

i = eXm�1
j ; while by (31) eY m

i = Wm�1
j : Then the last sum on the right-hand side of (37)

equals Sm�1; this proving (36). Next, since by (35) eXi = eXM
i and by (28) Ni = WM

i for

i 2 JM = f1; :::; ng ; it is obvious that
nX
i=1

f(tmi )
� eXi �Ni

�
=
X
i2JM

f(tmi )
� eXM

i �WM
i

�
= SM : (38)

The assertion of the lemma follows from (38) and (36).
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5.4 Quantile inequalities

In analogy to (25) put for m = 0; :::;M; k = 0; :::;m and j 2 Jk
eY m
k;j =

X
i2Im

k;j

eY m
i : (39)

The following lemma shows that the r.v.'s eY m
k;j; j 2 Jk are smooth enough to allow application

of the quantile inequalities in Section 4.

Lemma 18 For m = 0; :::;M; k = 0; :::;m�1; j = 1; :::; 2k the r.v. eY m
k;j is in the class D0(r);

for some constant r > 0 depending on Cmin; Cmax; �0:

Proof. We check the conditions of Proposition 9. Toward this end �x m; k; j as in the

condition of the lemma and note that

�0 � eY m
k;j =

X
i2Im

k;j

eY m
i =

X
i2I1

eY m
i +

X
i2I2

eY m
i � �1 + �2;

where I1 and I2 are the sets of all odd and even indexes in Imk;j respectively. By Proposition

14 we have eY m
i

d
= Ni for any i 2 I2: Thus the r.v. �2 is actually a sum of independent normal

r.v.'s. Note that condition k � m� 1 assures that for n large enough the set Imk;j has at least

two elements, from which we conclude that I2 has at least one element. Next taking into

account (7) and the obvious inequality #I2 � 1
3
#Imk;j we get

E�22 � Cminn#I2 �
Cmin

3
n#I

m
k;j � c1E�

2
0 ;

with c1 = Cmin=(3Cmax): For jhj � �0 and t 2 R let

f�i;h(t) = E expf(h +
p
�1 t)�ig=E expfh�ig

be the conjugate characteristic function of the r.v. �i; i = 0; 1; 2: Since �1 and �2 are indepen-

dent and �2 is normal

jf�0;h(t)j = jf�1;h(t) f�2;h(t)j � jf�2;h(t)j

� expf� t
2

2
E�22g � expf� t

2

2
c1E�

2
0g;

for jhj � �0; t 2 R1: With this bound we have for any � > 0Z
jtj>�

jf�0;h(t)jdt �
Z
jtj>�

expf� t
2

2
c1E�

2
0gdt � c2(E�

2
0 )
�3=2;

where c2 is a constant depending only on Cmin; Cmax and �: This proves that the condition of

Proposition 9 is satis�ed. It remains only to show that conditions (17) and (18) are satis�ed.

This follows from (7) and (8) as soon as eY m
i

d
= Xi or eY m

i
d
= Ni for any i 2 Imk;j � Jm by

Proposition 14. Here we also make use of the elementary fact that Sakhanenko's condition

(18) holds true for any normal r.v. .
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For any m = 1; :::;M; k = 0; :::;m and j 2 Jk put

Sm
k;j = eY m

k;j �Wm
k;j; (40)

Bm
k;j = E

�eY m
k;j

�2
;

eY m;�
k;j = eY m

k;j1

����eY m
k;j

��� � Bm
k;j

�
:

Introduce the sets

Gm
0;1 =

n���eY m
0;1

��� � c0B
m
0;1

o
and

Gm
k;j =

n���eY m
k;j

��� � c0B
m
k;j;

��Wm
k;j

�� � c0B
m
k;j

o
; (41)

for k = 1; ::::;m; where c0 = Cmin=(72Cmax):

The following quantile inequalities are crucial in the proof of our results.

Lemma 19 On the set G0;1

��Sm
0;1

�� � c1

8><>:1 +
�eY m;�

0;1

�2
Bm
0;1

9>=>; ;

where c1 is a positive constant depending only on Cmax; Cmin; �0:

Proof. It is enough to note that by Lemma 18 the r.v. eY m
0;1 is in the class D0(r) for some

r > 0 depending on Cmax; Cmin; �0 and to apply Remark 6 and then Lemma 7 with eX = eY m
0;1;

X = Y m
0;1 and N =Wm

0;1:

Lemma 20 Let m = 0; :::;M; k = 1; :::;m � 1; j 2 Jk�1: On the set Gm
k;2j�1 \Gm

k;2j

��Sm
k;2j�1 � Sm

k;2j

�� � c1

8><>:1 +
�eY m;�

k;2j�1

�2
Bm
k;2j�1

+

�eY m;�
k;2j

�2
Bm
k;2j

9>=>; ;

where c1 is a positive constant depending only on Cmax; Cmin; �0:

Proof. Fix m; k; and j as in the condition of the lemma. We will make use of Lemma 8

with eX1 = eY m
k;2j�1;

eX2 = eY m
k;2j;

eX0 = eY m
k�1;j; (42)

and

N1 =Wm
k;2j�1; N2 =Wm

k;2j; N0 =Wm
k�1;j: (43)

By Lemma 18 r.v.'s eX0; eX1 and eX2 are in the class D0(r) for some r > 0 depending only on

Cmin; Cmax; �0:

By Proposition 14 we have Bm
k;l =

P
i2Im

k;l
E(Xm

i )2 for l 2 Jm: Note that the set Imk;l

contains at least one element, i.e nmk;l = #Imk;l � 1: Then by (7) Bm
k;l � Cminn for l 2 Jm: By
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Proposition 10 we get Bm
k;2j�1 � Bm

k;2j + 2Cmaxn � c3B
m
k;2j; where c3 = 3Cmax=Cmin: In the

same way we get Bm
k;2j � c3B

m
k;2j�1: Using these inequalities we arrive at

B2 =
Bm
k;2j�1B

m
k;2j

Bm
k;2j�1 +Bm

k;2j

� 1

6

Cmin

Cmax
maxfBm

k;2j�1; B
m
k;2jg: (44)

Now we can check the conditions of Lemma 8. Indeed, by (44) on the set Jk;2j�1 \ Jk;2j
j eXij � B2=12

for i = 1; 2 and thus

j eX0j � j eX1j+ j eX2j � B2=6:

Now Lemma 8 and Remark 6 imply��Sm
k;2j�1 � Sm

k;2j�1

�� � j�1 � �2j
��� eX0 �N0

���+ c2

n
1 +B�2

� eX2
1 +

eX2
2 +

eX2
0

�o
; (45)

where �i = EX2
i =EX

2
0 and c2 is some constant depending only on Cmin; Cmax; �0: From

Proposition 10 it follows that

j�1 � �2j =
��E0X2

1 �E0X2
2

��
E0X2

0

� 2Cmaxn

Bm
k+1;j

� 2Cmax

Bm
k+1;j

; (46)

while on the set Gm
k;2j�1 \Gm

k;2j we have��� eX0 �N0

��� � ��� eX1 �N1

���+ ��� eX2 �N2

��� � 2c0B
m
k+1;j: (47)

The assertion of the lemma can easily be obtained from (45), (44), (46) and (47).

6 Proof of the main results

6.1 Auxiliary statements

We keep the same notations as in the previous section.

Lemma 21 Let m = 0; :::;M; k = 0; :::;m and j 2 Jk: For any c0 > 0 there is a constant c1
depending only on �0 and c0 such that

P
����eY m

k;j

��� > c0B
m
k;j

�
� 2 exp

��c1Bm
k;j

	
and

P
���Wm

k;j

�� > c0B
m
k;j

� � 2 exp
��c1Bm

k;j

	
:

Proof. By the Chebyshev inequality we have with t > 0

P
�eY m

k;j > tBm
k;j

�
� exp

��tBm
k;j

	
E expftY m

k;jg: (48)

Since eY m
k;j is a sum of independent r.v.'s eY m

i ; i 2 Imk;j by (39), by (8) and Lemma 25 we obtain
for jtj � �0=2

E exp
n
teY m

k;j

o
=
Y
i2Im

k;j

E exp
n
teY m

i

o
�
Y
i2Im

k;j

exp
n
t2E(eY m

i )2
o
= exp

�
t2Bm

k;j

	
:
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Choosing t = t0 = minfc0=(2c2); �0=2g and inserting this bound into (48), we obtain

E
�eY m

k;j > c0B
m
k;j

�
� exp

��t0(c0 � t0c2)B
m
k;j

	 � exp
��c1Bm

k;j

	
;

where c1 = t0c0=4: In the same way one can show that

E(eY m
k;j < �c0Bm

k;j) � expf�c1Bm
k;jg;

which together with the previous bound proves the �rst assertion of the lemma. The second

claim is straightforward since the r.v. Wm
k;j is normal.

Recall that the r.v's Sm
k;j are de�ned by (40).

Lemma 22 There are two positive constants c0 and c1 depending only on Cmin; Cmax and

�0 such that for any m = 0; :::;M; k = 0; :::;m � 1; j = 1; :::; 2k

E exp
�
c0
��Sm

k;j

��	 � c1:

Proof. Fix m; k and j as in the condition of the lemma. Let t = �0=4; with �0 from the

condition (8). It is easy to see that

E exp
�
t
��Sm

k;j

��	 = Q1 +Q2;

where

Q1 = E exp
�
t
��Sm

k;j

��	1�Gm;c
k;2j�1 [Gm;c

k;2j�1

�
; (49)

Q2 = E exp
�
t
��Sm

k;j

��	1 �Gm
k;2j�1 \Gm

k;2j�1

�
;

the set Gm
k;l being de�ned by (41) andG

m;c
k;l being the complement of the set Gm

k;l; l = 2j�1; 2j:
First we give an estimate for Q1: Applying the H�older inequality we get from (49)

Q1 �
�
exp

�
2t
��Sm

k;j

��	�1=2 �P �Gm;c
k;2j�1

�1=2
+ P

�
G
m;c
k;2j

�1=2�
: (50)

By Lemma 21 we have with l = 2j � 1; 2j

P
�
G
m;c
k;l

�
= P

����eY m
k;l

��� > c2B
m
k;l

�
+ P

���Wm
k;l

�� > c2B
m
k;l

� � 2 exp
��c3Bm

k;l

	
; (51)

where c2 = Cmin=(76Cmax) and c3 depends only on c2 and �0:

On the other hand from (40) and from the H�older inequality we get

E exp
�
2tjSm

k;jj
	 � �E exp

n
4tjeY m

k;j)j
o
E exp

�
4tjWm

k;jj
	�1=2

: (52)

Since eY m
k;j is exactly the sum of the independent r.v.'s eY m

i ; i 2 Imk;j;

E exp
n
4tjeY m

k;jj
o

� E exp
n
4teY m

k;j

o
+E exp

n
�4teY m

k;j

o
�

Y
i2Im

k;j

E exp
n
4teY m

i

o
+
Y
i2Im

k;j

E exp
n
�4teY m

i

o
:
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Taking into account (8) and 4t � �0=3 by Lemma 25 we arrive at

E exp
�
4tjXm

k;j j
	 � 2

Y
i2Jm

k;j

E exp
�
16t2E(Xm

i )2
	 � 2 exp

�
16t2Bm

k;j

	
: (53)

A similar bound holds for the second expectation in the right-hand side of (52), namely

E exp
�
4tjWm

k;jj
	 � 2 exp

�
16t2Bm

k;j

	
: (54)

Inserting the inequalities (54) and (53) into (52) and then (52) and (51) into (50) and choosing

t to satisfy the inequality t � t0 = min fc3=32; �0=4g ; we arrive at

Q1 � 4 exp

��
8t2 � 1

2
c3

�
Bm
k;j

�
� 4 exp

�
�1

4
c3B

m
k;j

�
� 4: (55)

Now we proceed to give a bound for Q2: By virtue of Lemma 20 we have that on the

set Gm
k;2j�1 \Gm

k;2j with some constant and c4 depending only on Cmax; Cmin; �0

jSm
k;jj � c4

�
1 + Um

k;2j�1 + Um
k;2j

	
; (56)

for k � 1; where we denote Um
k;l = (eY m;�

k;l )2=Bm
k;l; l = 2j � 1; 2j: Similarly, by Lemma 19 we

have

jSm
0;1j � c5(1 + Um

0;1);

where Um
0;1 = (eY m;�

0;1 )2=Bm
0;1 and c5 is a constant depending only on Cmax; Cmin; �0:

If k � 1; then according to (56) and by the H�older inequality

Q2 � E exp
�
tc4
�
1 + Um

k;2j�1 + Um
k;2j

�	
� exp ftc4g

�
E exp

�
2tc4U

m
k;2j�1

	�1=2 �
E exp

�
2tc4U

m
k;2j

	�1=2
: (57)

By Lemma 27 for some constant c6 depending only on �0 we have

E exp
�
c6U

m
k;2j�1

	 � (1 + 2=c6) (58)

and a similar bound holds true for Um
k;2j: If we take t to be such that tc4 � min fc6; t0g ; then

from (57) and (58) we obtain

Q2 � exp fc6g (1 + 2=c6)
2: (59)

The case with k = 0 is similar. Combining the estimates for Q1 and Q2 given by (55) and

(59) we obtain the assertion of the lemma.

6.2 Proof of Theorem 3

For the sake of brevity put

Sn(f) =

nX
i=1

f(ti)
� eXi �Ni

�
:

We have to show is that there are two positive constants c0 and c1; depending only on Cmin;

Cmax; �0; L; such that for any t satisfying jtj � c0

E expft 1

log2 n
Sn(fg) � exp

�
t2c1

	
: (60)
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Toward this end let M = [log2 n] and note that according to Proposition 17

Sn (f) =

MX
m=0

Sm;

where

Sm =
X
i2Jm

f (tmi )
�eY m

i �Wm
i

�
:

By the H�older inequality

E exp

�
t

1

log2 n
Sn(f)

�
�

MY
m=0

�
E exp

�
t(M + 1)

1

log2 n
Sm

��1=(M+1)

: (61)

Put for brevity

un = (M + 1)= log2 n: (62)

Obviously un � 1 for n such that log n � 2:

It is easy to see that inequality (60) will follow from (61) if we prove that constants c0
and c1 can be chosen so that for any t satisfying jtj � c0

E exp ftunSmg � exp
�
t2c1

	
; (63)

for m = 0; :::;M: In the sequel we will give a proof of (63).

First we consider the case m = 0; 1: If we choose the constant c0 to be c0 = �0=(6L);

then it is easy to see that j2tunLj � �0=3 and thus by Lemma 25 we have for i 2 Jm

E expf2tunLeY m
i g � exp

n
4t2L2E(eY m

i )2
o
: (64)

An analogous bound holds true for the r.v.'s Wm
i ; i 2 Jm :

E expf2tunLWm
i g � exp

�
2t2L2E(Wm

i )2
	
: (65)

By the H�older inequality

E exp ftunSmg �
0@E expf2tun

X
j2Jm

f (tmi )
eY m
i gE expf2tun

X
j2Jm

f (tmi )W
m
i g
1A1=2

: (66)

Using the independence of the r.v.'s eY m
i ; j 2 Jm and Wm

i ; j 2 Jm and the inequality

kfk
1
� L=2; we obtain from (64), (65) and (66)

E exp ftunSmg � exp

(
3

4
t2L2

X
i2Jm

E (Xm
i )2

)
: (67)

Since for m = 0; 1 the set Jm has cardinality less than 3; by (7) we haveX
i2Jm

E (Xm
i )2 � #JmCmax � 3Cmax: (68)

Hence (63) follows from (67) and (68), provided m = 0; 1:
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For the case m � 2 introduce the function g(s) = f(a(s)); s 2 [0; 1]; where a(s) is

de�ned by (23). Put for brevity smi = b(tmi ); i 2 Jm: Then for the sum Sm we get the

following representation

Sm =
X
i2Jm

g (smi )
�eY m

i �Wm
i

�
:

Let gm�1 be the truncated Haar expansion of g for m � 2 (see (14):

gm�1 = c0(g)h0 +

m�2X
k=0

2k=2
2kX
j=1

ck;j(g)hk;j ; (69)

where c0(g) and ck;j(g) are the corresponding Fourier-Haar coe�cients de�ned by (13) with

g replacing f: Then obviously

Sm = Sm
1 + Sm

2 ;

where

Sm
1 =

X
i2Jm

(g (smi )� gm�1 (s
m
i ))

�eY m
i �Wm

i

�
; (70)

Sm
2 =

X
i2Jm

gm�1 (s
m
i )
�eY m

i �Wm
i

�
:

By the H�older inequality

E exp ftunSmg � (E exp f2tunSm
1 gE exp f2tunSm

2 g)1=2 : (71)

Now the inequality (63) for m � 2 follows from Propositions 23 and 24 below. This will

complete the proof of Theorem 3.

First we prove the following

Proposition 23 There exist two positive constants c0 and c1; depending only on Cmax; Cmin;

�0; L; such that for any t satisfying jtj � c0

E expftunSm
1 g � exp

�
t2c1

	
:

Proof. Since by (24) the function a(s) is Lipschitz and f 2 H(1
2
; L); it is easy to see that

the function g(s) = f(a(s)) is also in a H�older ball H(1
2
; L0); but with another constant L0

depending on Cmax; Cmin and L: By H�older's inequality

E expftunSm
1 g �

 
E exp

(X
i2Jm

�i eY m
i

)
E exp

(
�
X
i2Jm

�iW
m
i

)!1=2

; (72)

where �i = 2tun (g (s
m
i )� gm�1 (s

m
i )) and jtj � c0 = �0=(6L0): Note that by Proposition 6

kg � gm�1k1 � L02
�(m�1)=2: Therefore for jtj � c0

j�ij � 2 jtjunL02
�(m�1)=2 � 2 jtjL02

�(m�1)=2 � �0=3:

Then according to Lemma 25 we have for i 2 Jm

E exp
n
�i eY m

i

o
� exp

n
�2iE(

eY m
i )2

o
� exp

�
8t2L2

02
�mE(Xm

i )2
	
: (73)
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An analogous bound holds true for the normal r.v.'s Wm
i ; i 2 Jm :

E exp f�iWm
i g � exp

�
4t2L2

02
�mE(Xm

i )2
	
: (74)

Taking into account that eY m
i ; i 2 Jm and Wm

i ; i 2 Jm are sequences of independent r.v.'s

and inserting (73) and (74) into (72) we obtain

E expftunSm
1 g � exp

(
6t2L2

02
�m

X
i2Jm

E(Xm
i )2

)
: (75)

Now we remark that #Jm � 2m+1: Then by (7)X
i2Jm

E(Xm
i )2 � #JmCmax � 2m+1Cmax: (76)

Inserting (76) into (75) we obtain the assertion.

Now we will produce a bound for the second expectation on the right-hand side of (71).

Proposition 24 There exist two constants c0 and c1; depending only on Cmin; Cmax; �0; L;

such that for any t satisfying jtj � c0

E expftunSm
2 g � exp

�
t2c1

	
:

Proof. From (70) and (69) we obtain

Sm
2 = c0(g)S

m
0;1 +

m�2X
k=0

2k=2
2kX
j=1

ck;j(g)fSm
k+1;2j�1 � Sm

k+1;2jg;

where Sm
k;j are de�ned by (40). Since the function g(s) is in the H�older ball with a H�older

constant L0 depending on Cmax; Cmin; L; according to Proposition 5 we have the following

bounds for the Fourier-Haar coe�cients:

c0(g) � L0=2; jck;j(g)j � 2�3=2L02
�k; (77)

for k = 0; :::;m�2: Note also that by Lemma 22 there are two constants c2 and c3; depending

only on Cmax; Cmin; �0; such that

E exp
�
c2
��Sm

k;j

��	 � c3; (78)

for j = 1; :::; 2k and k = 0; :::;m � 1:

Put c0 = c2=(8L0): By H�older's inequality we have for any t satisfying jtj � c0

E exp ftunSm
2 g �

 
E exp

�
tmunc0(g)S

m
0;1

	m�2Y
k=0

E exp ftmun�kg
!1=m

;

where for the sake of brevity we denote

�k = 2k=2
2kX
j=1

ck;j(g)fSm
k+1;2j�1 � Sm

k+1;2jg; (79)
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for k = 0; :::;m � 2: The statement of the proposition will be proved if we show that for t

satisfying jtj � c0
E exp

�
tmunc0(g)S

m
0;1

	 � exp
�
t2L2

0c4
	

(80)

and

E exp ftmun�kg � exp
�
t2L2

0c5
	
; (81)

for some constants c4 and c5 depending only on Cmax; Cmin; �0: We shall assume m and k

�xed from now on.

It is easy to show (80). For this we note that by (77) and (62) for jtj � c0

jtmunc0(g)j � jtjm(M + 1)L0=(2 log
2 n) � jtjL0 � c2: (82)

Then (82), (78) with k = 0; j = 1 and Lemma 26 imply that the inequality (80) holds true

with c4 = 4c3=c
2
2:

The proof of (81) is a bit more intricate. The main trouble is that the r.v.'s

�j = Sm
k+1;2j�1 � Sm

k+1;2j; j = 1; :::; 2k (83)

are dependent and so we cannot make use of the product structure of the exponent exp ft�kg
directly. However Proposition 10 ensures that the components of the sum �k (see (79)) are

almost independent, this allowing to exploit the product structure in an implicit way. The

main idea is to introduce the r.v.'seVj = �2j�1W
m
k+1;2j�1 � �2jW

m
k+1;2j;

where

�2j�1 =

�
B2j

B2j�1

�1=2

; �2j =

�
B2j�1

B2j

�1=2

;

with B2j�1 = Bm
k+1;2j�1 and B2j = Bm

k+1;2j: The r.v.
eVj can be easily seen to be independent

of the r.v. Wm
k+1;2j�1 �Wm

k+1;2j =Wm
k;j; for j = 1; :::; 2k : Set also for brevity

Zj = eY m
k+1;2j�1 � eY m

k+1;2j; Vj =Wm
k+1;2j�1 �Wm

k+1;2j;

for j = 1; :::; 2k : By Lemma 12 the r.v.'se�j = Zj � eVj; j = 1; :::; 2k

are independent. It is obvious that

�j = e�j + eVj � Vj : (84)

From (79), (83) and (84) we obtain

�k = �1k + �2k;

where

�1k = 2k=2
2kX
j=1

ck;j(g)e�j ;
�2k = 2k=2

2kX
j=1

ck;j(g)
�eVj � Vj

�
: (85)
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By H�older's inequality

E exp ftmun�kg �
�
E exp

�
2tmun�

1
k

	
E exp

�
2tmun�

2
k

	�1=2
: (86)

Now we proceed to estimate the �rst expectation in the right-hand side of (86). We make

use of the independence of r.v.'s e�j ; j = 1; :::; 2k to get

E exp
�
2tmun�

1
k

	 � 2kY
j=1

E exp
n
trje�jo ; (87)

where rj = 2mun2
k=2ck;j(g): We will show that for j = 1; :::; 2k

E exp
n
trje�jo � exp

n
t22�kL2

0c6

o
; (88)

with some constant c6: First by (84) and by H�older's inequality we have

E exp
n
trje�jo � �E exp f2trj�jgE exp

n
2trj

�
Vj � eVj�o�1=2 : (89)

By (83) and by H�older's again inequality we get

E exp f2trj�jg �
�
E exp

�
4trjS

m
k+1;2j�1

	
E exp

�
4trjS

m
k+1;2j

	�1=2
: (90)

Note that by (77) and (62)

j4trj j �
���8tmun2k=2ck;j(g)��� � 4 jtjL02

�k=2 � c2: (91)

From (78), (91) and Lemma 26 we obtain for l = 2j � 1; 2j and k � m� 2

E exp
�
4trjS

m
k+1;l

	 � exp
n
t22�kL2

0c7

o
; (92)

with the constant c7 = 4c3=c
2
2: Inserting (92) into (90) we obtain

E exp f2trj�jg � exp
n
t22�kL2

0c7

o
: (93)

Thus we have estimated the �rst expectation in the right-hand side of (89). To estimate

the second one, we note that in view of the independence of the normal r.v.'s W k
k+1;2j�1 and

W k
k+1;2j

E exp
n
2trj

�
Vj � eVj�o = exp

�
4t2r2j

�p
B2j�1 �

p
B2j

�2�
: (94)

Because of the elementary inequality (
p
a�

p
b)2 � ja� bj ; with a; b � 0; and of Proposition

10 �p
B2j�1 �

p
B2j

�2
� jB2j�1 �B2j j � 2Cmax:

Inserting this bound into (94) and using (91) one obtains

E exp
n
2trj

�
Vj � eVj�o � exp

n
t22�kL2

0c8

o
; (95)
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with some constant c8 depending only on Cmax: From (93), (95) and (89) we obtain the

inequality (88). Inserting in turn (88) into (87) we arrive at the bound

E exp
�
2tmun�

1
k

	 � exp
�
t2L0c6

	
: (96)

Thus we have estimated the �rst expectation in the right-hand side of (86). It remains

to estimate the second one. Since the r.v.'s eVj � Vj ; j = 1; :::; 2k are independent, (85) and

(95) we obtain

E exp
�
2tmun�

2
k

	 � exp
�
t2L2

0c8
	
: (97)

The inequalities (96) and (97) imply (81), this completing the proof of the proposition.

7 Appendix

In the proofs we made use of the following simple auxiliary results.

Lemma 25 Let � be a real valued r.v. such that E� = 0; 0 < E�2 < 1 and for which

Sakhanenko's condition

�0E j�j3 expf�0j�jg � E�2

holds true for some �0 > 0: Then for all jtj � �0=3

E expft�g � exp
�
t2E�2

	
:

Proof. Let �(t) = E exp(t�) and  (t) = log�(t) be the moment and cumulant generating

functions respectively. The conditions of the lemma imply that �(t) � c1 for any real jtj �
�0=3, and using a three term Taylor expansion we get with 0 � � � 1

 (t) =  (0) +  0(0)t+  00(0)
t2

2
+  000(�t)

t3

6
:

Note that  (0) = 0;  0(0) = 0;  00(0) = E�2 and �(t) � 1 by Jensen's inequality, while for

the third derivative we have for any real s satisfying jsj � �0=3

 000(s) = �000(s)�(s)�1 � 3�00(s)�0(s)�(s)�2 + 2�0(s)3�(s)�3:

Using H�older's inequality and �(s) � 1 we arrive at the bound�� 000(s)�� � 6Ej�j3 exp(�0j�j):
Since jtj � �0=3; by Sakhanenko's condition

0 �  (t) � t2

2
E�2 + t3Ej�j3 exp(�0j�j) � t2E�2:

Lemma 26 Let � be a real valued r.v. such that E� = 0 and

E expf�0j�jg � c1;

for some �0 � 0 and c1 � 1. Then for all jtj � �0=2

E expft�g � expfc2t2g;
where c2 = 4c1=�

2
0.
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Proof. The argument is similar to Lemma 25. We use the same notations. A two term

Taylor expansion yields with 0 � � � 1

 (t) =  (0) +  0(0)t+  00(�t)
t2

2
:

Since x2 � 2 exp(jxj) for any real x; for any s satisfying jsj � �0=2 we have

0 �  00(s) = �(s)�2fE�2 exp(s�)� (E� exp(s�))2g
� E�2 exp(s�) � E�2 exp(

�0

2
j�j) � 8

c1

�20
:

Consequently

0 �  (t) =  00(�t)
t2

2
� 4

c1

�20
t2:

Lemma 27 Let �i; i = 1; :::; n be a sequence of independent r.v.'s such that for all i = 1; :::; n

E�i = 0; 0 < E�2i <1 and

Ej�ij3 exp f�0j�ijg � E�2i ;

for some positive constant �0: Put Sn = �1 + :::+ �n and S�n = Sn1
�jSnj � B2

n

�
: Then

E exp
�
c1(S

�

n=Bn)
2
	 � 1 + 2=c1;

where c1 =
1
4
min f�0=3; 1=2g :

Proof. Denote

F (x) = P
�
(S�n=Bn)

2 > x
�
:

We will prove �rst that

F (x) � 2 expf�c2xg; x � 0; (98)

where c2 = 2c1: For this we note that

F (x) = P
�
S�n=Bn >

p
x
�
+ P

�
S�n=Bn < �px� :

It su�ces to estimate only the �rst probability in the right-hand side of the above equality,

the second one being handled in the same way. If x > B2
n; then

P
�
S�n=Bn >

p
x
�
= 0;

thus there is nothing to prove in this case. Let x � Bn: Then denoting t = 2c2
p
x one obtains

P
�
S�n >

p
x
� � P

�
Sn >

p
x
� � exp

��tpx	E exp ftSn=Bng

= exp
��tpx	 nY

i=1

E exp ft�i=Bng : (99)

Note that t=Bn = 2c2
p
x=Bn � 2c2 � �0=3: Then by Lemma 25

E exp ft�i=Bng � exp
�
t2E�2i =B

2
n

	
:
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Inserting this into (99) we get

P
�
S�n=Bn >

p
x
� � exp

��tpx	 nY
i=1

exp
�
t2E�2i =B

2
n

	
= exp

��tpx+ t2
	 � exp f�c2xg :

this proving (98). Integrating by parts we have

E exp
�
c1(S

�

n)
2=Bn

	
=

Z
1

0

expfc1xgdF (x)

= 1 +

Z
1

0

F (x) expfc1xgdx

� 1 + 2

Z
1

0

expfc1x� c2xgdx
� 1 + 2=c1:
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