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Abstract. A new numerical technique is proposed to study the stochastic resonance

(SR) phenomenon. The proposed numerical approach allows to �nd characteristics of

SR faster than the previous ones. The signal-to-noise ratio and phase shifts for a system

of noisy coupled oscillators are simulated. The spatiotemporal synchronization is shown

by means of trajectory analysis.

1. Introduction

The term �stochastic resonance� (SR) is historically used in connection with a variety

of e�ects attributable to the interaction between a periodic applied force and noise in
nonlinear systems. SR was �rst considered in the context of the earth's ice ages [1], then
observed in lasers [2], applied to sensory neurophysiological and brain function problems
[3, 4], demonstrated in experiments with a bistable superconducting quantum interference

device [5]. Attempts to exploit SR for technological advantage are one of the main trends
in current research on this topic. As a survey on SR, one can use the proceedings of
workshops [6, 7] or the review [8]. A more comprehensive and actual list of references is
also possible to �nd at the Web site [9].

In recent papers [10, 11, 12] the authors investigate SR in large arrays (up to 512 ele-
ments) of noisy coupled oscillators. The phenomenon was named in [10] as array enhanced
stochastic resonance (AESR). It was shown that additionally to common features of SR,
AESR demonstrates a spatiotemporal synchronization and there is an additional design
parameter - the coupling strength, which essentially a�ects the behavior of SR character-

istics. The experimental evidence of the AESR phenomenon was reported in [13], where
it was shown that the signal-to-noise ratio of the output signal of a single diode resonator
can be signi�cantly improved by coupling it di�usively into an array of resonators. The
spatiotemporal synchronization was also experimentally con�rmed. The authors marked

[10, 11, 13] that the AESR phenomenon may �nd its further applications in neural dy-
namics and in the area of signal processing. AESR was studied analytically in some limit
cases [14, 11], but the basic tool for its investigation is numerical simulation of a system
of stochastic di�erential equations (SDE).

To calculate the characteristics describing SR, one must integrate the system on long
time intervals and simulate a su�ciently large number of independent realizations. Main
characteristics of SR (e.g., signal-to-noise ratio) are expectations of functionals of SDE
solution. As is known [15, 16, 17, 18], weak numerical methods are su�cient to calculate
such quantities and are quite simple for realization and e�cient. Special powerful weak

numerical methods for SDE with relatively small noise were proposed in [19]. The e�ects
of SR can usually be observed under small noise, and one can believe that the methods
of Ref. [19] may be a good tool for studying the SR phenomenon. The �rst tests with
one-dimensional Stratonovich equation, describing the multiplicative stochastic resonance

in optical bistable system [20], gave good results [19]. Here we apply these methods and
propose a numerical technique to study the SR phenomenon. The proposed numerical
approach allows us to study properties of SR faster than the previous ones.
The paper is organized as follows. The numerical technique for calculating the signal-

to-noise ratio and phase shifts is proposed in Section 2. Section 3 contains numerical
results for the array of noisy coupled oscillators. We consider the technique on a simple
model, but it is also valid for more complicated systems.
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2. Description of the numerical technique

Following Refs. [10, 11], we consider the system

dX(i) = [aX(i) � bX(i)3 + A sin(
t + ') + c(X(i+1) � 2X(i) +X(i�1))]dt+ "dWi(t)

i = 1; 2; : : : ; n; X(0) � X(1); X(n+1) � X(n); X(0) = Xo; t 2 [0; T ](2.1)

where X = (X(1); X(2); : : : ; X(n)) is an n�dimensional vector, Wi; i = 1; : : : ; n; are inde-
pendent standard Wiener processes. The system (2.1) describes a one-dimensional array
(chain) of over-damped driven nonlinear oscillators coupled linearly to their nearest neigh-
bors. To ensure a bistable potential (two-state points), a and b must be positive. The

phase ' is taken as a uniformly distributed random variable on the interval [0; 2�], and
the coupling parameter c > 0 .
Let us remind of some de�nitions of the theory of random processes, which are used

below.

A random process �(t), �(t) 2 Rn, t > to; is a stationary process [21, 22] if it has two
�rst moments E�(t); Ej�(t)j2 and

E�(t) = E�(t+ �) = const

cov(�(t); �(s)) = cov(�(t+ �); �(s+ �)) for any t; s; and �(2.2)

where cov(�(t); �(s)) is the covariation matrix:

cov(�(t); �(s)) = E�(t)�(s)T � E�(t)E�(s)T :

A random process �(t) is a periodic one with a period To [21] if

E�(t) = E�(t+ To)

cov(�(t); �(s)) = cov(�(t+ To); �(s+ To)) for any t; s:(2.3)

In accordance with Theorem 5.2 and the examples 1, 3 of Ch. 3, � 5 of Ref. [21],
there is a solution X(t) of the system (2.1) at each �xed ', which is a periodic markovian

process with the period 2�=
. The periodic process can be converted into a stationary
one by the following shift of time [23, 21]: if � is a random variable, distributed uniformly
on [0; 2�=
] and independent on X(t), the process �(t) = X(t+�) is stationary. So, there
is a stationary solution X(t) of the system (2.1) in the case of uniformly distributed on

[0; 2�], independent on X(t) random phase '.1 Due to Theorem 7.1 of Ref. [21, Ch. 4],
there is the unique stationary markovian process X(t) corresponding to the system (2.1),
and the solutions of (2.1) under any initial distribution of Xo converge to this stationary
process in the weak sense as t!1.2

Let us consider a constituent oscillator of the chain, e.g., the middle one, described by

(2.1). Below we shall denote a constituent component (oscillator) X(l); l 2 f1; 2; : : : ; ng;
of the vector X(t) � (X(1); : : : ; X(n)) by Xc(t) and its correlation function by K(�)
(K(�) = EXc(t)Xc(t+ �)�m2; m = EXc(t) ).
If one converts a periodic process with the period 2�=
 into a stationary one by the

above described time shift, the correlation function of the stationary process has the
following form [23]

K(�) = Ko(�) + 2

1X
k=1

�k cos k
�:(2.4)

1The physical background to use such a distribution of the phase ' can be found, e.g, in [24, 8].
2The conditions of Theorem 7.1 contain a requirement on process X(t) to be recurrent. The ful�lment

of the requirement follows from Lemma 8.1 and the example 3 of Ref. [21, Ch. 3,� 8].
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Figure 1. The correlation function K(�) of the middle oscilator from
the array of nine oscillators described by (2.1) under the parameters:

a = 2:1078, b = 1:4706, A = 1:3039, 
 = 0:7301, c = 0:5, " = 0:5,
f = 
=2�, Ts = 3=f , and simulated by (2.7) with h = 0:1. The Monte
Carlo error is less than 0:0056.

In our case Ko(�) goes fast to zero and �k = 0 for even k. Figure 1 demonstrates
the behavior of the correlation function for the constituent component of system (2.1).

According to the de�nition, the spectral function F (!) can be written as

F (!) =
1

�

Z
1

0

K(�)
sin!�

�
d�; ! 2 [0;1)

Using the properties of K(�); we have

F (!) = Fo(!) +

1X
k=1

�2k�1 �(! � (2k � 1)
)

where

Fo(!) =
1

�

Z
1

0

Ko(�)
sin!�

�
d�; �(x) =

8<
:

0; x < 0

1=2; x = 0

1; x > 0

And the spectral density S(!) is equal to

S(!) = So(!) +

1X
k=1

�2k�1 �(! � (2k � 1)
);(2.5)

So(!) =
dFo(!)

d!
=

1

�

Z
1

0

Ko(�) cos!� d�(2.6)

So, as it is generally known, the spectrum S(!) for a system like (2.1) consists of a
broadband noise background and �-function spikes at frequencies ! = (2k � 1)
; k =

1; 2; : : : .
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2.1. Numerical method. Let us introduce an equidistant discretization 4N of the
interval [0; T ] : 4N = fti : i = 0; 1; : : : ; N ; 0 = to < t1 < : : : < tN = Tg; the time step
h = ti+1 � ti.
To simulate the system (2.1), which is a system with additive noises, we take the weak

full Runge-Kutta method with the error O(h4 + "4h2) from Ref. [19]. In the case of the

system (2.1) the method has the form

X
(i)
k+1 = X

(i)
k + "h1=2�

(i)
k +

�
k
(i)
1 + 2k

(i)
2 + 2k

(i)
3 + k

(i)
4

�
=6 + "h3=2a�

(i)
k

�hb
�
(X

(i)
k + "h1=2�

(i)
k )3 � (X

(i)
k � "h1=2�

(i)
k )3

�
=2 + "h3=2c

�
�
(i+1)
k � 2�

(i)
k + �

(i�1)
k

�
;

i = 1; : : : ; n; k = 0; 1; : : : ; N(2.7)

where (X
(1)
k ; X

(2)
k ; : : : ; X

(n)
k ) = Xk = �X(tk) is the approximation of a solution X(tk) of

the system (2.1),

k
(i)
1 = h

�
aX

(i)
k � bX

(i)3

k + Avk + c
�
X

(i+1)
k � 2X

(i)
k +X

(i�1)
k

��
;

k
(i)
2 = h

�
a
�
X

(i)
k + k

(i)
1 =2

�
� b

�
X

(i)
k + k

(i)
1 =2

�3
+ A(vk + l1=2)

+c
��
X

(i+1)
k + k

(i+1)
1 =2

�
� 2

�
X

(i)
k + k

(i)
1 =2

�
+

�
X

(i�1)
k + k

(i�1)
1 =2

���
;

k
(i)
3 = h

�
a
�
X

(i)
k + "h1=2�

(i)
k + k

(i)
2 =2

�
� b

�
X

(i)
k + "h1=2�

(i)
k + k

(i)
2 =2

�3
+ A(vk + l2=2)

+c
��
X

(i+1)
k + "h1=2�

(i+1)
k + k

(i+1)
2 =2

�
� 2

�
X

(i)
k + "h1=2�

(i)
k + k

(i)
2 =2

�

+

�
X

(i�1)
k + "h1=2�

(i�1)
k + k

(i�1)
2 =2

���

k
(i)
4 = h

�
a
�
X

(i)
k + "h1=2�

(i)
k + k

(i)
3

�
� b

�
X

(i)
k + "h1=2�

(i)
k + k

(i)
3

�3
+ A(vk + l3)

+c
��
X

(i+1)
k + "h1=2�

(i+1)
k + k

(i+1)
3

�
� 2

�
X

(i)
k + "h1=2�

(i)
k + k

(i)
3

�

+

�
X

(i�1)
k + "h1=2�

(i�1)
k + k

(i�1)
3

���

k
(o)
j � k

(1)
j ; k

(n+1)
j � k

(n)
j ; j = 1; : : : ; 4; X

(o)
k � X

(1)
k ; X

(n+1)
k � X

(n)
k(2.8)

Here we simulate sin(
t + ') of (2.1) by the system

du = �
v dt;

dv = 
u dt;(2.9)

u(0) = uo = cos'; v(0) = vo = sin'

where ' is a random variable distributed uniformly on the interval [0; 2�]. The system
(2.9) is approximated by

uk+1 = uk + (m1 + 2m2 + 2m3 +m4) =6;
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vk+1 = vk + (l1 + 2l2 + 2l3 + l4) =6(2.10)

where

m1 = �h
vk; l1 = h
uk; m2 = �h
 (vk + l1=2) ; l2 = h
 (uk +m1=2) ;

m3 = �h
 (vk + l2=2) ; l3 = h
 (uk +m2=2) ;

m4 = �h
 (vk + l3) ; l4 = h
 (uk +m3) :(2.11)

We use vk and lj; j = 1; 2; 3 of (2.10)-(2.11) in the expressions of (2.8).

The mutually independent random variables �
(i)
k and �

(i)
k from (2.7)-(2.8) are simulated

according to the laws

P (� = 0) = 2=3; P (� = �
p
3) = P (� =

p
3) = 1=6;

P (� = �1=
p
12) = P (� = 1=

p
12) = 1=2

The method (2.7) has the second order of weak convergence with respect to the time
step h. But it usually gives more accurate results (especially under low noise level) and is

not essentially more complicated from the computational point of view than a standard
weak method of order 2 [15, 16, 17, 18] (see details in [19]). To carry out our experiments,
we do not take a more accurate method: a standard method of order 3 or methods with
errors O(h4 + "6h2); O(h4 + "2h3); O(h4 + "4h3); etc. of [19], because the method (2.7)

ensures enough accuracy and speed of calculations to study SR characteristics in our
case and there are no reasons to take a more accurate and, naturally, more complicated
method (e.g., there are no full Runge-Kutta schemes among the mentioned more accurate
methods).

2.2. Evaluation of the signal-to-noise ratio. One of the main characteristics, de-
scribing the SR phenomenon, is the signal-to-noise ratio (SNR). SNR is a commonly used
measure of the information content of the response of a system. The remarkable property
of the SR phenomenon is the non-monotonic behavior of SNR as a function of noise level.
The function has a maximum, and there is a noise level for which the system acts as a

selective ampli�er in some range of frequencies.
Here we use the following de�nition of the output SNR, R; for a constituent oscillator:

R =
�1

So(
)
(2.12)

where �1 and So(
) are from (2.5), i.e., R is the ratio of the signal power and noise back-

ground at the frequency of applied periodic force. The existing in literature distinctions
in SNR de�nition do not lead to qualitatively di�erent results.
Let us take into consideration a su�ciently small interval of frequencies [
��
;
+�
]

(so called �signal bin�) and approximate R by ~R

~R =
Q(
;�
)��
(So(
��
) + So(
 + �
))

(So(
��
) + So(
 + �
))=2
;(2.13)

where

Q(
;�
) = F (
 + �
)� F (
��
) =
2

�

Z
1

0

K(�) cos
�
sin�
�

�
d�:

This approximation of SNR coincides in general with one used in other papers on SR.
Here, as it is usually done, So(!) is assumed to be a su�ciently slowly variating function.
Our experiments proved this fact.
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To calculate SNR the stationary conditions (2.2) for the solution of (2.1) must be
ful�lled. (As mentioned at the beginning of this section, the system (2.1) has a stationary
solution.) Naturally, we can ensure this requirement rigorously only at in�nite time. But
the solution may already have good (for our aims, i.e., an error arising due to this reason
is not greater than the other errors in the experiment) stationary properties at a certain

time moment Ts after the beginning of SDE simulation. We checked the ful�lment of
the conditions (2.2) for a solution of SDE (2.1) in our experiments by the calculation of
EX(s) and K(�) = K(s; s+ �) for various s and found that it is enough to take Ts equal
to 3 periods of the applied periodic force in our case. We also found that EX(s) is equal
to zero, and below we write formulas omitting EX(s).
Due to the fact that the system is simulated on a �nite time interval [0; Ts+T ], we ap-

proximateQ(
;�
) and So(!) by QT (
;�
) and SoT (!) correspondingly. Consequently,
we calculate the following value

~RT =
QT (
;�
)��
(SoT (
��
) + SoT (
 + �
))

(SoT (
��
) + SoT (
 + �
))=2
(2.14)

in our numerical experiments, which approximates ~R and, therefore, R: Note that we

simulate the system (2.1) on the time interval [0; Ts] to ensure the stationary properties

(2.2) and on the time interval [Ts; Ts + T ] to calculate ~RT :
The function QT (
;�
) in (2.14) is equal to

QT (
;�
) =
2

�

Z T

0

K(�) cos
�
sin�
�

�
d�

=
2

�
E

�
Xc(Ts)

Z Ts+T

Ts

Xc(t) cos
(t� Ts)
sin�
(t � Ts)

t� Ts
dt

�

and we calculate it as

QT (
;�
) =
2

�
EXc(Ts)Z(Ts + T )(2.15)

where Z(t) obeys the following subsidiary equation

dZ = Xc(t) cos
(t� Ts)
sin�
(t� Ts)

t� Ts
dt; Z(Ts) = 0

which we simulate together with the system (2.1) using the same method as described in
Section 2.1.
The spectral function F (!) can be rewritten as

F (!) =
1

�

Z
1

0

K(�)
sin!�

�
d� = lim

T!1

1

�

Z T

0

K(�)

�
1

�
�

1

T

�
sin!� d�

because 1
T

R T

0
K(�) sin!� d� goes to zero as T goes to in�nity. Then, using the relation

[22] Z T

0

K(�)
�
1�

�

T

�
cos!� d� =

1

2T
E

����
Z Ts+T

Ts

Xc(t) e
iw(t�Ts) dt

����
2

(2.16)

we have

F (!) = lim
T!1

1

2�T

Z !

0

E

����
Z Ts+T

Ts

Xc(t) e
i ~w(t�Ts) dt

����
2

d~!

and

~S(!) = lim
T!1

1

2�T
E

����
Z Ts+T

Ts

Xc(t) e
iw(t�Ts) dt

����
2
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The function ~S(!) is exactly equal to So(!) at the points ! 6= (2k � 1)
; k = 1; 2; : : : .3

Then, we can take the function ST (!)

ST (!) =
1

2�T
E

����
Z Ts+T

Ts

Xc(t) e
iw(t�Ts) dt

����
2

instead of SoT (!) on calculating ~RT (see (2.14)) if �
 is su�ciently small and such that
ST (!) has no sharp variations outside the intervals ((2k�1)
��
; (2k�1)
+�
); k =

1; 2; : : : . We calculate ST (!) as

ST (!) =
1

2�T
E
�
Ŷ 2
! (Ts + T ) + �Y 2

! (Ts + T )
�

(2.17)

where Ŷ!(t) and �Y!(t) obey the following equations

dŶ! = Xc(t) cos!(t� Ts) dt;

d �Y! = Xc(t) sin!(t� Ts) dt;(2.18)

Ŷ!(Ts) = �Y!(Ts) = 0:

We take into account here that X(t) is a process with real values. We simulate (2.18)

together with the system (2.1) by the same method as described in Section 2.1.
Additionally to common errors (a method error and Monte Carlo error) arising in

simulation of SDE by a weak method, we have errors on calculating ~R due to �nite time

of simulation.
The estimatorsQT (
;�
) and ST (!) are biased ones forQ(
;�
) and So(!) (see, e.g.,

[25]) since the errors �QT
(
;�
) = Q(
;�
)�QT (
;�
) and �ST (!) = So(!)�ST (!)

are usually not equal to zero. But taking enough large T; we can ensure a su�cient
smallness of these errors. To prove the smallness in comparison with other errors arising

in our experiments, we check a variation of ~RT with growing T: We consider Ts + T as

enough big time for simulation if the variation of ~RT with growing T is not greater than

the other errors, e.g., as the Monte Carlo error. To check that taken time step h ensures
the numerical integration error to be not greater than the other errors in our experiments,

we carry out the repeated calculations of some points of ~RT with the time step h=2.
The �niteness of time interval also produces loss of spectrum resolution [25], according

to which we can calculate ST (!) only at ! = 2�k=T; k = 0; 1; 2; : : : .
Because of time discretization, that we naturally use for numerical simulation of (2.1),

the highest frequency (the Nyquist frequency), which is possible to pick out, is equal to

3Indeed, according to (2.6) and (2.4)

So(!) =
1

�

Z
1

0

Ko(�) cos!� d� =
1

�

Z
1

0

"
K(�)� 2

1X
k=1

�2k�1 cos(2k � 1)
�

#
cos!� d�

Then, in the case of ! 6= (2k � 1)
; k = 1; 2; : : : we have

So(!) =
1

�
lim
T!1

(Z
T

0

K(�) cos!� d� �

1X
k=1

�2k�1

�
sin((2k � 1)
 + !)T

(2k � 1)
 + !
+

sin((2k � 1)
� !)T

(2k � 1)
� !

�)

Using the limits:Z
T

0

�

T
Ko(�) cos!� d� ! 0 and

Z
T

0

�
1�

�

T

�
cos ~!� d� ! 0 as T !1

and (2.16), we obtain

So(!) =
1

�
lim
T!1

Z T

0

K(�)
�
1�

�

T

�
cos!� d� = lim

T!1

1

2�T
E

�����
Z Ts+T

Ts

Xc(t) e
iw(t�Ts)

dt

�����
2

= ~S(!)

at ! 6= (2k � 1)
; k = 1; 2; : : : .
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!N = �=h [25], where h is a step of time discretization. Note that the time step h in our
experiments is such that frequencies of the interesting range [
��
;
+�
] are much
smaller than !N .

Remark 2.1. As mentioned above, we simulate values like Ef(X(T1))g(X(T2)) (e.g.,
K(�) or QT (
;�
) ) by the weak method. But the existing theorems on weak con-
vergence of a numerical method [15, 16, 17, 18, 19] were proved for calculating an ex-

pectation like Ef(X(T )): The proposition of Appendix gives us a right also to simulate
Ef(X(T1))g(X(T2)) by weak methods.

Remark 2.2. One can see that our procedure of calculating SNR is a little bit di�erent
in comparison with the generally used one. The procedure usually contains the following
steps (see, e.g., [4, 10, 11])
a) simulation of SDE solutions X(t) by a mean-square method (as a rule, the mean-

square Euler method);
b) obtained random trajectories X(t) are considered as experimental statistical data, to

which fast Fourier transform is applied to calculate a random spectrum, and by averaging
a number of segments and samples of the random spectrum, ST (!) is found;
c) SNR is calculated on the base of ST (!) (�1 is found as a square under ST (!) in a

signal bin).
According to our procedure, we use a weak method, which gives us an opportunity to

calculate the needed values with a large integration step (e.g., 0.1 in our experiments)
in comparison with the steps (0.005, 0.002, etc.) taken in the previous works (see, e.g.,

[4, 10, 11]); we simulate both the investigated system and the values needed for the ap-

proximation ~RT of SNR by the same numerical method. Due to its features, the proposed
technique essentially saves CPU time providing a su�ciently high accuracy.

2.3. Simulation of phase shifts. Another important characteristic of SR is a phase lag
(phase shift) between the applied periodic force and the response. The phase shift is a
quantity of special interest in the context of condensed-matter physics since it is the phase
shift that determines the absorption of the energy from the force [26]. It was found for

one-dimensional systems (see, e.g., [27, 26]) that the phase shift also has a non-monotonic
(extremal) behavior with noise increasing.
As mentioned at the beginning of this section, a solution X(t) of (2.1) is a periodic one

under any �xed initial phase ': By the de�nition of periodic process (see (2.3)), we have

E [X(t)j' = 'o] = E [X(t+ 2�=
)j' = 'o]

Then, we can expand E [X(t)j' = 'o] in the Fourier series:

E [X(t)j' = 'o] =

1X
k=0

�k sin(k
t + 'o �  k)

As is usual (see, e.g., [27, 26]), we are interesting in the value of the phase shift  1: It can
be found as

 1 = � arctan(EZ1(Ts + T )=EZ2(Ts + T ))(2.19)

where Z1(t) and Z2(t) obey the following equations

dZ1 = Xc(t) cos(
t + ') dt;

dZ2 = Xc(t) sin(
t + ') dt;(2.20)

Z1(Ts) = Z2(Ts) = 0

Here Ts is a time moment, after which we suppose, as above, that X(t) has already good
stationary properties; T is equal to 2�k=
; k = 1; 2; : : : ; the initial phase ' in (2.20)
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Figure 2. Signal-to-noise ratio versus noise level for the middle oscillators

of the arrays (2.1) under the parameters: a = 2:1078, b = 1:4706, A =

1:3039, 
 = 0:7301, Ts = 6�=
, T = 40�=
. The Monte Carlo error is less
than 0:26.

is the same as in SDE (2.1) for X(t) (we take it uniformly distributed as above). The
equations (2.20) are also simulated by the weak method (2.7) of Section 2.1.

3. Results of numerical experiment

To carry out our experiments, we take the parameters of the system (2.1) for array of
noisy coupled oscillators just as in [10, 11]. They are a = 2:1078; b = 1:4706; A = 1:3039;

 = 0:7301: These values of parameters provide the operating regime just below the

deterministic switching threshold so that in the absence of noise the oscillator is con�ned
to a single well of the bistable potential, but small noise can induce signi�cant hopping
between wells [10]. As mentioned in [10, 11], these parameter values are not special and
the features of AESR can also be observed at another set of parameters. The di�erential

equations of Section 2, needed for calculating SNR and phase shifts, are simulated by the
weak method (2.7) with the time step h = 0:1; with exception of the curves of Figure 5
where we use h = 0:2 for noise level " = 0�0:5 (note that the main SR e�ect on the phase
shifts is namely in this range of "): To calculate the needed mean values, we simulate Nr

independent realizations of a solution X(t) of (2.1). We take Nr equal to 4000 in all our

experiments, excepting the curve of Figure 5 under c = 0 and " = 0:02� 0:15 for which
Nr = 10000: All the errors arising in our experiments are smaller or comparable with the
Monte Carlo error (we control the errors by the repeated calculations of some points of
SNR and phase shifts under a smaller step h, greater Nr; and greater T ). To simulate

the needed random variables, we use random generators of Ref. [28].
Figures 2, 3 and 4 present the SNR behavior. SNR is a non-monotonic (extremal)

function both of noise and of coupling. If the extremal behavior with noise increasing is
a common feature of all systems connected with the SR phenomenon, the SNR extremal

behavior with growing of coupling is attributable to the AESR phenomenon. These results
coincide with ones of [10, 11]. We also come to the same conclusion as authors of the
previous papers that increasing of the array length n improves SNR. However, according

9
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Figure 3. Signal-to-noise ratio versus noise level " and coupling c for the
middle oscillator of the array of three oscillators (2.1). The parameters are
the same as in Figure 2. The Monte Carlo error is less than 0:17.
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1.5 1
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Noise level Coupling

SNR

Figure 4. Signal-to-noise ratio versus noise level " and coupling c for the
middle oscillator of the array of nine oscillators. The parameters are the
same as in Figure 2. The Monte Carlo error is less than 0:3.

to Figure 2, there is a length n
�
of the array such that further increasing of the array

length n does not lead to improving SNR at each �xed coupling c.
Figures 5 and 6 show the extremal behavior of the phase shifts. Maxima of phase shifts

appear at a lower noise level in comparison with the noise level corresponding to the
SNR maxima. This fact corresponds with the results of Ref. [27] on a single oscillator.
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Figure 5. The phase shifts  1 of the middle oscilators from the corre-
sponding arrays described by (2.1). The parameters are the same as in
Figure 2 (with exception of T = 8�=
). The Monte Carlo error is less than
1:7
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Figure 6. The phase shifts  1 versus noise level " and coupling c of the
middle oscilator from the array of three oscillators. The parameters are the
same as in Figure 5. The Monte Carlo error is less than 1:9.

The phase shift is also a non-monotonic function of coupling in the case of noisy coupled
oscillators (see Figure 6). Increasing of the array length n improves the e�ect just as it
a�ects SNR (see Figure 5).
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Figure 7. A sample trajectories of the �rst (dotted line) and the middle
(solid line) oscillators of the array of 33 oscillators (2.1) under c = 1:8 and

" = 0:001. Other parameter values are the same as in Figure 2.
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t

Figure 8. A sample trajectories of the �rst (dotted line) and the middle
(solid line) oscillators of the array of 33 oscillators under c = 1:8 and " = 0:1.
Other parameter values are the same as in Figure 2.

Another interesting feature of the AESR phenomenon is known as a spatiotemporal syn-
chronization [10, 11, 13]. The spatiotemporal synchronization means within the AESR

context that an oscillator of the array changes its temporal order synchronously with
other elements of the array with noise increasing. Note that such a coherence behavior
of oscillators occurs even in the absence of coupling, c = 0; (see [14]), and one can also
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Figure 9. A sample trajectories of the �rst (dotted line) and the middle
(solid line) oscillators of the array of 33 oscillators under c = 1:8 and " = 1:5.
Other parameter values are the same as in Figure 2.

observe a synchronous behavior of various sample trajectories of a single oscillator under
a certain noise level. As mentioned in [14] and observed in our experiments, the e�ect of
spatiotemporal synchronization is improved by increasing the coupling. The spatiotem-
poral synchronization was shown through the observation of trajectories of oscillators and

by an occupancy function in the previous papers. Here we demonstrate the synchronous
behavior of the array elements by the trajectory analysis (compare Figures 7, 8, and 9).
We simulate sample trajectories for (2.1) by the mean-square Runge-Kutta method with

error O(h4 + "2h3=2) of Ref. [29]. At a low noise level (Figure 7) the array elements

oscillate during a long time around one of two stable states depending on the initial con-
ditions. Random switching appears more often with noise increasing and the array loses
its temporal order (Figure 8). At a certain noise level (Figure 9), which is close to the
level corresponding to the SNR maximum, oscillators live together approximately 1=2 -

period of the applied periodic force in one well of the bistable potential and 1=2-period in
another one, the spatiotemporal order is formed. Naturally, the order is corrupted under
a higher noise level. Note that we observe the sample trajectories after the time moment
Ts (i.e., t = 0 of these �gures corresponds with Ts).

4. Appendix.

De�nition 4.1. A function f(x) belongs to the class F ; f 2 F , if constants K > 0 and
{ � 0 are such that the inequality

jf(x)j � K(1 + jxj{)(4.1)

is ful�lled for any x 2 Rn.

Note that the same letter K for various constants and the same notation K(x) for
various functions of the class F are used in the estimates below.

Proposition 4.1. Let us consider
(1) a system of stochastic di�erential equations, for which we assume that

13



- its coe�cients are continuous, satisfy the Lipschitz condition and belong to the class F
together with their partial derivatives up to a su�ciently high order, and there are imposed
additional restrictions on the coe�cients such that the solution X(t); X(t0) = Xo; exists
on the whole time interval t 2 [to; T ];

4

- the moments EjX(t)jm exist for a su�ciently large number m and are uniformly

bounded with respect to t 2 [to; T ] ;
5

(2) a method Xk = �X(tk); k = 0; 1; : : : ; N; �X(to) = Xo, for which we assume that
- it approximates the solution X(t) of the system in weak sense with the error��Ef(Xto;Xo

(tN )� Ef( �Xto;Xo
(tN))

�� � K(Xo) h
p(4.2)

where p > 0; h = ti � ti�1; i = 1; : : : ; N; is a step of discretization of the time interval
[to; T ] ; tN = T ; f(x); K(x) 2 F ;

- the moments EjXkjm exist for a su�ciently large number m and are uniformly bounded
with respect to N; k = 0; 1; : : : ; N:

Then for any N2 � N1��Ef(Xto;Xo
(tN1

))g(Xto;Xo
(tN2

))� Ef( �Xto;Xo
(tN1

))g( �Xto;Xo
(tN2

))
�� � K hp(4.3)

where f(x); g(x) 2 F , and the constant K depends on Xo and tN2
.

Proof. Let tN1
= T1; tN2

= T2: The inequality (4.3) can be rewritten as

� = jEf(Xto;Xo
(T1))g(Xto;Xo

(T2))� Ef( �Xto;Xo
(T1))g( �Xto;Xo

(T2))j
=

���Ef( �Xto;Xo
(T1))g(XT1; �X(T1)(T2))� Ef( �Xto;Xo

(T1))g( �XT1; �X(T1)(T2))
�

+
�
Ef(Xto;Xo

(T1))g(Xto;Xo
(T2))� Ef( �Xto;Xo

(T1))g(XT1; �X(T1)(T2))
���

�
��E �f( �Xto;Xo

(T1))E
�
g(XT1; �X(T1)(T2))� g( �XT1; �X(T1)(T2))

�� �X(T1)
	���

+ jE [f(Xto;Xo
(T1))Efg(Xto;Xo

(T2))jX(T1)g]
� E

�
f( �Xto;Xo

(T1))Efg(XT1; �X(T1)(T2))j �X(T1)g
���(4.4)

According to the conditions of the proposition, we obtain for the �rst term of (4.4):

�1 =
��E �f( �Xto;Xo

(T1))E
�
g(XT1; �X(T1)(T2))� g( �XT1; �X(T1)(T2))

�� �X(T1)
	���

� E
�
jf( �Xto;Xo

(T1))j �K( �X(T1))h
p
�
� Khp

Let us involve the function

u(s; t) = Eg(Xs;x(T2))

Due to the conditions (1) of the proposition, the function u has partial derivatives with

respect to x up to a su�ciently high order, and the function u and its derivatives belong
to the class F [30] (see Theorem 1 of � 8 and its Corollary 16). The function u(s; x)
uniformly, with respect to s 2 [to; T2], satis�es such an inequality as (4.2).
Now the second term of (4.4) can be rewritten as

�2 = jE [f(Xto;Xo
(T1))Efg(Xto;Xo

(T2))jX(T1)g]
� E

�
f( �Xto;Xo

(T1))Efg(XT1; �X(T1)(T2))j �X(T1)g
���

=
��E [f(Xto;Xo

(T1))u(T1; Xto;Xo
(T1))]� E

�
f( �Xto;Xo

(T1))u(T1; �Xto;Xo
(T1))

���
4One can check the ful�lment of this assumption for the system (2.1) by Theorem 4.1 of Ch. 3, � 4

[21].
5The ful�lment of this assumption for the system (2.1) follows from the results of Ch. 3, � 4 [21] taking

into account that in our case the Lyapunov function V = (jxj2 + 1)m=2 satis�es conditions of Theorem

4.1 of Ch.3, � 4 [21] for any m > 0:
6Conditions of this theorem contain the requirement on the growth of the SDE coe�cients to be not

greater than linear. But its proof uses only the boundedness of su�ciently high moments of SDE solution

(see the conditions (1) of our proposition).
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Involving the function  (x) = f(x)u(x);  (x) 2 F , and using (4.2), we obtain

�2 � Khp

So, we have

� � �1 + �2 � Khp

Remark 4.1. The conditions of the proposition correspond with the existing theorems
on weak convergence of numerical methods for SDE [15, 16, 17, 18]. It is also possible

to prove the similar proposition for the methods of Ref. [19], where errors have the form
O(hp + "{hq):
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