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Abstract. We discuss various instances where wavelets on the interval serve as 
building blocks for extending wavelet methods to problems that are neither periodic 
nor defined on the whole Euclidean space. We then briefly review several proper-
ties of such wavelets which are relevant for the previously mentioned applications. 
Finally, we take a closer look at the quantitative stability properties of wavelets on 
the interval and indicate ways of improving them. 

§1. Introduction 

So far wavelet methods unfold their full computational efficiency mainly when 
applied to problems defined on the whole Euclidean space or on the torus. In 
this case all the essential algorithmic ingredients are stationary with respect 
to dilation and integer translation. Thus, Fourier techniques not only support 
the speed of calculations but also the construction, analysis and fine tuning 
of a rich family of versatile tools. Some of the characteristic properties of 
wavelets suggest their application, in particular, to the numerical treatment 
of operator equations. We briefly recall first some of the main driving mech-
anisms in this context. Then we discuss principal strategies of extending the 
applicability of wavelet techniques to problems formulated on more general 
domains. Specifically, we focus on the role of wavelets on the interval as a 
core ingredient of such developments. After briefly reviewing recent related 
constructions and results we conclude with a detailed analysis of the quanti-
tative stability properties of such bases on the interval. While on one hand 
biorthogonal wavelets seem to have several conceptual advantages over or-
thonormal ones, their quantitative properties reflected e.g·. by Riesz constants 
are expected to be weaker. In fact, our first experiments (see also [29]) re-
vealed that without taking sufficient care, the condition of the generator bases 
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and the multiscale transformation becomes critically bad for higher degrees 
of polynomial exactness. Therefore, a central objective of this paper is to 
develop stabilizing strategies. 

Recall that the simplest format of a wavelet basis for L2 (lRn) can be 
described as follows. Let V :== { ,\ == 2-i ( ~ + k) : e E {O, 1 }n \ {O}n, j E 
'll, k E 'lln} denote the standard dyadic grid in scale-space domain, and let 

'11 == { '1f;>. : ,\ E V}, 

where for some refinable function cp E L2(1Rn) 

'1f;>. = 2nj/2 '1j;e(2j · -k), '1f;e(x) = L a%<p(2x - k). (1.1) 
kE7ln. 

It is well known that there exist even compactly supported scaling func-
tions cp such that '11 is a complete orthonormal set in L 2 (lRn) consisting only of 
compactly supported functions with diam (supp '1f;>.) behaving like 2-l>.I [22], 
where for A= 2-i( ~ + k) we set I-XI = j. In this case every f E L2(lRn) has a . . umque expansion 

f == :E(f,'lj;>.)Rn.'lj;>., il{(f,'lj;>.)Rn.hE'Vill2('V) == llJllL2(Rn.), (1.2) 
>.E'V 

where 
(f,g)o := j f(x)g(x)dx, 

n 

and for c = {ckhEJ we denote by llclltcJ) = I:kEJ jqj 2 the Euclidean norm 
of the sequence c. 

There are several ways of extending this concept. For instance, instead of 
employing a single generator cp, one could work with a fixed finite collection 
of generators 'Pi, i = 1, ... , r, which gives rise to so called multiwavelet.s (see 
e.g. [2, 23, 31]). One could also relax the requirement of orthonormality. The 
latter is often rather restrictive, and interferes with localization. To describe· 
the various options, it will be very convenient to view expansions of the above 
type formally as the standard scalar product of a coefficient vector with a 
(column) vector of basis functions, i.e., · 

L d>.'l/J>. ==: dTW. 
>.E'V 

Likewise, for any two countable collections 8, <P c L2 (0), we consider the 
matrix 

(8, <P)n :~ ((B,cp)n)eEe,cpEq, · 
Thus, in particular, for v E L2 (0) the quantities (v, <P)n, (<P,v)n will always 
denote row and column vectors, respectively. 
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The importance of (1.2) for many applications lies in the strong interrela-
tion between the continuous world of function spaces with the discrete realm 
of sequences. This is not confined to orthonormal bases. If one is willing to 
give up on equality in the second relation in (1.2) and is content with both 
norms being equivalent, it suffices to work with Riesz bases. This is known to 
imply the existence of a biorthogonal Riesz basis ~, i.e., 

(1.3) 

Here the elements in ~ are defined exactly as in (1.1) with another refinable 
function Cf; E L2(IRn) satisfying 

Even then the interrelation between the continuous and discrete settings usu-
ally extends to a whole scale of function spaces. In fact, denoting by H 5 (IR.n) 
the Sobolev space of all those distributions f such that (1+I·12 )s/2 j E L2 (IRn) 
(where j is the Fourier transform of!), it is known that' for I:= sup {s E 1R: 
'11 C H 9 (IR.n)}, :Y :=sup {s E IR: q, C H 9 (IR.n)} 

llfllHa(Rn) rv llD 9 (!, '1T)nnllt2 (V'), 8 E (-1,/), (1.4) 

[22, 30]. Here ns is the biinfinite diagonal matrix defined by (Ds)).,).' = 
2si).15).,N, and Arv B means that A ;S B and B ;S A where the latter relation 
is to express that B can be bounded by a constant times A uniformly in 
any parameters on which A and B may depend. Norm equivalences of the 
type (1.4) play a key role in several contexts such as preconditioning, matrix 
compression (see e.g. [19]) and the design of adaptive strategies for elliptic 
problems [15]. 

However, these applications naturally arise in connection with bounded 
domains. The simplest model to which the above machinery extends with-
out much difficulty are periodic problems where 1Rn is replaced by the torus 
1R n / 'll n. In fact, the index set \l now has the form \l = \l + U \l _, where 
\l + = {.\ = 2-io k : k E 'lln /2i 0 'lln} for some io E JN, and \l _ = {.\ = 
2-i(~ + k): e E {O, l}n \ {O}n, k E 'lln /2i'lln,j ~ jo}, and the elements of '11 
are replaced by their periodized versions 

'lj;).=2nj/2 L 'l/;e(2j(·+m)-k). 
mE2Zn 

The Sobolev spaces on the torus can be characterized analogously by the 
decay properties of the Fourier coefficients. In particular, H-s (IR.n /'lln) = 
(H 9 (1Rn /'lln))* is the dual of H 5 (IR.n /'lln). The periodized bases give rise to 
norm equivalences that are completely analogous to (1.4). 

We outline next one important implication of (1.4). Suppose that '11, q, 
is a pair of biorthogonal wavelet bases and that the linear operator A : 
Ht(lR.n /rzzn) -+ H-t(IR.n /'lln) is boundedly invertible, i.e., 
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This is known to be the case for a wide range of elliptic pseudo-differential 
operators. Obviously u E Ht(IR.n /'lln) is the unique solution of the operator 
equation 

(1.5) 

if and only if (Au, W)o = (!, W)o, where D := [O, l]n. Making the ansatz 
u = dTw, this gives rise to the (infinite) discrete system 

(Aw, w)~d = (!, w)~. (1.6) 

The matrix (Aw, w)~ is the representation of A in wavelet coordinates. Of 
course, selecting a.ny finite subset A of V and replacing W by WA = { 'l/J.\ : .\ E 
A}, gives rise to a finite linear system characterizing the Galerkin approxi-
mation 

uA E S(wA) :=span WA, 

satisfying 

Unfortunately, when t 'f. 0 the matrices AA :=(Aw A, W A)o grow increasingly 
ill-conditioned when #A gets larger. However, as a consequence of (1.4), one 
can show that when !ti < {, 1 the operator 

(1.7) 

is boundedly invertible on l 2 (V), i.e., the corresponding sections BA are uni-
formly well-conditioned [19] 

(1.8) 

where II· II denotes the spectral norm. Roughly speaking, the norm equivalence 
(1.4) allows one to undo the shift in the Sobolev scale caused by the operator 
A. The continuous problem is thereby transformed into a discrete one which 
is well-posed with respect to the Euclidean metric. In practical terms this 
means that, if these matrices were (nearly) sparse, the corresponding linear 
systems could be efficiently solved by iterative methods. The fact that the near 
sparseness does in fact hold for a wide range of operators, including integral 
operators, is due to yet another important property of wavelets, namely, their 
cancellation property. For wavelets on IR n this is conveniently expressed in 
terms of vanishing moments, i.e., 

j '1l'"if;.(x)dx = 0, e EE.:= {O, l}n \ {O}n, lal < J. (1.9) 
Rn 

The order d of vanishing moments of 'lfae is here exactly the order of polynomial 
exa,ctnes,i; of the dual generator cp. This means that any polynomial of order 
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at most d can be represented as a linear combination of the integer translates 
of <j; (cf. (3.9) below). It is well-known that for operators of the form 

Au= J K(·,x)u(x)dx, 

where K(x, y) is smooth except on the diagonal x = y, the above cancellation 
effect causes those entries (A'if;>..', 'lj;).)0 of the matrix (Aw, w) 0 to become 
smaller when either the supports of 'if;>.' and 'if;>.. or their respective scales 
IA'I, l.\I are far apart from each other (see e.g. [16, 19]). This decay is the 
stronger the higher the order J of vanishing moments is. This is an important 
instance where biorthogonal wavelets offer more flexibility than orthonormal 
ones. In fact, suppose that the order of exactness of the trial spaces S(w A) 
themselves is d. It turns out that even when t < 0, for certain operators A of 
the above form, the matri~es BA can be replaced by spar.sifted matrices Bf 
containing only an order of nonvanishing entries which remains proportional 
to their size, while the solution of the correspondingly perturbed linear system 
still exhibits the same asymptotic accuracy as that of the full system, provided 
that the order J of vanishing moments is strictly larger than the order d of 
exactness of the trial spaces [16, 19). 

The behavior of the coefficient sequence (!,~)Rn of a function f = 
(!,~)Rn W expanded in terms of the basis Wis determined in a similar way by 
the local regularity of f. Now the order of vanishing moments of ~, i.e., the 
exactness of W, determines the decay in (!,~)Rn. Thus, when f is smooth 
except at isolated places, which is the case for the solutions to many elliptic 
operator equations, one expects that only relatively few of the coefficients in 
(!,~)Rn are actually needed to represent f accurately. The analysis of a cor-
responding adaptive algorithm for approximating the solution to an elliptic 
operator equation in [15] relies in an essential way on both effects, namely, 
on the norm equivalences (1.4) as well as on the compression effect resulting 
from cancellation properties like (1.9) for d sufficiently large. 

Another class of problems where the biorthogonal framework for flexible 
choices of d and dis very useful is the discretization of saddle point problems. 
A typical instance arises in connection with the weak formulation of the Stokes 
equation. It is well-known that the trial spaces for velocity and pressure have 
to satisfy a uniform inf-sup condition in order to admit an asymptotically 
stable discretization. It is shown in [17] how to use biorthogonal wavelets 
to construct such stable pairs for any spatial dimension and any order of 
exactness. Moreover, this construction is closely related to the construction 
of compactly supported divergence free wavelets [28, 32, 33]. If one wants to 
approximate the velocity at a higher rate of accuracy than the pressure, it is 
again necessary to choose the order of exactness of the dual wavelets higher 
than that of the primal ones. 

All the above examples show that wavelets as discretization tools, are 
much more sophisticated than conventional discretizations in that correspond-
ing expansions provide very refined information about the underlying object. 
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In summary, important driving mechanis:ms of wavelet based schemes in nu-
merical analysis are norm equivalences like (1.4) and cancellation properties 
like (1.9). In particular, in many cases it is desirable to have a larger order of 
vanishing moments than the order of exactness of the primal multiresolution 
spaces. On the other hand, the realization of these crucial properties (1.4), 
(1.9) seems to impose significant constraints on the underlying domain. 

Several strategies to overcome these limitations are conceivable. One can 
try to adapt the wavelet basis to the underlying domain. It has been shown 
in [14] that this is, in principle, possible for rather general Lipschitz domains. 
However, the precise practical ramifications of this approach are not clear 
yet. An alternative is to embed a given problem defined on a domain n into 
a problem defined on a simpler domain such as the torus (see e.g. [25]) and 
treat boundary conditions separately [4, 5, 27]. This may not be suitable 
in the presence of boundary layers or even impossible when the underlying 
domain is a closed surface. This latter case is of particular interest for the 
treatment of boundary integral equations. There is a third possibility which 
will be addressed in the following section. 

§2. Composing Local Wavelet Bases 

The starting point is that much of the sophistication of wavelet bases on 
Euclidean space or on the torus is retained by such bases on cubes. Again 
let D :== [O, 1 ]n. Many operator equations of practical interest are formulat-
ed on domains which can be represented as the essentially disjoint union of 
parametric images of D, i.e., 

N 

n == LJ ~i(D), (2.1) 
i=l 

I 

where the ~i : IRn -t IRn, n::::; n', are regular parametrizations. Thus, n could 
be a bounded domain in IR n as well as a closed 2-dimensional surface in IR 3 • 

Concerning this latter case one can resort to extensive software developed in 
the CAGD community. Here the individual mappings ~i are polynomial or 
rational transformations usually represented in Bernstein-Bezier form, so that 
the global smoothness of n can be expressed in terms of relations between the 
control coefficients of adjacent patches. In such a case it is natural to try 
to induce wavelet bases on the global manifold n comp.osed of wavelet bases 
defined initially only on the individual patches ni == ~i(D). The bases on ni, 
in turn, can be lifted from D as follows. Suppose that w0 ' '1t 0 is a pair of 
biorthogonal wavelet bases on 0. Due to the regularity of the ~i, the inner 
:product 

(!, g ); := j f( 11:;( x) )g( 11:;( x) )dx 
0 

induces a norm which is equivalent to the canonical L 2-norm on ni. Clearly 
the collections 

(2.2) 
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are biorthogonal wavelet bases for the local space L 2 ( ni) relative to the inner 
product (·, ·)i. Likewise 

N 

(·, ·) := L(·, ·)i 
i=l 

is equivalent in the above sense to ( ·, · )n. Thus, if -w 0 is a Riesz basis for 
L2(D) then 

N 
ffrn • u ,T,i 
~ ·= X1q(D) ~ (2.3) 

i=l 

forms a Riesz basis for L2(f1). Of course, the Riesz-bounds (i.e., the constants 
in ( 4.1) below) depend on the mappings K,i, and strong distortions are expected 
to effect these bounds in a negative way. 

However, as pointed out in the previous section, the quality of a wavelet 
basis for the treatment of operator equations depends on more than just L 2-

stability unless the operator has order zero. Of course, for the simple con-
struction (2.3) the cancellation properties of -w 0 immediately carry over, [20]. 
A more subtle question concerns the validity of relations like (1.4) with re-
spect to the global spaces H 8 (0). For the definition of such funGtion spaces 
on manifolds or domains see e.g. [1, 10, 20, 21]. If the basis -w 0 gives rise 
to norm equivalences of the form (1.4) with respect to D, it is not hard to 
verify that, due to the regularity of the /'i,i, the transported bases -w 0 o /'i,i 1 

induce analogous relations for the spaces H 8 (0i) (20]. However, concerning 
the validity of (1.4) for the global Sobolev space, one problem is that H 8 (0) 
is in general only a closed subspace of the space consisting of those functions 
on n for which 

( 

N ) 1/2 

II · 11. := ~II · llk·cn,i · (2.4) 

i's finite. In fact, both spaces disagree for s 2:: 1/2. Obviously, the bases on 
the individual patches have to be properly interrelated in order to give rise to 
the desired norm equivalences on n for a· larger range of Sobolev indices s. 

In this regard several attempts towards this goal have been made in the 
literature. A natural strategy is to glue the elements of adjacent local bases 
'Wi across the patch boundaries together (6, 20, 26]. So far this has been done 
with different degrees of generality in (20, 26] resulting in globally continuous 
bases. The core ingredients are biorthogonal wavelet bases on D obtained as 
tensor products of univariate bases on (0, 1]. The same ingredients are used in 
the work in progress in [6] where the glueing strategy is somewhat different. 
Although global continuity covers a wide range of problems of practical inter-
est this approach still has some drawbacks. The realization of higher global 
smoothness along these lines does not seem to be practically feasible. Also 
duality is not satisfacto;rily handled for the global space which is a result of 
the above choice of norms. Finally the glueing seems to adversely affect the 
cancellation properties near the patch boundaries. Recent results on piece-
wise polynomial multiwavelets on the interval [23] seem to offer an interesting 
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alternative, since one only has to worry about glueing the primal basis func-
tions together. However, this ties the number of vanishing moments to the 
order of exactness of the trial spaces and thus may limit the compression rate. 
An alternative strategy is based on earlier results by Ciesielski and Figiel [10] 
concerning unconditional bases for function spaces on smooth manifolds. A 
key ingredient of this approach is to establish first a topological isomorphism 

N 

T: H 9 (0)--+ II Hs(nilBi) (2.5) 
i=l 

between the global space H 9 (0) and the local spaces H 9 (0ilBi) which are 
closed subspaces of H 9 (0i) determined by certain homogeneous trace condi-
tions indicated here by Bi. The mapping T has the form 

Tv = xniPiv, 
where Pi are certain projectors whose image is H 9 (0ilBi)· The range of s 
(within the limits for which H 9 (0) is well-defined) depends on the continuity 
properties of the projectors Pi. In order to have analogous representations 
for the duals of these spaces corresponding properties have to hold for the 
adjoints Pt as well. These continuity properties in turn can be completely 
derived from similar continuity requirements of certain extension operators 
Ei and their adjoin ts Ei [21]. Thus, the actual realization of T essentially 
reduces to the construction of such appropriate extensions [10, 21]. 

The construction of wavelet bases on n which satisfy the analog to (1.4) 
can now be reduced, thanks to the isomorphism T, to the construction of 
suitable wavelet bases on D whose lifts through the mappings "'i obey the 
boundary conditions imposed by H 9 (0ilBi)· It is shown in [21] how to con-
struct suitable pairs of biorthogonal wavelet bases on D that satisfy all these 
requirements and also have the full cancellation properties. 

Thus, the common ground for all the above approaches is to have a 
sufficiently versatile collection of wavelet bases on 0. Such wavelets are con-
veniently ~onstructed via tensor products of wavelets on the interval [O, 1]. 
These, in turn, have been intensely studied in the literature [3, 9, 13, 18]. The 
above comments indicate that versatility in the present context means good 
localization of primal and dual bases as well as a possibly flexible choice of the 
order d of exactness (controlling the accuracy of the discretization scheme), 
and the order d of vanishing moments (controlling the compression power), 
which depends on the exactness of the dual multiresolution. 

The basic strategy for realizing polynomial exactness in the primal mul-
tiresolution spaces is essentially the same in all the above mentioned papers. 
To ensure the validity of moment conditions throughout the interval [O, 1] re-
quires also the exactness of the dual spaces. This issue has been carefully 
studied in [18]. Based on this construction the question of incorporating cer-
tain (complementary) pairs of boundary conditions needed in connection with 
the above isomorphism T or for the glueing process mentioned before are stud-
ied in [20, 21]. Therefore we focus in the following on the basic construction 
in [18], and review briefly the main results in the next section. 
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§3. Biorthogonal Wavelets on the Interval 

A convenient starting point for the construction of biorthogonal wavelets 
on the interval are corresponding multiresolution sequences defined on IR. 
e E L 2 (IR) is called refinable with mask a= {akhE7l if 

B(x) = L ak8(2x - k), x E 1R a.e. (3.1) 
kE7l 

We say that two refinable functions e, B form a dual pair if 

(8, B(· - k))R = 80,k, k E 'll. (3.2) 

It is well known that e and e can be normalized so that 

j B(x)dx = j O(x)dx = 1. (3.3) 
R R 

Moreover, it will be convenient to write for g E L 2 (JR) 

9[j,k] := 2il2g(2i · -k), j, k E 'll. 

As above let us abbreviate for any collection CC L 2 (0) 

S( C) = closL 2 (span C), 

the L 2-closure of the linear span of C. Thus, defining 

Sj = S( { e[j,k] : k E 'll} ), Sj = S( { e[j,k] : k E 'll} ), (3.4) 

refinability is known to imply that the spaces Sj and Sj both form a hierarchy 
of nested spaces whose closure is dense in L2 (1R) and whose intersection con-
sists only of 0. e, e are called the generators of the multiresolution sequence 
S = {Sj }, S = {Sj }. It will be convenient to refer to S and S as primal and 
dual multiresolution. Moreover, if e, B have compact support it is easy to see 
that for c = { CkhE7l E £2('ll), 

II L Ck8(· - k)llL2(R) rv llclll2(7l) rv II L CkB(· - k)llL2(R) (3.5) 
kE7l kE7l 

which, due to 
(3.6) 

implies the uniform stability of the scaled dilates, 

II L Cke[j,k] llL2(R) rv llclll2(7l)' (3.7) 
.l;EZ?; 
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and likewise for e. 
Recall that under certain decay assumptions on the dual pair polynomial, 

exactness of the spaces Si determines their approximation power. We say e 
is exact of order d if all polynomials of degree at most d - 1 can be written 
as a linear combination of the integer translates B( · - k ). In fact, defining 

a0~ (y) := ((-t,B(· -y))R ,r (3.8) 

one has then, in view of (3.2), the explicit representation 

xr = L ae,r(k)B(x - k), x E IR, r=O, ... ,d-l, (3.9) 
kE7.l 

which will be used frequently later on. 
Once e and e are given it is standard to construct corresponding (mother) 

wavelets whose dilates span complement spaces Wj, Wj satisfying 

(3.10) 

see [12]. 

3.1. Multiresolution and Refinement Relations on the Interval 

To construct wavelets on the interval one can pursue an analogous strategy 
and construct first a pair of multiresolution sequences on [O, 1]. It has long 
been recognized that it is not sufficient to simply restrict the spaces Sj to 
[O, 1]. The fact that only very small portions of some functions contribute to 
the interval would seriously hurt the stability of the corresponding bases. Also 
since the supports of e and e generally differ the count would not match. The 
common strategy employed in all the quoted papers [3, 9, 13, 18] is to retain 
only those functions B[j,k], B[j,k] who~e support is fully contained in [O, 1] while 
forming in addition certain modified basis functions near the end points of 
the interval by taking fixed linear combinations of functions e[j,k] near 0 and 
1. These linear combinations have to meet two requirements : 

(a) The resulting complete collection of functions consisting of the interior 
translates and the modified functions near the end points shall still span 
all polynomials oforder don [O, l]. 

(b) The corresponding linear spans shall still be nested. 

Suitable boundary functions are simply obtained by truncating the ex-
pansion (3.9). In fact, one readily confirms that 

L ae,r(m)B[j,m](x) = 2il2 (2jxr, T = 0, ... , d - l. (3.1.1) 
mEZl 

The main implications can be formulated a.s followc:; [18]. 
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Lemma 1. Suppose that B is refi.nable with mask a and has compact support 

(3.1.2) 

For 
(3.1.3) 

defi.ne 

l.-1 
BL ·-j,l.-d+r ·- L ae,r(m) e[j,m] In+, T = 0, ... , d -1. (3.1.4) 

m=-l2+l 

Then 

2-Cr+i/2) (ef+1,t-d+r + 2l~:1 ao,r(m )B[j+1,mJ) 

2l.+l2-2 (3.1.5) 
+ L f3e,r(m)B[j+1,m] 

m=2l.+l.1 

for r = 0, ... , d - 1, where 

(3.1.6) 

This refinement equation says that a boundary function can always be 
written as a boundary function on the next higher scale adjusted by scaled 
translates of the generator on the next scale. The validity of such relations is 
of course highly plausible because polynomials trivially rescale and the interior 
translates are refinable. So the point here is only to identify the coefficients 
in this relation (which appear to be slightly different from those in [3]). 

Similarly, one can construct such boundary functions for the right hand 
side of the interval. However, if the generator B has certain symmetry proper-
ties, the corresponding right end functions Bfk can actually be obtained also 
by symmetry considerations. This will be the case for a particular family of 
dual pairs which will be discussed next. 

Let us denote for a sequence of knots ti ::; · · · ::; ti+t. by [ti, ... , tiH]f 
the £-th order divided difference of f E ot.(1R) at ti, ... ,·ti+!.· Setting x~ := 
(max{O, x} )l., the cardinal B-.spline d'P of order d E lN is defined as 

( 
d ) d-1 d'P(x) := d [O, 1, ... , d] · - x - l2 J + . (3.1.7) 

Th . t d d µ.( d) . us, cp 1s cen ere aroun - 2-, i.e., 

d'P(x + µ(d)) = d'P(-x), x E JR, (3.1.8) 
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where µ( d) := d mod 2, and has support 

i.e., d = £2 - £1 and µ(d) = £1 + £2. Thus, the B-splines of even order are 
centered around 0 while the ones of odd order are symmetric around ~· The 
B-spline d'P is refinable with finitely supported real mask a= { ak} ~~li' i.e., 

(3.1.10) 

!t has been shown in [12] that for each d and any d ~ d, d E IN, so that 
d + d even, there exists a function d a,cf; with the following properties : 

' 
(i) d a,cf; has compact support, 

I 

(3.1.11) 

(ii) d a.'P is refinable with finitely supported mask a, 
I 

l2 
d,J'P( x) = L ak d,J'P(2x - k ). (3.1.12) 

k=l1 

(iii) d a,cf; has the same symmetry properties as d'P, i.e., 
I 

d,J'P( x + µ( d)) = d,J'P(-x ), x E IR. (3.1.13) 

(iv) The functions d'P and d J,cf; form a dual pair, i.e., 
I 

(3.1.14) 

( v) d a,cf; is exact of order J, i.e., all polynomials of degree less than d can be 
r~presented as linear combinations of the translates d J'P(· - k), k E 'll. 

I 

(vi) The regularity of d J,cf; is proportional to d. 
I 

In the following d, d will be arbitrary as above but fixed so that we suppress 
them as indices and write briefly cp, cp. 

In contrast to earlier papers the above boundary modifications have been 
applied in [18] to both the primal as well as the dual multiresolution for the 
following reasons : 

• This ensures that the primal wavelets have d vanishing moments on all 
of[O, l]. 

• In connection with the discretization of saddle point problems both mul-
tiresolution sequences represent physical quantitities (e.g. velocity and 
pressure) that have to be resolved accurately. 
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• The validity of norm equivalences of the type (1.4) on [O, 1] for the 
negative range of Sobolev indices depends on the exactness of the dual 
multiresolution (see [18]). 

To this end, we wish to determine pairs of bases q> j, ~ j of the following format 

q>1. = q>~ u q>~ u q>~ 
1 J J ' (3.1.15) 

where the q>§, ~§ consist of interior translates 'P[j,k], k E .6.}, c,O[j,k], k E Li§, 
while the q>f, ~f contain the boundary functions cpf k' k E .6.f, <Pf k' k E l..f, 
X E {L, R}. The cpf,k, <Pf,k are defined according to the recipe (3.1.4) and the 
right end counterparts are defined in a completely analogous fashion where 
the monomials x r are replaced by ( 1 - x t. Since by ( 3. l.11) the support of 
cp is always larger than that of cp, i.e., l2 ~ £2, -l1 ~ -£1 (even if d < d), 
one has to determine first the number of translates involved in the boundary 
modifications on the dual side. Thus, we fix some integer l satisfying 

(3.1.16) 

so that the indices 
- I - . -.6.j := {£, ... '21 - l - µ(d)} (3.1.17) 

correspond to translates c,O[j,m] whose supports are contained in [O, 1]. In order 
to ensure that Li§ is not empty, we will always assume that 

(3.1.18) 

By (3.1.4), the corresponding boundary index sets are 

-L - - - -R . - . - -.6.j := { l - d, ... 'l - 1 }, .6.j := {21 - l + 1 - µ( d), .. . '21 - l + d - µ( d)}. 
(3.1.19) 

The shift by µ( d) in Lif and Li] has been included in order to make best 
possible use of symmetry later. 

Given l, the corresponding parameter l for the primal bases will always 
be chosen as 

l : = i - ( J, - d)' (3.1.20) 

in order to ensure that 

(3.1.21) 

Nate that the larger l (or equivalently l) is, the larger is the interval near 
zero where the boundary function cpfil-d+r coincides with the polynomial 
2il2 (2ixt, a fact that will be of some importance later. 

As mentioned before one can now exploit symmetry. 
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Remark 2. One has for x E (0, 1] 

cp- R . - - (1 - x) 
j,2' -.e+d-µ.(d)-r 

and 

Moreover, defining 

{ 
x cp. k 

'Pj,k := J1 ' 
'P[j,k]' 

let 

and similarly 

'Pf.e-d+r(x), T = 0, ... , d -1, 

cpf,l-cl+r( X ), T = 0, ... , d - 1, 

k E !l.f, XE {L,R}, 
k E fl.§, 

;f..1 { -L - L - I -R - R 
';!! j : = cp j, k k E fl. j } U { cp [j, k] : k E fl. j } U { cp j, k k E fl. j } . 

Finally, define 

One can now show that these spaces have the desired properties (18]. 

Proposition 3. 
(i) The spaces Sj and Sj are nested, i.e., 

(ii) The spaces Sj, Sj are exact of order d, d, respectively, i.e., 

(3.1.22) 

(3.1.23) 

(3.1.24) 

(3.1.25) 

(3.1.26) 

(3.1.27) 

(3.1.28) 

The nestedness of the spaces Sj, Sj is equivalent to the validity of refine-
ment equations 

'Pi,k = L m{,k'Pi+1,z, k E !l.j. 
ZE.6.i+1 

Due to the boundary modifications, the masks in these relations are no longer 
shift- and scale-invariant. Adhering to the matrix notation employed previ-
ously, it will be extremely convenient to rewrite this as 

q,f - q,f M. 
J - J+l J,O, (3.1.29) 
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where Mj,o is a (#~j+1) x (#~i)-matrix. The format of the refinement 
matrix Mj,o can be illustrated by 

ML 

0 

Mj,O := A· J (3.1.30) 

0 NIR 

where ML, MR are (d + l + £2 - 1) x d blocks representing the refinement 
relations for the functions in <I>f, <I>f, respectively. By symmetry one has 

(3.1.31) 

where t means that the order of rows and columns is reversed. The entries 
of the blocks Mx can therefore be read off from Lemma 1 (see [18] for more 
details). The Mx are independent of j. The columns in the interior block 
Aj are the stationary refinement masks from (3.1.10). Their dependence on 
j lies only in the size of Aj. Accordingly, Mj,o can be set up for each j ~ j 0 
by only knowing ML and a from (3.1.10). Thus, although one has to give up 
on complete shift-invariance much of the efficiency of the classical framework 
can be retained for the interval. Analogous relations hold of course for cl>j 
with a similar matrix Mj,0 • 

3.2. Biorthogonalization 

One important point has yet to be addressed. While the interior functions 
in the collections <I> j, ~j inherit biorthogonality this is generally no longer 
true for the boundary modifications. To restore biorthogonality, one has to 
perform a suitable change of bases near the boundaries. Specifically, one has 
to determine matrices Cj, Cj such that 

~~ew =CJ·~'· J J (3.2.1) 

satisfy 
( ;J;.new ;F,.new) I 

':J! j ' ':J! j [0,1] = . (3.2.2) 

Due to the biorthogonality of the interior functions and the symmetry prop-
erties the matrices Cj, Cj have the form 

0 
I 
0 

~ ) ' ct 
L 

0 
I 
0 

(3.2.3) 
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where the CL, CL are d x d matrices independent of j. Since 

( .;t;new cI>new) C (<P cl>,) (jT 
'J! j ' j [0,1] = j j' j [0,1] j ' 

biorthogonalization is actually possible if and only if 

det (<Pj, <l>j)[o,1] :/- 0. 
In fact, setting 

rj := (<Pj, ~j)[o,1], 
the matrices Cj, Cj have to satisfy 

-T 
ciricj =I. 

(3.2.4) 

(3.2.5) 

Since #11.f ::; #~f we will denote in the sequel by <Pf the set of cardinali.ty 
d obtained by adding to the functions cpf,k, k E ~/, the approriate number 
of d - d additional interior functions. Then by (3.2.3), the nonsingularity of 
r j is equivalent to the nonsingularity of 

L - L r L := ( cp j , cp j )[0,1], (3.2.6) 
which does not seem to be clear beforehand. The following result has been 
proven in [18]. 
Theorem 4. The matrix r L is nonsingular for every admissible choice of 
d, d. 

Thus, biorthogonalization is indeed possible. In [18) we have chosen 
Cj = I which results in 

- -T CL= r L . (3.2.7) 
Of course, the refinement relations change under such a change of bases. We 
will several times make use of the following simple observation [18]. 

Remark 5. If Gf = 8f+1 Mj,o and 8jew = Cj8j then 

(3.2.8) 
where 

M new c-TM cT 
j,O = j+l j,O j · (3.2.9) 

The standard biorthogonal pair <P j, cl> j considered in [18] is given by <P j 
defined in (3.1.24) and 

- -T-1 <P1· = r. <P ·• J J 
(3.2.10) 

By (3.2.9), the corresponding refinement matrix in 
-T -T -cp j = cp j+1 Mj,O (3.2.11) 

is, on account of (3.2.5) with Cj = I, given by 
- - I -1 

Mj,o = rj+1Mj,orj , (3.2.12) 

where Mj,0 is the refinement matrix for ~j derived from Lemma 1 (see [18) 
for more details). The nonzero pattern of a typical pair of refinement matrices 
for j = jo = 6 and d = 4, J = 8 is illustrated in Figure 1. 
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nz = 331 nz = 1205 

Fig. 1. Nonzero pattern of the matrices Ms,o, Ms,o for d = 4, d = 8 . 

3.3. Biorthogonal Wavelets 

Given the above standard pairs <I> j' <I> j = r,;-T ~j of biorthogonal bases for 
the spaces Sj, Sj, the next step is to construct corresponding wavelet bases. 
In [18] a systematic construction of collections 

(3.3.1) 

with the following properties is presented: 

(i) The matrices Mj := (Mj,o, Mj,1), Mj :~ (Mj,o, Mj,1) satisfy 

(3.3.2) 

(ii) The matrices Mj, Mj are uniformly sparse, i.e., the number of nonzero 
entries in rows and columns remains uniformly bounded in j. Thus, the 
quasi-stationary character of the refinement matrices is inherited. 

(iii) The collections Wj, '1!j span complements of Sj, Sj in Sj+1, Sj+1, respec-
tively, and 

(3.3.3) 

(iv) As a consequence the collections 

00 00 

'11 := <I>jo U LJ '11 j' '1T := ~jo U LJ '11 j (3.3.4) 
i=io j=jc 
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are biorthogonal, 
(w, W)[o,1] == I, 

and satisfy the norm equivalences 

(3.3.5) 

(3.3.6) 

for s E (-7, d + 1/2), where 7 :==sup {s : <{; E H 8 (IR)} (7 grows linearly 
with d), and H 8 ([0, 1]) is to be understood as the dual of H-s([O, 1]) 
whens< 0. 

(v) Any 'ljJ E W \ <l>j0 has d vanishing moments, i.e., 

1 j xr 'if;( x )dx = 0, r = 0, ... , d - 1. (3.3.7) 
0 

We will need later some information about the construction of the matrices 
Mj,1, Mj,1 in (3.3.1): 

a Following [18], the first step is to determine a matrix M j,1 such that 
Mj :== (Mj,o, Mj,l) is invertible, and to identify its inverse 

M- -1 - (Gj,o) -· G- . . - - -. J• 1 G·1 J, 

Such an Mj,l is called a stable completion. Using results about fac-
torizations of spline collocation matrices, such stable completions were 
constructed in [18] for any admissible d, d as above in such a way that the 
matrices Mj and their inverses Gj are both sparse. This ensures that 
corresponding multiscale decomposition and reconstruction schemes are 
efficient. 

• Given a biorthogonal pair <I>j, ~j, e.g. the one given by (3.1.24) and 
(3.2.10) with refinement matrices Mj,o, Mj,o, the stable completions 
required in (3.3.1) are given by 

(3.3.8) 

where Kj is any invertible matrix [7]. In the following we will mainly 
use Kj ==I (for corresponding concrete examples see [18]). 

The nonzero pattern of a pair of stable completions satisfying (3.3.8) for 
j == j 0 == 6 and d == 4, d == 8 which corresponds to the pair. in Figure 1 is 
illustrated in Figure 2. 

§4. Quantitative Stability Properties 

According to the above results, one can, in principle, construct wavelet bases 
on [O, 1 J sharing the desired properties listed before. Likewise this extends to 
D and hence to more general domains via the techniques outlined in Section 2. 
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Fig. 2. Nonzero pattern of the matrices M5,1, M6,1 for d = 4, d = 8 . 
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Although theory assures that biorthogonalization is always possible, the 
actual practical value of such tools will ultimately depend on their quantita-
tive properties. The first examples shown in [18] of the above w,avelet bases 
confirmed experiences made earlier with similar constructions. Precisely, re-
call that whenever e is a Riesz basis of the closure of its span, one has 

( 4.1) 

and that the positive constants cf, cf are called the Riesz bounds of the basis 
e if 

cf sup{c: c satisfies (4.1)}, 
cf inf { G : G satisfies ( 4.1 )}. 

Moreover, it is known that 

cf = vf .\min( (G, G) ), cf = vf .\max( (G, G) ), ( 4.2) 

where Amin((G, G)), Amax((G, G)) denote the smallest and largest eigenvalue 
of the Gramian matrix ( G, G). By poorly conditioned we mean that the quo-
tient cf/ cf called the condition of the basis G is large. Of course, one expects 
that a poor condition of the bases adversely effects the multiscale decompo-
sition of signals. Also when the boundary functions behave very irregularly 
it is not clear how to associate given discrete data with an expansion with 
respect to the single scale basis 4> j, say. Moreover, the quantitative approxi-
mation properties ~ay suffer as it is indicated by the following considerations. 
Suppose that ~j, CI?j for!Ils a pair of biort.hogonal generator bases. Assume 
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that the elements in <I?j are normalized so that, in particular, the boundary 
functions all have L2-norm one. Since 

the norms of the dual functions are always larger than or equal to one. Now 
consider the approximation behavior of the projector Qjf := (!, ~j)[o, 1]<I?j 
at a point x near zero. Recalling that by assumption Qi reproduces any 
polynomial p of degree at most d - 1, one obtains 

II f-Q j f II L2([0,2-i]) :::; II f-Pll L2([0,2-i]) + I: I (f-p, cpj,k )[0,1] 111 cpj,k II L2([0,2-i]). 
kEA; 

The first summand represents the error of best local £ 2-approximation of 
f by polynomials. The sum on the right hand side is of course finite since 
only finitely many of the basis functions overlap (0, 2-i]. By assumption, the 
factors ll'Pi,kllL2 ([o, 2 -i]) are bounded by one, while the weights l(f-p, cpj,k)[o,1] I 
can by Schwartz' inequality again be estimated by ll<Pi,kllL2 ([o,l]) times the best 
local polynomial approximation of f. This local polynomial approximation 
determines, of course, the asymptotic rate while the factors ll<Pi,kllL2 ([0,1]) 
apparently influence the constants. 

This has motivated further investigations of the quantitative properties of 
the adapted bases reported below. In the light of the above comments we are, 
in particular, interested in the following quantities. Let Rj := (<I?j, <I?j)[o,l] 

and Rj := (~j, ~j)[o,l] denote the G~amian matrix of <I?j and ~j, respectively. 
Accordingly, 

C1 := \./Amin(Rj ), C2 := )>..ma.x(Rj), ( 4.3) 

and 
C1 := J Amin(Rj ), C2 := J Ama.x(Rj ), (4.4) 

are the Riesz bounds of the bases <I? j, 4> j, respectively. The bases <I? j, 4> j are 
given by (3.1.24) and (3.2.10). Similarly, we set Wj := ('1!j, '1!j)[o,l] and 

( 4.5) 

for the wavelet basis '1!j defined by (3.3.1) and (3.3.8). The matrices Wj and 
the ]Uesz bounds d1, d2 are defined in complete analogy when '1! j is replaced 
by '1! j. 

Recall from (3.2.10) that the biorthogonalization in (18] required inver-
sion of the matrices r j and hence, in view of (3.2.3), of r L defined in (3.2.6). 
As for the accurate and reliable computation of the corresponding refinement 
matrices, one therefore has to take the condition number of rL into account. 
Recall also that r L depends on the parameters d, J, l determining the order of 
polynomial exactness of the primal and dual multir-esolution, respectively, and 
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the range near the end points of the interval where the boundary functions 
agree with polynomials. Recall also that the decomposition and reconstruc-
tion algorithms associated with the wavelet bases consist of applying Mj and 
(Mj )-1 . Therefore, we monitor also their condition numbers. 

Thus, a natural starting point is to determine first for the above standard 
construction the spectral condition numbers cond(r L ), cond(Rj ), cond(Rj ), 
cond(Wj), cond(Wj), the corresponding Riesz bounds Ci, Ci, di, di, i = 1,2, 
cond(Mj) and the quantities 

which are in fact independent of j. To this end, one should note first that all 
our experiments confirm the expected fact that the Riesz bounds only depend 
very weakly on j and gradually settle when j grows. Since the dependence of 
the bases <I> j, ~ j on j lies only in the growth of the interior stationary portions 
<I>J, ~f, we conclude that the quantities of interest are mainly influenced by 
the boundary portions of the bases which are up to scaling also independent of 
j. Therefore all subsequent calculations will refer to the minimal level j = j 0 

in each case and l = l2 = I~ l + d - 1. 
Let us first look at the first part of Tables 1-3 where the data labeled 'No 

Transform' corresponds to the original construction in [18]. This data reveals 
the following facts: 

a The condition numbers of r L grow rapidly when d or cl becomes larger. 
A sufficiently accurate calculation of the corresponding refinement ma-
trices therefore requires some care and initially did cause some trouble. 

• The condition of the wavelet bases '11 j and their duals '1r j stay rather 
moderate for a wide range of d, d. 

• This is also true for the generator bases <I> j, ~ j for d = 2 and any cl within 
the range of our experiments. This is not completely obvious beforehand 
since the parameter l (and hence l, see (3.1.16), (3.1.20)) depends on 
cl and thus changes also <I> j. However, when d grows the condition of 
<I> j and ~ j also increases rapidly again almost independently of cl 2: d. 
In fact, already ford= 4 the condition of <I>j, ~j attains a critical size 
which may severely interfere with the objectives of a corresponding high 
order scheme. As for the <I> j, this is, of course, in agreement with the 
known results about the condition of B-spline bases (see e.g. [8]). 

• Like for the Riesz bounds, the parameter e grows rather moderately 
but attains for d = 4 a size where the approximation property near the 
boundaries may suffer critically. The condition of Mj also grows rapidly 
with d almost independently of d 2: d. 

Now our main concerns will be to improve on the condition of the stand.ard 
generator bases <I> j, ~ j, the quantity e and the condition of r L. Of course, 
then the question arises whether corresponding changes also affect the wavelet 
bases. It turns out that this is actually not the case which will be proved next. 
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cond(rL) 

T c2 /ci 
R ci 
A c2 
N d2/di 
s di 
F d2 

0 d2/di 
R di 
M d2 

cond(M;) 

c~ew I c1ew 
c1ew 

s c~ew 

V -new;-new C2 Ci 
D crew 

B 
B 

b 
== 
1 

B 
B 

b 
--
2 

-new 
C2 
cond(Miew) 

new /cnew C2 i 
c1ew 

cond(Mjew) 

c~ew / c1ew 
c1ew 
c~ew 

cond(Miew) 
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d==4 I 
l.6774e + 01 7.2772e + 02 l.8741e + 05 l.1515e + 08 
4.4422e + 00 4.4413e + 00 4.4413e + 00 4.4413e + 00 
3.1358e - 01 3.1364e - 01 3.1364e - 01 3.1364e - 01 
l.3930e + 00 l.3930e + 00 l.3930e + 00 l.3930e + 00 
5.04 73e + 00 4.6054e + 00 4.8294e + 00 5.3946e + 00 
7.2816e - 01 7.2099e - 01 7.2356e - 01 7.2283e - 01 
3.6753e + 00 3.3205e + 00 3.4944e + 00 3.8994e + 00 
3.6122e + 00 3. 7006e + 00 3.2977 e + 00 2. 7335e + 00 
2.2285e - 01 2.1869e - 01 2.4700e - 01 3.0076e - 01 
8.0497e - 01 8.0928e - 01 8.1452e - 01 8.2212e - 01 

3.8469e + 00 3.973le + 00 4.3317e + 00 4.8178e + 00 
l.4348e + 00 l.244le + 00 1.2287 e + 00 l.2320e + 00 
5.5196e + 00 4.9429e + 00 5.3225e + 00 5.9353e + 00 
5.364le + 00 4. 7 432e + 00 4.4225e + 00 4.4280e + 00 
2.5454e + 00 2.2853e + 00 2.4038e + 00 2.5803e + 00 
1.6673e + 00 l.1350e + 01 2.2554e + 02 6.8118e + 03 
5.9548e - 01 l.4688e - 01 1.3852e - 02 8.5578e - 04 
9.9282e - 01 l.6672e + 00 3.1242e + 00 5.8294e + 00 
l.889le + 00 l.0796e + 01 1.886le + 02 4.2374e + 03 
l.0075e + 00 6.3455e - 01 3.8305e - 01 2. 7620e - 01 
l.9032e + 00 6.8504e + 00 7.2246e + 01 l.l 704e + 03 
3.6383e + 00 4.5651e + 01 5.0793e + 03 l.9845e + 06 
l.194le + 00 l.2012e + 00 l.3798e + 00 l.8545e + 00 
8.0423e + 00 6.0443e + 01 4.8813e + 03 1.1837e + 06 
3.6516e + 00 3.6500e + 00 3.6500e + 00 3.6500e + 00 
3.4290e - 01 3.4304e - 01 3.4304e - 01 3.4304e - 01 
l.252le + 00 l.2521e + 00 1.2521e + 00 1.2521e + 00 
4.2543e + 00 3.8336e + 00 4.1049e + 00 4.7450e + 00 
8.0199e - 01 7.9896e - 01 7.9959e - 01 7.9952e - 01 
3.4119e + 00 3.0629e + 00 3.2822e + 00 3.7937e + 00 
3.4394e + 00 3.1105e + 00 2.8676e + 00 2.8762e + 00 
l.7999e + 00 l.6415e + 00 l.7477e + 00 l.9147e + 00 
2.813le + 01 l.5995e + 02 2.472le + 03 7.3594e + 04 
6.5163e + 00 6.5150e + 00 6.5150e + 00 6.5150e + 00 
1.8282e - 01 l.8285e - 01 l.8285e - 01 l.8285e - 01 
l.1913e + 00 l.1912e + 00 1.1912e + 00 l.1912e + 00 
7.5633e + 00 6.8110e + 00 7.189le + 00 7.8499e + 00 
8.4307e - 01 8.4023e - 01 8.4109e - 01 8.4085e - 01 
6.3764e + 00 5.7228e + 00 6.0467e + 00 6.6006e + 00 
7.1420e + 00 5.5455e + 00 4.7392e + 00 4.7554e + 00 
l.7999e + 00 l.6415e + 00 l.7477e + 00 l.9147e + 00 

Table 1. 
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d=3 

T c2/c1 
R C1 

A c2 
N d2/d1 
s di 
F d2 
0 d2/d1 
R d1 
M d2 

s 
v 
D 

B 
B 

b 

1 

B 
B 

b 

2 

cond(Mi) 

cond(Mjew) 

cond(Mjew) 

d=3 
1.1944e + 03 
3.3817e + 01 
3.7026e - 01 
1.2521e + 01 
4.9550e + 01 
8.5420e - 02 

d=5 
4.3638e + 04 
3.4085e + 01 
3.6735e - 01 
1.2521e + 01 
3.5748e + 01 
8.1563e - 02 

4.2326e + 00 2.9157e + 00 
1.6331e + 01 1.5168e + 01 
5.6420e - 02 5.8580e - 02 
9.2139e - 01 8.8856e - 01 

1.8748e + 01 1.6435e + 01 
l.5789e + 00 l.2322e + 00 
2.9601e + 01 2.0252e + 01 
8.2396e + 02 8.2396e + 02 
l.2718e + 01 9.4964e + 00 
l.6673e + 00 
5.9548e - 01 
9.9282e - 01 
l.8891e + 00 
l.0075e + 00 
l.9032e + 00 
1.643le + 01 
l.9996e + 00 
3.9776e + 01 
l.9112e + 01 
3.8963e - 01 
7.4465e + 00 
2.8697e + 01 
l.4544e - 01 
4.1737e + 00 
3.6594e + 02 
4.7280e + 00 
5.6699e + 01 
8.6997e + 00 
3.7454e - 01 
3.2584e + 00 
l.3470e + 01 
3.2236e - 01 

5.6242e + 01 
3.2149e - 02 
l.8081e + 00 
5.1054e + 01 
6.4459e - 01 
3.2909e + 01 
6.2855e + 02 
6.9280e + 00 
9.4989e + 02 
2.0190e + 01 
3.6882e - 01 
7.4465e + 00 
2.0677e + 01 
l.3773e - 01 
2.8479e + 00 
3.6640e + 02 
3.3427e + 00 
4.0558e + 02 
8.8589e + 00 
3.6781e - 01 
3.2584e + 00 
9.3953e + 00 
3.1140e - 01 

d=7 
l.3386e + 07 
3.4085e + 01 
3.6735e - 01 
l.252le + 01 
5.5120e + 01 
8.2273e - 02 
4.5349e + 00 
l.6809e + 01 
7.2344e - 02 
l.2160e + 00 

2.2899e + 01 
l.2049e + 00 
2.7591e + 01 
8.3926e + 02 
l.1215e + 01 
2.3651e + 03 
1.5930e - 03 
3.7677e + 00 
l.1585e + 03 
5.5096e - 01 
6.3828e + 02 
4.7439e + 05 
7.7156e + 00 
3.1947e + 05 
2.0190e + 01 
3.6882e - 01 
7.4465e + 00 
2.8880e + 01 
l.3897e - 01 
4.0135e + 00 
3.6676e + 02 
4.2655e + 00 
2.0585e + 04 
8.8589e + 00 
3.6781e - 01 
3.2584e + 00 
l.5236e + 01 
3.1363e - 01 

4.342le + 00 2.9257e + 00 4.7786e + 00 
4. 7713e + 01 4.8963e + 01 4.9679e + 01 
4. 7280e + 00 3.3427 e + 00 4.2655e + 00 

Table 2. 
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d=4 
cond(rL) 
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d = 10 I 
5.3936e + 06 4.1889e + 08 5.3842e + 11 
3.2086e + 02 3.2086e + 02 3.2086e + 02 
l.7203e - 01 l.7203e - 01 1.7203e - 01 

c2 5.5197e + 01 5.5197e + 01 5.5197e + 01 
T c2 /ci 3.4863e + 02 3. 7829e + 02 5.5723e + 02 
R ci l.8544e - 02 l.8485e - 02 l.8368e - 02 
A c2 6.4652e + 00 6.9927e + 00 l.0235e + 01 
1--~~~~-1-~~~~-l-~~~~--1-~~~~--l 

N d2 /di 6.9578e + 01 6.8913e + 01 7.3206e + 01 
S di 1.1209e - 02 1.1832e - 02 l.3706e - 02 
F d2 7.7990e - 01 8.1539e - 01 1.0034e + 00 

0 d2/di 7.1771e + 01 8.9233e + 01 l.2030e + 02 
R d1 l.5343e + 00 1.3687 e + 00 1.3453e + 00 
M d2 l.1012e + 02 l.2213e + 02 l.6184e + 02 

3.0783e + 04 3.0785e + 04 3.1683e + 04 

s 
v 
D 

B 
B 

b 
--
1 

B 
B 

b 
--
2 

cond(M;) 

c~ew I c1ew 
c1ew 
c~ew 

cond(Mjew) 

c~ew I c1ew 
c1ew 

-new;-new C2 C1 
c1ew 
-new 
C2 
cond(Mjew) 

cond(r~ew) 

c~ew I c1ew 
c1ew 

-new;-new C2 Ci 
c1ew 
-new 
C2 
cond(Miew) 

5.1142e + 01 5.5315e + 01 6.5923e + 01 
l.1403e + 02 7.9974e + 03 3.8262e + 05 
l.3825e - 02 3.9443e - 04 l.6616e - 05 
l.5764e + 00 3.1544e + 00 6.3577e + 00 
1.2026e + 02 5. 7030e + 03 1.4805e + 05 
7.7237e - 01 4.7846e - 01 4.2143e - 01 
9.2884e + 01 2.7287e + 03 6.2392e + 04 
6.8133e + 03 7.1991e + 06 7.9549e + 09 
l.3735e + 01 5.3075e + 01 5.3066e + 01 
2.9053e + 04 2.0258e + 06 l.3758e + 09 
l.3204e + 02 l.3414e + 02 l.3414e + 02 
2.3694e - 01 2.3323e - 01 2.3323e - 01 
3.1286e + 01 3.1286e + 01 3.1286e + 01 
1.5405e + 02 l.3452e + 02 2.5570e + 02 
3.2807 e - 02 3.2695e - 02 3.2468e - 02 
5.0539e + 00 4.3981e + 00 8.3021e + 00 
l.2108e + 04 l.2138e + 04 l.2339e + 04 
l.2129e + 01 l.2882e + 01 l.5134e + 01 
5.1602e + 03 1.4374e + 05 l.8228e + 07 
3.6207 e + 01 3.6192e + 01 3.6192e + 01 
2.2077e - 01 2.2086e - 01 2.2086e - 01 
7.9934e + 00 7.9934e + 00 7.9934e + 00 
4.2309e + 01 4.7187e + 01 7.9540e + 01 
l.2745e - 01 l.2704e - 01 l.2652e - 01 
5.3924e + 00 5.9945e + 00 1.0063e + 01 
5.0195e + 02 5.0688e + 02 5.3032e + 02 
l.2129e + 01 l.2882e + 01 l.5135e + 01 

Table 3. 
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Remark 6. Suppose that Cj, Cj are any matrices of the form (3.2.3) satis-
fying (3.2.5), i.e., the corresponding new bases 

are biorthogonal. 
W j, '1r j unchanged. 

~1!-ew =CJ·~'· 
J J ( 4.6) 

Then the construction (3.3.8) leaves the wavelet bases 

Proof: To this end, recall from [18] that the initial stable completion Mj,l 
transforms under the change ( 4.6) into 

M ... new c-TM ... j,1 = j+l . j,1, (4.7) 

while 
Gjew = (Cj_T Gj,o~f+1). 

Gj,1 Ci+1 
( 4.8) 

Now the new wavelets Wjew are given by 

( W~ew)T = ({[>~ew)TM~ew 
J J+l J,1 ' (4.9) 

where, by (3.3.8), 

Taking Remark 5 and ( 4. 7) into account yields 
-T T - - / T - -1 -T ... 

Mj,~w Ci+1 (I - Mj,oCi Cj(Mj,o) Ci+1 Ci+1)Mj,1 
Cjfi (I - Mj,o (r i+l Mj,0 r;-1 )T)Mj,1 

-T - T ... -T Ci+1(I- Mj,o(Mj,o) )Mj,1 = Ci+1Mj,1, 

where we have used (3.2.5), (3.2.12) and (3.3.8). Thus, by ( 4.9), we obtain 

(1Trnew)T (;r..new)TMnew - .:F.T cT c-T M ffrT 
';!! j = '±' j+l j,1 - '±' j+l j+l j+l j,1 = ';!! j . ( 4.10) 

Similarly, by (3.3.8), ( 4.6) and ( 4.8), 

(,l;new )TM-new _ (;F.' )TC-T C. G ... T 
'±' +1 . 1 - '±' '+1 +1 J+l . 1 - J J, ... J - _J - J, 
({[>j+l)Tr;-~1 Gf,1 = {[>f+1Mj,l = wf' 

where we have used (3.2.5) and (3.2.10). This confirms the above claim. II 

We will explore next several str:ategies for determining appropriate matri-
ces Cj, Cj of the form (3.2.3) (but different from (3.2.7)) such that the new 
bases {[>jew = Cj{[>j and ~jew = Cj{[>j are biorthogonal (3.2.2) and have more 
favorable properties in the above sense. In order to modify also the wavelet 
bases we would have to employ, on account of Remark 6, nontrivial matrices 
Kj in (3.3.8). Since we will dispense with this option here, the Riesz bounds 
for the wavelet bases will remain unchanged, and thus will not be commented 
on any longer. 

The superscript new in the quantities Rjew, c~ew, c~ew, d~ew, ~ew and 
enew will always indicate the new values resulting from the respective change 
of bases. 
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4.1. Singular Value Decomposition 

Recall from (3.2.2), (3.2.5) that biorthogonalization essentially requires to 
determine blocks CL, CL such that 

(4.1.1) 

Our first approach primarily aims at avoiding the numerical problems related 
to the bad condition of r L. The idea is to equidistribute the bad condition of 
r L to the matrices c L' Ch as follows. Instead of inverting r L one performs 
a (more stable) singular value decomposition 

rL = u:EvT, (4.1.2) 

where :Eis diagonal and U, V are orthogonal matrices. The choice 

C ·- ~-1/2UT L .- .£.j ' ( 4.1.3) 

obviously satisfies ( 4.1.1) yielding cond(r£ew) = 1. 
The second block in Tables 1-3 labeled 'SVD' corresponds to this case. 

Now the inversion of a possibly extremely ill-conditioned matrix has been 
avoided completely. In addition the data shows that for the minimal choices 
d = d the condition of the primal and dual generator bases is also improved 
significantly. However, for larger J, i.e., when aiming at a higher number of 
vanishing moments the Riesz bounds for the bases «P j, ~ j and the condition 
numbers of Mi become quickly unacceptable. 

4.2. Bernstein Basis Polynomials 

The following alternative approach addresses primarily the improvement of 
the Riesz bounds for the generator bases. It is well known that the monomial 
basis gets increasingly ill-conditioned when the degree d increases. In view 
of (3.1.1), it is therefore conceivable that the boundary functions inherit this 
property. This suggests to take up the comments at the end of [18] and work 
from the beginning with a different boundary adaptation. To describe this, 
suppose Pr, r = 0, ... , d - 1 is any basis of the space Ild of polynomials of 
order d. Defining instead of (3.8) the quantities 

(4.2.1) 

one still obtains by (3.1.1) 

L 'T]cp,r( m) cp[j,m] ( X) = 2j 12 Pr(2j X ), T = 0, ... , d-1. ( 4.2.2) 
mE7Z 

We will discuss only the left end point of [O, 1] since the rest follows again 
by replacing x by (1 - x) and reversing the order of basis polynomials. Let 
us denote by Z.r, the matrix that takes the monomial basis into the new one 
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P ={Pr: r = 0, ... , d-1}, i.e., Pr(x) = I:f:01(ZL)r,ZXl. Then one obviously 
has 

so that 
d-1 

7/c;,,r(m) = L(ZL)r,zaq,,z(m) ( 4.2.3) 
l=O 

readily yields the new coefficients. Likewise, choosing also some basis P for 
Ilcl with a corresponding transformation ZL, we obtain as modified boundary 
functions q;f ,77 = zL q;r, ~r,T; = zL ~r. 

Here and in the following we will always assume that the blocks on the pri-
mal side are always extended to match the size of those on the dual side as 
explained earlier. In principle, we could avoid the initial change of ~f to 
zL<I>f. In fact, for CL= ZL the matrix CL:= (ZLrL)-T would provide the 
biorthogonalized set ~J~ew,L = CL~f. However, when working with zL<I>~' 

. J 
instead of ZLr L the matrix 

( 4.2.4) 

has to be inverted. Although one may hope that the above symmetric trans-
formation will favorably effect the condition of rI, in our experiments we did 
not notice much difference between these two choices so that all tests were 
made with CL= ZL and CL= (ZLrL)-T. 

It remains to choose the bases P and P for Ild .and Ilcl, respectively. In 
[29], the monomials xr were replaced by polynomials Pr( x) = I:~=O ar,i xi 
trying to find favorable choices of the coefficients ar,i· Here we pursue a more 
systematic strategy replacing the monomial basis by one which is known to be 
better conditioned. A natural choice would be to employ orthogonal polyno-
mials. On the other hand, it is well-known that Bernstein basis polynomials 
(also known as B ezier polynomials) have better stability properties than the 
monomial basis [24]. These stability properties, of course, depend on the in-
terval with respect to which they are defined. It is not clear beforehand which 
interval would have the most favorable effect in the present context. Therefore 
we will consider next the functions Pr(x) := B:.b(x) where 

' 

( 4.2.5) 

are the Bernstein basis polynomials for Ild with respect to the interval [O, b]. 
The corresponding transformations ZL are lower triangular matrices given by 

( ( -l)r-l (d-1)' (r) b-r, 
( Z)r,l = I 0 r l 

... 

T ~ l, 
otherwise, 

l, T = 0, ... , d -1. ( 4.2.6) 
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The inverse transformation is known to be 

T ~ l, 
otherwise, l, T = 0, ... , d - l, ( 4.2.7) 

cf. [24]. The matrices ZL, Z£1 can be defined analogously with d replaced by 
d. 

As before we leave the primal sets <PJ = <PL,11, defined relative to the 
Bernstein basis as decribed above, fixed, and biorthogonalize the dual sets. 
The resulting entities are again indexed by the superscript new. In order 
to facilitate the comparison of the results to the previous cases, we have 
displayed in the third part of Tables 1-3 some data where the Bernstein basis 
transformation was applied relative to the choices b = 1 and b = 2. In order to 
show the quite remarkable influence of the parameter b, the results for various 
combinations of d and d are listed for several choices of b in Tables 4-14. 
In these tables, the respective most favorable choice of b for the condition 
numbers of Rjew and I'[,ew are marked in boldface. Note that the parameter 
f2 is unaffected by the different choices of b. 

d = 2, d = 2 
Using no transformation, SVD-based transformation and 

Bernstein basis transformation for different values of b 

I NoTr. I 1.6774e + 01 I 4.4422e + 00 I 5.0473e + 00 I 5.3641e + 00 I 2.5454e + 00 I 
I SVD I 1.0000e + 00 I 1.6673e + 00 I 1.8891e + 00 I 3.6383e + 00 I 1.194le + 00 I 

0.4 
0.7 
1.0 

3.9964e + 00 3.0928e + 00 3.4956e + 00 4.1684e + 00 
4.8656e + 00 3.0lOOe + 00 3.5034e + 00 2.8652e + 00 
8.0423e + 00 3.6516e + 00 4.2543e + 00 3.4394e + 00 

Table 4. 

d = 2, d = 4 
Using no transformation, SVD-based transformation and 

Bernstein basis transformation for different values of b 

1.7999e + 00 
1.7999e + 00 
1.7999e + 00 

I NoTr. I 7.2772e + 02 I 4.4413e + 00 I 4.6054e + 00 I 4.7432e + 00 I 2.5454e + 00 I 
I SVD I l.OOOOe + 00 I 1.1350e + 01 I 1.0796e + 01 I 4.5651e + 01 I 1.2012e + 00 I 

0.5 1.5131e + 02 2.8738e + 00 3.0364e + 00 3.3416e + 00 1.6415e + 00 
0.7 7.9050e + 01 3.0061e + 00 3.1712e + 00 2.5986e + 00 1.6415e + 00 
1.0 6.0443e + 01 3.6500e + 00 3.8336e + 00 3.1105e + 00 1.6415e + 00 
2.0 1.5995e + 02 6.5150e + 00 6.8110e + 00 5.5455e + 00 1.6415e + 00 

Table 5. 
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I 
I NoTr. I 
I SVD I 

0.5 
0.6 
0.8 
1.0 
1.6 
2.0 

d = 2, d = 6 
Using no transformation, SVD-based transformation and 

Bernstein basis transformation for different values of b 

1.8741e + 05 j 4.4413e + 00 I 4.8294e + 00 j 4.4225e + 00 I 2.4038e + 00 j 

1.0000e + 00 j 2.2554e + 02 j 1.886le + 02 I 5.0793e + 03 I 1.3798e + 00 I 
7.4039e + 04 2.8736e + 00 3.3902e + 00 3.4997e + 00 
3.3843e + 04 2.8856e + 00 3.3621e + 00 2.9531e + 00 
1.0715e + 04 3.1880e + 00 3.6329e + 00 2.5200e + 00 
4.8813e + 03 3.6500e + 00 4.1049e + 00 2.8676e + 00 

2.0975e + 03 5.3218e + 00 5.8936e + 00 3.9648e + 00 
2.472le + 03 6.5150e + 00 7.189le + 00 4.7392e + 00 

Table 6. 

d = 2, d = 8 
Using no transformation, SVD-based transformation and 

Bernstein basis transformation for different values of b 

1.7477e + 00 
1.7477e + 00 
1.7477e + 00 
1.7477e + 00 
1.7477e + 00 
1.7477e + 00 

I NoTr. I 1.1515e + 08 I 4.4413e + 00 I 5.3946e + 00 J 4.4280e + 00 I 2.5803e + 00 I 
I SVD I 1.0000e + 00 I 6.8118e + 03 I 4.2374e + 03 I 1.9845e + 06 I 1.8545e + 00 I 

0.5 
0.7 
0.8 
1.0 
2.0 
2.2 
3.0 

7.6865e + 07 2.8736e + 00 4.4703e + 00 3.8173e + 00 
9.3902e + 06 3.006le + 00 4.2795e + 00 2.900le + 00 
4.2318e + 06 3.1880e + 00 4.3706e + 00 2.6746e + 00 
1.1837e + 06 3.6500e + 00 4.7450e + 00 2.8762e + 00 
7.3594e + 04 6.5150e + 00 7.8499e + 00 4.7554e + 00 

7.0390e + 04 7.1210e + 00 8.5445e + 00 5.1849e + 00 
9.2374e + 04 9.5762e + 00 1.1389e + 01 8.0034e + 00 

Table 7. 

d = 3, d = 3 
Using no transformation, SVD-based transformation and 

Bernstein basis transformation for different values of b 

1.9147e + 00 
l.9147e + 00 
1.9147e + 00 
1.9147e + 00 
1.9147e + 00 
1.9147e + 00 
1.9147e + 00 

I NoTr. I 1.1944e + 03 J 3.3817e + 01 J 4.9550e + 01 J 8.2396e + 02 j 1.2718e + 01 I 
I SVD J l.OOOOe + 00 J 1.6673e + 00 J 1.8891e + 00 j l.6431e + 01 j l.9996e + 00 I 

1.0 3.9776e + 01 l.9112e + 01 2.8697e + 01 3.6594e + 02 4.7280e + 00 
1.2 3.5235e + 01 l.4865e + 01 2.2500e + 01 2.0266e + 02 4.7280e + 00 
2.0 5.6699e + 01 8.6997e + 00 1.3470e + 01 4.7713e + 01 4.7280e + 00 
3.0 1.316le + 02 1.3047e + 01 2.0005e + 01 2.2125e + 01 4.7280e -1- 00 
3.6 2.1907e + 02 1.7166e + 01 2.6445e + 01 2.0191e + 01 4.7280e + 00 
4.0 3.0370e + 02 2.0412e + 01 3.1534e + 01 2.2290e + 01 4.7280e + 00 

Table 8. 
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I 
I NoTr. I 
I SYD I 

1.0 
1.7 
2.0 
2.1 
3.0 
3.7 
4.0 
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d = 3, d = 5 
Using no transformation, SYD-based transformation and 

Bernstein basis transformation for different values of b 

4.3638e + 04 I 3.4085e + 01 I 3.5748e + 01 I 8.2396e + 02 I 9.4964e + 00 I 
1.0000e + 00 I 5.6242e + 01 I 5.1054e + Olr 6.2855e + 02 I 6.9280e + 00 j 

9.4989e + 02 2.0190e + 01 2.0677e + 01 3.6640e + 02 
3.6213e + 02 l.0375e + 01 1.0713e + 01 7.3457e + 01 

4.0558e + 02 8.8589e + 00 9.3953e + 00 4.8963e + 01 
4.3173e + 02 8.7'474e + 00 9.6467e + 00 4.3879e + 01 
9.2645e + 02 1.3044e + 01 1.4436e + 01 2.5398e + 01 
1.7714e + 03 1.7938e + 01 1.9892e + 01 2.3535e + 01 
2.3241e + 03 2.0410e + 01 2.2648e + 01 2.3791e + 01 

Table 9. 

d = 3, d = 7 
Using no transformation, SYD-based transformation and 

Bernstein basis transformation for different values of b 

3.3427e + 00 
3.3427e + 00 
3.3427e + 00 
3.3427e + 00 
3.3427e + 00 
3.3427e + 00 
3.3427e + 00 

I NoTr. I 1.3386e + 07 I 3.4085e + 01 I 5.5120e + 01 I S.3926e + 02 I 1.1215e + 01 

I SVD j 1.0000e + 00 I 2.3651e + 03 I 1.1585e + 03 I 4.7439e + 05 I 7.7156e + 00 I 
1.0 
2.0 
2.1 
2.5 
3.0 
3.5 
4.0 

3.1947e + 05 2.0190e + 01 2.8880e + 01 3.6676e + 02 
2.0585e + 04 8.8589e + 00 1.5236e + 01 4.9679e + 01 
1.9148e + 04 8.7474e + 00 1.5197e + 01 4.4684e + 01 

1.7321e + 04 1.0326e + 01 1.6203e + 01 3.2779e + 01 
1.9540e + 04 1.3044e + 01 1.9284e + 01 2.7239e + 01 
2.5171e + 04 1.6414e + 01 2.3709e + 01 2.5962e + 01 
3.4692e + 04 2.0410e + 01 2.9190e + 01 2.6544e + 01 

Table 10. 

d = 4, d = 6 
Using no transformation, SYD-based transformation and 

Bernstein basis transformation for different values of b 

4.2655e + 00 
4.2655e + 00 
4.2655e + 00 
4.2655e + 00 
4.2655e + 00 
4.2655e + 00 
4.2655e + 00 

I NoTr. I 5.3936e + 06 l 3.2086e + 02 I 3.4863e + 02 I 3.0783e + 04 I 5.1142e + 01 

I SVD l l.OOOOe + 00 I 1.1403e + 02 I 1.2026e + 02 I 6.8133e + 03 j 1.3735e + 01 
1.0 2.9053e + 04 1.3204e + 02 1.5405e + 02 1.2108e + 04 1.2129e + 01 
1.8 4.7779e + 03 4.0413e + 01 4.7383e + 01 7.7721e + 02 1.2129e + 01 
2.0 5.1602e + 03 3.6207e + 01 4.2309e + 01 5.0195e + 02 1.2129e + 01 
3.0 1.4593e + 04 6.2076e + 01 7.1896e + 01 1.1328e + 02 1.2129e + 01 
3.6 2.9962e + 04 8.5930e + 01 9.9810e + 01 7.7863e + 01 1.2129e + 01 
4.0 4.7815e + 04 1.0576e + 02 1.2306e + 02 8.3699e + 01 1.2129e + 01 

Table 11. 
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d = 4, d = 8 
Using no transformation, SVD-based transformation and 

Bernstein basis transformation for different values of b 

31 

I NoTr. I 4.1889e + 08 I 3.2086e + 02 I 3.7829e + 02 I 3.0785e + 04 I 5.5315e + 01 I 
I SVD I 1.0000e + 00 I 7.9974e + 03 I 5.7030e + 03 I 7.1991e + 06 I 5.3075e + 01 I 

1.0 
1.8 
2.0 
2.2 
3.0 
4.0 
4.1 

2.0258e + 06 1.3414e + 02 1.3452e + 02 l.2138e + 04 
l.6771e + 05 4.0993e + 01 4.6009e + 01 7.8265e + 02 
1.4374e + 05 3.6192e + 01 4.7187e + 01 5.0688e + 02 

1.3822e + 05 3.9768e + 01 5.1245e + 01 3.4835e + 02 
2.2134e + 05 6.2076e + 01 7.9070e + 01 1.1842e + 02 
6.2401e + 05 1.0576e + 02 1.3511e + 02 6.5476e + 01 
6.9575e + 05 1.1127e + 02 1.4220e + 02 6.5473e + 01 

Table 12. 

d = 4, d = 10 
Using no transformation, SVD-based transformation and 

Bernstein basis transformation for different values of b 

1.2882e + 01 
1.2882e + 01 
1.2882e + 01 
1.2882e + 01 
1.2882e + 01 
1.2882e + 01 
1.2882e + 01 

I NoTr. j 5.3842e + 11 j 3.2086e + 02 j 5.5723e + 02 j 3.1683e + 04 I 6.5923e+ 01 j 

I SVD I 1.0000e + 00 I 3.8262e + 05 I l.4805e + 05 I 7.9549e + 09 I 5.3066e + 01 I 
1.0 
2.0 
2.2 
3.0 
4.0 
4.4 

1.3758e + 09 1.3414e + 02 2.5575e + 02 1.2339e + 04 
1.8228e + 07 3.6192e + 01 7.9535e + 01 5.3032e + 02 
1.2880e + 07 3.9768e + 01 7.7667e + 01 3.6866e + 02 

8.1173e + 06 6.2076e + 01 1.0200e + 02 1.3781e + 02 
1.2753e + 07 1.0576e + 02 1.6981e + 02 8.6679e + 01 
1.7456e + 07 1.2922e + 02 2.0728e + 02 8.3882e + 01 

Table 13. 

d = 5, d = 7 
Using no transformation, SVD-based transformation and 

Bernstein basis transformation for different values of b 

1.5134e + 01 
1.5134e + 01 
1.5135e + 01 
1.5134e + 01 
1.5134e + 01 
1.5135e + 01 

I NoTr. I 1.0539e + 10 I 1.0766e + 04 I 1.0678e + 04 I 4.1464e + 07 I 1.7658e + 02 I 
I SVD j 1.0000e + 00 j 3.3800e + 02 j 1.1018e + 03 j 4.2393e + 04 j 1.0276e + 00 I 

2.0 3.9536e + 05 6.9462e + 02 6.8983e + 02 1.4737e + 05 6.9246e + 01 
2.7 2.2764e + 05 3.0269e + 02 3.0098e + 02 2.3004e + 04 6.9246e + 01 
3.0 2.3930e + 05 2.3173e + 02 2.3034e + 02 1.2601e + 04 6.9246e + 01 
3.1 2.4792e + 05 2.2210e + 02 2.1250e + 02 l.0527e + 04 6.9246e + 01 
3.2 2.5869e + 05 2.2768e + 02 1.9678e + 02 8.8830e + 03 6.9246e + 01 
4.0 4.2676e + 05 3.0494e + 02 2.5160e + 02 3.2708e + 03 6.9246e + 01 
5.7 1.7141e + 06 5.9374e + 02 4.8053e + 02 2.0130e + 03 6.9246e + 01 
6.0 2.2060e + 06 6.6513e + 02 5.3756e + 02 2.021le + 03 6.9246e + 01 

Table 14. 
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4.3. Conclusion 

The results from Tables 4-14 confirm that throughout the full range of choices 
for d, d, a transformation of the standard generator bases <I> j, <I> j using the 
Bernstein basis transformation for a well-chosen b improves the condition 
of the primal and dual generator bases, of the transformation Mj as well 
as of the matrix r L significantly. This effect increases with d but is rather 
insensitive with respect to d. Only for d = d = 2 the SVD technique gives 
slightly better results. For instance, for d = 4, d = 10 the condition of r L is 
improved through the Bernstein-Bezier transformation by a factor 105 while 
cond(Mj) is reduced by approximately 103 . Although the respective optimal 
values of the investigated quantities vary with b, the data reveals that an 
appropriate compromise (e.g. chosing b = 3.0 for d = 4, d = 10) still yields 
a significant improvement over the standard setting. The detailed account 
of our experiments documented in Tables 4-14 shows which combination of 
parameters is best for a given priority. 

§5. Plots 

We conclude with illustrating the above findings by a series of plots compar-
ing the initial and Bernstein basis stabilized bases at the left boundary (recall 
the symmetry properties of the bases). As an example we choose d = 4, d = 8 
for which the various effects caused by the Bernstein basis transformation 
are more visible than in the lower order cases. The functions were stabilized 
relative to b = 2.0 for which, according to Table 12, the condition of <I>j 
and <I> j yields a good compromise. All functions are plotted relative to level 
j = io = 6. In Figure 3 we show all the four primal generators which are mod-
ified at the boundary before and after the transformation in addition to the 
first interior one. Figure 4 shows a selection of the modified dual generators, 
namely, <Pf.e-d+r for r = 0, 1, 2, 7 and the first interior one. The difference 
to the other boundary functions not displayed here was not visible. Finally, 
in Figure 5 we have plotted the wavelets and dual wavelets at the boundary 
which, as was mentioned in Remark 6, are not affected by the Bernstein basis 
transformation. Also we only display a selection of them including the first 
interior one. One should note that the sup-norm of the boundary adapted 
basis functions is reduced significantly by the stabilizing transformations. 
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