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Abstract. The martingale problem for superprocesses with parameters

(�;�; k) is studied where k(ds) may not be absolutely continuous with respect to the

Lebesgue measure. This requires a generalization of the concept of martingale prob-

lem: we show that for any process X which partially solves the martingale problem,

an extended form of the liftings de�ned in [11] exists; these liftings are part of the

statement of the full martingale problem, which is hence not de�ned for processes X

who fail to solve the partial martingale problem. The existence of a solution to the

martingale problem follows essentially from Itô's formula. The proof of uniqueness

requires that we �nd a sequence of (�;�; kn)-superprocesses \approximating" the

(�;�; k)-superprocess, where kn(ds) has the form �n(s; �s)ds: Using an argument in

[12], applied to the (�;�; kn)-superprocesses, we derive, passing to the limit, that

the full martingale problem has a unique solution. This result is apply to construct

superprocesses with interactions via a Dawson-Girsanov transformation.

1. Introduction

While the characterization of superprocesses by evolution equations has had a spectacular
development in the recent years, the characterization of these processes by martingale
problems was stopped by di�culties arising when considering (�;�; k)-superprocess with k
a non-absolutely continuous additive functional. The purpose of this paper is to generalize
[12] to the case where k cannot be written as k(ds) = �(s; �s)ds:

The di�culties �rst come from the fact that it is not possible to get, in the case of a
general k, the classical form of the (A;D(A))-martingale problems, where A is an operator
with domain D(A). The statement of the martingale problem itself is problematic. It
requires to identify (see Theorem 4) additive functionalsK ofX , corresponding to additive
functionals k of the motion process � (the lifting K of k). But in our context, unlike in
[10] or [11], X is not, in general, a Markov process and we must �nd new methods to
determine and manipulate them.

Furthermore, the simplest way to prove uniqueness of the solution to martingale prob-
lems for superprocesses (cf. [12, p. 254] or [4, p. 112]), involves the derivation of the
log-Laplace functional v of X: But this is unapplicable here since v solves an evolution
equation of the form

vr;t(f)(x)� �r;xf(�t)� �r;x

Z
t

r

�(s; �s; vs;t(f)(�s))k(ds)

where k cannot be written as k(ds) = �(s; �s)ds:
Finally martingale problems can used (see x6) to construct superprocesses with inter-

actions. This is one of the advantages of the martingale problem characterization over
the evolution equation characterization. Here the interaction is given by an additionnal
term <, and the process is called the (�;�; k;<)-superprocess with interactions. This
process is characterized as the unique solution of a martingale problem obtained by a
Dawson-Girsanov transformation of the (�;�; k)-full martingale problem (cf. [3] and [4,
Th. 7.2.2]). Here, the di�culty is essentially to properly state the martingale problem:
Dawson's argument completely extends to our more general context. This di�culty comes
from the fact that the statement of this martingale problem involves additive functionals
which cannot be explicitly described. But unlike in the case of (�;�; k)-superprocesses,
a (�;�; k;<)-superprocess with interactions does not solve a partial martingale problem
(cf. xx1.2 and 1). The problem is overpassed by de�ning these additive functionals as
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the liftings of the (�;�; k)-superprocesses. This involves the choice of a version of these

liftings, but it turns out that the (unique) solution P
(�;�;k;<)
r;� of the (�;�; k;<)-martingale

problem does not depend on this choice, since it is absolutely continuous with respect to

the distribution P
(�;�;k)
r;� of the (�;�; k)-superprocess.

1.1. Historical background . A measure valued process X whose log-Laplace func-
tional vr;t(f)(x) solves the integral equation

vr;t(x) = �r;xf(�t)� �r;x

Z
t

r

 (s; �s; vs;t)k(ds)

where � = (�t;=; �r;x) is a Markov process, k(ds) is an additive functional of � and  is
an operator, is called a (�;  ; k)-superprocess. In view of the advantages and the intrinsic
interest in characterizing superprocesses by a martingale problem, Roelly-Coppoletta [23]

posed and solved in 1986 the martingale problem for the (�; (:)
2
; ds)-superprocesses where

� is a Feller process. In 1987, El-Karoui and Roelly-Coppoletta extended the result to a
large class of (�;  ; ds)-superprocesses where � is a Feller process. In 1988, Fitzsimmons
obtained some results on the martingale problem for the (�;  ; ds)-superprocesses (where
� is a right process) and in particular he showed that interesting properties can be derived
from a well posed martingale problem. Multitype superprocesses were characterized by
martingale problems in 1990 by Gorostiza and Lopez-Mimbela [16]. In 1992, Fitzsimmons
solved the martingale problem for the (�;�; ds)-superprocesses for � a right process and

�(x; �) = b(x)�2 +

Z 1

0

�
e��u � 1 + �u

�
n(x; du)

where the measure n(x; du) satis�es some properties. No results until recently were avail-
able when the branching additive functional rate k(ds) is not the Lebesgue measure. Di�-
culties are inherent even in the statement of a martingale problem for superprocesses with
branching rates k(ds) which are not absolutely continuous with respect to the Lebesgue
measure. In 1994, Dawson and Fleischmann showed in [5] that the one point catalytic

super Brownian motion, that is the (�; (:)
2
; Lc)-superprocesses (where Lc

t
is the local time

of the Brownian motion � at time t), solves a martingale problem related to the density
of the occupation time process.

In fact, in order to be able to state the martingale problem for the (�;�; k)-superprocesses,
we �rst need to extend the notion of lifting and projection introduced in [11] to the case
where X may not be a Markov process. Let (E;B) be a metrizable Luzin space. Given an
Mf (B)-valued Hunt process X = (Xt;=; Pr;�) and a E-valued Hunt process �, Dynkin,
Kuznetsov and Skorohod de�ned the lifting A(ds) of an additive functional a(ds) of � as
an additive functional A(ds) of X such that for every r; t 2 R+, for every � 2 Mf (B) and
for every bounded non-negative measurable '(:)

Pr;�A(r; t] =
R
E
�(dx)Pr;�xA(r; t] (1)

and more generally

Pr;�
R1
r
'(s)A(ds) = �r;�

R1
r
'(s)a(ds): (2)
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If A(ds) is a lifting of a(ds); then a(ds) is said to be the projection of A(ds). And in fact,
given a linear additive functional A(ds) of X; that is an additive functional such that (1)
is veri�ed, one can �nd an additive functional a(ds) of � which is the projection of A. The
authors proved that the lifting-projection relation establishes a one to one correspondence
between the additive functionals of � and the linear additive functionals of X . Their proof
makes use of the Markov property of X . For our purposes, it was necessary to reduce
that condition to the assumption that a certain partial-martingale problem is veri�ed.

In fact we also obtained a criteria for the convergence of the liftings of a convergent
sequence of additive functionals which may have some independent interest. The lifting's
existence allowed us to de�ne a process, t 7!Mt; playing the role of the martingale problem
statement that \for every r > 0 and every � 2 Mf (B) there exists only one distribution,
Pr;�; on the space of c�adl�ag trajectories in Mf (B); such that Pr;� (Xr = �) = 1 and Mt

is a Pr;�-martingale for t � r ".
The proof relies on a sequence of superprocesses that we can construct to \approx-

imate" (in a sense speci�ed below) our given superprocess. The approximating super-
processes, Xn; have the property that their branching additive functional rates kn(ds)
are absolutely continuous with respect to the Lebesgue measure: kn(ds) = �n(s; �s)ds:
But then, El Karoui and Roelly-Coppoletta's proof of uniqueness can be decomposed into
di�erent steps making sense in terms of the approximating superprocesses, and �nally
passing to the limit, their proof �nds an expression in our more general context.

1.2. Partial and full martingale problem. In general, a martingale problem can
be formulated in the following way: �rst, to any (canonical c�adl�ag) process X , a real
valued process t 7! (Mr

G
)t; t � r; is de�ned up to Pr;�-indistinguishability, for every

function G in a certain set S. A c�adl�ag process X = (Xt;=; Pr;�) is said to be a solution

to the martingale problem if the processes (Mr

G
)t are Pr;�-martingales for every G in S.

The martingale problem ((Mr

G
); S) is said to be well posed if there exists one and only

one solution to the martingale problem.
We see a well posed martingale problem as a \test" which characterizes a process.

Pick a process X = (Xt;=; Pr;�). The test goes like this:

� For every G 2 S, check if the process t 7! (Mr

G
)t is a Pr;�-martingale:

If the test is a success, X is the only solution to the ((Mr

G
); S) martingale problem.

In the test, the order in which the processes t 7! (Mr

G
)t (for G 2 S) are tested has no

importance. We introduce now a slight modi�cation to this procedure. Let S = S1 [ S2
where S1 and S2 are two disjoint sets. Our new \test" is the following:

� Test whether or not X is a solution to the ((Mr

G
); S1)-martingale problem

� If the test has not failed continue, otherwise, stop.

� Test whether or not X is a solution to the ((Mr

G
); S2)-martingale problem

The non well posed martingale problem ((Mr

G
); S1) is called the partial martingale

problem. A solution to the partial martingale problem is called a solution to the full
martingale problem if it is a solution to the ((Mr

G
); S2)-martingale problem.
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In this paper, partial martingale problems are used to determine certain processes -in
terms of the solutions to the partial martingale problem- which enter into the statement
of the full martingale problem; the statement of the full martingale problem is not well
de�ned for process X = (Xt;=; Pr;�) which are not solutions to the partial martingale
problem.

1.3. Assumptions and basic elements . We �x a constant T > 0 and consider our
processes only during the time interval [0; T ]. Throughout this paper we assume, unless
speci�cally mentioned, that

1.3A � = (�t;F ; �r;x); is a (time homogeneous) Feller processes living in a locally compact
separable metric space (E; d).

We denote by B the �-algebra generated by d; given a family F of measurable func-
tions, we denote by bF the bounded members of F and by pF the non negative f 2 F .
Ĉ(E) denotes the set of continuous functions vanishing at in�nity. We denote by St the
semigroup of �.We often make use of time inhomogeneous notation and in particular:

Sr
t
(f)(x) := �r;xf(�t) := �xf(�t�r) = St�r(f)(x):

We denote by L be the set of bounded measurable functions f such that St(f)(x) is
strongly continuous, that is kSt(f)(:)� St+h(f)(:)k1 ! 0 as h ! 0. Obviously, for a

Feller process �, Ĉ(E) � L: We denote by (A;D(A)) the in�nitesimal (strong) generator
of �.

In addition to a motion process, we need a branching mechanism:

1.3B b(x) and `(x; d�) are respectively a measurable function and a kernel satisfying the
conditions:

0 � b(x) � 1; 0 �

Z 1

0

u _ u2`(x; du) � 1: (3)

Throughout this paper we pose

�(x; f(x)) =
1

2
b(x)f2(x) +

Z 1

0

E (uf) `(x; du) (4)

where E(z) = e�z + z � 1. We call � a branching mechanisms. We use the no-
tation �(x; f) := �(x; f(x)): In the same spirit as [12], we assume that for every
'(x) 2 D(A); �(x; '(x)) 2 L. Moreover, we want that � be a regular branching

mechanisms; that is, t 7! �(wt; 't(wt)) is c�adl�ag when t 7! wt and t 7! 't(wt) are
c�adl�ag trajectories.

Concerning the branching rate, we require:

1.3C k(ds) is a continuous non negative additive functional of � satisfying the condition

hr
t
(x) := �r;xk(r; t)! 0 uniformly in x as t� r ! 0 : (5)

(Note that, since we consider only our processes during the time interval [0; T ]; this
is equivalent to the \admissibility condition" in [10] according to [10, Lemma 3.3.1].
(Such additive functionals are called admissible additive functionals). We assume
that hr

t
(:) 2 L for every r; t:
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All measure valued processes considered in this paper will be canonical c�adl�ag processes
and the triple X = (Xt;=; Pr;�) will always denote such processes:

� for r � t; Xt denotes the mapping from the space D[r;1)(Mf ) to the space Mf ;

which is de�ned by
Xt(!) = !t; for ! 2 D[r;1)(Mf )

� Pr;� denotes a distribution on D[r;1)(Mf ); we always assume that Pr;�(Xr = �) =
1:

� = denotes the collection of �ltrations f=r
t
gt2[r;1) de�ned by

=r
t
=
\
">0

� (Xs : r � s � t+ ")
Pr;�

where the superscript Pr;� denotes the completion with respect to Pr;�.

1.4. Statement of the martingale problem.

De�nition 1 [partial-martingale problem for �]. A processX = (Xt;=; Pr;�) will be said
to be a solution to the partial martingale problem for � if for every ' 2 D(A)

t 7! hXt; 'i � hXr; 'i �

Z
t

r

hXs;A'i ds (6)

is a Pr;�-martingale for t 2 [ r; T ]:

The full martingale problem requires for its statement the notion of a lifting of an
additive functional:

De�nition 2 [Lifting]. Let X = (Xt;=; Pr;�) be a (canonical c�adl�agMf -valued) process

and let a(ds) be an additive functional of �. A natural right continuous additive functional

A(ds) of X will be called a lifting of a(ds) if for every t � r; the process

s 7! A(r; s] + hXs; �s;:a(s; t]i

is a Pr;�-martingale for s 2 [r; t]:

The following Proposition (which will be proved in a further section) guaranties the
existence and uniqueness of liftings for every solution X = (Xt;=; Pr;�) to the partial
martingale problem.

Proposition 3 [liftings existence and uniqueness]. Let X = (Xt;=; Pr;�) be a solution

to the partial martingale problem for �. Then for every additive functional a(ds) of

� satisfying (5), there exists a unique lifting A(ds) of X: Moreover, it is a continuous

additive functional.

Notation 1. Let f be a progressively measurable bounded function and let � be a
branching mechanism. Then the additive functional �(�s; f(s; �s))k(ds) satis�es (5), and
we will denote by K�(f)dk(ds) the lifting of �(�s; f(s; �s))k(ds).
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The next result characterizes (�;�; k)�superprocesses in terms of a martingale prob-
lems. It is the main result of this paper.

Theorem 4 [martingale problem]. Let r 2 R+ and � 2 Mf ; let X = (Xt;=; Pr;�) be a

solution to the partial martingale problem for �, and let P
(�;�;k)
r;� be the distribution of

the (�;�; k)�superprocess. The processes

t 7! exp (�hXt; 'i) +
R
t

r
exp (�hXs; 'i) hXs;A'i ds

�
R
t

r
exp (�hXs; 'i)K

�(')dk(ds)
(7)

are Pr;� -martingales for every ' 2 D(A); if and only if Pr;� = P
(�;�;k)
r;� .

De�nition 5. A solution X = (Xt;=; Pr;�) to the partial martingale for � which is such

that (7) is a Pr;�-martingale will be called a solution to the full martingale problem

for (�;�; k).

Remark 1. In this work, we will consider only the partial martingale problem for �, and
only full martingale problem for (�;�; k). Thus we refer to them simply as the partial
martingale problem and the full martingale problem.

1.5. Acknowledgments. This paper is part of my Ph.D. thesis which has been writ-
ten under the supervision of Donald A. Dawson. He has been the ideal supervisor: he
provided me with technical support (including �nancial support), he communicated to me
his passion for superprocesses and mathematics and was the best possible catalyst, in the
process of doing my Ph.D. thesis. I couldn't have written this paper or my thesis without
his help.

A special thanks goes Luis Gorostiza and Edwin Perkins. Luis Gorostiza has carefully
read some parts of this paper and suggested numerous improvements and I have had
extremely pro�table conversations with Edwin Perkins.

2. The full martingale problem: existence of a solution

In this section we prove the existence part of Theorem 4, that is, we show that the

distribution P
(�;�;k)
r;� of the (�;�; k)�superprocess is a solution to the full martingale

problem. The proof is based on the following known results.

2.1. Some known results.

Theorem 6. Let X be the superprocess with parameters (�;�; k). Then X is a Hunt

process, the lifting of every natural additive functional with �nite characteristic exists1

and the lifting of `(�s; du)k(ds) is the modi�ed L�evy measure L(ds; d�) of X: In particular

for every bounded measurable real valued function f we have

Pr;�

Z
t

r

Z
Mf

f (h�; 'i)L(ds; d�) = �r;�

Z
t

r

Z 1

0

f (u'(�s)) `(�s; du)k(ds): (8)

The following moment formulae are satis�ed:

1The notion of lifting of additive functionals is due to [11]. For the de�nition see section 1.1.
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(i) Pr;� hXt; fi = �r;�f(�t)
(ii) Pr;� hXt1

; f1i hXt2
; f2i = �r;�f1(�t1)�r;�f2(�t2)

+�r;�
R
t

r
�s;�sf1(�t1)�s;�sf2(�t2)k

(2)(ds)

where k(2)(ds) =
�
b(�s) +

R1
0 u2`(�s; du)

�
k(ds):

Proof. The E-valued process � is a Hunt process. Therefore the superprocess X
is also a Hunt process (see [19, Th. 6.32]). The existence and uniqueness of liftings
is due to [11] (see [10, p. 83]). The fact that the modi�ed L�evy measure L(ds; d�) is
the lifting of `(ds; d�) := `(�s; du)k(ds) is also due to [11] (See [10, Th. 6.1.1 and Sect.
6.8.1]). The formula (8) follows from the de�nition of the lifting of a measure valued
additive functional, see [10, equation 6.2.13a]. The moment formulae were established in
[9, p.1163].

2.2. Proof of the existence of a solution to the martingale problem. Let

P
(�;�;k)
r;� be the distribution of the (�;�; k)-superprocess. Clearly, (6) is a P

(�;�;k)
r;� -martingale

for every ' 2 D(A): Existence and uniqueness of liftings is given from Theorem 6. Let
Ct(') be the quadratic variation of the continuous martingale part of the semimartingale
hXt; 'i : Then Itô's formula implies that

t 7! (hXt; 'i)
2
� (hXr; 'i)

2
� 2

R
t

r
hXs; 'i hXs;A'i ds� Ct(')

+
P

r<s�t

�
(hXs� +�Xs; 'i)

2
� (hXs�; 'i)

2
� 2 hXs�; 'i h�Xs; 'i

�

is a Pr;� -martingale for every ' 2 D(A): Simplifying we obtain that

t 7! (hXt; 'i)
2
� (hXr; 'i)

2
� 2

R
t

r
hXs; 'i hXs;A'i ds

�Ct(') +
P

r<s�t

(h�Xs; 'i)
2

is a Pr;� -martingale for every ' 2 D(A): By de�nition of the modi�ed L�evy measure, this
is the same thing as saying that

t 7! (hXt; 'i)
2
� (hXr; 'i)

2
� 2

R
t

r
hXs; 'i hXs;A'i ds

�Ct(') +
R
t

r

R
Mf

h�; 'i
2
L(ds; d�)

(9)

is a Pr;� -martingale for every ' 2 D(A); where
R
Mf

h�; 'i
2
L(ds; d�) is the lifting ofR1

0 (u')
2
(�s)`(�s; du)k(ds). Note that (by de�nition of lifting)

Pr;�

Z
t

r

Z
Mf

h�; 'i
2
L(ds; d�) = �r;�

Z
t

r

Z 1

0

(u')2 (�s)`(�s; du)k(ds): (10)

Since the Pr;�-expectation of martingale (9) is zero, we can use (10) and the moment
formulae of Theorem 6 to calculate

Pr;� (Ct(')) = �r;�

Z
t

0

b(�s)'
2(�s)k(ds):

Thus

Pr;�

�
1

2
Ct(')�

Z
t

0

Q̂(')(ds)

�
= 0
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where Q̂(')(ds) is the lifting of the additive functional 12b(�s)'
2(�s)k(ds). Therefore, since

Xt is a Markov process, this implies that

t 7!
1

2
Ct(')�

Z
t

0

Q̂(')(ds)

is a martingale. But because t 7! 1
2Ct(') �

R
t

0 Q̂(')(ds) is also a right continuous pre-

dictable process of integrable variation, we obtain that 1
2Ct(') �

R
t

0 Q̂(')(ds): We can
apply Itô's formula which gives that

t 7! exp (�hXt; 'i) +
R
t

r
exp (�hXs; 'i) hXs;A'i ds

�
R
t

r
exp (�hXs; 'i) Q̂(')(ds) �

R
t

r
exp (�hXs; 'i)

R
Mf

E (�h�; 'i)L(ds; d�)

is a P
(�;�;k)
r;� -martingale. But since Q̂(')(ds) is the lifting of 1

2b(�s)'
2(�s)k(ds) andR

Mf
exp (�h�; 'i)L(ds; d�) is the lifting of

R1
0
E (u'(�s)) `(�s; du)k(ds) this can be rewrit-

ten to give that

t 7! exp (�hXt; 'i) +
R
t

r
exp (�hXs; 'i) hXs;A'i ds

�
R
t

r
exp (�hXs; 'i)K

�(')dk(ds)

is a P
(�;�;k)
r;� -martingale.

3. Approximation of superprocesses

As explained in x1.1, in order to prove that the full martingale problem has only one
solution, we need to approximate superprocesses by other superprocesses with branching
rate of the form kn(ds) = �n(s; �s)ds. This is done in Theorem 14 below which may have
some independent interest. But before, some technical results are needed.

3.1. Some technical lemmas.

Lemma 7. Let (
;=; P ) be a �ltered probability space. Suppose that t 7! xn
t

is a

sequence of right continuous processes such that

sup
�2[r;t]

P (jxn
�
j)! 0 (11)

where sup
�2[r;t] indicates here the supremum over all stopping times � such that r � � � t.

Then

sup
s2[r;t]

jxn
s
j ! 0 in P -probability

Proof. Let � > 0. Let �n
�
:= inffs 2 [r; t] : jxn

s
j > �g; where inf � := t. Then we

have
Pfsup

s2[r;t] jx
n

s
j > �g � Pf

���xn�n
�

��� � �g

� 1
�
P (
���xn�n

�

���)
and this converges to zero according to (11).
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Lemma 8. Let (
;<; P ) be a probability space and an(ds) be a sequence of random

measures on R+: If a(ds) is such that P jan([0; t])� a([0; t])j ! 0 for every t � 0; then
there exists a subsequence ank such that P -a.s. ank =) a:

Proof. With the use of Cantor's diagonalization method one �nds a subsequence
ank such that P fjank [0; q]� a[0; q]j ! 0 for every rational q � 0g = 1: But then, because
the mappings t 7�! an[0; t] are increasing, this implies that P -a.s. ank =) a:

Lemma 9. Let k(ds) be any additive functional of an arbitrary right process � = (�t;=; �r;x).
Let Sr

t
be the time inhomogeneous semigroup generated by �. For every 0 � r � s � t

we have that Sr
s
(hs
t
)(x) � hr

t
(x) and

jSr
s
(hs
t
)(x) � hr

t
(x)j = hr

s
(x)

where hs
t
(x) = �s;xk(s; t).

Proof.
Sr
s
(hs
t
)(x) = �r;x (�s;�sk(s; t])

= �r;x (k(s; t])
= �r;x (k(r; t])� �r;x (k(r; s])
= hr

t
(x)� hr

s
(x):

3.2. A-smooth approximation of superprocesses. In x3.2 we introduce the con-
cept of A-smooth approximation of superprocesses. The main result of x3.2 is Theorem 14
below, which states that, under the assumptions 1.3A-1.3C, an A-smooth approximation
exists.

De�nition 10. A sequence kn(ds) of additive functionals of � is said to be uniformly

admissible if for every " > 0 there exists a � > 0 such that for every s; t 2 [0; T ]; js� tj < �

implies that

sup
n

knhs
t
k1 < "

where nhs
t
(x) = �s;xk

n(s; t).

De�nition 11. We say that a mapping  : [0; T ] � E ! R+ is smooth for the strong

generator (A;D(A)) of �; or simply that  is smooth for A, if

1)  (s; :) belongs to D(A) for every s

2) @

@s
 (s; x) exists for every s and




 (s+h;:)� (s;:)
h

� @

@s
 (s; :)





1
! 0

3)  ; @
@s
 and A are bounded and strongly continuous

De�nition 12. We will say that a sequence of superprocessesXn with parameters (�;�; kn)
is an A-smooth approximating sequence for the superprocess X with parameters

(X;�; k), if:

� kn(ds) has the form �n(s; �s)ds
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� the log-Laplace functional vn of Xn converges to the log-Laplace functional v of X .

� for every f 2 D(A); the function  n(s; x) :=vn
s;T

(f)(x) is smooth for A;

� for every f 2 D(A); Avn
s;T

(f)(x) + @

@s
vn
s;T

(f)(x) � �(x; vn
s;T

(f)(x))�n(s; x):

The proof of existence of an A-smooth approximation, relies on the following Propo-
sition where we show that additive functionals k can be approximated by additive func-
tionals kn of the form kn(ds) = �n(s; �s)ds.

Proposition 13. Let k(ds) be a (continuous) admissible additive functional of a right

process �. There exists a sequence of additive functionals kn(ds) of the form

kn(ds) = �n(s; �s)ds

such that

(i) sup0�s<t�T supx2E j
nhs

t
(x) � hs

t
(x)j converges to zero as n tends to in�nity, where

nhs
t
(x) = �s;xk

n(s; t) and hs
t
(x) = �s;xk(s; t);

(ii) the sequence kn(ds) is uniformly admissible;

(iii) kn(r; � ] converges to k(r; � ] in L1(�r;x) for every r-stopping time � and every r; x;

(iv) for every r; x there exists a subsequence fknk(ds)g1
k=1 converging weakly to k(ds):

Proof. Let tn
i
:= i

n
T ; Choose 1

n
T > �n > 0 such that for every � � � such that

j�� �j � �n we have 

h�
�




1
�

1
n2
:

Let us denote by pC1
c

the set of all in�nitely di�erentiable non-negative functions f :
R+ ! R+ with a compact support. We denote by suppffg the support of a function
f 2 pC1

c
(R+). Choose a function f

n

i
in pC1

c
(R+) such that

1) suppffn
i
g � [tn

i
; tn
i
+ �n]

2)
R
fn
i
(s)ds = 1

3) (for simplicity) fn
i
(s) is a translation of fn

j
(s).

Let

kn(ds) :=

n�1X
i=0

hs
t
n

i+1
(�s)f

n

i
(s)ds

and
nhs

t
(x) := �s;xk(s; t]:

Note that
nh

t
n

j

T
(x) =

P
n�1
i=j

R
t
n

i
+�n

t
n

i

fn
i
(s)dsS

t
n

j

s (hs
t
n

i+1
)(x) (12)
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But for s 2 [tn
i
; tn
i
+ �n]

S
t
n

j

s (hs
t
n

i+1
)(x) = �tn

j
;x

�
�s;�sk(s; t

n

i+1]
�

= �tn
j
;x

�
k(s; tn

i+1]
�

= �tn
j
;x

�
k(tn

i
; tn
i+1]

�
� �tn

j
;x (k(t

n

i
; s])

= �tn
j
;x

�
�tn

i
;�tn

i

k(tn
i
; tn
i+1]

�
� �tn

j
;x

�
�tn

i
;�tn

i

k(tn
i
; s]
�

= �tn
j
;x

�
h
t
n

i

t
n

i+1
(�tn

i

)
�
� �tn

j
;x

�
h
t
n

i

s (�tn
i

)
�
;

Thus 


Stnjs (hs
t
n

i+!
)(x) � �tn

j
;x

�
h
t
n

i

t
n

i+1
(�tn

i

)
�




1
� max
i=0;::;n�1




htni
t
n

i
+�n





1
�

1

n2
:

Returning to equation (12) we get that

max
j=0;::;n




nhtnj
T
(x)� h

t
n

j

T
(x)





1
�

1

n
:

Now if s 2 (tn
j�1; t

n

j
) we have hat

knhs
T
(x)� hs

T
(x)k1 =



�s;x �kn(s; tnj ]� k(s; tn
j
]
�


1

= +



�s;x

�
nh

t
n

j

T
(�tn

j

)� h
t
n

j

T
(�tn

j

)
�




1

� 2 sup
s2(tn

j�1
;t
n

j
)




hstn
j





1
+ 1

n
;

and the last expression tends to zero as n tends to in�nity. Moreover, since

nhs
t
(x)� hs

t
(x) = �s;x (k

n(s; T ]� k(s; T ])
��s;x (�t;�tk(t; T ]� �t;�tk

n(t; T ])

we easily derive that
sup

0�s;t�T;x2E
jnhs

t
(x)� hs

t
(x)j ! 0

as n tends to in�nity. This establishes that kn(ds) satis�es property (i). Property (ii) is
an immediate consequence of (i).

It remains only to establish property (iii) and (iv). But property (i) implies that for
every r � 0 and every x 2 E; we have that

sup
�2[r;T ]

�r;x(j
nh�

T
(�� )� h�

T
(�� )j)! 0

where the supremum is taken over all r-stopping times � such that r � � � T . Con-
sequently, according to Lemma 7, we obtain that sup

s2[r;T ] j
nhs

T
(�s)� hs

T
(�s)j ! 0 in

�r;x-probability. One veri�es easily that all the hypothesis of Theorem 25 are veri�ed,
and this yields property (iii). Property (iv) is immediate from Lemma 8, and the proof
is complete.
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Remark 2. In Proposition 13, the sequence of additive functional kn(ds) can be chosen

to have the form

kn(ds) =

n�1X
i=0

h
t
n

i

t
n

i+1
(�s)f

n

i
(s)ds;

where fn
i
2 pC1

c
(R+) for n = 1; 2; :::; i = 0; :::; n� 1;

Proof. Choose �n such that for every r � 0 and every � � � � �+ �n we have

max
i=1;:::;n




Sr�(htnitn
i+1

)� Sr
�
(h
t
n

i

t
n

i+1
)




1
+


h�

�




1
�

1

n2
:

Proceed then exactly like in the proof of Proposition 13. Note that if r 2 ftn0 ; :::; t
n

n
g then

nhr
T
(x) =

X
t
n

i
�r

Z
t
n

i
+�n

t
n

i

fn
i
(s)dsSr

s
(h
t
n

i

t
n

i+1
)(x)

But since for s 2 [tn
i
; tn
i
+ �n] we have




Srs (htnitn
i+1

)� Sr
t
n

i

(h
t
n

i

t
n

i+1
)




1
�

1

n2

and since X
t
n

i
�r

Z
t
n

i
+�n

t
n

i

fn
i
(s)dsSr

t
n

i

(h
t
n

i

t
n

i+1
)(x) = hr

T
(x);

we get

knhr
T
(x) � hr

T
(x)k �

1

n
:

The rest is similar to the proof of Proposition 13.

Theorem 14. There exists a uniformly admissible sequence of additive functionals kn(ds)
with kn(ds) = �n(s; �s)ds such that (�;�; kn)-superprocesses form an A-smooth approx-

imating sequence for the (�;�; k)-superprocess. For every (r; x) 2 R+ � E and every

r-stopping time � , kn(r; � ] converges in L1(�r;x) to k(r; � ]:

Proof. Let kn(ds) be given as in Remark 2 and let vn
r;t
(f)(x) be the log-Laplace

functional of the (�;�; kn)-superprocess, n = 1; 2; :::According to Theorem 26, vn
r;t
(f)(x)!

vr;t(f)(x) where vr;t(f)(x) is the log-Laplace functional of the (�;�; k)-superprocess. Ac-
cording to Theorem 28, vn

r;t
(f)(x) is smooth for A and Avn

s;T
(f)(x) + @

@s
vn
s;T

(f)(x) =
�(x; vn

s;T
(f)(x))�n(s; x) for every 0 � s � T , x 2 E and f 2 D(A):

4. The partial martingale problem

In this section we investigate some of the properties shared by all solutionsX = (Xt;=; Pr;�)
to the partial martingale problem. One of these properties is that for such processes, lift-
ings exist, and therefore, the full martingale problem can be stated.

We also prove that the convergence of processes s 7! Fn(s; �s) to a process s 7! F (s; �s)
can be \lifted" to obtain the uniform convergence of the processes s 7! hXs; F

n(s; :)i to
the process s 7! hXs; F (s; :)i.
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4.1. Connection between X and its particle motion �. The following result is
due to Fitzsimmons [15, Corollary 2.8 ]. It establishes -via the partial martingale problem-
a link between solutions X to the partial martingale problem and their projection �.

Lemma 15. Let X = (Xt;=; Pr;�) be a solution to the partial martingale problem and

let St be the semigroup of �. If � is a bounded r�stopping time then for all f 2 bB

P=�
r;�
hX�+t; fi = hX� ; Stfi ; for every t � 0

where P=�
r;�

denotes the conditional expectation with respect to =� :

The following technical lemma will be used several times in this paper:

Lemma 16. Let X = (Xt;=; Pr;�) be a solution to the partial martingale problem for A.
Then for every f 2 bB; every T > 0 the process t 7! hXt; ST�tfi is a c�adl�ag martingale.

In particular, for every bounded r�stopping time � we have that

Pr;� hX� ; ST��fi = h�; ST�rfi

Proof. Form Lemma 15, we have that

P=t
r;�
hXt+s; ST�t�s(f)i = hXt; ST�t(f)i

and hence the process t 7! hXt; ST�t(f)i is a martingale. Since it is dominated by
t 7! kfk1 hXt; 1i ; it belongs to class (D); according to [10, Lemma A.1.1]. If f 2 D(A);
then Stf 2 D(A) for every t � 0: Hence, for every t0;the process t 7! hXt; ST�t0(f)i is a
c�adl�ag process. Hence if �n denotes a sequence of partitions ftn

i
gn
i=0 of the interval [r; T ]

with meshf�ng ! 0, then the process xn
t
de�ned by

t 7! xn
t
:=

n�1X
i=0

1[tn
i
;t
n

i+1
)(t)



Xt; ST�tn

i

f
�

is a c�adl�ag process. Because f 2 D(A), we have that 1[tn
i
;t
n

i+1
)(t)ST�tn

i

f(x) converges

uniformly (in x and t 2 [r; T ]) to ST�t(f)(x). Therefore t 7! xn
t
converges uniformly (in

t) to t 7! hXt; ST�tfi. Consequently, t 7! hXt; ST�tfi is a c�adl�ag martingale. From the
optional sampling theorem we get that for every bounded r-stopping time �

Pr;� hX� ; ST��fi = h�; ST�rfi : (13)

The extension of equality (13) to arbitrary f 2 bB follows from the fact that D(A)
is dense, for the bounded pointwise convergence, in bB: From Lemma [10, A.1.1.D], we
conclude from this equality that t 7! hXt; ST�tfi is a right continuous -and therefore
c�adl�ag- martingale.

Corollary 17. Let � 2 (r; T ]; � 2 [r; T ] and let f(:) 2 bB. Then the process

t 7! xt := 1[�;�)(t)


Xt; S

t

�
f
�

is c�adl�ag, and moreover, for every � > 0 and every stopping time �

Pr;�x�+� = Pr;�1[�;�)(� + �)


X� ; S

�

�
f
�
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Proof. The process t 7!
D
Xt^� ; S

t^�
�

f
E

is a martingale; so is therefore t 7!

1[�;�)(t)
D
Xt; S

t

�
f
E
.

Let � be a stopping time and � > 0: Note that without lost of generality, we can
assume that � � � : this is due to the facts that for � > �; we have x�^�+� = x�+� = 0.

From the optional stopping time theorem, we get

P
=r
�

r;�

D
X�+�; S

�+�
�

f
E
=


X� ; S

�

�
f
�

where P
=r
�

r;� (:) denotes the conditional expectation with respect to =r
�
.

Because 1[�;�)(� + �) 2 =r
�
this completes the proof.

Corollary 18. Let t0 := r < t1 < ::: < tn := T be a partition of [r; T ]. Let f i(:) 2 bB;

that is a bounded B-measurable function, for i = 1; :::; n. Then the process

t 7! xt :=

n�1X
i=0

1[ti;ti+1)(t)
D
Xt; S

t

ti+1
f i+1

E

is c�adl�ag, and for every stopping time � and every � > 0 we have that

Pr;�(x�+�) = Pr;�

n�1X
i=0

1[ti;ti+1)(� + �)
D
X� ; S

�

ti+1
f i+1

E

Proof. This is immediate from the above Corollary.

4.2. Liftings. Consider now the function hr
T
(x) := �r;xa(r; T ] which is called the

characteristic of the additive functional a(ds). Assume that h is bounded. Note that
by Markov property, for every 0 � r � s � T we have

Sr
s
(hs
T
) (x) = �r;x (�s;�sa(s; T ]) = �r;xa(s; T ] � hr

T
(x):

We use this in the following proof of the existence and uniqueness of liftings for solutions
to the partial martingale problem.
Proof of Proposition 3: According to Lemma 15

P=t
r;�
hXt+s; fi = hXt; Ssfi ; Pr;�-almost surely for every f 2 bB:

Consequently,
P=t
r;�



Xt+s; h

t+s
T

�
=


Xt; Ss

�
ht+s
T

��
�


Xt; h

t

T

�
;

and therefore process t 7! xt := hXt; h
t

T
i is a supermartingale.

Let �n := r = tn0 < ::: < tn
n
= T be a sequence of nested partitions of the interval

[r; T ] with meshf�ng ! 0: According to Corollary 18, the processes

t 7! xn
t
:=

n�1X
i=0

1[tn
i
;t
n

i+1
)(t)

D
Xt; S

t

t
n

i+1
h
t
n

i+1

T

E
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are c�adl�ag. Since k(ds) is admissible, we have, according to Lemma 9

max
i=0;:::;n�1

sup
t2[tn

i
;t
n

i+1
)




Sttn
i+1
h
t
n

i+1

T
� ht

T





1
! 0:

Moreover, due to the fact that t 7! hXt; 1i is c�adl�ag,

sup
s2[r;T ]

hXs; 1i <1:

We can thus conclude that
lim
n!1

sup
t2[r;T ]

jxn
t
� xtj = 0:

The uniform limit of a sequence of c�adl�ag functions being also c�adl�ag, we conclude that
t 7! xt is c�adl�ag.

Thus, by Doob-Meyer decomposition theorem (cf. [10, Th. A.1.1]),t 7! xt has a unique
compensator A(ds) (which is, by de�nition of lifting, the unique lifting of a(ds)) and

A(r; t] = lim
�

n�1P
i=1

P
=ti�
r;�

n

Xti

; hti
T

�
�
D
Xti+1

; h
ti+1

T

Eo

= lim
�

n�1P
i=1

P
=ti�
r;�

n

Xti

; hti
T

�
�
D
Xti

; Sti
ti+1

h
ti+1

T

Eo

= lim
�

n�1P
i=1

P
=ti�
r;�

nD
Xti

; hti
ti+1

Eo
(14)

weakly in L1(P�) as � runs over a standard sequence of partitions � = fr = t0 < t1 <

::: < tn = tg of the interval [r; t]: Moreover, the convergence in (14) is strong when A is
continuous.

We now show that the lifting A of an admissible additive functional a is continu-
ous. According to [10, Th. A.1.1], A is continuous if and only if for every sequence of
r�stopping times �n % �; with �n < �; we have Er;�x�n & Er;�x� :

Let the r�stopping times �n increase to � . Choose " and pick � such that j�� �j � �

implies



h�

�





1
� ".

We have

Pr;�x�n � Pr;�x� � Pr;�x�_(�n+�) = Pr;�1f�n+�<�gx� + Pr;�1f�n+���gx�n+�

But because x belongs to class (D); we have, for n big enough, that the right hand side of
the above di�ers from Er;�x�n+� by a quantity which is less than or equal to ": Therefore,
for big n,

Pr;�x�n+� � Pr;�x� + ": (15)

On the other hand we get from Lemma 9

N�1P
i=0

Pr;�1f i

N
T��+�< i+1

N
Tg

D
X�+�; S

�+�
i+1

N
T
h
i+1

N
T

T

E
! Pr;�



X�+�; h

�+�
T

�
(16)

but by Corollary 18, the left hand side of (16) coincides with

N�1X
i=0

Pr;�1f i

N
T��+�< i+1

N
Tg

D
X� ; S

�
i+1

N
T
h
i+1

N
T

T

E
:
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An other use of Lemma 9 gives

N�1P
i=0

Pr;�1f i

N
T��+�< i+1

N
Tg

D
X� ; S

�
i+1

N
T
h
i+1

N
T

T

E
! Pr;�



X� ; S

�

�+�h
�+�
T

�
;

and therefore
Pr;�



X�+�; h

�+�
T

�
= Pr;�



X� ; S

�

�+�h
�+�
T

�
:

Thus, using (15), we have, for n big enough,

0 � Pr;�x�n � Pr;�x� � "+ Pr;� (x�n � x�n+�)

= "+ Pr;�

�
hX�n

; h�n
T
i �

D
X�n

; S�n
�n+�

h�n+�
T

E�
= "+ Pr;�

�

X�n

; h�n
�n+�

��
� "(1 + j�j):

This shows that Pr;�x�n & Pr;�x� and therefore, the compensator A of x is continuous.

4.3. Convergence for � versus convergence for X. Let fn(r; x) be a collection of
nearly Borel functions, and (for �xed T > 0) consider the process s 7! Fn

s;T
(�s); s 2 [0; T ];

where Fn
r;T

(x) := �r;xf
n(T; �T ): To these processes, correspond the \lifted" processes given

by s 7!


Xs; F

n

s;T

�
. In this subsection, we establish a criterion under which the pointwise

convergence of Fn
r;T

(x) to Fr;T (x) implies the that the process s 7!


Xs; F

n

s;T

�
converges

uniformly in s to the process s 7! hXs; Fs;T i :

We also establish that a criteria under which the convergence of the additive functionals
kn(ds) to the additive functional k(ds) implies the same convergence for their liftings
Kn(ds) and K(ds).

In fact, we are particularly interested in the processes s 7!


Xs; v

n

s;T
(:)
�
where vn is the

log-Laplace functional of an A-smooth approximating sequence for the superprocess with
parameters (�;�; k). We want to show that s 7!



Xs; v

n

s;T
(:)
�
converges in probability

uniformly in s to s 7! hXs; vs;T (:)i.
We also study the processes s 7! hXs;

n hs
T
(:)i where nhs

T
(:) is the characteristic of an

additive functional kn(ds). We derive from the uniform convergence of s 7! hXs;
n hs

T
(:)i

to s 7! hXs; h
s

T
(:)i that (under some assumptions) the liftings Kn of kn converge (weakly

a.s.) to the lifting K of k. This is crucial for the proof of uniqueness to the martingale
problem.

Uniform convergence of sequences of \lifted processes".

Notation 2. Let zs be a function of s 2 [r; T ]. In the following, the expression z� will
denote

z� := sup
t2[r;T ]

zt:

Lemma 19. Let fn(t; x) be a sequence of uniformly bounded measurable functions sat-

isfying the condition

sup
0�t�T;x;n

jSt+�f
n(t+ �)(x) � fn(t; x)j ! 0 as � ! 0: (17)
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Suppose that

f(t; x) = lim
n!1

fn(t; x): (18)

Then the process

jxn � xj
� := sup

t2[r;T ]

jhXt; f
n(t; :)i � hXt; f(t; :)ij

converges to zero in Pr;�-probability.

Proof. Let tm
i
:= r + i

m
(T � r); for i = 0; :::;m. De�ne

xn
t

:= hXt; f
n(t; :)i

x1
t

; = hXt; f(t; :)i

x
n;m

t
:=

P
m�1
i=0 1[tm

i
;t
m

i+1
)(t)

D
Xt; S

t

t
m

i+1
fn(tm

i+1; :)
E

x
1;m
t

:=
P
m�1
i=0 1[tm

i
;t
m

i+1
)(t)

D
Xt; S

t

t
m

i+1
f(tm

i+1; :)
E
:

Recall that for every !; sup
t2[r;T ] hXt(!); 1i <1. Thus, (17) implies that for every " > 0

and for every m big enough, we have

sup
n2[1;:::;1]

jxn;m(!)� xn(!)j� < ":

Therefore, it su�ces to prove that for every m > 0; jxn;m � x1;mj
�

converges to zero in
Pr;�-probability.

This will clearly be veri�ed if for every c > 0

sup
t2[r;c]

��
Xt; S
t

c
fn(c; :)

�
�


Xt; S

t

c
f(c; :)

���

converges to zero in Pr;�-probability. This is the case if

sup
t2[r;c]



Xt; S

t

c
jfn(c; :)� f(c; :)j

�

converges to zero in Pr;�-probability. To prove this, it su�ces, according to Lemma 7, to
check that

lim
n!1

sup
r���c

Pr;� hX� ; S
�

c
jfn(c; :)� f(c; :)ji = 0:

But for every g 2 B; the process hXt; S
t

c
gi is a c�adl�ag martingale. Hence, from the

optional sampling theorem we get that for every stopping time �

Pr;� hX� ; S
�

c
jfn(c; :)� f(c; :)ji = Pr;� hXr; S

r

c
jfn(c; :)� f(c; :)ji

= h�; Sr
c
jfn(c; :)� f(c; :)ji :

Because fn converges to f; and because ffng is uniformly bounded, the right hand
side of the last equality tends to zero.
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Corollary 20. Let kn(ds); k(ds) be a collection of uniformly admissible additive function-

als of a right process � and � a regular branching mechanism. Let vn be the log-Laplace

functional of the (�;�; kn)-superprocess, and v the log-Laplace functional of the (�;�; k)-
superprocess. Let g 2 L and suppose that vn

r;T
(g)(x) converges to vr;T (g)(x) for every

r; x: Then s 7!


Xs; v

n

s;T
(g)
�
converges uniformly to s 7! hXs; vs;T (g)i in Pr;�-probability.

Proof. Let g 2 L. Note that the functions vn
r;T

(g)(x) and �(x; vn
r;T

(g)(x)) are
uniformly bounded. This implies that the family of additive functionals fk�ng; de-
�ned by k�n(ds) := �(�s; v

n

s;T
(f)(�s))k

n(ds); is uniformly admissible. It follows from
Lemma 9 that (17) holds with fn(t; x) := �r;xk

�n(r; T ] and f(t; x) := �r;xk
�(r; T ],

where k�(ds) := �(�s; vs;T (f)(�s))k(ds): This yields (17) with f
n(t; x) := vn

r;T
(f)(x) and

f(t; x) := vr;T (f)(x). The assumption that vn
r;T

(f)(x) converges to vr;T (f)(x) is identical
to (18). An appeal to Lemma 19 completes the proof.

Convergence of additive functionals versus convergence of their liftings.

Proposition 21. Let kn(ds); k(ds) be a collection of uniformly admissible additive func-

tionals. Suppose that for every r; x we have that

nhr
T
(x) := �r;xk

n(r; T ]! �r;xk(r; T ] =: h
r

T
(x): (19)

Then for every r-stopping time �; Kn(r; � ] converges to K(r; � ] in L1(Pr;�); where K
n(ds)

(resp. K(ds)) is the lifting of kn(ds) (resp. k(ds)).

Proof. Because the additive functionals are uniformly admissible, we derive form
Lemma 9 that condition (17) is veri�ed with fn(t; x) =n ht

T
(x) and f(t; x) = ht

T
(x).

Condition (19) is identical to condition (18) and therefore, according to Lemma 19,

sup
t2[r;T ]

��
Xt;
n ht

T

�
�


Xt; h

t

T

���! 0

in Pr;� -probability.
Clearly, for every stopping time � and every bounded random variable M

Pr;� (M hX� ;
n h�

T
i)! Pr;� (M hX� ; h

�

T
i) :

We have already established, in x4.2, that processes

t 7! xt := hXt; h
t

T
i

t 7! xn
t

:= hXt;
n ht

T
i

are right continuous supermartingales of class (D) whose compensators are the liftings
Kn(ds) of the additive functionals kn(ds). In fact, since the additive functionals kn(ds)
are uniformly admissible, there characteristics nhr

T
(x) are uniformly bounded, so that the

processes t 7! xn
t
belong uniformly to class (D).

It su�ces only to appeal to Theorem 25 to obtain the desired result.

Corollary 22. Let kn(ds); k(ds) be a collection of uniformly admissible additive function-

als of �; let � be a regular branching mechanism, let vn be the log-Laplace functional of the

(�;�; kn)-superprocess, and v the log-Laplace functional of the (�;�; k)-superprocess. Let
f 2 L and assume that vn

r;T
(f)(x) converges to vr;T (f)(x) for every r; x: LetK

�(vn)dkn(ds)

be the lifting of �(s; �s; v
n

s;T
(�s))k

n(ds): Then, for every r-stopping time �; K�(vn)dkn(r; � ]

converges to K�(v)dk(r; � ] in L1(Pr;�).
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Proof. Clearly, vn
r;T

(x) � �r;xf(�t) converges to vr;T (x) � �r;xf(�t) for every r; x:
That is,

n~hr
T
(x) := �r;x

Z
T

r

�(s; �s; v
n

s;�s
)kn(ds)! �r;x

Z
T

r

�(s; �s; vs;�s)k(ds) =:
~hr
T
(x)

for every (r; x) 2 [0; T ] � E: Moreover, the additive functionals �(s; �s; v
n

s;�s
)kn(ds) are

uniformly admissible. An appeal to Proposition 21 completes the proof.

5. The full martingale problem: uniqueness of the solution

We now prove the uniqueness of the solution to the full martingale problem. Assume for
now on that (Xt;=; Pr;�) is a solution to the full martingale problem. Our �rst goal, in
this section, is to establish that (Xt;=; Pr;�) is a solution to an \extended" form of the
full martingale problem.

5.1. Extension of the martingale problem to time dependent functions. The
\extended" form of the full martingale problem for (�;�; k) is given in the following
Lemma:

Lemma 23. Let Xt be a solution to the full martingale problem for (�;�; k) and let  

be smooth for A: Then

t 7! exp (�hXt;  ti) +
R
t

r
exp (�hXs;  si)



Xs;A s +

@

@s
 s
�
ds

�
R
t

r
exp (�hXs;  si)K

�( )dk(ds)
(20)

is a Pr;��martingale, where K�( )dk(ds) is the lifting of �(�s;  s)k(ds):

Proof. The proof is a generalization of Lemma 8 in [12] (see also [13, Lemma 4.3.4]).
First, for a measurable function f(s; x); let us de�ne (when the expressions makes sense)

uf (s;Xt) := exp (�hXt; f(s; :)i)
vf (s;Xt) := exp (�hXt; f(s; :)i)



Xt;

@

@s
f(s; :)

�
wf (s;Xt) := exp (�hXt; f(s; :)i) hXt;Af(s; :)i :

Let  be smooth for A. Then we have

u (t2; Xt2
)� u (t1; Xt2

) = �
R
t2

t1
v (s;Xt2

)ds

and

E=tt [u(t1; Xt2
)� u(t1; Xt1

)] = �E=tt
hR

t2

t1
w(t1; Xs)ds

i
�E=tt

hR
t2

t1
u(t1; Xs)K

�( t1 )dk(ds)
i
:

(21)

Therefore, if �n is a partition of [t1; t2] with meshf�
ng ! 0 and  n and Xn are de�ned

by

 n(s; x) :=
nP
i=1

 (tn
i
; x)1[tn

i
;t
n

i+1
)(s)

Xn(s) :=
nP
i=1

Xt
n

i+1
1[tn

i
;t
n

i+1
)(s)
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then, clearly,

n�1P
i=1

1[tn
i
;t
n

i+1
)(s)K

�(�s; tn
i

(�s))dk(ds) = K�(�s; 
n

s
(�s))dk(ds)

(where K�(s;�s)dk(ds) denotes here the lifting of �(s; �s)k(ds)) and we get (by summing
the expressions in (21)) that

E=t1 [u(t2; Xt2
)� u(t1; Xt1

)] = �E=t1
hR

t2

t1
v (s;X

n

s
)ds

i
�E=t1

hR
t2

t1
w n(s;Xs)ds

i
+E=t1

hR
t2

t1
u n(s;Xs)K

�( n)dk(ds)
i
:

(22)

We want to show that

lim
n!1

E=t1
hR

t2

t1
v (s;X

n

s
)ds

i
= E=t1

hR
t2

t1
v (s;Xs)ds

i

lim
n!1

E=t1
hR

t2

t1
w n(s;Xs)ds

i
= E=t1

hR
t2

t1
w (s;Xs)ds

i

lim
n!1

E=t1
hR

t2

t1
u n(s;Xs)K

�( n)dk(ds)
i

= E=t1
hR

t2

t1
u (s;Xs)K

�( )dk(ds)
i (23)

which would complete the proof of the Lemma.
1�)Let us �rst show that the �rst two limits of (23) are veri�ed. From Lebesgue's

theorem, it su�ces to prove that for a �xed s � t1; we have that Pr;�-almost surely

hXn

s
;  si ! hXs;  si ;

hXs;  
n

s
i ! hXs;  si ;

hXs;A 
n

s
i ! hXs;A si ;


Xn

s
; @
@s
 s
�
!


Xs;

@

@s
 s
�
:

Only the last convergence is not straightforward. LetQ+ denote the set of non-negative

rational numbers. Since  s+h� s
h

2 D(A); we have the processes

t 7!

�
Xt;

 s+h �  s

h

�
; where s; h 2 Q+

are Pr;�-indistinguishable from right continuous processes. But since hXt; 1i is a c�adl�ag
process,

sup
r�t�T

hXt; 1i <1;

using the facts that  s+h� s
h

! @

@s
 s uniformly in x; we obtain that Pr;�-almost surely, the

mappings ft 7!


Xt;

@

@s
 s
�
gs2Q+

are uniform limits of right continuous mappings; they

are therefore also a right continuous. Because the function @

@s
 s is strongly continuous

and bounded, it is easy to derive that (t; s) 7!


Xt;

@

@s
 s
�
is jointly right continuous,

Pr;�-almost surely. Hence,


Xn

s
; @
@s
 s
�
!


Xs;

@

@s
 s
�
; Pr;�-almost surely, as wanted.

2�) We now show that the third limit of (23) holds. Note that, for every !, s 7!
hXs;  

n

s
i (!) converges uniformly (in s 2 [r; T ]) to s 7! hXs;  si (!). According to Propo-

sition 21, K�( n)dk(r; � ] converges to K�( )dk(r; � ] in L1(Pr;�). With Lemma 8, it is
also possible to suppose (perhaps by taking a subsequence) that K�( n)dk(ds) converges
weakly to K�( )dk(ds). This yields (20) as wanted.
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5.2. Proof of uniqueness for the full martingale problem. We are now ready
to show that the solution to the full martingale problem for (�;�; k) is unique, as stated
in Theorem 4.
Proof of the uniqueness part in Theorem 4:

Step 1) According to Lemma 14, we can choose a uniformly admissible sequence of
additive functionals kn(ds) = �n(s; �s)ds such that if vn

r;T
(f)(x) (resp. vr;T (f)(x)) is the

log-Laplace of the (�;�; kn)-superprocess (resp. (�;�; kn)-superprocess) then
(i) vn

r;T
(f)(x) converges to vr;T (f)(x) for every r; x; f

(ii) vn
r;T

(x) is smooth for A; for every f 2 D(A)

(iii) Avn
s;T

(:) + @

@s
vn
s;T

(:) = �(:; vn
s;T

)�n(s; :); for every f 2 D(A)

(iv) for every r; x and every r-stopping time � , kn(r; � ] converges in L1(�r;x) to k(r; � ]
Let us de�ne

Kn

1 (ds) :=


Xs;�(:; v

n

s;T
)�n(s; :)

�
ds

Kn

2 (ds) := K�(vn
:;T

)dk(ds):

Note that Kn

1 (ds) is the lifting of the additive functional �(�s; v
n

s;T
)�n(s; �s)ds: According

to Proposition 21 and Corollary 22 we have that

(A) For every r-stopping time �; both random variables Kn

1 (r; � ] and K
n

2 (r; � ] converge
to K�(v:;T )dk(r; � ] in L1(Pr;�;).

Invoking Lemma 8 we are also allowed to assume (by mean of taking a subsequence)
that a.s.

(B) Kn

1 (ds) and K
n

2 (ds) converges weakly to K�(v:;T )dk(ds):

Moreover, from Corollary 20, it is also possible to suppose (by mean of taking a
subsequence) that

(C) s 7!


Xs; v

n

s;T

�
converges uniformly (in s 2 [r; T ]) to s 7! hXs; vs;T i :

Step2) According to Lemma (23),

t 7! exp
�
�


Xt; v

n

t;T

��
+
R
t

r
exp

�
�


Xs; v

n

s;T

�� 

Xs;Av

n

s;T
+ @

@s
vn
s;T

�
ds

�
R
t

r
exp

�
�


Xs; v

n

s;T

��
K�(vn

:;T
)dk(ds)

is a martingale. Putting xn
t
=


Xt; v

n

t;T

�
; the equality

Avn
s;T

+
@

@s
vn
s;T

= �(:; vn
s;T

)�n(s; :)

gives

e�x
n

t = Mn

t
(') +

R
t

r
e�x

n

sKn

1 (ds)�
R
t

r
e�x

n

sKn

2 (ds) (24)

Clearly e�x
n

t ! e�xt pointwise and in L1(Pr;�) where xt := hXt; vt;T i and v is the
log-Laplace functional of the superprocess (�;�; k):

From (A), (B) and (C) we get that

Z
t

0

e�x
n

sKn

1 (ds)�

Z
t

0

e�x
n

sKn

2 (ds)! 0 (25)
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where the convergence holds in L1(Pr;�):
That forces Mn

t
(') to converge in L1(Pr;�) to a limit Mt(') which has to be a mar-

tingale, and we get
Pr;�

�
e�xT

�
= Pr;�

�
e�xr

�
;

Which is precisely
Pr;� (exp (�hXT ; 'i)) = exp (�h�; vr;T i) :

Since T is arbitrary, X is the superprocess with parameters (�;�; k).

6. Application to superprocesses with interactions

We now introduce a Dawson-Girsanov transformation (cf. [3] and [4, Th. 7.2.2]) for
(�; (:)2; k)-superprocesses. The purpose of this section is to generalize [4, Th. 7.2.2]. In
fact, the di�culty2 consists here in �nding an appropriate way to state the martingale
problem: the proof that it is well posed (Theorem 24) is identical to [4, Th. 7.2.2].

In addition to the hypotheses and notation of x1.3, we now restrict ourself to the binary
branching mechanism, that is, we additionally assume that � has the form �(x; �) = �2.
Throughout the rest of this paper we �x r � 0 and � 2Mf .

6.1. The (�; (:)2; k)-superprocess. According to [19, Th.1.3 and Rem 1.1], there ex-

ists a continuous version of the (�; (:)2; k)-superprocess. Let X = (Xt;=; P
(�;(:)2;k)
r;� ) denote

the canonical (�; (:)2; k)-superprocess realized on C[r;1)(Mf ); the subspace ofD[r;1)(Mf )

consisting of continuous trajectories. It clearly follows from Theorem 4, that P
(�;(:)2;k)
r;�

is the unique distribution on C[r;1)(Mf ) such that P
(�;(:)2;k)
r;� solves the full (�; (:)2; k)-

martingale problem. It follows from Itô's formula and uniqueness of the full (�; (:)2; k)-

martingale problem that P
(�;(:)2;k)
r;� is the only distribution on C[r;1)(Mf ) such that, for

every ' 2 D(A),

t 7!Mt(') := hXt; 'i � hXr; 'i �

Z
t

r

hXs;A'i ds:

is a square integrable P
(�;(:)2;k)
r;� -martingale with quadratic variation Q̂('2)(ds); where

Q̂('2)(ds) is the lifting of '2(�s)k(ds).
One easily checks that

hM(f);M(g)i (ds) = Q̂(fg)(ds): (26)

We denote by M the (orthogonal) martingale measure (with intensity � ((r; t]�A) =R
t

r
Q̂(1A)(ds)) extending the martingales Mt('). We denote by Q(ds; dx; dy) the co-

variance functional of M . It is clear from (26) that Q(ds; f; g) = Q̂(fg)(ds) for every
f; g 2 pbB. We set

PM := ff : f(!; s; x) 2 P �B; P (�;(:)2;k)
r;�

Z
R+�E

f2(!; s; x)�(!; ds; dx) <1g;

2See the discussion in x1.
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where P is the predictable �-algebra. For any g : Mf ! Ĉ(E) which is bounded and
measurable we pose

Zg(t) = exp

�Z
t

r

Z
E

g(Xs; y)M(ds; dy)�
1

2

Z
t

r

Z
E

Z
E

g(Xs; x)g(Xs; y)Q(ds; dx; dy)

�
:

6.2. Statement of the (�; (:)2; k;<)-martingale problem. In addition to the nota-
tion of x6.1, let < denote a bounded an measurable mapping fromMf to Ĉ(E). Clearly,

Q(ds; dx; dy) is de�ned up to P
(�;(:)2;k)
r;� -indistinguishability, but if Pr;� is another dis-

tribution on C[r;1)(Mf ), it may not be the case that Q(ds; dx; dy) is de�ned up to

Pr;�-indistinguishability. Choose and �x any of the P
(�;(:)2;k)
r;� -indistinguishable version

of Q(ds; dx; dy). The statement of the (�; (:)2; k;<)-martingale problem is:

There exists one and only one distribution P
(�;(:)2;k;<)
r;� on C[r;1)(Mf ) such that for

every ' 2 D(A);

t 7!M<
t
(') := hXt; 'i � hXr; 'i �

Z
t

r

hXs;A'i ds�

Z
t

r

Z Z
<(Xs)(y)'(x)Q(ds; dx; dy)

is a continuous local martingale with increasing process

Z
t

r

Z Z
'(y)'(x)Q(ds; dx; dy);

and such that t 7! Z�<(t) is a martingale.

Remark 3. Theorem 24 below asserts that P
(�;(:)2;k;<)
r;� and P

(�;(:)2;k)
r;� are equivalent mea-

sures. Therefore the solution of the (�; (:)2; k;<)-martingale problem does not depend on
the choice of a particular version of Q(ds; dx; dy).

6.3. (�; (:)2; k)-superprocesses with interactions. In addition to the hypotheses
and notation introduced so far, we now require that3:

6.3A For every � > 0; and every t � r

P (�;(:)2;k)
r;�

�
e�Q((r;t];E;E)

�
= P (�;(:)2;k)

r;�

�
e�Q̂(1)(r;t]

�
<1:

Let g : Mf ! Ĉ(E) be bounded and measurable. Since Xs is continuous and g

is bounded and measurable, g(Xs; :) 2 PM and by [4, Th. 7.1.6] the stochastic integralR
t

r

R
g(Xs; y)M(ds; dy) is a continuous martingale with increasing process

R
t

r

R
E

R
E
g(Xs; x)g(Xsy)Q(ds; dx; dy).

Therefore, by [4, Th. 7.1.7], Zg(t) is a continuous P
(�;(:)2;k)
r;� -local martingale. It follows

from [4, Th. 7.1.7] that, that under assumption 6.3A, t 7! Zg(t) is a P
(�;(:)2;k)
r;� -martingale.

The later is required in [4, Th. 7.2.2] and this is why assumption 6.3A was introduced.

3This condition can be compared to a condition in [9] which asserts that for every t > 0 and every

� > 0; sup
r<t

sup
x
�r;xe

�k(r;t) <1.
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Theorem 24 [A Dawson-Girsanov transformation]. The (�; (:)2; k;<)-martingale

problem is well posed, and its solution P
(�;(:)2;k;<)
r;� is a measure which is equivalent to

P
(�;(:)2;k)
r;� .

Proof. The proof is identical to the proof in [4, Th. 7.2.2]. In Dawson's argument,
one should only replace 1� Q(Xs; dx; dy)ds by Q(ds; dx; dy), 2

� r by < and 3� R(Xs; dx)ds
by

R
<(Xs; y)Q(ds; dx; dy):

7. Appendix

Theorem 25. Let xn; n = 1; :::;1 be right continuous supermartingales and An; n =
1; :::;1 their compensators. Assume the xn belong uniformly to the class (D): Assume also

that for every stopping time � , xn
�
converges weakly in L1 to x1

�
and that sup

0�s�T
jxn
s
� xsj

converges to zero in probability. Then for every stopping time �; An
�
converges to A1

�
in

L1.

Proof. See [8, VII.19 and 20].

Theorem 26 [joint continuity in fdd]. Consider branching functionals k1; :::; k1 = k

being uniformly of bounded characteristic. Suppose that for every starting point (r; x) 2
[0; T ]�E and every r{stopping time � � T we know that kn(r; �] converges to k(r; �] in
L1(�r;x) as n!1: Then the related log-Laplace functionals converge:

vn
r;t
(f)(x) !

n

vr;t(f)(x); 0 � r � t � T; x 2 E; f 2 bE+ :

Proof. See [6, Th. 23].

De�nition 27. We say that a mapping �(s; x; �) is locally in � strongly continuous

if for every s � 0 and every � � 0

lim
t!s

sup
x2E;0����

j�(s; x; �)� �(t; x; �)j = 0

Theorem 28. Let (�;F ; �r;x) be a time homogeneous right process with value in a metriz-

able Luzin space (E; E). Let St denote the semigroup of � and let L � bE denote the set of

functions f 2 bE such that St(f)(x) is strongly continuous: Let (A;D(A)) be the (strong)
generator of S. Let �(s; x; �) be a non negative mapping such that �(s; x; '(x)) 2 L for

every ' 2 D(A) and such that for each �; T 2 R+;

k�0
s
k1 _ k�00

s
k1 _ k�0

�
k1 _ k�00

�
k1 =:M(�; T ) =:M <1

where the supremum is taken over the triples (s; x; �) such that 0 � s � T; x 2 E; 0 �
� � �: Assume that � and its derivatives are locally in � strongly continuous. Then for

each ' 2 D(A); there exists a unique solution v to the equation

vt;T (')(x) = ST�t'(x) �

Z
T

t

Sr�t [�(r; vr;T ('))] (x)dr:
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v satis�es the properties

1) vt;T (')(x) belongs to D(A) for every t;

2) @

@t
vt;T (')(x) exists and




 vt+h;T (')(:)�vt;T (')(:)
h

� @

@t
vt;T (')(:)





1
! 0;

3) vt;T ;
@

@t
vt;T and Avt;T are bounded and strongly continuous.

Moreover
@

@t
vt;T (')(x) +Avt;T (')(x) = �(t; x; vt;T (')(x)):

Proof. See [18, Th 2].
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