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Abstract

A general class of �nite variance critical (�;�; k){superprocesses X in a

Luzin space E with c�adl�ag right motion process �; regular local branching
mechanism �; and branching functional k of bounded characteristic are

shown to continuously depend on (�; k): As an application we show that

the processes with a classical branching functional k(ds) = %s(�s)ds
(that is a branching functional k generated by a classical branching rate

%s(y)) are dense in the above class of (�;�; k){superprocesses X. More-

over, we show that, if the phase space E is a compact metric space and � is
a Feller process, then always a Hunt version of the (�;�; k){superprocess
X exists. Moreover, under this assumption, we even get continuity in

(�; k) in terms of weak convergence of laws on Skorohod path spaces:
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1 Introduction

1.1 Motivation, purpose, and main results

While the characterization of the class of (�;�; k){superprocesses X is obvi-

ously a fundamental part of the theory of measure-valued branching processes,

it cannot alone fully describe the reach structure of this class. In particular, it

would be natural to de�ne a meaningful metric in terms of only the parameters

(�;�; k). Topological properties of this metric, such as for instance the descrip-

tion of dense or compact subsets, or such as the completeness property, would

give further insight into the nature of superprocesses. As a long run goal, it

seems to be desirable to express properties of (�;�; k){superprocesses in terms

of the parameters (�;�; k) only, and this paper should be seen as a step in this

direction.

Indeed, we focus here on the question of jointly continuous dependence on

the branching mechanism � and the branching functional k: Once one has such
a continuous dependence, it can for instance be used to derive certain properties

of a class of superprocesses by starting from more elementary processes, rather

than by a direct analysis. We will in fact include below such applications.

The problem of continuous dependence of superprocesses on their branch-

ing rate is not entirely new. For instance in Dawson and Fleischmann [DF91,

Lemma 2.3.5 and its application in xx 2.4 { 2.5], it was used to construct a class of
one-dimensional superprocesses with catalytic branching rate %s(dy) by starting
from superprocesses with classical branching rate %s(y) dy. Or in [DF97, Propo-
sitions 6 and 12] continuity in k was exploited to construct super-Brownian mo-

tions in R
d with (only) locally admissible branching functional k by approximat-

ing them by (globally) admissible ones. In this way, a class of super-Brownian

motions constructed by Dynkin [Dyn94] could be extended. Finally, in Fleisch-

mann and Mueller [FM97], a truncation procedure of branching rate was applied

to construct a one-dimensional super-Brownian motion with the locally in�nite
catalytic mass jyj�2dy. (In contrast to the present paper, this superprocess

does not have a �nite variance even though the branching mechanism is \binary

critical".)

The question of continuous dependence of superprocesses on their branching

mechanism � and branching functional k is studied here for its own and partly

in considerably more generality. But then we use this continuity to prove that

for each (�;�; k){superprocess considered in this paper, a Hunt version exists,
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provided that the phase space is a compact metric space and the motion process

� is Feller (Theorem 44 at p.33). In this case we even get continuity in (�; k)
in terms of weak convergence of the laws on Skorohod space of c�adl�ag paths

(Theorem 46 at p.34).

The construction of superprocesses with regularity properties of the paths
has a long history. Concerning recent general results, in the �rst place we re-

fer to Fitzsimmons [Fit88], who proved the existence of a right or even Hunt

version of a superprocess if the motion process is right or Hunt, respectively,

provided that the branching mechanism is time-homogeneous and the branch-

ing functional is given by k(ds) = ds: Dynkin [Dyn93] and Kuznetsov [Kuz94]

generalized Fitzsimmons' right version result. Finally, Leduc [Led97a] gener-

alized Fitzsimmons' Hunt result to a general class of (�;�; k){superprocesses
with �nite variance and admissible (in the sense of Dynkin) functional k: One
of our motivations was to obtain such result for non-admissible k of bounded

characteristic.

We �nally mention that the results of the present paper play a crucial role in

Leduc [Led97b] where a martingale problem is established for a class of (�;�; k){
superprocesses under mild conditions.

1.2 Setup

Before going further, recall that main steps of the method of construction of

superprocesses via the analysis of the related evolution equation (such as for

instance in [Daw77, DF91, Dyn91, Dyn94, Led97a, FM97, DF97]) more or less

resemble the following procedure. First, �nd for n �xed a measure-valued pro-

cess Xn which log-Laplace functional vn = vn(f) = vn
�;t(f) solves an evolution

equation

vn = 	n(vn): (1)

Second, show that, for a certain norm k�k (typically a supremum norm k�k
1
;

or a closely related one),

kvm � vnk � 1
2 kv

m � vnk+ qm;n

where qm;n is a non-negative quantity converging to zero as m;n ! 1: By
completeness, this shows, that vn converges. It is usually possible to conclude

{ that the limit v again satis�es an evolution equation

v = 	(v); (2)

{ that v is the unique solution to that equation,

{ that each vr;t(x) is the log-Laplace functional of a random measure,

{ and that v determines a semigroup.

This semigroup then uniquely characterizes a superprocess X (log-Laplace func-

tional characterization).
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Suppose now that (1) is the (�;�n; kn){evolution equation of the so-called

(�;�n; kn){superprocess Xn: Here 	n is a functional of �;�n; kn; where

{ the particles' motion process � = (�t ;=; �r;x) is c�adl�ag right Markov,

{ �n is a critical local branching mechanism with �nite variance

(see Assumption 17 (f) at p.16), and

{ the branching functional kn is a continuous additive functional of �
of bounded characteristic.

Our key result can briey be described as follows. Suppose that kn converges to

a continuous additive functional k of � in an appropriate sense, and the �n con-

verge uniformly to a regular branching mechanism�; then the log-Laplace func-

tionals vn converge to some v solving the (�;�; k){evolution equation (2). As in
Leduc [Led97a], this equation is then used to construct a (�;�; k){superprocess
X with v as its log-Laplace functional. Since the convergence vn !n v of

log-Laplace functionals implies the convergence Xn )n X in the sense of

(weak) convergence of all �nite-dimensional distributions (fdd), we get that the
(�;�; k){superprocess continuously depends on (�; k) (Theorem 23 at p.18).

This fdd continuity theorem can be extended to weak convergence on some

Skorohod path spaces, and several applications are supplied. In particular, if

the phase space is a compact metric space and � is Feller, we show that a Hunt
version of X exists and \classical"

�
�;�; %s(�s)ds

�
{superprocesses are weakly

dense in the set of all (�;�; k){superprocesses.

1.3 Outline

To prove the continuity theorem, in principal we follow the general idea which

we described in the previous subsection. The norm which we use, is essentially

the norm k�k
C
de�ned to be the supremum over the set C of all those points

(r; x) such that

(�) �r;x
1W
n=1

kn(r; t] < 1;

(�) �r;x

n
kn =)

n
k
o

= 1

(recall �r;x refers to the law of the motion process � with initial data r; x).
Starting from a point (r; x) 2 C; it is crucial to know that �r;x{a.s. all points
(s; �s); s > r; also belong to C. This is essentially what we will cover in Section
2.

After introducing in the beginning of Section 3 more carefully the model

we deal with in this paper, we formulate our key result, the fdd continuity

Theorem 23 at p.18. Then we discuss the assumptions on the branching func-

tional in that theorem, and review the log-Laplace functional characterization

of (�;�; k){superprocesses. But the central part of our argument is Proposition

39 at p.26. It states that in the case �n � �; for small test functions f (the pa-

rameter entering into the linear term of the evolution equation (2) coming from
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the log-Laplace functional), and for starting points (r; x) in C; the log-Laplace
functionals vn converge to some v.

The derived fdd continuity theorem has strong implications. First of all, as

an application we establish in Theorem 26 at p.19 that each (�;�; k){superpro-
cess can be approximated by ones with \classical" branching functional k: Clas-
sical here means that the branching functional k can be represented as k(ds) =
%s(�s) ds with % a bounded (classical) function. In this case, a particle at time

s at site y splits with branching rate %s(y): In other words, the approximating

processes are \classical" superprocesses.

We mention that with fdd convergence of Xn to X we actually mean 1)

E exp
h mP
i=1



Xn

ti
;�fi

� i
��!
n!1

E exp
h mP
i=1

hXti ;�fii
i

for any choice of bounded measurable non-negative functions f1 ; :::; fm on E:
In other words, we have fdd convergence in every topology on E compatible

with the measurability structure (E; E) of our Luzin space E:

Of course, one cannot expect that results in this generality should hold

concerning weak convergence of laws on path spaces. In Section 4, in order to

avoid expensive technicalities, we even restrict our attention to a much more

restrictive situation: We consider the special case of a Feller motion process � in
a compact metric space (E; d): Then the continuity and approximation theorems

can be used to construct aHunt version of the (�;�; k){superprocesses (Theorem
44 at p.33). These Hunt (�;�; k){superprocesses depend continuously on (�; k)
in terms of weak convergence of the laws on the Skorohod path spaces, rather
than only fdd (Theorem 46 at p.34).

In an appendix, we collect some results which are purely technical.

As a standard reference for weak convergence we refer to Ethier and Kurtz

[EK86] and for (�;�; k){superprocesses to Dynkin [Dyn94].

1.4 Basic assumptions: motion process �

and branching functional k

In this paper, `non-negative' always means R+{valued, R+ := [0;1): But at
some places we need also to consider variables with values in the usual one-point

compacti�cation R+ := [0;1] of R+ : In this case, we will explicitly refer to

this.

Assumption 1 (motion process) Throughout this paper, the following as-

sumptions are in force:

1) h�; fi abbreviates the integral
R
f(x)�(dx):
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(a) (phase space) The phase space E is a Luzin space 2). With this we

mean a topological space E which is homeomorphic to a Borel subset

of a compact metrizable space. Let E denote the Borel �{algebra of

E; and E+ = E+(E) the set of all R+{valued measurable functions f on

E: Moreover, write bE+ = bE+(E) for the subset of all bounded f 2 E+ ;
equipped with the topology of bounded pointwise convergence.

(b) (measure space) Let Mf =Mf(E) =Mf (E) denote the set of all �nite

measures on E : Endowed with the topology of weak convergence, Mf is a

Luzin space.

(c) (time interval) We consider �rst of all stochastic processes on a �xed

�nite interval I := [0; T ]; T > 0; or on subintervals of I; later, in Section

4, we extend to R+ :

(d) (underlying particle's motion process �) Once and for all, �x an E{
valued process � on I satisfying the following conditions:

(d1) (Markov process) � is a (time-inhomogeneous) Markov process
(�t ;=; �r;x) in Dynkin's [Dyn94, x 2.2.1] setting.

(d2) (right process) This Markov process � is assumed to be a right
process: 3)

(i) t 7! �t(!) is right continuous (in the Luzin E), for each !:

(ii) For 0 � r � t � T; � 2 Mf ; and f 2 E+ �xed, the

function s 7! �s;�s f(�t); s 2 [r; t); is right continuous �r;�{
almost everywhere.

(d3) (c�adl�ag) The process � is required to be c�adl�ag (additionally to

(i)), that is, for each !; the limits lims"t �s =: �t� exist in E for all

t 2 (0; T ].

(d4) (Hunt) Sometimes we additionally assume that the c�adl�ag right

Markov process � is Hunt. In this case we work with R+ as the time

axis.

(e) (branching functional) As a rule, the letter k refers to a (non-negative)

continuous additive functional of � ([Dyn94, x 2.4.1]) of bounded charac-
teristic:

sup
(r;x)2I�E

�r;x k(r; T ] <1: (3)

We call such k a branching functional. Intuitively, k(ds) is the rate of

branching of a particle with position �s at time s: 3

2) Note that e.g. every complete separable metric space is Luzin (see, for instance, Sharpe
[Sha88, p.370]).

3) Note that our terminology di�ers slightly from Dynkin [Dyn94] we often quote: Dynkin
includes the c�adl�ag property (d3) in his notion of a right process, but we speak in this situation
more carefully of a c�adl�ag right process.
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Remark 2 (admissible functionals) Note that condition (3) is weaker than

Dynkin's [Dyn94, x 3.3.3] admissibility requirement

sup
x2E

�r;x k(r; t] ��!
r;t!s

0; s 2 I: (4)

(In fact, read the proof of Lemma 3 in [DF97] with �p replaced by 1:) 3

Remark 3 (natural functionals k) Several partial results in the present pa-

per remain valid if the (limiting) additive functional k is only natural (instead
of continuous). But we stress the fact that in our key Theorem 23 (p.18), the

assumption on the continuity of k cannot be dropped. Moreover, in [FL97]

we will show that under mild conditions as in the present paper all branching
functionals k are continuous. 3

2 Path and preservation properties

In this section we investigate the following question. Suppose that for a \starting
point" (r; x) a certain property } of particles' motion process � holds �r;x{a.s.
When can we say that, �r;x{a.s., the process s 7! (s; �s) passes only through

those points (s; y) such that the property } is valid �s;y{a.s.?

An example of that sort of questions is the following case (which will essen-

tially interest us later in this section). Suppose that k1; k2; ::: are (continuous)
additive functionals of the (c�adl�ag right Markov) process � = (�t ;=; �r;x). Fix
a starting point (r; x) 2 I � E: Assume that �r;x{almost surely the (�nite)

measures kn (as measures on [r; T ]) converge weakly to k as n!1: Is it then

the case that �r;x{almost surely, for every s 2 [r; T ];with �s;�s{probability one,
kn converges weakly to k (as measures on [s; T ])?

With Proposition 12 at p.13, we will give a positive answer to this type

of question. At this place it might be helpful to give a heuristic reasoning
which indicates the strategy we will use. Suppose that the following expectation

vanishes:

�r;x

�
sup

s2[r;T ]
lim sup

n

���kn(s; T ]� k(s; T ]
���
�
= 0:

Then, for any point s 2 [r; T ]; the Markov property gives that

�r;x

�
�s;�s

�
sup

t2[s;T ]
lim sup

n

���kn(t; T ]� k(t; T ]
����
�
= 0:

Obviously, this remains true, for countably many s: Hence, if the process

s 7! �s;�s

�
sup

t2[s;T ]
lim sup

n

���kn(t; T ]� k(t; T ]
���
�
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could be veri�ed to be right continuous, we get that

�r;x

�
sup

s2[r;T ]
�s;�s

�
sup

t2[s;T ]
lim sup

n

���kn(t; T ]� k(t; T ]
����
�
= 0;

as wanted.

This reasoning motivates in particular the following subsection.

2.1 Path properties of some class of processes

For convenience, we impose the following assumption (which will be in force

throughout this subsection).

Assumption 4 Fix a starting point (r; x) 2 I �E: For s 2 [r; T ]; let Ys and
Zs be R+{valued =[s; T ]{measurable4) variables. De�ne ys := �s;�sYs and

zs := �s;�sZs (which could be in�nite at this stage). Suppose �r;x Yr <1: 3

Note that we do not assume �s;yYs <1 for every (s; y) 2 [r; T ]�E: Recall
that 'non-negative' always means R+{valued. The main result of this subsection

is:

Proposition 5 (non-negative c�adl�ag process of class (D)) Impose As-

sumption 4. Let in addition s 7! Ys be right continuous and non-increasing (for
each !; as R+{valued functions). Then the following statements hold:
(i) The process y =

�
ys : r � s � T

	
is �r;x{indistinguishable from a non-

negative c�adl�ag process of class (D):
(ii) If additionally Z � Y; and s 7! Zs is c�adl�ag (as R+{valued functions),

then z =
�
zs : r � s � T

	
is also �r;x{indistinguishable from a non-

negative c�adl�ag process of class (D):

Before providing the proof, we need some lemmas and de�nitions. Consider

Y as in the theorem. For every c 2 [0;1]; de�ne

ycs := �s;�sY
c

s ; Y c

s := c ^ Ys :

Note that Y1s = Ys and y1s = ys :

Lemma 6 Let c 2 [0;1]. Suppose that with respect to �r;x the process yc is
indistinguishable from a non-negative process and belongs to class (D). Then it
is �r;x{almost surely right continuous.

Proof Step 1� We �rst establish that yc is optional. Given � (with respect

to �r;x); for n � 1 introduce the step function

yn;c
s

:=
n�1P
n=0

1[sni ; s
n
i+1)

(s)�s;�sY
c

sn
i+1
; r � s � T; (5)

4) Note that =s

T
= =[s; T ] is not a �ltration since =a

T
�=b

T
; a � b; does not hold.
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where sn
i
:= r+ i

n
(T�r); for i = 0; :::; n. Obviously, the �r;x{almost surely non-

negative process yn;c is �r;x{a.s. right continuous
5) and thus optional. Clearly,

pointwise yc
s
= limn y

n;c

s
holds. Therefore yc is also optional.

Step 2� Let �n � T be r{stopping times non-increasing to (the r{stopping
time) � as n ! 1: Then by the de�nition of yc; the strong Markov property,

right continuity of Y c, and the monotone convergence theorem, we have

lim
n
�r;x y

c

�n
= lim

n
�r;x ��n;��nY

c

�n
= lim

n
�r;x Y

c

�n
= �r;xY

c

�
= �r;x y

c

�
:

Hence, according to [Dyn94, A.1.1.D, p.116], the �r;x{a.s. non-negative process
yc is �r;x{a.s. right continuous.

Corollary 7 For every c 2 [0;1); the non-negative process yc is �r;x{a.s.
right continuous and belongs to class (D).

Proof This is immediate from the above lemma and the fact that these pro-

cesses are bounded (by c):

Lemma 8 The R+{valued process y is �r;x{indistinguishable from a non-nega-
tive process (that is, R+{valued process).

Proof According to Corollary 7, for c �nite, the non-negative process yc is �r;x{
a.s. right continuous. Therefore, sup

r�s�T
yc
s
is measurable, and monotonously

converges to supr�s�T ys as c " 1: Hence, for � > 0;

�r;x
�
sup

r�s�T
ys > �

	
= limc!1 �r;x

�
sup

r�s�T
yc
s
> �

	
:

We can thus invoke Proposition 58 of p.42 in the appendix, and continue with

�r;x
�
supr�s�T ys > �

	
� ��1 limc!1 supr���T �r;x y

c
�

= ��1 limc!1 supr���T �r;xY
c
�

� ��1 limc!1 �r;x Y
c
r

� ��1�r;xYr < 1:

Letting � !1 gives the claim.

Lemma 9 With �r;x{probability 1, y is non-negative, and it belongs to class
(D).

5) If Ys has the form Ys := f(s; �s) for a measurable bounded f then the �r;x{a.s. right
continuity of y

n;c is immediate form the de�nition of a right process (see [Dyn94, p.27]). The
more general case reduces to the just mentioned one by taking the conditional expectation.
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Proof First of all, for r{stopping times � � T;

sup
r���T

�r;x y� = sup
r���T

�r;xY� � �r;x Yr < 1

by the Markov property and monotonicity of Y:
Consider a collection of measurable sets �n with the property �r;x(�n)& 0

as n!1: Let us indicate by �
=
r
�

r;x the conditional expectation with respect to

=r
�
:= =[r; �]: We have that

�r;x1�n y� = �r;x�
=
r
�

r;x1�n y� = �r;x
�
�
=
r
�

r;x1�n
�
y�

since y� is measurable with respect to =r
�
: By the strong Markov property, we

can continue with

�r;x
�
�
=
r
�

r;x1�n
�
y� = �r;x

�
�
=
r
�

r;x1�n
�
��;��Y� = �r;x

�
�
=
r
�

r;x1�n
�
Y� � �r;x

�
�
=
r
�

r;x1�n
�
Yr :

Suppose it is the case that

lim sup
n

sup
r���T

�r;x
�
�
=
r
�

r;x1�n
�
Yr > 0: (6)

Then we can �nd a sequence of r{stopping times �n � T such that

�r;x

�
�
=
r
�n

r;x 1�n

�
Yr > �; n > 0; (7)

for some � > 0. But

�r;x�
=
r
�n

r;x 1�n = �r;x (�n) &
n

0:

Hence �
=
r
�n

r;x 1�n (strongly) converges to 0 in L1(�r;x). Since 0 � �
=
r
�n

r;x 1�n � 1;
we have that

0 �
�
�
=
r
�n

r;x 1�n

�
Yr � Yr 2 L

1(�r;x):

Consequently, appealing to the dominated convergence theorem (in the version

of [EK86, Theorem A.1.2]), we obtain that

�r;x

�
�
=
r
�n

r;x 1�n

�
Yr �!

n
0:

This contradicts (7). Therefore (6) is impossible, hence

lim sup
n

sup
r���T

�r;x1�n y� = 0:

That is, y belongs to class (D).
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Proof of Proposition 5 (ii) Besides Y; consider Z as in the theorem. Im-

mediately from the Lemmas 8, 9, and 6 it follows that y is �r;x{a.s. a non-

negative right continuous process of class (D). Since 0 � Zs � Ys we get that
0 � zs � ys ; and therefore z belongs to class (D). We have to show that z is

�r;x{a.s. c�adl�ag.
Consider

zn
s
:=

n�1P
n=0

1[sn
i
; sn

i+1
)(s)�s;�sZsni+1 ; r � s � T;

where again sn
i
:= r + i

n
(T � r), for i = 0; :::; n. The process zn is c�adl�ag

�r;x{a.s., and thus optional. We have that

1[sn
i
; s

n
i+1

)(s)Zsni+1 � 1[sn
i
; s

n
i+1

)(s)Ysni+1 � 1[sn
i
; s

n
i+1

)(s)Ys :

Since ys = �s;�sYs < 1; �r;x{a.s., the above inequalities allow to invoke the

dominated convergence theorem and we obtain

n�1P
n=0

1[sn
i
; s

n
i+1

)(s)�s;�sZsni+1 �!n
�s;�sZs :

That is zns !n zs : Therefore the process z is optional.
Let �1 ; �2 ; ::: � T be a non-increasing sequence of r{stopping times con-

verging to �. Recall that by assumption Z is R+{valued c�adl�ag, and that

0 � supr�s�T Zs � Yr 2 L
1(�r;x):

Hence, Z is �r;x{a.s. non-negative, and by de�nition,

�r;x z�n = �r;x ��n;��nZ�n = �r;xZ�n :

Invoking the dominated convergence theorem, we get

limn �r;x z�n = limn �r;xZ�n = �r;xZ� = �r;x z� :

Hence, z is �r;x{a.s. right continuous (recall [Dyn94, A.1.1.D, p.116]). An anal-

ogous reasoning, invoking Lemma 57 from the appendix, shows that z has also
left limits �r;x{a.s. Consequently, z is �r;x{a.s. non-negative c�adl�ag, proving

(ii).

(i) Y itself satis�es the assumptions on Z in (ii), since it is in particular

c�adl�ag. Hence, by the already proved statement (ii), together with z also y is

�r;x{a.s. non-negative c�adl�ag, �nishing the proof.

2.2 The case of indistinguishability from zero

Recall that in this section we investigate conditions under which the following

holds. If a certain property } is true �r;x{a.s., then �r;x{a.s., the property }
is true �s;�s{a.s. for all s 2 [r; T ]. In this subsection now, } is the property of

being indistinguishable from zero.
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Lemma 10 (preservation of indistinguishability of zero) Fix a starting
point (r; x) 2 I �E: Let Ys ; s 2 [r; T ]; again be R+{valued =[s; T ]{measurable
variables. Suppose that Y = fYsgs2[r;T ] is non-increasing and right continuous,
and that �r;xYr <1: If fYsgs2[r;T ] is �r;x{indistinguishable from zero, then

�r;x

n
fYtgt2[s;T ] is �s;�s�indistinguishable from zero; 8s 2 [r; T ]

o
= 1; (8)

or equivalently

�r;x

�
sup

s2[r;T ]
�s;�s

�
sup

t2[s;T ]
Yt

��
= 0: (9)

Proof According to Proposition 5 (i), the process s 7! ys = �s;�sYs is �r;x{a.s.
a non-negative c�adl�ag process of class (D). By the strong Markov property, for

every r{stopping time � � T;

�r;x y� = �r;x Y� = 0:

Hence, if s 7! 0s denotes the process which is constant and equal to 0, we have

that for every r{stopping time � � T

�r;x y� = �r;x0� : (10)

Consider now y as a process on the time axis R+ stopped at time T: Since
YT = 0; �r;x{a.s., then for every stopping time � we have YT^� = Y� : Then (10)
and [Dyn94, A.1.1.E, p.116] imply that y is �r;x{almost surely indistinguishable

from zero. Since Y is non-increasing, we have that sups�t�T Yt := Ys . Hence

�s;�s
�
sup

s�t�T
Yt
�
is �r;x{a.s. indistinguishable from zero. This is exactly what

we wanted to prove.

2.3 Preservation of initial properties

for additive functionals

Assumption 11 (initial properties of additive functionals) Denote by

k1; :::; k1 (non-negative) continuous additive functionals of our c�adl�ag right

process � = (�t ;=; �r;x): In the sequel we also write k instead of k1. We

assume that, for the starting point (r; x) 2 I � E we have

(�) �r;x
1W
n=1

kn(r; T ] <1;6) and

(�) with �r;x{probability one, k
n(s; T ]!n k(s; T ] for every s 2 [r; T ]. 3

Note that the requirement \for every s 2 [r; T ]" in part (�) of Assumption

11 can be replaced by \for every rational s 2 (r; T ] and s = r", hence it is a

6) Note that we included k
1 in the de�nition of k

n
; so that k1 is also involved in such a

supremum expression.
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measurable assertion. In fact, kn(s; T ] and k(s; T ] are monotone and continuous

in s: Note also that (�) implies that

�r;x�almost surely; kn(s; t]!n k(s; t] whenever r � s � t � T (11)

(indeed, consider di�erences).

The main result of this section is:

Proposition 12 (preservationof initial properties) Under Assumption
11, with �r;x{probability one the process s 7! (s; �s); s 2 [r; T ]; will pass only
through those points (s; y) such that

(�) �s;y
1W
n=1

kn(s; T ] <1; and

(�) with �s;y{probability one, kn(t; T ]!n k(t; T ] for every t 2 [s; T ].

Before providing the proof of Proposition 12, we need to establish some

preliminary results. For this purpose, for s 2 [r; T ] introduce the following

notation:

Y 1
s

:=
1W
n=1

kn(s; T ]; Y 2
s

:= sup
t2(s;T ]

lim sup
n

���kn(t; T ]� k(t; T ]
���; (12)

Y 3
s := lim sup

n

���kn(s; T ]� k(s; T ]
���; (13)

and set yis := �s;�sY
i

s for i = 1; 2; 3.

Lemma 13 The variables Y i
s ; i = 1; 2; 3; s 2 [r; T ]; are measurable.

Proof We need only to consider Y 2
s
: It su�ces to show that for a � 0 �xed,

we have Y 2
s
> a if and only if

sup
rational q2(s;T ]

lim sup
n

���kn(q; T ]� k(q; T ]
��� > a: (14)

But Y 2
s
> a implies the existence of some t 2 (s; T ] such that

lim sup
n

���kn(t; T ]� k(t; T ]
��� > a: (15)

Given " > 0 small enough, the latter inequality yields

kn(t; T ] � k(t; T ] + a+ 2 " for in�nitely many n;

or

kn(t; T ] � k(t; T ]� a� 2 " for in�nitely many n:
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In the �rst case, by the continuity of k; we �nd a rational q 2 (s; t) such that

k(q; t] � ": Hence,

kn(q; T ] � k(q; T ] + a+ " in�nitely often:

Together with an analogous argument in the second case, we arrive at the in-

equality (15) with t replaced by q; giving (14). Note that (14) implies Y 2
s
> a;

�nishing the proof.

Lemma 14 Under Assumption 11, the non-increasing R+{valued processes Y 1

and Y 2 are right continuous.

Proof Actually, we have only to prove that Y 1 is right continuous. Suppose

on the contrary that for some s (and a �xed !)

1W
n=1

kn(s; T ] := � > � := lim
t&s

1W
n=1

kn(t; T ]:

Then, for every n;

� � lim
t&s

kn(t; T ] = kn(s; T ];

since kn is a measure. Thus � �
W
1

n=1 k
n(s; T ] = � which is a contradiction.

Therefore Y 1 is right continuous.

Remark 15 Note that under Assumption 11, by Lemma 14 and according to

Proposition 5 (i), the processes y1 and y2 are �r;x{a.s. non-negative c�adl�ag and
of class (D). 3

Lemma 16 Under Assumption 11, for ` = 1; :::;1 and s 2 [r; T ]; let  `
s
be

=[s; T ]{measurable non-negative variables. Suppose that with respect to �r;x the
 1;  2; :::;  1 are measurable processes uniformly bounded by a (non-random)
constant. For r � s � T; and M 2 f1; :::;1g put

Zs(M ) :=
MW
n=1

���R(s;T ]  nt kn(dt) � R(s;T ]  1t k1(dt)
���

and

zs(M ) := �s;�sZs(M ):

Then the process z(1) is �r;x{indistinguishable from a non-negative c�adl�ag
process of class (D).

Proof Set B := supn;s j 
n
s j ; and let M be �nite. Note that

Zs(M ) � 2B
1W
n=1

kn(s; T ] = 2B Y 1
s 2 L

1(�r;x) (16)
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and that Z(M ) is non-negative c�adl�ag. Hence, by Lemma 14 and Proposition

5 (ii), the process z(M ) is �r;x{a.s. a non-negative c�adl�ag process of class (D).
By monotone convergence, zs(1) = limM zs(M ); and therefore z(1) is op-

tional. For all M; from (16) we get zs(M ) � 2B y1
s
; and recalling Remark 15,

we conclude that z(1) is �r;x{a.s. non-negative and belongs to class (D). All
that remains to be proved is that z(1) is c�adl�ag, �r;x{a.s. Clearly, because of
(16) and the monotonicity of Y 1; we have that Z(1) is �r;x{a.s. non-negative.

From the elementary identity

W
n

jan � aj =
�W

n

an � a
�
_
�
a�

V
n

an

�

we conclude with Lemma 14 and Corollary 60 from p.43 that Z(1) is �r;x{a.s. a
right continuous non-negative process. Now, if �n � T are r{stopping times non-

increasing to �; by the strong Markov property, �r;x z�n (1) = �r;x Z�n (1): By
right continuity, Z�n (1) converges to Z�(1) as n!1: Because of (16) we can
invoke the dominated convergence theorem to derive that limn �r;x z�n (1) =

�r;x Z�(1): But again �r;x Z�(1) = �r;x z�(1); and hence limn �r;x z�n (1)

= �r;x z�(1): This proves that z is �r;x{a.s. non-negative right continuous. A
similar reasoning, invoking Lemma 57 at p.41 shows that z also has left limits

�r;x{a.s.

Proof of Proposition 12 Step 1� According to Remark 15, the processes

y1 and y2 are �r;x{a.s. non-negative c�adl�ag processes of class (D). By Lemma

16, if we put for N � 1;

Y 3
s
(N ) :=

1W
n=N

���kn(s; T ]� k(s; T ]
���; y3

s
(N ) := �s;�s Y

3
s
(N );

then y3(N ) is also �r;x{a.s. a non-negative c�adl�ag process of class (D). Since

Y 3
s (N ) � Y 1

s <1; �r;x{a.s., and Y
3
s (N )& Y 3

s (de�ned in (13)) as N !1; we
get by dominated convergence that y3s(N ) & y3s as N ! 1: This establishes
that y3 is a non-negative optional process of class (D).

Step 2� Recall that y1 is in particular �r;x{indistinguishable from a non-

negative process, by Remark 15. In other words: �r;x{a.s. the process s 7! (s; �s)
passes only through points (s; y) such that �s;y

W
1

n=1 k
n(s; T ] <1.

Step 3� Recall that Y 2 de�ned in (12) is R+{valued non-increasing and right

continuous, and by Assumption 11, �r;x{indistinguishable from 0. Hence, by

Lemma 10, the statement (9) holds (with Y 2 instead of Y ): In other words:

With �r;x{probability one, the process (s; �s) passes only through points (s; y)
such that �s;y{almost surely, kn(t; T ]!n k(t; T ] for every t 2 (s; T ]. (Note that
t = s is not yet included in the statement.)

Step 4� From step 1� we know that y3 is a non-negative optional process of class
(D). Moreover, by the strong Markov property, we have for every r{stopping
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time � � T that

�r;xy
3
�
= �r;x lim sup

n

���kn(�; T ]� k(�; T ]
��� = 0:

And therefore, according to [Dyn94, A.1.1.E, p.116], the process y3 is �r;x{a.s.
indistinguishable from zero. In other words, with �r;x{probability 1, the process
(s; �s) passes only through points (s; y) such that �s;y{almost surely, kn(t; T ]
!n k(t; T ]; for t 2 [s; T ]:

3 Key result: fdd continuity in (�; k)

After the preparations in the previous section, we turn to the continuous de-

pendence of �nite-dimensional distributions of (�;�; k){superprocesses on their

regular branching mechanism � and branching functional k (Theorem 23 at

p.18). A key step in deriving this will be Proposition 39 at p.26 describing the

convergence of log-Laplace functionals for those starting points (r; x) such that

s 7! (s; �s) will pass �r;x{a.s. only through those points which preserve some

moment and convergence property of the branching functionals in the sense of

Proposition 12. As an application we prove that (�;�; k){superprocesses can

fdd be approximated by \classical" superprocesses (Theorem 26 at p.19).

3.1 Basic assumptions: branching mechanism �

Assumption 17 Now we complement the basic Assumption 1 from p.5 (con-

cerning the motion process �):

(f) (branching mechanism) � is always a (local) branching mechanism of

the form

�(r; x; �) = br(x)�2 +
R
1

0 e(u�)n(r; x; du); (r; x; �) 2 I �E � R+ ;

where e(z) := e�z + z � 1; where 0 � br(x) � 1 is measurable in (r; x);
and where n is a kernel satisfying the condition

0 �
R
1

0
u2 n(r; x; du) � 1; (r; x) 2 I � E:

Here `kernel' means: n : R+ � E ! M is measurable, where M =

M(0;1) is the set of all measures on the locally compact space (0;1);
�nite on compact subsets, endowed with the topology of vague convergence

(Polish space).

(g) (regular �) Additionally, the branching mechanism � is often assumed

to be regular in the following sense. If for each starting point (r; x) in
I � E the process s 7! zs is non-negative c�adl�ag with �r;x{probability
one, then so is s 7! �(s; �s ; zs): 3
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The following result is taken from Leduc [Led97a, Theorem 1.2], who gener-

alized Theorem 5.2.1 of [Dyn94] where the admissibility (4) on k was imposed

rather than only the boundedness (3) of characteristic.

Lemma 18 (`unique' existence of the (�;�; k){superprocess) To each
branching functional k and branching mechanism �; the (�;�; k){superpro-
cess X exists. More precisely, an Mf{valued (time-inhomogeneous) Markov
process (Xt ;F ; Pr;�) exists (in the sense of Assumption 1 (d1)) with log-Laplace
transition functional

� logPr;� exp hXt ;�fi =
R
vr;t(f)(x)�(dx) (17)

0 � r � t � T; x 2 E; f 2 bE+ , where v = v(f) = v�;t(f) � 0 solves the
(�;�; k){evolution equation

vr;t(f)(x) = �r;xf(�t)� �r;x
R
(r;t] �

�
s; �s ; vs;t(�s)

�
k(ds); (18)

and is the only log-Laplace solution to that equation.

From now on we restrict our attention to such (�;�; k){superprocesses. That
is, speaking of a (�;�; k){superprocess we tacitly mean that � is a c�adl�ag right

process, k a branching functional and � a branching mechanism, all according

to our basic Assumptions 1 and 17. Moreover, since the log-Laplace transition

functional (17) of the (�;�; k){superprocess X is uniquely determined by v; for
simplicity we call v the log-Laplace functional related to X (as we did already

in Section 1).

Remark 19 (projection, criticality, total mass process) The motion pro-

cess � of the (�;�; k){superprocess X (we consider in this paper) can be re-

covered by projection (expectation formula):

Pr;� hXt ; fi = �r;� f(�t); 0 � r � t � T; � 2 Mf ; f 2 bE+ :

This in particular implies that X is critical, that is, the total mass process

t 7! hXt ; 1i is a martingale (with respect to the natural �ltration of X): 3

Remark 20 (�nite variances) These (�;�; k){superprocesses have �nite sec-
ond moments:

sup
r�t

Pr;� hXt ; 1i
2
< 1; t 2 I; � 2 Mf ; (19)

(i.e. with some uniformity in the starting time r). 3



18 D.A. Dawson, K. Fleischmann, and G. Leduc

3.2 The fdd joint continuity theorem

The formulation of our main result will be based on the following de�nition.

De�nition 21 (uniformly of bounded characteristic) If the branching

functionals k1; :::; k1 = k satisfy

1W
n=1

sup
(r;x)2I�E

�r;x k
n(r; T ] <1; (20)

they are called to be uniformly of bounded characteristic. 3

For convenience, we introduce the following assumption.

Assumption 22 Consider branching mechanisms �1;�2; ::: converging uni-

formly to a regular branching mechanism �: Moreover, consider branching

functionals k1; :::; k1 = k being uniformly of bounded characteristic. Suppose

that for every starting point (r; x) 2 I � E and every r{stopping time � � T
we know that kn(r; �] converges to k(r; �] in L1(�r;x) as n!1: 3

Theorem 23 (joint continuity in fdd) Impose Assumption 22. Then the
related log-Laplace functionals converge:

vnr;t(f)(x) !
n
vr;t(f)(x); 0 � r � t � T; x 2 E; f 2 bE+ : (21)

Consequently, the related superprocesses converge fdd.

The proof of this theorem requires some preparation, provided in the follow-

ing subsections. We �rst completely concentrate on the case �n � �: For this,
the �nal steps in x 3.9 then follow along the lines of construction of a general

class of (�;�; k){superprocesses given in Leduc [Led97a, Proposition 4.20]. Then
in x 3.10 we remove the �n � � restriction by an approximation procedure.

Note that the requirement in Theorem 23 that the limiting � is regular
cannot be dropped :

Example 24 (fdd discontinuity for a non-regular �) Let kn be a (deter-

ministic) absolutely continuous (with respect to Lebesgue measure) probability

law on I = [0; 1] converging weakly as n ! 1 to a singularly continuous law

k with support the Cantor set C: Set �(s; x; �) � �21InC(s); that is con-

sider the \binary splitting" but only at time points s outside the Cantor set

C. Note that �(s; �s ; �) k
n(ds) � �2kn(ds); for any motion process �: Hence,

the (�;�; kn){superprocess is precisely the (�; �2; kn){superprocess. Therefore,

by Theorem 23, the (�;�; kn){superprocesses converge fdd to the (�; �2; k){
superprocess as n ! 1. Note that this limiting process is non-degenerate.

In fact, it has non-zero variance: Var0;�x hX1 ; 1i � 2k(I) = 2: On the other

hand, �(s; �s ; �) k(ds) � 0: Thus, the (�;�; k){superprocess is degenerate: It is
the deterministic mass ow according to the semigroup of the motion process.

Consequently, for this non-regular �; fdd continuity in k is violated. 3
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For �xed branching functional k; the fdd continuity in the branching mech-

anism � can be sharpened by using a weaker convergence concept for �; and
by allowing non-regular limiting �:

Proposition 25 (fdd continuity in � only) Fix a branching functional k:
If the branching mechanisms �n converge boundedly pointwise to the branching
mechanism � as n ! 1; then the related log-Laplace functionals vn and v
converge as expressed in (21).

The proof of this proposition is postponed to x 3.11.

3.3 Application: fdd approximation

by classical processes

We can use our fdd continuity Theorem 23 to show that all the (�;�; k){super-
processes (of the present paper) with regular branching mechanism � can be

approximated by superprocesses with a \classical" branching rate. Note that the

approximating branching functionals kn are in particular absolutely continuous
with respect to the Lebesgue measure.

Theorem 26 (fdd approximation by classical processes) Let � be a reg-
ular branching mechanism, and k be a branching functional. Then there exist
bounded measurable functions %n : I�E ! R+ ; n � 1; such that the (�;�; kn){
superprocesses Xn with \classical" branching functional

kn(ds) := %ns (�s) ds (22)

converge fdd to the (�;�; k){superprocess X as n!1.

The proof of this theorem will be provided in x 3.12.

3.4 Convergence of branching functionals

Next we want to reformulate the convergence of additive functionals occurring

in Assumption 22.

Proposition 27 (convergence criterion for additive functionals) Let
k1; :::; k1 = k be continuous additive functionals of �. Fix a time point r 2 I;
and a measure � 2Mf : The following two conditions are equivalent:

(i) kn(r; �] converges to k(r; �] in L1(�r;�) as n ! 1; for each r{stopping
time � � T .

(ii) For every subsequence fknmg of fkng there exists a subsequence fknmig of
fknmg such that

(�) �r;�
1W
i=1

knmi (r; T ] <1; and
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(�) sup
s;t: r�s�t�T

���knmi (s; t]� k(s; t]
��� ��!
i!1

0; �r;�{a.e.

Proof (i) =) (ii)(�) Let fknmg be a subsequence of fkng. Since knm(r; T ]
converges to k(r; T ] in L1(�r;�) as m ! 1; we have by uniform integrability,

that

�r;�

�
1
n
knm(r; T ] > k(r; T ] + 1

o
knm(r; T ]

�
��!
m!1

0:

By choosing a subsequence such that the above terms do not only converge to

zero but form also a convergent series, we get (ii)(�):

(i) =) (ii)(�) Let fknmg be a subsequence of fkng. With the use of Cantor's

diagonalization method one �nds a subsequence fknmig such that���knmi (r; q]� k(r; q]
���!

i

0 for every rational q 2 (r; T ] and q = T (23)

�r;�{a.e. But then, because the mappings t 7! knmi (r; t] are non-decreasing,

that implies that �r;�{almost everywhere, knmi (r; t] !i k(r; t] for all t in

(r; T ]: In fact, �x ! such that (23) holds, and take " > 0. Since k is continuous

by assumption, we may choose two rational numbers q1; q2 in (r; T ) such that

q1 < t < q2 and k(q1 ; q2] < ": Then

k(r; t]� " < k(r; q1] = limi k
nmi (r; q1] � liminfi k

nmi (r; t]

� limsupi k
nmi (r; t] � limi k

nmi (r; q2] = k(r; q2] < k(r; t] + ":

Therefore, since " can be made arbitrarily small, the liminfi and limsup
i

expressions must coincide with k(r; t]: Since all the functionals are monotone in

t; and k(r; t] is uniformly continuous in t; we get

sup
t2(r;T ]

���knmi (r; t]� k(r; t]
��� ��!
i!1

0; �r;��a:e:

The claim (�) then follows from a di�erence expression.

(ii) =) (i) To show this implication, suppose that (i) is not veri�ed. Then, for

some r{stopping time � � T; it is possible to �nd an " > 0 and a subsequence

fknmg of fkng such that for every m

�r;�

���knm(r; �]� k(r; �]
��� > ": (24)

On the other hand, according to (ii), it is possible to choose a subsequence

fknmig of fknmg such that (ii)(�) and (ii)(�) are satis�ed. Passing to di�er-

ences, with Lebesgue's theorem this implies that knmi (r; �] converges to k(r; �]
in L1(�r;�): This obviously contradicts (24), and the proof of the proposition is

�nished.

For applications of our main Theorem 23 the following su�cient criterion
for the convergence of additive functionals might be helpful.
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Lemma 28 (su�cient criterion) Let k1; :::; k1 = k be branching function-
als which are uniformly of bounded characteristic. Fix r 2 I = [0; T ]; and
� 2 Mf : Let �r;�{almost everywhere kn weakly converge to k as n ! 1:
Then the assertions (i) and (ii) in Proposition 27 hold.

Proof We want to prove (ii). Let fknmg be any subsequence of fkng: Arguing
as in the end of the step (i)) (ii)(�) in the proof of Proposition 27, it remains

only to show the existence of a subsequence fknmig of fknmg such that (�)
holds.

If famg is a sequence of numbers converging to a as m ! 1; then either

supm am � a + 1; or there exists a smallest integer M such that supm am =

aM > a+ 1: Then

sup
m

am � a+ 1 + aM = a+ 1 +
P
m

am1fM = mg:

Thus it su�ces to show that there exists a subsequence fknmig such that

�r;�
X

i
knmi (r; T ]1

n
knmi (r; T ] > k(r; T ] + 1

o
< 1:

Interchange integration with �r;� and summation, apply the Cauchy-Schwarz
inequality, and the fact that

�r;�
�
knmi (r; T ]

�2
� 2�(E)

����
1W
n=1

sup
(s;y)2I�E

�s;y k
n(s; T ]

����
2

< 1

since the branching functionals kn are uniformly of bounded characteristic.

Thus, it remains to show that

X
i

�����r;�
�
knmi (r; T ] > k(r; T ] + 1

�����
1=2

< 1

for some subsequence fknmig: But the measure expressions converge to 0 as

i ! 1 by the assumed �r;�{a.e. convergence, implying the existence of the

desired subsequence.

3.5 Review: the log-Laplace characterization

of (�;�; k){superprocesses

For convenience, here we review the log-Laplace functional characterization of

(�;�; k){superprocesses, and some related facts on log-Laplace functionals, the

latter are versions of the Lemmas 4.23, 4.25 and 4.26 in Leduc [Led97a].

Lemma 29 (log-Laplace characterization) Suppose that f 7! vr;t(f)(x);
f 2 bE+ ; is the log-Laplace functional of an Mf{valued random measure, for
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every choice of 0 � r � t � T and x 2 E: Moreover, let x 7! vr;t(f)(x) be
measurable. Finally, let

�
vr;t : 0 � r � t � T

	
form a semigroup on bE+ :

vr;s
�
vs;t(f)

�
(x) = vr;t(f)(x); 0�r�s� t�T; x2E; f 2bE+ : (25)

Then there exists a unique (in the sense of �nite-dimensional distributions)
Mf{valued Markov process X with log-Laplace functional v (recall (17)).

For c > 0, let us introduce the following set

bEc+ :=
�
f 2 bE+ : f � c

	
: (26)

Lemma 30 (continuity in f) Let � be any branching mechanism. Fix t 2 I;
and � > 0: Let (r; x) ! vr;tf(x) be a non-negative solution of the (�;�; k){
evolution equation (18), for each f 2 bE2�+ : Moreover, let f 7! v�;t(f) be increas-
ing. Then, for each (r; x) 2 [0; t]� E �xed, the functional f 7! vr;t(f)(x) is
continuous on bE�+ (in the topology of bounded pointwise convergence induced
by bE+):

Lemma 31 (convergence of Laplace functionals) Assume that LPn is the
Laplace functional of someMf{valued random variable, for each n � 1. Suppose
there exists � > 0 such that LPn(f) ! L(f) as n !1; for every f 2 bE�+ and
that L is continuous on that set. Then there exists an extension of L to all of
bE+ ; and a probability measure P1 on Mf such that L is the Laplace functional
of P1 ; and LPn(f) ! L(f) as n!1; for every f in bE+ .

Lemma 32 (semigroup property of solutions) Suppose

f 7! h�; vr;t(f)i ; f 2 bE+ ;

is the log-Laplace functional of an Mf{valued random measure, for every choice
of 0 � r � t � T and � 2 Mf : Moreover, let � be a branching mechanism, k
be a branching functional, and let (r; x)! vr;tf(x) solve the (�;�; k){evolution
equation (18), for each t 2 I and f 2 bE+ �xed. Then the semigroup property
(25) holds.

3.6 Solutions to the evolution equation

in the case of small f

By a slight abuse of notation, we adopt the following convention.

Convention 33 For convenience, we will often write kg(r; x)k
1

instead of

kg(�; �)k
1

= supr;x jg(r; x)j : That is, even though the time space variable (r; x)
in I�E appears under the norm sign, the supremum is always taken over them,

also if additionally other parameters are eventually involved, as N etc. 3
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The following lemma is taken from Leduc [Led97a, Lemma 4.21].

Lemma 34 (local Lipschitz continuity) Let � be a branching mechanism.
Then, �(r; x; 0)� 0: Moreover, for every c > 0 and �1 ; �2 2 [0; c];

k�(r; x; �1) ��(r; x; �2)k1 � 3 c j�1 � �2j : (27)

Finally, if 0 � �1 � �2 then 0 � �(r; x; �1) � �(r; x; �2); (r; x) 2 I � E.

As a �rst step towards the proof of our main theorem, here we want to give

an independent construction of a solution to the (�;�; k){evolution equation

(18) in the case of small f:

Proposition 35 (solution for small f) Fix t 2 I; a regular branching mech-
anism �; and a branching functional k: Let � > 0 satisfy

3 � sup
(r;x)2[0;t]�E

�r;x k(r; t] �
1
2 : (28)

Then, for f 2 bE�+ ;
(i) (unique existence) a unique measurable function v�;t(f) � 0 exists which

solves the (�;�; k){evolution equation (18), and
(ii) (c�adl�ag regularity) the process s 7! vs;t(f)(�s); s 2 [r; t]; is c�adl�ag

�r;x{a.s., for every starting point (r; x) 2 [0; t]� E:

Proof Fix t;�; k; f as in the proposition. Let Bt;� be the set of all measurable

mappings u from [0; t]� E to [0; �] such that s 7! us(�s) is c�adl�ag. Equipped

with the metric generated by the supremum norm k�k
1
; this is a complete

metric space. De�ne an operator G on Bt;� by

G(u)(r; x) := �r;xf(�t)� �r;xf(�t) ^ �r;x
R
(r;t]

�
�
s; �s ; us(�s)

�
k(ds):

We want to show that G maps into Bt;�: Let �n � T be r{stopping times

monotonously converging to � as n!1: Only by the Markov property,

lim
n!1

�r;x��n;��n f(�t) = �r;x��;��f(�t):

Similarly, by a property of measures,

lim
n!1

�r;x��n;��n
R
(�n;t]

�
�
s; �s ; us(�s)

�
k(ds)

= �r;x��;��
R
(�;t]�

�
s; �s ; us(�s)

�
k(ds):

By [Dyn94, A.1.1.D, p.116] and Lemma 57 at p.41, this establishes that the

processes

s 7! �s;�sf(�t) and s 7! �s;�s
R
(s;t]�

�
s0; �s0 ; us0(�s0)

�
k(ds0)
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are c�adl�ag �r;x{a.s., for every starting point (r; x) 2 I �E: Thus

limn!1 �r;xG(u)(�n; ��n) = �r;xG(u)(�; ��);

showing that s 7! G(u)(s; �s) is c�adl�ag. Hence, G maps Bt;� into itself.

Let z1 and z2 be two mappings in Bt;�: From (27), we get

��� �s; �s ; z1s(x)� ��
�
s; �s ; z

2
s
(x)
��� � 3 �kz1 � z2k1:

Thus,

��G(z1)(r; x) �G(z2)(r; x)
�� � 3 � �r;x

R
(r;t]

kz1 � z2k1 k(ds)

� 3 �kz1 � z2k1 sup
r;x

�r;x k(r; t]

� 1
2 kz

1 � z2k1 ;

where we used (28). Hence, G is a contraction on Bt;�: By the Banach �xed

point theorem, there exists a (unique) element u in Bt;� which solves

ur(x) = G(u)(r; x) = �r;xf(�t)� �r;xf(�t) ^ �r;x
R
(r;t]�

�
s; �s ; us(�s)

�
k(ds)

on I �E: Let us now show that, indeed, u solves (18). To do this, let

�r := inf
n
s 2 (r; t] : �s;�s

R
(s;t]�

�
s0; �s0 ; us0(�s0)

�
k(ds0) � �s;�sf(�t)

o

Note that us(s; �s) = G(u)(s; �s) = 0 for s 2 (r; �r]; hence �
�
s; �s ; us(�s)

�
vanishes for those s: Thus, using the strong Markov property, we are allowed to

write

ur(x) = �r;xf(�t) � �r;xf(�t) ^ �r;x��r;��r
R
(�r;t]�

�
s; �s ; us(�s)

�
k(ds);

for all r; x: But, by de�nition of �r ;

�r;x��r;��r
R
(�r;t]�

�
s; �s ; us(�s)

�
k(ds) � �r;x��r ;��rf(�t) = �r;xf(�t):

Consequently,

�r;xf(�t) ^ �r;x
R
(r;t]�

�
s; �s ; us(�s)

�
k(ds) = �r;x

R
(r;t] �

�
s; �s ; us(�s)

�
k(ds):

Therefore, u solves (18), proving the existence part of the proposition.

In the de�nition of Bt;�; drop now the c�adl�ag requirement and allow values in

[��; �]: Then the r.h.s. of the evolution equation (18) still de�nes a contraction,

yielding also the uniqueness claim. This �nishes the proof.
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3.7 Special notation

For convenience, we introduce the following special notation.

Notation 36 Consider a regular branching mechanism �; and branching func-
tionals k1; :::; k1 = k of uniformly bounded characteristic. For n � 1; let vn

denote the log-Laplace functional related to the (�;�; kn){superprocess.

(i) (nice starting points) Denote by C = C(k1; :::; k1) the set of all points
(r; x) 2 [0; T ]�E such that

(�) �r;x
1W
n=1

kn(r; T ] <1; and

(�) �r;x{a.s., k
n(s; t]!n k(s; t] whenever r � s � t � T:

(ii) (special norm) For any mapping h : [0; T ]�E ! R, we set

kh(r; x)k
C
:= sup(r;x)2C jh(r; x)j

(applying the Convention 33 introduced for k � k1 analogously to k � kC ):

(iii) For t 2 I and f 2 bE+ �xed, for n � 1 and r 2 I we pose

vnr := vnr;t(�r); vr := vr;t(�r);

�n
r := �(r; �r; v

n
r;t(�r)); �r := �(r; �r; vr;t(�r));

Sn
r

:= sup
`�n

���R(r;t] �`

s
k`(ds) �

R
(r;t]�s k(ds)

��� ;
with reading such quantities as 0 if r > t:

(iv) B will denote the following supremum expression:

sup
t2I

�
k�r;x limn S

n

r kC _ sup`

�r;x
���R(r;t]�`

s k
`(ds) �

R
(r;t] �s k(ds)

���

1

�
:

3

Lemma 37 We have B <1:

Proof First pass from the minus sign to a plus sign in the de�nition of Sn
r
:

From the de�nition of � in Assumption 17 (f) we obtain

k�(r; x; �)k1 � 3
2 �

2; (29)

since 0 � e(z) � z2=2; z � 0: Recall that the log-Laplace functionals vn solve

the (�;�; kn){evolution equation (18) (with k replaced by kn): Hence,

0 � vnr;t(f)(x) � kfk
1
: (30)

Using this domination, altogether we get the estimate

���R(r;t] �`
s k

`(ds) �
R
(r;t] �s k(ds)

��� � 3
2 kfk

2
1

�
k`(r; T ] + k(r; T ]

�
: (31)
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Taking the �r;x{expectation, the �niteness of the second part in the de�nition

of B immediately follows from (20). On the other hand, for the �rst part, take

the supremum on ` � n and the limit as n ! 1 of the r.h.s. of (31) to get

3 kfk
2
1
k(r; T ] with �r;x{probability one, for each (r; x) 2 C: Hence,

k�r;x limn S
n

r
k
C
� const k�r;x k(r; T ]k1

which is �nite, again by (20).

Later we need also the following simple fact.

Lemma 38 (convergence of functionals) Fix a starting point (r; x) 2 C
(with C de�ned in Notation 36 (i)) and t 2 [r; T ]: For s 2 [r; t]; let  s denote
=[s; t]{measurable non-negative variables, and let s 7!  s be �r;x{indistinguish-
able from a c�adl�ag process, bounded by a (non-random) constant. Then,

R
(r;t]

 s k
`(ds) !`

R
(r;t]

 s k(ds)

with �r;x{probability one.

Proof This e.g. immediately follows from [Bil68, Theorem 5.1].

3.8 Key step: convergence of log-Laplace functionals for

nice starting points

The central part in deriving our key result is the following proposition concerning

the convergence of log-Laplace functionals for small test functions f; and for

starting points in C (guaranteeing some convergence of the functionals kn):

Proposition 39 (convergence if start in C) Consider a regular branching
mechanism � and branching functionals k1; :::; k1 = k which are uniformly of
bounded characteristic. Let f 2 bE+ be such that

3 kfk1 k�r;x k(r; T ]k1 � 1
2 : (32)

Then for the log-Laplace functionals vn(f) = vn; n � 1; of (17) related to
k1; k2; :::; respectively, we have

limn v
n

r;t(x) = vr;t(x); (r; x) 2 C; t 2 [r; T ];

with v = v(f) the (unique) \small solution" of the (�;�; k){evolution equation
(18) constructed in Proposition 35, p.23.

In order to explain the concept of proof, recall in particular the symbols

Sn
r
and B introduced in (iii) and (iv) of Notation 36. For r; x; t as in the

proposition, we clearly have

��vnr;t(x) � vr;t(x)
�� � B ^ �r;x

���R(r;t] �n
s k

n(ds) �
R
(r;t]�s k(ds)

���
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and thus ��vn
r;t
(x) � vr;t(x)

�� � B ^ �r;xS
n

r
: (33)

Assume for the moment that we already showed the following lemma.

Lemma 40 Under the assumptions of Proposition 39,

lim
n
�r;xS

n

r
= 0; for all (r; x) 2 C and t 2 [r; T ]:

Then Lemma 37 and (33) will establish the claim in Proposition 39. So it

remains to verify Lemma 40 (for which the bound B in (33) will be essential).

Proof of Lemma 40 Step 0� For the moment, �x t 2 I. For n � 0;
r 2 [0; t]; and x 2 E; set

on
r;x

:= �r;x sup
`�n

���R(r;t] �s k
`(ds) �

R
(r;t] �s k(ds)

��� : (34)

Just as we derived (31),

sup
`�n

���R(r;t] �s k
`(ds) �

R
(r;t]�s k(ds)

��� � 3 kfk
2
1

1W
`=1

k`(r; t] 2 L1(�r;x):

Therefore, we can invoke Lebesgue's theorem, Proposition 35 (ii), the regularity

of �; and Lemma 38, to obtain that for every (r; x) 2 C; r � t;

limn o
n

r;x = 0:

Step 1� We next establish that for (r; x) 2 C; r � t; and n � m;

�r;xS
n
r � 3 kfk

1
�r;x

�
sup`�n

R
(r;t] B ^ (�s;�s S

m
s ) k`(ds)

�
+ onr;x : (35)

In fact, we have

Snr � sup`�n

���R(r;t](�`
s � �s) k

`(ds)
���+ sup`�n

���R(r;t]�s k
`(ds) �

R
(r;t]�s k(ds)

��� ;
and therefore (by notation (34)),

�r;xS
n
r � �r;x

�
sup`�n

���R(r;t] (�`
s � �s) k

`(ds)
��� �+ onr;x :

Using the Lipschitz inequality (27) and domination (30) we can continue with

�r;xS
n
r � 3 kfk

1
�r;x

�
sup`�n

R
(r;t]

��v`s � vs
�� k`(ds)� + onr;x

and thus, from (33)

�r;xS
n
r � 3 kfk

1
�r;x

�
sup`�n

R
(r;t]

B ^
�
�s;�s S

`
s

�
k`(ds)

�
+ onr;x : (36)
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But for ` � n � m; we have S` � Sn � Sm; and (36) yields (35).

Step 2� We will now derive from (35) that for (r; x) 2 C and t 2 [r; T ] �xed,

�r;x limn S
n

r
� 3 kfk

1
�r;x

� R
(r;t]B ^

�
�s;�s limn S

n

s

�
k(ds)

�
: (37)

Indeed, s 7! B^�s;�s S
m
s
is c�adl�ag �r;x{a.s., according to Lemma 16. Therefore,

in view of Lemma 38,

R
(r;t]

B ^
�
�s;�s S

m
s

�
k`(ds) !`

R
(r;t]

B ^
�
�s;�s S

m
s

�
k(ds) (38)

with �r;x{probability one. Note that

0 � sup
`�n

R
(r;t]B ^

�
�s;�s S

m
s

�
k`(ds) � B

1W
`=1

k`(r; T ] 2 L1(�r;x):

Hence, from monotone convergence, inequality (35), Lebesgue's theorem, and

(38), we get

�r;x limn S
n
r

= limn �r;xS
n
r

� 3 kfk
1
�r;x

�R
(r;t]

B ^
�
�s;�s S

m
s

�
k(ds)

�
:

Passing to the monotone limit as m!1, this yields (37).

Step 3� We will show that (37) implies

k�r;x limn S
n
r kC � 3 kfk

1
k�r;x k(r; T ]k

1
k�r;x limn S

n
r kC : (39)

In fact, according to Proposition 12, for every point (r; x) 2 C;

�r;x

n
(s; �s) 2 C for every s 2 [r; T ]

o
= 1:

Moreover, for any point (r; x) 2 C, we have, by de�nition of B, that

B ^ �r;x limn S
n

r
= �r;x limn S

n

r
:

Hence, for any point (r; x) 2 C; inequality (37) implies that

�r;x limn S
n

r � 3 kfk
1
k�r;x limn S

n

r kC �r;x k(r; T ]:

Taking the supremum over (r; x) 2 C we obtain (39).

Step 4� Recall that according to Lemma 37, k�r;x limn S
n
r kC � B <1: Using

assumption (32), therefore (39) implies that k�r;x limn S
n

r kC = 0; and in par-

ticular �r;x limn S
n

r
= 0 for r; x; t as considered in the lemma. By monotone

convergence, this completes the proof of Lemma 40.
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3.9 Final steps of proof of fdd continuity if �n
� �

Here we complete the proof of Theorem 23 in the case �n � �. Consider

branching functionals k1; :::; k1 = k which are uniformly of bounded charac-

teristic. Let f 2 bE+ satisfy the smallness property (32). Fix a starting point

(r; x) 2 I � E: Consider a subsequence fknmg of fkng: By assumption, and by

the convergence criterion Proposition 27 there exists a subsequence fknmig of

fknmg such that (�) and (�) in (ii) of this proposition hold. We conclude that

(r; x) belongs to the set C introduced in Notation 36 (i), related to this sequence

fknmig: By Proposition 39, we then get that v
nmi

r;t
(f)(x) converges to vr;t(f)(x)

as i ! 1 for each t 2 [r; T ]; with v�;t(f) the (unique) small solution to (18).

Hence, the limit is independent of the choice of the subsequences, and we get

the latter convergence statement along the whole sequence fkng.

But each vn
r;t
(f)(x) is monotonic as a functional of f satisfying assumption

(32) (since it is a log-Laplace functional), and therefore this property is shared

by vr;t(f)(x). According to Lemma 30, the mapping f 7! vr;t(f)(x) must then

be continuous, for all su�ciently small f . As a consequence, Lemma 31 implies

that vnr;t(f)(x) converges to some vr;t(f)(x) as i!1; for any f in bE+ ; where
vr;t(�)(x) is the log-Laplace functional of some random measure. In order to

�nish the proof, it su�ces to show according to Lemma 29 that the family�
vr;t : 0 � r � t � T

	
determines a semigroup on bE+ , and that in fact v� ;t(f)

solves the (�;�; k){evolution equation (18).

Recall that v� ;t(f) solves (18) for f small in the sense of (32). On the

other hand, for any f 2 bE+ ; the mapping � 7! vr;t(�f)(x) is analytic on the

half line (0;1), since vr;t(�)(x) is a log-Laplace functional. By replacing f by

�f , we get that both sides of the (�;�; k){evolution equation (18) are analytic

mappings of � (since � is analytic in its third variable, and by the imposed

moment assumptions). Since both sides of (18) coincide for small values of �,
by the uniqueness of analytic continuation they are hence equal for every �:
Specializing to � = 1, this shows that v�;t(f) solves (18) not only for small f
but in fact for every f 2 bE+ . Since (r; x) is arbitrary, by Lemma 32 the proof

is �nished.

3.10 Extension to fdd joint continuity

To complete the proof of Theorem 23 altogether, we have to remove the �n � �

restriction. Consider �1; :::;�1 = � and k1; :::; k1 = k as in Assumption 22.

Fix f 2 bE+ : Write vn;m = vn;m(f) for the log-Laplace functional related to

�n; km; n;m = 1; :::;1: For 0 � r � t � T and x 2 E; consider

��vn;nr;t (x) � v
1;n

r;t (x)
��: (40)
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We take the abbreviation �i(vn;m) for �i
�
r; �r ; v

n;m

r;t
(�r)

�
; i; n;m = 1; :::;1:

Using the evolution equation (18), we may estimate (40) to

� �r;x
R
(r;t]

����n(vn;n)� �1(v1;n)

���kn(ds):
Compare additionally with the analogous term involving �n(v1;n): In the �rst

case, by the Lipschitz property (27) and the domination (30), we get the bound

3 kfk1 kv
n;n

�;t
� v

1;n

�;t
k1�r;x k

n(r; t]:

The other part is bounded by k�n��1k1�r;x k
n(r; t]: Since all the branching

functionals are uniformly of bounded characteristic, and �n ! � in uniform

convergence, putting both together, for kfk1 small enough we get

limn!1 kvn;n
�;t

� v1;n

�;t
k1 = 0:

But v
1;n

s;t (x) converges pointwise to v
1;1

s;t (x) as n ! 1; hence v
n;n

s;t (x) ap-

proaches v1;1

s;t (x) as n ! 1; too, for all su�ciently small f: By Lemma 31,

this extends to all f 2 bE+ ; �nishing the proof of Theorem 23.

Remark 41 (indexed sequences of branching functionals) In the begin-

ning of x 3.9, we �xed a starting point (r; x); constructed then vr;t(f)(x); for

any t and f; and veri�ed the properties we needed. Note that all the arguments

would work, if the sequence of branching functionals k1; k2; ::: we started from

depended on (r; x); provided that only the \limiting" k1 = k is independent

of (r; x): Hence, the fact that in Theorem 23 the sequence fkng of branching

functionals is assumed to be independent of the choice of the starting point r; x
is not substantial. One could conversely consider a family of sequences fknr;xg
indexed by (r; x); if only the \limiting" k1 = k does not depend on (r; x): 3

3.11 Fdd continuity in only the branching mechanism

The purpose of this subsection is to provide the Proof of Proposition 25. First

note that the log-Laplace functionals vn and v exist uniquely by Lemma 18. Set

vr;t(f)(x) := lim sup
n

vn
r;t
(f)(x); v

r;t
(f)(x) := lim inf

n
vn
r;t
(f)(x):

By the evolution equation (18), we have

vr;t(f)(x) = �r;xf(x) � lim inf
n

�r;x
R t
r
�n
�
s; �s ; v

n
s;t(f)(�s)

�
k(ds):

Since � is non-decreasing in its third variable, for each M � 1; we may continue

with

� �r;xf(x) � lim infn �r;x
R t
r
�n
�
s; �s ; infm�M vms;t(f)(�s)

�
k(ds)
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which equals

�r;xf(x) � �r;x
R
t

r
�
�
s; �s ; infm�M vm

s;t
(f)(�s)

�
k(ds):

Letting M !1; we conclude for

vr;t(f)(x) � �r;xf(x) � �r;x
R
t

r
�
�
s; �s ; v s;t(f)(�s)

�
k(ds): (41)

Analogously,

v
r;t
(f)(x) � �r;xf(x) � �r;x

R
t

r
�
�
s; �s ; vs;t(f)(�s)

�
k(ds): (42)

By the local Lipschitz Lemma 34, from this we get

vr;t(f)(x) � v
r;t
(f)(x) � 3 kfk

1
�r;x

R
t

r

�
vs;t(f)(�s) � v

s;t
(f)(�s)

�
k(ds):

Hence, vr;t(f)(x) � v
r;t
(f)(x)


1

� 3 kfk
1

vr;t(f)(x) � v
r;t
(f)(x)


1
k�r;x k(r; t]k

1

(recall Convention 33). Thus, for f small enough, the limit of the l.h.s. in (21)

exists. Repeating the argument working with v instead of v and v we conclude
that the inequalities (41) and (42) hold for v: That is, v solves the log-Laplace

equation (17). By uniqueness, we arrive at the desired limit v(f) in (21), for

these small f:
v(f) is the limit of functionals which are monotone in f and is therefore

monotone in f . The rest of the proof is identical to the arguments to our main

Theorem in the end of x 3.9.

3.12 Proof of the fdd approximation

by classical processes

For the proof of Theorem 26, by Theorem 23 it obviously su�ces to verify the

following lemma.

Lemma 42 (approximation by classical branching functionals)Let k be
a branching functional. Then there exist bounded measurable functions %n :

I � E ! R+ ; n � 1; such that the classical branching functionals kn(ds) =

%n
s
(�s) ds of (22) are uniformly of bounded characteristic and have the following

property:

For every starting point (r; x) 2 I � E and every r{stopping time � � T
�xed, kn(r; �] converges to k(r; �] in L1(�r;x) as n!1:

Proof Fix k; r; x as in the lemma. Consider �r;x : To the branching functional
k there corresponds the supermartingale

t 7! htT (�t) := �t;�tk(t; T ]; t 2 [r; T ];
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with compensator t 7! k(r; t]: Following Dellacherie and Meyer [DM83, Remark

VII.22 b)], we also consider the approximating sequence of supermartingales

t 7! nht
T
(�t) := �t;�t n

Z 1
n
^ (T�t)

0

ht+u
T

(�t+u) du = �t;�t n

Z 1=n

0

k(t + u; T ] du

with compensator

t 7! kn(r; t] := n

Z
t

r

�
hsT (�s)� �s;�s k(s +

1
n
; T ]

�
ds = n

Z
t

r

hs
(s+ 1

n )^T
(�s) ds;

n � 1: Note that nht
T
(�t) increases to ht

T
(�t) as n ! 1. It follows from

Proposition 5 (i) (with Ys = k(s; T ]) that s 7! hs
T
(�s) is �r;x{indistinguishable

from a non-negative c�adl�ag process of class (D). Moreover, for every r{stopping
time � � T; by the strong Markov property,

�r;x

�
h�
T (��)� h

(�+�)^T
T

(�(�+�)^T )
�
= �r;x

�
k(�; T ]� k(� + �; T ]

�

which converges to 0 as � # 0; uniformly in �: In fact, s 7! k(s; T ] is uni-

formly continuous, and the integrand is bounded by 2k(r; T ] 2 L1(�r;x): By

Proposition 58 (p.42) their uniform convergence to zero implies that

�r;x

n
sup

t2[r;T ]

���htT (�t)� h
(t+�)^T
T

(�(t+�)^T )
��� > "

o
�!
�#0

0;

for all " > 0: Hence, for any sequence of r{stopping times �n � T; and " > 0;

�r;x

n���h�nT (��n )� h
(�n+�)^T
T

(�(�n+�)^T )
��� > "

o
��!
n!1

0:

In other words, the process t 7! ht
T
(�t) satis�es Aldous's criterion, hence it is

quasi-left continuous (see Jacod and Shiryaev [JS87, Remark VI.4.7, p.321]). We

can then invoke Theorem VII.20 of [DM83] to conclude that kn(r; �] converges
to k(r; �] in L1(�r;x) as n!1; for every r{stopping time � � T . Finally, it is
easy to see that the kn are uniformly of bounded characteristic (recall De�nition

21), �nishing the proof.

4 Special case: Feller � on a compactum

Since T is arbitrary, the (�;�; k){superprocesses on the interval I = [0; T ]
considered so far, can easily be extended to the whole time half axis R+ . This
we will actually do from now on. Of course, conditions as (3) and (20) are then

required to hold for all T > 0:
Recall that a c�adl�ag right Markov process � = (�t ;=; �r;x) in a Luzin space is

called a Hunt process if it is quasi-left continuous. That is, for 0 � r � T <1
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and � 2 Mf �xed, we have ��n !n �� ; �r;�{a.e. for every sequence of r{
stopping times �n � T non-decreasing to (the r{stopping time) � as n!1:

From now on we will pay attention to the following special case, although

some of our results below { such as the existence of a Hunt version { can be

extended to more general situation by making use of Ray-Knight methods as

exploited in [Led97a]. But this would require considerably more technical proofs,

and the Feller case on a compact space perfectly illustrates our method.

Assumption 43 (Feller on a compactum) Suppose that the phase space is

a compact metric space (E; d): Moreover, let � be time-homogeneous and indeed
be a Feller process. 3

Note however, that nevertheless a related (�;�; k){superprocess is in general

time-inhomogeneous.

Recall that we introduced in Mf =Mf (E) the weak topology (Assumption

1 (b)). It can be generated by the Prohorov metric in the sense of [EK86,

Problem 9.5.6, p.408], we denote by wd : Recall that (Mf ;wd) is separable
([EK86, Theorem 3.1.7]).

Moreover, for each r � 0 we will introduce the Skorohod spaces Dr =

D
�
[r;1);Mf

�
; of all Mf{valued c�adl�ag functions on [r;1) equipped with the

Skorohod metric sd ; based on d (actually on wd). Recall that (Dr ; sd) is sepa-
rable ([EK86, Theorem 3.5.6]), since Mf is separable.

4.1 Results under the Feller assumption

So far we considered a (�;�; k){superprocess only as someMarkov process in the

sense of Assumption 1 (d1). Now we will be concerned with regularity properties
of its (measure-valued) paths. In fact, in this section, under Assumption 43, we

extend the fdd convergence results of Section 3 to convergence in law on path

space. Also, we show that for our (�;�; k){superprocesses a Hunt version exists.

Theorem 44 (existence of a Hunt version) Impose Assumption 43. Let �
be a branching mechanism and k be a branching functional. Then there exists
a Hunt version of the (�;�; k){superprocess.

The proof of this theorem is postponed to x 4.4.1.
As an application of the previous Theorem 44, using an argument from

[Dyn94, Chapter 6], we show that under the present Feller assumption the

(�;�; k){superprocess is continuous exactly in the \binary splitting" case, re-

gardless of the choice of the branching functional k :

Corollary 45 (characterization of continuous processes) Under the as-
sumptions of Theorem 44, the (Hunt) (�;�; k){superprocess X has almost surely
continuous paths if and only if � has the form �(s; x; �) = bs(x)�2 (recall As-
sumption 17 (f)).
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Proof X is Hunt by the previous theorem. X is almost surely continuous if

and only if its modi�ed L�evy measure vanishes, which occurs if and only if the

projection of the latter ([Dyn94, x 6.8.1]) disappears. But this happens if and

only if n = 0 in the de�nition of � (recall Assumption 17 (f)).

Based on Theorem 44, our fdd continuity Theorem 23 can be sharpened in

terms of convergence in law on Skorohod path spaces:

Theorem 46 (continuity in law on path spaces) Under Assumptions 43

and 22 (p.18), for r; � �xed, the laws Pn

r;�
on the Skorohod space Dr of the

Hunt (�;�n; kn){superprocesses converge weakly towards the law Pr;� of the
Hunt (�;�; k){superprocess.

The proof of this theorem will follow in x 4.4.2.

For �xed branching functional k; the continuity in the branching mechanism

� can be sharpened by using a weaker convergence concept for �; just as in the

fdd case (Proposition 25):

Proposition 47 (continuity on path spaces concerning � only) Fix a
branching functional k: If the branching mechanisms �n converge boundedly
pointwise to a (not necessarily regular) branching mechanism � as n ! 1;
then, under Assumption 43, the related superprocesses converge in law on the
Skorohod path spaces Dr :

The proof of this result is postponed to x 4.4.3.

We can combine Theorem 46 with Lemma 42 to conclude for the following

approximation in law by classical superprocesses (detailed arguments will follow

in x 4.4.4).

Theorem 48 (approximation by classical processes) Impose Assumption
43. If � is a regular branching mechanism, then, on Skorohod spaces Dr ; any
(�;�; k){superprocess X can be approximated in law by classical Hunt super-
processes Xn (based on the classical branching functionals (22)). If � is an
arbitrary branching functional, then, for every r � 0 and � 2 Mf ; there exists
a collection of regular branching mechanisms �n and classical branching func-
tionals kn such that the laws Pn

r;� on Dr of the (�;�n; kn){superprocesses Xn

converge weakly to the law Pr;� on Dr of the (�;�; k){superprocess X.

4.2 A su�cient criterion for tightness on path space

A basic step in the proofs is the veri�cation of the following criterion, which

extends a result from [Led97a, Proposition 6.39]. Write Cd(E) for the set of all
non-negative d{uniformly continuous functions de�ned on E:
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Proposition 49 (tightness on path space) Let � 1;� 2; ::: be a collection of
branching mechanisms and let k; k 1; k2; ::: be branching functionals which are
uniformly of bounded characteristic (on bounded intervals). Assume that for
each starting point (r; x) 2 R+�E; each T � r; and each r{stopping time � � T
we know that kn(r; �] converges to k(r; �] in L1(�r;x) as n!1: Suppose that

each Xn = (X n;F ; P n

r;�
) is a c�adl�ag right (�;�n; kn){superprocess, n � 1:

Then, for r � 0 and � 2 Mf �xed, the laws P n

r;�
of the X n; as measures on

the Skorohod space Dr ; are tight. Moreover, for T � r and r{stopping times Tn
bounded by T; and �n & 0; we have

lim
n!1

P n

r;�

��� exp 
X n

Tn
;�f

�
� exp



X n

Tn+�n ;�f
� ���2 = 0; (43)

for each f 2 Cd(E):

To prepare for the proof, de�ne IF as the linear span of all functions Ff ;

Ff (�) := exp h�;�fi ; � 2 Mf ;

where f varies in Cd(E):

Lemma 50 (separation of points) Each F 2 IF is a bounded non-negative
continuous function on Mf : Moreover, IF separates the points of Mf :

Proof Note that IF separates points if the collection of all functions � logFf ;
f 2 Cd(E); is separating. Therefore, it su�ces to show that Cd(E) separates
the points of E ([EK86, Theorem 3.4.5 (a)]). But this is obvious (use d):

Proof of Proposition 49 Fix r � 0 and � inMf ; and consider the laws P n
r;�

on Dr of the X
n; n � 1: We will use Jakubowski's criterion (see e.g. [Daw93,

Theorem 3.6.4]) to verify the tightness of these laws.

To check the �rst condition in Jakubowski's criterion, we show that the

processes X n \almost live" on a commoncompact subset ofMf . More precisely,

we verify that for T > r and " > 0 �xed,

P n

r;�

�
sup

s2[r;T ]
hX n

s ; 1i >
1
"

�
� " h�; 1i ; n � 1: (44)

But using the Doob type inequality of Proposition 58, the l.h.s. can be estimated

by

� " sup
T
P n

r;�
hX n

T
; 1i (45)

with the supremum running over all r{stopping times T � T: But the right su-
perprocesses Xn are critical, hence the processes t! hXn

t ; 1i are right continu-
ous martingales (recall Remark 19). So our estimate (45) equals "Pn

r;�
hXn

r
; 1i =

" h�; 1i ; proving (44).
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Next, for the second condition in Jakubowski's criterion, using the separation

Lemma50 it is su�cient to check the tightness of the laws of the c�adl�ag processes

t 7! Ff (X
n
t
); n � 1; on the Skorohod space D[[r;1);R+]; for each �xed f in

Cd(E): For this purpose, we use Aldous's criterion (see, for instance, [Daw93,

Theorem 3.6.5]), from which we get that it su�ces to show that, given T � r and
r{stopping times Tn bounded by T; and �n & 0; claim (43) holds. But expanding

the binomial in (43), we get, in particular, a term exp


X n

Tn+�n
;�2f

�
: Its P n

r;�{

expectation can be written as

P n

r;�
exp

D
X n

Tn
;�v n

Tn ;Tn+�n (2f)
E
;

using the strong Markov property at time Tn ; and the log-Laplace transition

functional representation (17). Here v n(2f) solves the evolution equation (18)

with f;�; k replaced by 2f;�n; kn; respectively. We will compare this term

with

P n

r;�
exp

D
X n

Tn
;�2 v n

Tn ;Tn+�n (f)
E
:

Calculating the other term similarly, for the expectation expression in (43) we

get

P n

r;�

���exp 
X n

Tn
;�f

�
� exp

D
X n

Tn
;�v n

Tn ;Tn+�n
(f)
E���2

+ P n
r;�

�
exp

D
X n

Tn
;�v n

Tn ;Tn+�n
(2f)

E
� exp

D
X n

Tn
;�2 vn

Tn ;Tn+�n
(f)
E�
:

To get an upper bound for this, we may drop the exponent 2; and continue with

� P n
r;�

D
X n

Tn
;
���f � v n

Tn ;Tn+�n (f)
���E

+ P n
r;�

D
X n

Tn
;
���v n
Tn ;Tn+�n

(2f) � 2 v n
Tn ;Tn+�n

(f)
���E:

Using again [Dyn94, Theorem 6.2.1], to each Tn there exists an r-randomized

stopping time �n � T for � such that the latter equals

= �r;�

���f(��n )� v n
�n;�n+�n

(f)(��n )
���

+ �r;�

���v n�n;�n+�n (2f)(��n ) � 2 v n
�n ;�n+�n

(f)(��n )
���:

9>=
>; (46)

Applying the evolution equation (18), and the strong Markov property for �,
for the �rst term in (46) we get the bound

�r;�

���f(��n )� ��n;��n f(��n+�n )
���

+ �r;�
R �n+�n
�n

�n
�
s; �s ; v

n

s;�n+�n
(f)(�s)

�
k n(ds):

9=
; (47)

Since � is a time-homogeneous strong Markov process, the �rst term is bounded

by h�; 1i supx
��f(x)��0;xf(��n )��; and by the Feller property this will disappear
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as n ! 1. If now fknmg is a subsequence of fk ng; by the reformulation

Proposition 27, there exists a subsequence fknmi g of fk nmg such that

(�) �r;�
1W
i=1

k nmi (r; T ] <1;

(�) sup
s2[r;T ]

���knmi (s; T ]� k(s; T ]
��� ��!
i!1

0; �r;��a:e:

Combined with (29) and (30), we get that the second term in (47) will vanish

as nmi
!1; hence as n!1: So (47) will disappear in the limit.

The proof that the second term in (46) goes to zero is similar. Consequently,

(46) will vanish in the limit, hence (43) is true, and Jakubowski's criterion is

ful�lled.

Corollary 51 (convergence on path space) Suppose in addition to the hy-
potheses of Proposition 49 that the Xn = (Xn

t
;F ; Pn

r;�
) converge fdd to a

(�;�; k){superprocess X with a regular branching mechanism �: Then for each
r; �; the laws Pn

r;� on Dr converge weakly to P1r;� :

Proof Since tightness plus fdd convergence implies weak convergence, we im-

mediately get from Proposition 49 and the assumed fdd convergence that P n
r;�

converges weakly to P 1

r;�
as n!1:

4.3 Existence of a c�adl�ag right version X

Recall that (E; d) is a compact metric space. For convenience, we introduce the

following notion.

De�nition 52 (almost sure notions) For the moment, consider an Mf{va-

lued Markov process X =
�
Xt ;F ; Pr;�

�
with phase space (E; d): We say that

X is an a.s. c�adl�ag right process if

(i) for r � 0 and � 2Mf ;

Pr;�

n
t! Xt is c�adl�ag; t 2 [r;1)

o
= 1;

(ii) for 0 � r < t; for � 2 Mf ; and for measurable F : Mf ! R+ , the

function

s 7! 1s<tPs;Xs
F (Xt); s 2 [r; t);

is Pr;�{a.s. right continuous.

An a.s. c�adl�ag right process X is said to be an a.s. Hunt process if it is quasi-left
continuous. 3

As shown in [Led97a, Lemma 5.28] the two introduced a.s. notions are not

substantially di�erent from the ones without `a.s.':
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Lemma 53 (dropping `a.s.') Let X be an a.s. Hunt (respectively a.s. c�adl�ag
right) process. Then there exists a Hunt (respectively c�adl�ag right) version of
X.

Now we are ready to state the following result.

Lemma 54 (c�adl�ag right version) Impose Assumption 43. Let � be a bran-
ching mechanism and k a branching functional. Then there exists a c�adl�ag right
version of the (�;�; k){superprocess.

Proof Recall that the (�;�; k){superprocess X exists by Lemma 18. According

to [Dyn93, Theorem 2.1], there is a right version X = (Xt ;F ; Pr;�) of this pro-
cess. Let (A;D(A)) be the strong generator of the Feller process �. Recall that
D(A) � Cd(E). Fix r � 0 and � 2 Mf : Note that for f 2 D(A) the processes

t 7! hXt ; fi�
R
t

r
hXs ; Afi ds; t � r; are right continuous Pr;�{martingales, and

therefore, with Pr;�{probability one, c�adl�ag martingales. Hence, the process

t 7! hXt ; fi ; t � r; is Pr;�{a.s. c�adl�ag. Let ffm : m � 1g � D(A) be a conver-
gence determining set (for the weak topology inMf ): Recall that ffm : m � 1g
is separating. Let


r :=
n
! : t 7! hXt(!); fni ; t � r; is c�adl�ag; n � 1

o
:

Note that Pr;� (
r) = 1: Recall also that on every bounded interval [r; T ], the
c�adl�ag trajectory t 7! hXt(!); 1i is bounded. Also, the sets

�
� : h�; 1i � N

	
are

compact in Mf . Consider ! 2 
r ; t > r; and let tn " t; tn < t. It follows that
the family fXtn(!)gn�1 � Mf is tight. Hence, it has an accumulation point

Xt�(!). But since ! 2 
r ; this accumulation point is unique and independent

of the choice of the sequence ftn : n � 1g: Thus lims"tXs(!) = Xt�(!): Since
t was arbitrary, it follows that t 7! Xt(!) is c�adl�ag, for ! 2 
r . An appeal to

Lemma 53 completes the proof.

4.4 Remaining proofs

4.4.1 Proof of existence of a Hunt version

The next result is taken from [Led97a, Lemma 6.38].

Lemma 55 Let fyt : 0 � t � Tg and fzt : 0 � t � Tg be [0; 1]{valued stocha-
stic processes over a �ltered probability space (
;=; P ). Suppose that y is P -
indistinguishable from a right continuous process. Let �n � T be stopping times
converging to some stopping time � as n ! 1. Then there exists a sequence
�n &n 0 such that

lim
n!1

P
��� z�ny� � z�ny�n+�n

��� = 0:
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Recall that a c�adl�ag right process X = (Xt ;F ; Pr;�) is a Hunt process if

and only if Pr;�fXT � = XT g = 1 for r � 0, � 2 Mf ; and every bounded

predictable r{stopping time T .

Proof of Theorem 44 Take �;�; k as in the theorem. Recalling Lemma 54,

let X = (Xt ;F ; Pr;�) be a c�adl�ag right version of the (�;�; k){superprocess.
Fix r � 0, � 2 Mf ; and f 2 Cd(E): Consider a collection of r-stopping times

Tn < T non-decreasing to the bounded predictable stopping time T . From

Lemma 55 we conclude that there exists �n # 0 such that

limn!1 Pr;�

��� exp hXTn ;�fi � exp hXT ;�fi
���

= limn!1 Pr;�

��� exp hXTn ;�fi � exp hXTn+�n ;�fi
���

9>=
>; (48)

Applying the tightness Proposition 49 with Xn � X we obtain

lim
n!1

Pr;�

��� exp hXTn ;�fi � exp hXTn+�n ;�fi
���2 = 0;

which implies that (48) vanishes. Using Fatou's lemma, we conclude

Pr;�

��� exp hXT �;�fi � exp hXT ;�fi
��� = 0:

Hence hXT �; fi = hXT ; fi with Pr;�{probability 1. Arguing with a separating

sequence of functions f 2 Cd(E) yields XT � = XT with Pr;�{probability 1,

�nishing the proof.

4.4.2 Proof of the joint continuity result

Theorem 46 directly follows from Theorem 44 (the process is Hunt), Theorem 23

(which guaranties fdd convergence) and Corollary 51 (from which we conclude

the weak convergence).

4.4.3 Proof of the continuity in � only

Proposition 47 is derived from Theorem 44 (which guaranties the existence of a

Hunt version), from Proposition 25 (which yields the fdd continuity in �) and

from Corollary 51 (from which we conclude the desired weak convergence).

4.4.4 Proof of approximation by classical superprocesses

We will need the following lemma:

Lemma 56 (\approximation" by regular �) Every branching mechanism
� belongs to the bp{closure of the set of all regular branching mechanisms.
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Proof If the maps (s; x) 7! bs(x) and (s; x) 7! n(s; x; du) in Assumption 17 (f)

on a branching mechanism � are additionally continuous, then the correspond-

ing branching mechanisms � are regular. Thus, the bp{closure of all regular

branching mechanisms contains all ([0; 1]{valued) measurable (s; x) 7! bs(x)
and continuous (s; x) 7! n(s; x; du) ([EK86, Proposition 3.4.2]). In particular,

this is true for n(s; x; du) of the form f(s; x)n(du); where f is continuous.

Hence, the bp{closure contains all measurable functions (s; x) 7! bs(x) and

(s; x) 7! 1A(s; x)n(du) with A denoting a measurable subset of R+ �E . Now

let n1(du); n2(du); ::: be a dense subset of M = M(0;1) (introduced in As-

sumption 17 (f)). Then every n(s; x; du) is the pointwise limit of kernels of the

form nN (s; x; du) :=
P

1

`=1 1A`
N
(s; x)n`(du) where

A`

N
:=

n
(s; x) : dv(n

`; n) < 1
N

and dv(n
i; n) � 1

N
; i = 1; :::; `�1

o
;

with dv denoting a metric on M which generates the vague topology in M.

Using this fact completes the proof.

Proof of Theorem 48 Step 1� First we start from a (�;�; k){superprocess
X where � is regular. Note that, from Theorem 26 and Lemma 42, we can

fdd approximate X by classical (�;�; k){superprocesses X n in such a way that

the k n satisfy the conditions imposed in Proposition 49. Note that the X n are

Hunt. It su�ces to invoke Corollary 51 to conclude that Pn
r;� ) P1r;�.

Step 2� Suppose now that � is arbitrary. Fix r � 0; � 2Mf ; and denote by

P
(�;�;k)
r;� the law on Dr of the (�;�; k){superprocess with initial data (r; �): Let

K refer to the closure of the set of all laws P
(�;�;k)
r;� for which the branching

functional k is classical (recall (22)) and the branching mechanism � is reg-

ular. As shown in step 1�, the set K contains all P
(�;�;k)
r;� with arbitrary k

and regular �. Consider the set ��;k of all � such that P
(�;�;k)
r;� belongs to K:

From Theorem 44 (Hunt) and Propositions 25 (fdd convergence) we can invoke

Corollary 51 (weak convergence), and therefore conclude that the set ��;k is

bp{closed. Therefore, since it contains all regular branching mechanisms, ��;k

�nally contains all branching mechanisms, by Lemma 56. In other words, all

P
(�;�;k)
r;� belong to K: Hence, for every (k;�) there exists a sequence (kn;�n)

with classical kn and regular �n such that

P (�;�n
;k
n)

r;�
=) P (�;�;k)

r;�
as n!1:

This �nishes the proof.

5 Appendix

Here we collect some technical results. The following is a slight modi�cation of

[Dyn94, A.1.1.A, p.116].
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Lemma 57 (characterization of left continuity) Let y = fyt : 0� t�Tg
denote a non-negative right continuous process of class (D) over a �ltered space
(
;=; P ). Then y is P{a.s. c�adl�ag if and only if for every sequence of non-
decreasing stopping times �n � T we have that limn Py�n exists.

Proof =) Suppose that y is c�adl�ag. Let ys� denote the left limit limt"s yt :
Hence if �n % � as n!1 then limn y�n = y�� : But since y belongs to class

(D),

Py�� = P limn y�n = limn Py�n :

Therefore limn Py�n exists.

(= Suppose now that y is not P{a.s. c�adl�ag, but assume that for every

sequence of non-decreasing stopping times �n � T , the limit limnPy�n exists.

Recall that by assumption, y is right continuous and belongs to class (D): Hence,
there exists a set N of positive P -probability such that for every ! 2 N

(i) the process y:(!) has a left oscillations, or

(ii) the process y:(!) has a left explosion.

We will show that each of these statements yield a contradiction.

(i) Suppose that the (right continuous) trajectory y(!) has a left oscillation.

Then there exist numbers q; � in the set Q+ of all non-negative rationales such

that y(!) oscillates around q with oscillations of magnitude larger than �. In

other words, the sequence f�q;�n (!)g1
n=0 de�ned by �

q;�

0 (!) := 0 and, for m � 0;

�q;�2m+1(!) := inf
�
t > �q;�2m(!) : yt(!) � q > �

	
;

�q;�2m+2(!) := inf
�
t > �q;�2m+1(!) : yt(!) � q < ��

	

has the property that �q;�0 (!) < ::: < �q;�n (!) < �q;�
n+1(!) < ::: < T: Setting

again inf ; := T; then clearly, the random times �q;�
n

are stopping times. Let

us de�ne

Aq;� := f! : �q;�0 (!) < ::: < �q;�n (!) < �q;�
n+1(!) < ::: < Tg:

Moreover, let y�t (!) := 1Ac
q;�
(!)yt(!) where Ac

q;�
:= 
 � Aq;� : Note that for

! 2 Ac

q;�
; the sequence �q;�n (!) eventually reaches T . Thus y�

�
q;�
n

converges to

y�
T
(!): Because y� belongs to class (D); this implies that

lim
n!1

P
�
y�
�
q;�

n+1

� y�
�
q;�
n

�
= 0: (49)

On the other hand, we have

lim
n!1

P
�
1Aq;�

(y
�
q;�

2n+1

� y
�
q;�

2n

)
�
� 2�P (Aq;�):
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From (49) and the assumption that limn!1 P
�
y
�
q;�

2n+1

�y
�
q;�

2n

�
= 0; we conclude

that P (Aq;�) = 0. Therefore, we obtain

P
� [
q;� 2Q+

Aq;�

�
= 0:

That is, with probability one, there is no left oscillation, yielding a contradiction.

(ii) The proof is analogous. Write �0 := 0; and for n � 0; de�ne �n+1 :=

infft > �n : yt > ng. (Here again, inf ; := T .) We put

A := f�n < T for every n � 0g:

In the same way as in (i) we have that the existing limit of P (y�n ) implies that

P (A) = 0. Thus there is no explosions towards +1.

Proposition 58 (a Doob type inequality) Let
�
yt : t 2 [0; T ]

	
denote a

real-valued right continuous process of class (D) on a �ltered probability space
(
;F ; P ). Then, for each � > 0;

P
n
sups�T jysj > �

o
�

�
2
�
sup� jPy�j+ P jyT j

�
^
�
1
�
sup� P jy�j

�

where � denotes any stopping time (bounded by T ):

Proof Let �
�

+ := inf
�
s 2 I : ys > �

	
: Then by Markov's inequality,

P
�
sups ys > �

	
� Pfy��

+
� �g � 1

�

�
Py��

+
+ P jyT j

�
:

On the other hand, with �
�

�
:= inf

�
s 2 I : ys < ��

	
;

P
�
infs ys < ��

	
� Pfy��

�

� ��g = Pf�y��
�

� �g � 1
�

�
�Py��

�

+ P jyT j
�
:

Adding both cases, the �rst part of the claim follows. To get the other one,

start with �� := inf
�
s 2 I : jysj > �

	
; and proceed directly in order to �nish

the proof.

Lemma 59 Let an ; bn be real numbers. Then

����
1V
n=1

an �
1V
n=1

bn

���� �
1W
n=1

jan � bnj

provided that at least one of the in�mum expressions is �nite.
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Proof The proof goes by induction. Without loss of generality, suppose thatV2
n=1 an �

V2
n=1 bn : Again without loss of generality, suppose that

V2
n=1 an =

a1 . Then, two cases should be considered.

Case 1)
V2
n=1 bn = b1 Then we have

���V2
n=1 an �

V2
n=1 bn

��� = ja1 � b1j :

Case 2)
V2
n=1 bn = b2 Since

V2
n=1 an = a1 ; we have a1 � a2 . Thus����

2V
n=1

an �
2V

n=1
bn

���� = a1 � b2 � a2 � b2 � ja2 � b2j :

Consequently, ����
2V

n=1
an �

2V
n=1

bn

���� �
2W

n=1
jan � bnj : (50)

Let N � 3: To show that����
NV
n=1

an �
NV
n=1

bn

���� �
NW
n=1

jan � bnj ; (51)

just put

a�1 := a1 ; b�1 := b1 ; a�2 :=
NV
n=2

an ; b�2 :=
NV
n=2

bn :

By (50) we have����
NV
n=1

an �
NV
n=1

bn

���� =
����

2V
n=1

a�
n
�

2V
n=1

b�
n

���� �
2W

n=1
ja�
n
� b�

n
j

= ja1 � b1j _
��� NV
n=2

an �
NV
n=2

bn

���:
Then by induction on N the claim (51) follows. Letting N tend to in�nity gives

the desired result.

Corollary 60 Suppose kn(ds); k(ds) are �nite (deterministic) measures on
I = [0; T ] such that kn(r; t] converges to k(r; t] as n!1; for every r < t � T .
For each n � 1; let s 7!  ns be uniformly bounded non-negative measurable

functions on I: Then the function t 7! F (t) :=
1V
n=1

R
(t;T ]  

n
s k

n(ds) is right

continuous.

Proof Consider t < t + � � T; and set B := supn k 
nk

1
. By Lemma 59 we

have

jF (t)� F (t+ �)j �
1W
n=1

���R(t;T ]  ns kn(ds) � R(t+�;T ]  ns kn(ds)
���

=
1W
n=1

R
(t;t+�]

 ns k
n(ds):
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Thus,

jF (t)� F (t+ �)j � B
1W
n=1

kn(t; t+ �]: (52)

Take any " > 0 and choose � so small that k(t; t + �] � ". Then there exists

N = N";� such that for every n � N we have

���kn(t; t+ �]�k(t; t+ �]
��� � ". Thus

1W
n=N

kn(t; t+ �] � k(t; t+ �] + " � 2":

But for �0 2 (0; �) small enough, we have
N�1W
n=1

kn(t; t+ �0] � 2". Consequently,

for �0 > 0 su�ciently small,

1W
n=1

kn(t; t+ �0] � 2":

Returning to (52), the proof is complete.
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