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Cardiac dynamics of a human ventricular tissue model with

focus on early afterdepolarizations
André H. Erhardt

Abstract

The paper is aimed to investigate computationally complex cardiac dynamics of the famous
human ventricular model of ten Tusscher and Panfilov from 2006. The corresponding physical
system is modeled by a set of nonlinear differential equations containing various of system pa-
rameters. In case a specific physical parameter crosses a certain threshold, the system is forced
to change dynamics, which might result in dangerous cardiac dynamics and can be precursors to
cardiac death. For the performance of an efficient numerical analysis the original model is remod-
eled and simplified in such a way that the modified models perfectly matches the trajectory of the
original model. Moreover, it is demonstrated that the simplified models have the same dynamics.
Furthermore, using the lowest dimensional model it is systematically shown by means of bifur-
cation analysis that combinations of reduced slow and rapid potassium channels and enhanced
sodium channel may lead to early afterdepolarizations. Finally, synchronization and the effect of
EADs on larger scale (macro scale) is investigated numerically by studying the corresponding
monodomain model. To this end we study the pattern formation of an one dimensional network of
epi-, mid-myo- and endocardial cells and a two dimensional epicardial monodomain equation.

1 Introduction

Computational physiology and medicine, mathematics for healthcare and modeling of biomedical ap-
plications have gained importance in numerous interdisciplinary and multidisciplinary research projects
in recent years, see for instance [1}, 12 [3| [4]. Mathematical modeling has become an integral part and
contributes significantly to a better understanding of real-world phenomena, such as cardiac or neu-
ronal dynamics [5, 16} (7,18} 19,10, 11} [12),113, 14]. In addition to mathematical modeling and simulations,
the analysis of these complex systems is increasingly becoming the focus of research. Furthermore, in
the field of mathematical and computational cardiology a strong focus is on the investigation of certain
cardiac arrhythmia such as early afterdepolarizations (EADs). EADs are pathological voltage oscilla-
tions during the repolarization or plateau phase of cardiac action potentials (APs), cf. Figure[f] and are
considered as potential precursors of cardiac arrhythmia, often associated with potassium deficiency
or elevated calcium or sodium currents, e.g. caused by ion channel diseases, drugs or oxidative stress.

Very powerful tools to systematically analyze the dynamics of cardiac myocytes are bifurcation the-
ory [15] and geometric singular perturbation theory [16], please see for instance recent studies in [17,
18,19, 120, 21}, 22, 23, 24, [25, 26, 27, 28, [29] and the references contained therein. These computa-
tional studies can be used to develop new therapies and help in improving clinical decision [30, 31}
32, 33| [34].

Bifurcation theory. In general, a state of a physical system can be observed when it is stable and one
expects that a small change in a system parameter should not change the dynamics of the system.
Rather, stable solutions can be expected to continuously change in unique ways. No dramatic change
is observed when varying any parameter as long as a continuous solution branch retains its stability.
However, when a certain physical parameter exceeds a threshold, the physical system may be forced
to change its dynamics and complex behavior may result. Therefore, bifurcation theory is used to
explain certain phenomena and dynamics of the famous TP06 model. One requirement to be able
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Figure 1: Simulations of TP06 human ventricular cell model. (Left) A characteristic action potential.
(Right) An early afterdepolarizations.

to apply bifurcation theory is that the investigated system is sufficiently smooth. However, this is not
the case for the original TP06 model, which is independently reported in [35] [36]. In [35], the authors
modified the sodium current Iy, similar to the approach used in [37], while in [36] the sodium current
Ina was modified using the idea from [38]. Both approaches enable to perform (numerical) bifurcation
analysis with slight differences. The advantage of the approach used in [35] is that the remodeled
system almost always perfectly fits the original TP06 model without changing the stimulus, while the
ansatz in [36] leads to a almost perfect remodeling of the original TP06 model. On the other hand
the ansatz in [36] results in a lower dimensional model and therefore, the bifurcation analysis is more
efficient. These advantages and disadvantages one has to take into account.

Numerical methods. For our simulations we utilize MATLAB R2023b and Python 3.9 with FEn-
iCS [39,140]. For solving the ODE system we mainly use the MATLAB ode solver ode15s with a relative
tolerance of 10~ '3 and an absolute tolerance of 10~'%. For the monodomain model, the pdepe solver
is used for the one dimensional case and the two dimensional simulations are done in FEniCS [39, 140],
where the coupled ODE-PDE system is solved using cbcbeat [41], and fenics-beat [42]. We want
to highlight that cbcbeat and fenics-beat use a second order splitting scheme with Crank-Nicolson
method for the time stepping. Moreover, the Rush and Larsen scheme [43] is used to integrate the
gating variables in time. For the bifurcation analysis we use CL_MATCONT, a continuation toolbox
for MATLAB [44}|45]. The codes are available via [46].

Aim and motivation of the paper. The aim of this paper is the analysis of cardiac dynamics, where
the corresponding physical system is modeled by a set of nonlinear differential equations. This is
motivated by the following: Cardiac myocytes can exhibit complex oscillatory patterns such as spiking
and bursting that are related to ion current interactions. In addition to normal APs of a cardiac myocyte,
certain types of cardiac arrhythmias can occur. These include certain types of cardiac arrhythmias that
can lead to sudden cardiac death. Furthermore, irregular behavior such as (deterministic) chaos or
chaotic EADs has been observed in both experimental and computational studies, cf. [47, 148, 49, 50|
and the references contained therein. Moreover, the heart dynamics or heart rhythm can react very
sensitively to the influence of certain medications and computational studies can give new insights and
can help to make better predictions, cf. [561], 52, 53| 54}, £5]. To this end, we modified and simplified
the cardiac muscle cell model by ten Tusscher and Panfilov from 2006 (TP06 model, [56} 57]) to
perform numerical bifurcation analysis. This allows to investigate the dynamics of the TP06 model and
to predict the occurrence of normal APs or cardiac arrhythmia such as EADs. The focus of this study
is on the model reduction and enhancement of the efficiency of the numerical bifurcation analysis
without loss of information to the original TP06 model.
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Our modifications presented in this paper reduce the complexity of the 19 dimensional TP06 model in
several steps to a 18 dimensional, 16 dimensional and 14 dimensional system with astonishing con-
sistency with the original model, please see Figure[2land Figure[3] Here, we changed the conductance
of the slow delayed rectifier current I, rapid delayed rectifier current Ik, and the sodium current Iy,
such that (Gks, Gkr, Goa,) — (Gks, 0.18 - Gk, 5 - Gear ). Beside the modifications and model
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Figure 2: Comparison of the modified models and original TP06 human ventricular epi- and endocar-
dial cell model.

reduction which we will present in the next section, we have to adjust the initial stimulus for the 16
dimensional model in Figure i.e. we used I, = 89% instead of Iy = 52;’,—?. Moreover, the
effect of the different stimuli one can nicely observe in Figure |3} In the first row of Figure 3| an initial
stimulus of I, = 52% is applied to the 16 dimensional model. Although the trajectories do not
match perfectly the dynamics are similar. In the second row of Figure 3| perfectly matching trajectories
of the TP06 model and its different versions are shown highlighting if a different stimulus is applied.
Notice that the MATLAB code to produce Figure [2| and Figure [3]is provided in [46]. Using this code,
the readers can also convince themselves that the modified systems approximate the original system
very well.

Plan of the paper. In this paper, we will first modify and simplify the TP06 model and then, we compare
the dynamics of the resulting three modified TP06 models — one 18 dimensional, one 16 dimensional
and one 14 dimensional system of ordinary differential equations (ODEs). The 18 dimensional model
is in the fashion of [37,[35] and perfectly represents the original model, while the 16 dimensional model
gives a perfect approximation of the original model in case we modify the initial stimulus. The same
applies to the 14 dimensional model. Notice that without the modification of the initial stimulus the
models show very similar dynamics compared to the original one, however, the trajectories do not
perfectly coincide with the one from the TP06 model. Furthermore, we will analyze the new developed
systems by means of bifurcation theory. Here, we will focus mainly on the 14 dimensional case. Finally,
we will perform a numerical experiments of the corresponding heart model.
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Figure 3: Comparison of the modified and original TP06 human ventricular mid-myocardial cell model.
2 Cardiac modeling

Here, we briefly describe the cardiac model we will investigate in this paper.

2.1 Cardiac single cell model

Mathematical modeling of action potentials (APs) of excitable biological cells such as cardiac my-
ocyte has its origin in the Hodgkin-Huxley model [58]. Here, an approach was developed to model
APs of excitable biological cells through a system of ordinary differential equations (ODEs). These
conductance-based models represent a minimal biophysical interpretation of excitable biological cells
in which current flow across the membrane is due to the charging of membrane capacitance and the
movement of ions through ion channels that are selective for certain ion species. An initial stimulus
activates the ion channels once a certain threshold potential is reached. Then these ion channels open
and/or close, allowing an ion current to flow that changes the membrane potential. This electrophysi-
ological behavior of a cardiac myocyte is represented by the following ODE:

dV
Cm_ = _Iion Is im; 1
& + L (1)

where V' denotes the voltage (in mV’) and ¢ the time (in m.s), while I;,,, is the sum of all transmem-
brane ionic currents. The (epi-, mid-myo- and endocardial) human ventricular TPO6 model contains
several different ion currents, ion pump, ion exchanger and background currents, i.e.

Lion = Ikt + Lio + Ik + Iks + Icar + Inak + Ina + Iona + INaca + Ioca + Lok + Inca-
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These currents are depending on individual ionic conductances G,rent @nd Nernst potentials Egrent-
Moreover, they may depend on gating variables, which are important for the activation and inactivation
of the ion currents. The gating variables satisfy the differential equation

dg Joo — 9
3 = (1= 9) = bg = ay —(ag+by)g = — )
where g represents the gating variables, while goo = goo(V) = a4 - (a, + b,)" denotes the

equilibrium of the gating variable g and 7, := 7,(V') = (a, + b,) ! its time scale. Furthermore, the
ionic concentrations of the TP06 model from [56, [57] reads as follows:

dR _ _
i —ko[CalssR + k4(1 — R),
d[CCL]Z ‘/sr (IbCa + I Ca — 2INaCa)
dt - Caibufc ((Ileak - Iup)vc + Ixfer - QPVvCF )
d|C sr
[ d:I] - Casrbufsr(lup - (Irel + Ileak))a
d[ca] Ss ICaL VST ‘/c
= ssbufss | — 57, — Ire__Ixer_ ;
ar Ca buf ( 2V55F+ l‘/ss i Vss
d[Nal; _ Ina + Iona + 3Inak + 3Inaca
dt V.F ’
d[K]’L _ IK1 + Ito + IKr + IKs - 21NaK + IpK + Istim
dt V.F '

Note that we do not specify the constants, but they are available in [56, 57] or in the provided code in
[46]. Furthermore, the main ion currents except the sodium current are listed in Table [{]

List of main ion currents

lon current description name & gating variables

Icar = Gead [ f2 fcass 4(‘/;%;5)}72 0'25C:;2(2p((5(_v1;)1%%i)1_0a°) L-type calcium current: d, f, f2
and fCass

L = Ger s(V — Ex) transient outward current: r and
s

Iks = Gysz2(V — Exs) slow delayed rectifier current:
T

I, = Gy, @y (V' — Ex) rapid delayed rectifier current:
Ty, and T,

Ivi = Gz, (V — Ex) inward rectifier current

Table 1: Main ion currents, where the gating variables satisfy the differential equation (2).

Finally, we would like to highlight the difference between the epi-, mid-myo- and endocardial human
ventricular TP06 model. There are two parts of the model which differ for these three cell types:

1 The modeling of the gating variable s of the transient outward current I, is different, i.e.
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— 530 for epicardial and M cells,

S = 14e5
— 5= for endocardial cells
1+e s
and
_ (V+45)? ) .
8be” 30 + ———- + 3 for epicardial and M cells,
TS = 9 1 + e 5
+67)

(
1000e™ 600 + 8 for endocardial cells.

2 The value of Gy, and G differ, i.e.

S
O.294n— for epicardial and M cells,
pF
GtO - nS
0.073— for endocardial cells
pF
and
S
O.392n—F for epi- and endocardial cells,
Cre = is
0.098— for Mcells.
pF

For a full description of the variables involved, please see [56, 57].

This also implies that we only need one proper bifurcation analysis with respect to G, for epicardial
and M cells, since the models are different only in Ggs. Furthermore, we need an analysis for endocar-
dial cells separately. Moreover, this is also an explanation why the trajectories in Figure[2and Figure 3]
are different. For the simulations in Figure [2 and Figure [3|we used the same setting as in [57] expect
for the value Gy,, which we set to 18% of the original value and the value Gg,., which we have chosen
5 times bigger than the one in [57]. Therefore, the M cell enters a region, where EADs occur.

2.2 Model modification and reduction

First, we remove the ODE representing the intracellular ion concentration [/ |; and set K |; constant
equal to the initial concentration [K]; of the TP06 model, [K]; = 138.3 mM. Referring to [59], it
has been postulated that models for cardiac cells that account for changes in intracellular ion concen-
trations violate a conservation principle. As a result these systems never reach a steady state, i.e. a
resting potential, which is required to be able to apply bifurcation theory.

18 dimensional model In addition as pointed out in [36], the first issue is in the modeling of the
sodium current in [56}, 57], i.e.

INa = GNamth(V — ENa);
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where Gy, denotes the ionic conductance and Ey, the Nernst potential, while the different gating
variables m, h and j satisfy the differential equation (2). To be more precise, the issue appears in the
modeling of the gating variables / and j, since the voltage dependent functions ay, by, a; and b; are
not continuous, cf. [56]. In the fashion of [37, 135], we introduce a new function

1

=7 1 e-5(V+40)

and remodel the rate constants a, 31, a; and 3; as follows:

—(V+80)

ap = (1 —u)0.057¢™ &8
0.77
B =

_0130+f1%%@>

u+ (1 —u) (2777 4 3.1 10”345V |

V +37.78
1 + e0311(V+79.23)"

aj = (1—u) (—2.5428 - 10%e"***V — 6.948 - 1000091V

60'057‘/ 0.024246_0'01052V
1+ e—0-1(V+32) ut(1—u) 1 + ¢—0.1378(V+40.14) °

6]' - 06

Now, the modified model is sufficiently smooth without any discontinuity. Therefore, bifurcation analysis
is applicable and no further modification are needed to fit the original model. Notice that the function
u is modeled in such a way that u = 0.5 for V' = —40 mV to represent the switching modeled in
[56] of avp,, B, avj and 3; at V' = —40 mV, while the factor ’—5" might be improvable.

16 dimensional model A further way to avoid the issue with the discontinuity of the rate constants
ap, B, o and 35 is to notice that the equilibrium of /2 and j are equal. In [36] the gating variables
and j are reformulated to one new gating variable v, and modify the sodium current to

INa = GNam3U2(V - ENa)

and a new time scale was introduced such that v satisfies (2) with

. 1
UOO:hOO:jOO: V471.55 2
(1 + e 7a3 >
and the time relaxation constant is given by
2.24 - vy

= 0.25 ,
i T {1~ tanh(6.468 + 0.07V))

which could probably be improved. However, we realized that instead of considering a 17 dimensional
model it is more practical to set v = v, = hso = Joo and to adjust the initial stimulus. This removes
the discontinuity and in addition, we reduce the model by a further dimension.

14 dimensional model Finally, in this fashion and motivated by [60] we also fixed two further gating
variables equal to their steady state solutions, i.e. we fixed the gating variable r of the transient outward
current I, and the gating variable x,., of rapid delayed rectifier current Ix, such that

1 1
=T = — im0, and Try =T
14+e 5

T200 V488

1 4etH
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This requires again a modification of the initial stimulus, which has to be higher compared to the 16
dimensional model. However, this simplified model shows a remarkable accurate approximation of the
original model and additionally it is much less challenging to analyze, which we will highlight later in
more details.

2.3 Monodomain model

For the modeling of the heart one usually uses either the monodomain model, the bidomain model or
the EMI model, which includes explicitly the extracellular space (E), the cell membrane (M) and the in-
tracellular space (1) [61, 62|, see also the Kirchhoff-Nernst-Planck-EMI model [63, |64] in a electroneu-
tral framework. On the other hand monodomain models have been shown to be a good approximation
for wave propagation in cardiac tissue, cf. e.g. [65] and are well studied, see e.g. [66, 67]. In addition,
the monodomain model is a special case of the bidomain model assuming equal anisotropy rates,
while in [68] it was showing that the bidomain model can be derived from the EMI model. Therefore,
there is a clear link between these models and dependent on the propose of the study one has three
models of different complexity available.

Notice the bidomain model [69] takes into account the anisotropy of both, intra- and extracellular
spaces, i.e.

V. (M,VV)+ V- (M;VV,) = x (Cm%—‘t/

V- (M;VV) 4V - (M; + M.)VV,) =0

+ IiOH(‘/7 9) - Is im) 9
t (3)

equipped with Neumann boundary conditions, where the extracellular potential V. is given in terms of I/
and the intracellular potential V;, i.e. V., = V; — V. M, and M, denote the intra- and extracellular con-
ductivity tensors, and  is the membrane surface area per unit volume. While the monodomain model

A ov
—V - (M;VV) = Con——

T ) X( ™ot
derives from model (3) by assuming equal anisotropy rates M, = AM;, where ) is a scalar constant.
In this study we will focus on the monodomain model due to the fact that the TP06 model is also
modeled as a monodomain model, cf. [56} 57].

+ Iion(‘/; g) - Istim) (4)

3 Bifurcation analysis of the cardiac single cell model

The aim of the paper is to make statements about the behavior of the trajectories and the dynamics
of the TP06 system. To this end, we investigate the stability and bifurcations of the modified systems,
cf. [15/ (70} 47, 35]. Moreover, we provide the corresponding codes in [46].

A bifurcation of a dynamical system is a qualitative change in its dynamics caused by the change of
parameters. Therefore, we study the modified TP06 model by means of (numerical) bifurcation anal-
ysis using CL_MATCONT, a continuation toolbox for MATLAB [44|45]. We consider an autonomous
system of ordinary differential equations where the right-hand side of this system depends on several
state variables and parameters. Therefore, we consider the modified TP06 models, containing 18, 16
or 14 state variables, without initial stimulus for the bifurcation analysis and we will focus our study on
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the effect of a deficit in the fast and slow potassium current Iy, and I, and an enhancement in the
sodium current Iy .

The starting point of the bifurcation analysis is to determine an equilibrium of the modified autonomous
system. To this end, one solve the algebraic equations

0 =Ixs + Lo + Ikr + Iks + Icar + Inak + Ina + Iona + Inaca + Tbca + Ik + Locas
0 = — ko[Ca)ss R+ ks(1 — R),

‘/YST I a +I a 21 ata
0 = Caipue <(Leak — Iup)v + Ixter — (Inc 2p‘C/F NaG )) :

0= Casrbufsr(Iup - (Irel + Ileak))v

Ica Ver Ve
0= Cagspufss < ceL + Irel_ - Ixfer_) )

2V F TV TV
0= — Ina + Tona + 3Inak + 3Inaca
— VF

with ¢ = go.(V), where g represents the gating variables. The next step is to derive the stability
of the equilibrium determine the eigenvalues of the Jacobian or using the Routh-Hurwitz criterion,
cf. [70, 147]. If we do so we are able to determine the stability of the modified systems dependent on
the ionic conductances Ggs, Gy, and Gea see Figure Here, we have stable regions (black surfaces)
and unstable regions (blue surfaces). In general, the unstable region allows the system to oscillate,

8 ‘ 8 ‘
& &
o6 o6
= =
0.15 ‘ 0.18 ‘.
- 0.15 - 0.15

0.1 0.1 0.1 0.1
G *0° 0 005 gy, G O 0 005 Gy,

Figure 4: Multiple bifurcation analysis. Stable (black surface) and unstable (blue surface) region pro-
jected on the (Gks, Gkr, Gear)-space. (Left) epicardial cell. (Right) endocardial cell.

i.e. after an initial stimulus the trajectory can either develop normal APs or other oscillatory behavior
such as EADs or some sort of ventricular tachycardia for instance, which one cannot specify at this
stage. However, in case the trajectory enters the stable region it will reach a stable equilibrium, which
corresponds to the sudden death. Figure [4] also indicates that for increasing G, and decreasing
Gks and Gy, the stable area becomes larger and the risk of a sudden death increases. This result
is also compatible with the current state of knowledge. Moreover, Figure [4 shows also two red lines.
These lines are the Andronov—Hopf bifurcation curves. At an Andronov—Hopf bifurcation the system
changes stability via a pair of purely imaginary eigenvalues, i.e. A2 = =iwg, wy > 0, and a limit
cycle bifurcates.

Here, we want also to highlight that the standard value G, is 0.153]’%. Therefore, in case that Gy
does not increase too much and Gy remains to its standard value, the risk that the cardiac myocte
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TP06 model develops the sudden death is small, almost zero. However, if G, increases, e.g. by a
factor 5 and Gy, is small, the risk of a sudden death increases and the M cells already develop EADs
for the standard value of Gk as we saw in Figure Again, this is reasonable and compatible with the
current state of knowledge, since it is known at EADs can be related to the limit cycle bifurcating from
an Andronov—Hopf bifurcation, see e.g. [70, 147, [36], and from a medical point of view EADs can be
precursors to the sudden cardiac death.

Our goal is to exam one parameter set (GKS, Gxkr, GCaL) and to better understand the behavior
of the (endocardial) cell model and to compare the stationary dynamics of the 18 dimensional, 16
dimensional and 14 dimensional model. A more practical way to analyze a dynamical system by means
of bifurcation theory is to use the continuation algorithm from [44] [45]. Choosing the parameter set
(Gks, Gkr, Goar,) — (Gks, 0.1 - Gky, 5 - Gear), and G as bifurcation parameter, we get two
supercritical Andronov-Hopf bifurcations, cf. Table [2| and Table |3, which both generate a stable limit
cycle and thus, the bifurcating limit cycles are both stable. Between these Andronov-Hopf bifurcations
the system exhibits the stable equilibrium branch. Table [2 and Table [3| show that the three different
models have almost identical Andronov-Hopf bifurcations.

Gxs value Lyapunov exponent
18 dimensional 0.027907858929580;—‘5 -2.683800872009436
16 dimensional 0.027907858929578;—‘; -2.683800872002161
14 dimensional O.O27907284533354Z—*F9 -2.667544014101886

Table 2: Comparison: First supercritical Andronov-Hopf bifurcation.

Gks value Lyapunov exponent
18 dimensional 0.071 030406847997;7? —1.961299057894090 - 10—
16 dimensional 0.071 030406847997% —1.961299057894896 - 10~
14 dimensional 0.071 026913636226;—‘; —1.964507593593568 - 104

Table 3: Comparison: second supercritical Andronov-Hopf bifurcation.

Starting a limit cycle continuation from the second supercritical Andronov-Hopf bifurcation one derives
a limit cycle branch containing a torus bifurcation and a (first) period-doubling bifurcation, cf. Table [4]
Notice that this limit cycle branch is the reason for the occurrence of both AP and EADs, which we will
highlight later more in detail.

G, value of the torus bifurcation G, value of the PD bifurcation
18 dimensional 0.074450869484859"2 0.096093300233720 22
16 dimensional 0.074450869481 487% 0.096093300267257}%
14 dimensional 0.07441291501 6840275 0.096081176095085}%

Table 4: Comparison: torus bifurcation and period-doubling (PD) bifurcation of the first limit cycle
branch.

Itis remarkable that for the 18 dimensional, 16 dimensional and 14 dimensional not only the equilibrium
curves are identical, which is obvious, but also the stability and the bifurcation points are identical up
to a certain degree, which is visible in Tables and [ This is also reflected in Figure [5], where
one sees no differences. The first limit cycle branch (red surface) of the three simplified models is
bifurcating from a supercritical Andronov—Hopf bifurcation (red dot). At the Andronov—Hopf bifurcation
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Figure 5: Comparison of the bifurcation diagrams using G as bifurcation parameter with value shifts
Gkr — 0.1 - Gk, and Ggar, — 5 - Gaar. (Left) 18 dimensional model. ( Middle) 16 dimensional
model. (Right) 14 dimensional model.

the equilibrium curve (black line: the dashed part represents the unstable branch, the solid part the
stable branch) also changes stability.

Here, we want to highlight that fixing more gating variables equal to its steady state solution will not
change the equilibrium curve, however, it will change its stability and potential bifurcations points, and
therefore, the dynamics of the whole system. Furthermore, in Figure [6] we see the limitation of the
18 dimensional model, since for the M cells the trajectory does not fit perfectly. Moreover, the stimuli
for the 16 dimensional and 14 dimensional model are different to the ones from Figure 3| In any
case normal AP is well represented by the simplified models. In case of more complex patterns such
as EADs the general dynamics of all models are identical, but to find the correct basin of attraction
modifying the stimulus is more difficult.

epicardial cell M cell
E 50 E 50 16 dimensional model with Iy, = 52%
i 0]-16 dimensional model i 0 /\
%O -50 —TPO§ modAel g -50 Y
3 —18 dimensional model 3
S =
endocardial cell
> > i i i P—T V.
= 50 = 50 - 16 dfanSfonal model W?th Lstim 60p€1
~ — ) 14 dimensional model with I, = 85%
i 0116 dimensional model i 0 e e e AN
3 _50|~TP06 model E _50 |~ TP06 model \
% —18 dimensional model % —18 dimensional model
- s —
0 100 200 300 400 500 0 500 1000 1500 2000 2500 3000 3500 4000

time ¢ (ms) time ¢ (ms)

Figure 6: Comparison of the trajectories of the modified models using the standard value of G with
value shifts Gk, — 0.1 - Gk, and Gear, — 5 - Geal.

Our next aim is to study the 14 dimensional epicardical TP06 model by means of bifurcation analy-
sis in more detail. Our focus is on the situation as in Figure [6} i.e. we are using Gks as bifurcation
parameter and consider a value shifts Gk, — 0.1 - Gk, and Ggar, — 5 - Ggar. This means we
have a reduced rapid delayed rectifier current and an enhanced L-type calcium current. Utilizing the
bifurcation analysis we can extract the behavior and the dynamics of the system. Starting a numerical
continuation from a steady state solution we find two supercritical Andronov-Hopf bifurcations, cf. Ta-
ble[5] From these bifurcation points a stable limit cycle branch bifurcates each. Following the limit cycle
branch from the second Andronov-Hopf bifurcation (Ggs ~ 0.069724%) we find a torus bifurcation
and a first period-doubling bifurcation. Furthermore, the limit cycle branch changes stability and finally,
it will collide with the equilibrium curve and terminates there, cf. Figure[7] This behavior is similar for
all investigated combinations of (Gks, Gkr, Gear,)- However, the type and position of the points vary,
please compare Table 5 and Table [6] Starting a continuation from the first period-doubling bifurcation
we find a second limit cycle branch containing a second period-doubling bifurcation, cf. again Figure
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bifurcation points Gks value description period
Andronov-Hopf ~ 0.0273102—2 supercritial
~ 0.069724]% supercritial
torus ~ 0.07273323 ~ 259.53
period-doubling ~ 0.093842% subcritial ~ 422.67
~ 0.09523913 subcritial ~ 861.35
~ 0.09557213 subcritial ~ 1733.31

Table 5: Bifurcation for the 14 dimensional epicardial cell model with (Gks, Gkr, Goar) —
(Gks, 0.1 - Gk, 5 - Gear)-

—stable steady states
- -unstable steady states

40 e supercritical Hopf bifurcation

— first limit cycle branch
n 20 —torus bifurcation
E /\ —period doubling bifurcation
o O
)
© -20 -
= —
S -40

0

f 05

------------------ 0.06
0.1 0.08
1 0.12 ’ Gis

Figure 7: Bifurcation diagram of the 14 dimensional epicardial cell model with (Gks, Gk, Gear) —
(Gks, 0.1 - Gky, 5 - Gear), where Gis is used a bifurcation parameter. The bifurcation diagram
contains the second Andronov-Hopf bifurcation, the first two limit cylce branches, the torus bifurcation
and the first period-doubling bifurcation.

Taking this approach further, it results in an unstable period-doubling cascade, cf. Figure [, where
we show a zoom on the region with the first four limit cycle branches. Based on the bifurcation di-
agram, we can identify a Gk, region, where EADs may appear. This region is clearly linked to the
period-doubling cascade, however, whether EADs occur or not is also dependent on the initial values
and the initial stimulus. This means in case the initial values and stimulus is chosen in such a way that
the trajectory is not able to enter the basin of attraction of the period-doubling cascade, then no EAD
appear even though the system is in the dangerous region. This may happen for instance if the initial
stimulus is high, which one may link to the usage of a pace maker.

Finally, for comparison reasons we provide the first 5 important bifurcations in the situation of the
parameter shift (Gis, Gy, Gear,) — (Gks, 0.18 - Gky, 5 - Gear,), cf. Table[g]
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Figure 8: Zoom of Figure [7] containing the first four limit cylce branches.

bifurcation points Gks value description period
Andronov-Hopf R 0.026278;;—; supercritial
R 0.066995% supercritial
torus ~ 0.067818"3 ~ 245.53
period-doubling R 0.088309;—5 subcritial ~ 424.84
~ 0.08958522 subcritial ~ 865.89

Table 6: Bifurcation for the 14 dimensional epicardial cell model with (Gks, Gkr, Goar) —
(GK57 0.18 - GKr’ 5 GCaL)-

4 Simulation of the monodomain model

The final focus of this paper, is the synchronization and pattern formation of cardiac cells. In the fashion
of [71], we write the monodomain model (4) as a reaction-diffusion system, which it is, i.e.

oV Lion(V, L
E — DAV . 1on( g) + stun7 (5)
m
where D denotes the diffusion coefficient D = h%\%é Moreover, we use the same mesh, time

and space discretization and stimulus as in [71], see Table[7]

Spatial grid | Time step | Stimulation Stimulus Second Diffusion co- | Integration
size Ax At duration strength stimulus efficient domain size
0.25mm | 0.05/0.02ms  1.5ms 52mV 340ms 0.154mm—7f 100mm

Table 7: Mesh, stimulation and diffusion parameters.

Notice that for normal AP simulations we use a time step of At = 0.05ms, while for the simulations of
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EAD settings we use At = 0.02ms. In the following, we perform 1D and 2D simulations to investigate
synchronization effects.

4.1 1D simulations

We start by considering aligned epi-, M- and endocardial cells in the left ventricle. This is motivated
by the fact that the wall of the left ventricle contains three different layers [72) [73]. Therefore, we
assume on the left and right side of the 100mm line/network a population of epi- and endocardial
cells, while in between there are mid-myocardial cells. Furthermore, we assume for all cells a shift in
the conductances (Gky, Gear,) — (0.1 Gxky, 5+ Gear ), which implies that the epi- and endocardial
cells do not develop EADs, however, the have an elongated AP. Furthermore, the mid-myocardial
cell model develops EADs. The three cell types are aligned via the one dimensional monodomain
model, where all cells have the same initial condition and stimulus. Moreover, the monodomain model
is equipped the homogeneous Neumann boundary condition. Notice that the chosen spatial gird
size implies that we consider 400 cells, where we have three situations, i.e. 392, 320 and 200 mid-
myocardial cells. In Figure[9] we see how the cell network synchronizes and how the EAD, which would

Figure 9: Comparison of the epi-, mid-myo- and endocardial cell network. (Left) Epi- and endocar-
dial cells represent 2% of the population. (Middle) Epi- and endocardial cells represent 20% of the
population. (Right) Epi- and endocardial cells represent 50% of the population.

last for more than 3000ms, is compensated by the other cells, even then their population is only 2%
of the whole population. This remarkable numerical experiment indicates that the heart is quite robust.

4.2 2D simulations

The simulations of the monodomain model (5) are done in FEniCS [39,/40] and the coupled ODE—PDE
system is solved using cbcbeat, described in [41], and fenics-beat [42]. Again the code are provided
in [46].

As in [71] we apply the S1-S2 protocol to generate spiral waves, which means we first apply to a thin
strip x < 10mm on the left side of the square region. This induces a plane wave that propagate to
the right edge of the square. Then, after 340ms we apply a second stimulus to the lower half plane
O<r<Land0 <y < % where L denotes domain size).

We restrict ourself to the epicardial human ventricular tissue model of [57] and to two different param-
eter settings, i.e. the normal AP setting, the parameter set (Gks, Gk, Gear,) — (0.098%, 0.18 -
Gkr, D - GcaL)- The last setting either means that we simulate the mid-myocardial model with re-
duced rapid delayed rectifier current and enhanced L-type calcium current or the epicardial model with
reduced rapid slow and delayed rectifier current and enhanced L-type calcium current.
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In Figure [10] we state for 5 different time point, where each column corresponds to one time point,
(spiral wave) pattern formations. The first row presents the normal AP, while the second row the EAD
setting. Here, we see that in both cases a spiral wave is initiated. In the normal AP case one has a
stable spiral wave which still exists after 10000ms, cf. Figure [T1] However, in the case of EADs, we
see wave break-up, where the spiral wave disappears and the AP reaches its resting potential and no
further activity is recognized.

el B
QRN R

Figure 10: Comparison of spiral waves after 2000ms, 3000ms, 4000ms, 5000ms and 5400ms.
(First row) normal AP. (Second row) normal EAD.

/—\

This is also in line with the common knowledge that EADs can be precursors to cardiac death.

ﬂ

Figure 11: Spiral wave of the normal AP after 6000ms, 7000ms, 8000ms, 9000ms and 10000ms.

5 Discussion

This paper is aimed to investigate the dynamics of the TP06 model [57), [56] with a focus on early
afterdepolarizations. A very efficient and beneficial way to study the behavior of a dynamical system is
delivered by the bifurcation theory. Thus, one main goal of the paper is the numerical bifurcation anal-
ysis of the cellular TP06 model. To this end we reported the difficulties in the modeling of the original
model, which is also highlighted in 136]. In addition, we discussed several possible modifications
and model reductions of the TP06 model which allow to perform numerical bifurcation analysis and to
apply the numerical continuation algorithm provided in [44] [45]. Thus, we are able to reduce the 19
dimensional TP06 model up to an 14 dimensional version, which has (almost) identical dynamics and
trajectories as the original model, cf. Figure [5]and Tables [2] [3]and [4] This model reduction allows not
only to perform numerical bifurcation, it also decreases the numerical effort and time. Apart from the
steady state dynamics which are (almost) identically, one has to adjusts the initial stimulus such that
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the trajectory is able to enter the same basin of attraction. Moreover, in Figure [f] it is illustrated that
finding the correct basin of attraction is more difficult for complex dynamics and pattern.

After the remodeling, using the set of parameters (Gks, Gk, Gear), which are known to induce
EADs for certain combinations of values, cf. e.g. [8, 7], a systematical bifurcation analysis is provided.
The (numerical) bifurcation analysis shows that the oscillatory behavior of the TP06 model and its
modified versions is induced by a Andronov-Hopf bifurcation and the occurrence of EADs is related to
the existence of an unstable period-doubling bifurcation cascade. Moreover, deterministic chaos is not
observed which is in line with [47, [36] [74]. We show that even though the system is in a dangerous
reason and EADs potentially occur, the initial values and initial stimulus decides whether the trajectory
enters the basin of attraction of the period-doubling bifurcation cascade. Therefore, we have three
driving forces that induce EADs, the steady state dynamics of the system, the initial values and the
initial stimulus. This knowledge can now used to prevent the occurrence of EADs.

Furthermore, the performed numerical experiments how networks of cells in 1D and 2D synchronize.
Here, we can extract from our investigation on one hand how robust a cell network reacts on EADs,
cf. Figure [§ on the other hand see can see how stable pattern appears, see Figure [10] (first row) and
Figure In addition, we showed that EADs may induce a wave break-up, see Figure (second
row).

In summary, this study provides an approach and codes to efficient investigate cardiac dynamics
numerically. We showed on tissue level that the local steady state dynamics of the system incudes
certain pattern formation. Furthermore, we found that also the diffusivity of the system, the initial
configuration and the initial stimulus is highly important for the pattern formation and the network
dynamics. This has to be studied in more detail and is part of a future study.
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