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Abstract. The paper is concerned with the problem of testing a linear hypothe-
sis about regression function. New testing procedure based on the Haar transform
is proposed which is adaptive to unknown smoothness properties of the underlying
function. The results show that under mild conditions on the design and smooth-
ness of the regression function, this procedure provides with the near optimal rate
of testing.

1. Introduction

Suppose we are given data (Xi; Yi); i = 1; : : : ; n , with Xi 2 R
1 , Yi 2 R

1 , obeying
the regression equation

Yi = f(Xi) + �i (1.1)

where f is an unknown regression function and �i are random errors.
Statistical analysis for such model may focus on the qualitative features of the

underlying function f . Particularly, the signal detection problem corresponds to
testing the simple zero hypothesis that f is identically zero. Another typical exam-
ple is connected with the hypothesis of linearity. More generally one may consider
a parametric type hypothesis about f .
To be more de�nitive with our exposition, we restrict ourselves to the case of the

hypothesis of linearity. Using the hypothesis testing framework, we test the null
hypothesis H0 : f `is linear' versus the alternative H1 : f `is not linear'.
The problem of testing a simple or parametrically described hypothesis is one of

the classical in statistical inference, see Neyman (1937), Mann and Wald (1942),
Lehmann (1957). In the present paper, we follow the approach developed in Ingster
(1982 through 1993), see also Lepski and Spokoiny (1995) and Spokoiny (1996a,
1996b). The key idea of this approach is to test the null hypothesis against as
large as possible class of alternatives. This leads to considering a nonparametric
alternative.
The problem of testing parametric versus nonparametric regression �t was consid-

ered in H�ardle and Mammen (1993), see also H�ardle, Spokoiny and Sperlich (1995).
But the proposed in these papers testing procedure meet a crucial for applications
problem: their parameters depend on unknown smoothness properties of the alter-
native. The problem of adaptive testing was considered in Spokoiny (1996a, 1996b).
Some wavelet-based testing procedure was proposed which is shown to be optimal
(in an adaptive sense) for a wide range of function smoothness classes. But in its
turn, this procedure is described for an idealized `signal + white noise' model and
only the case of a simple null is considered.
The aim of this paper is to develop an adaptive testing method which allows non-

regular design and non-simple null, and which is computationally simple and stable.
The latter property is attained by using of the simplest wavelet basis, namely the
Haar transform.
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2. Model and testing problem

In what follows we consider the observation model (1.1) Yi = f(Xi) + �i . The
random errors �i are assumed to be independent standard normal, �i � N (0; 1) .
This assumption is made to simplify the exposition. It can be relaxed in a usual
way.
Note that we do not assume a random, or equidistant, or regular design because

such kind of assumption seems to be inadequate for a majority of particular problems
arising in statistical practice. Later we will impose some rather mild conditions
which can be instructively veri�ed in applications.
Our aim is to analyze the function f by given data. More speci�cally, we wish

to test the hypothesis of linearity H0 : f `is linear' that is f(x) = a+ bx for some
constants a; b .
Let � be a test i.e. a measurable function of observations with two values 0; 1 .

As usual, the event f� = 0g is treated as we accept the hypothesis and � = 1
means that the hypothesis is rejected. We measure the quality of a test � by the
corresponding error probabilities of the �rst and second kinds. Let P f denote the
distribution of the data Y1; : : : ; Yn for a �xed model function f , see (1.1). Let now
f0 denote a linear function. Then the error probability of the �rst kind at a point
f0 is the probability under f0 to reject the hypothesis,

�f0(�) = P f0(� = 1):

Similarly one de�nes the error probability of the second kind. If the function f is
not linear, then

�f(�) = P f(� = 0):

We wish to construct such a test whose error probability of the �rst kind does not
exceed a prescribed level �0 and which is sensitive against as large class of alter-
natives f as possible. Of course, no test could be sensitive against all alternatives.
We consider therefore the class of alternatives f separated from the set of linear
functions with distance at least % ,

inf
a;b
kf(�) � a� b � k � %: (2.1)

Here k � k means the usual L2 -norm. This condition, for any % > 0 , is also not
su�cient for consistent testing, see Burnashev (1979) or Ibragimov and Khasminski
(1977). One has to impose additionally some regularity (or smoothness) conditions
on the underlying function f . Some typical examples are considered in Ingster
(1982, 1993), Lepski and Spokoiny (1995), Spokoiny (1996b) among others where
f is supposed to belong to some H�older, Sobolev or Besov ball F . Under such an
assumption, given % > 0 , one searches for such a test � that Pf0(� = 1) � �0 for
each linear f0 and Pf (� = 0) � �0 for every f from F satisfying (2.1), where �0

and �0 are given positive constants. The minimal value of % for which such a test
exists, quali�es sensitivity of testing.
One may expect that increasing in the number n of observations results in improv-

ing the sensitivity. We assume therefore that the value % depends on n , % = %(n)
and we study the problem in the asymptotic set-up when n tends to in�nity. We
will call this sequence %(n) the optimal rate of testing.
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Below we aim both to describe the optimal rate of testing %(n) for the considered
problem of testing a linear hypothesis and to construct tests ��n satisfying the above
constraints on the error probabilities of the �rst and second kind. It was shown in
Ingster (1982), see also Ingster (1993), Lepski and Spokoiny (1995), that even in the
case of a simple null, the optimal rate of testing and the structure of rate-optimal
tests depend heavily on smoothness properties of the underlying function or, in the
other words, on the parameter of the function class F . Typically no such kind
of information is available. Following to Spokoiny (1996a, 1996b) we consider this
problem adaptively i.e. we aim to construct such tests which do not require to know
smoothness parameters but still provide at least near optimal rate of testing. It
turned out, see Spokoiny (1996a), that such an adaptive property results in loss of
power (or sensitivity) of testing but inessentially, by some log log-factor.
Such a procedure is described in the next section. The asymptotic properties of

this procedure are discussed in Section 4. The proofs are postponed to Section 5.

3. Testing procedure

We consider the usual univariate regression model

Yi = f(Xi) + �i; i = 1; : : : ; n; (3.1)

We are going to test the hypothesis that the function f is linear. The similar testing
problem was considered in Spokoiny (1996a), see also Spokoiny (1996b). However,
there are two essential points which make us to modify slightly the method of testing.
First of all, the above mentioned papers deal with so called `signal + white noise'
model which is in its turn some idealization of the regression model with the uniform
random design. In view of practical applications, it would be very desirable to relax
the such an assumption. Secondly, we consider now the case of composite null
hypothesis in place of a simple null. This also create some technical di�culties.
In Spokoiny (1996a, 1996b) some wavelet-based testing procedure was proposed.

Now we apply Haar decomposition which can be viewed as a particular (and the
simplest) case of the wavelet transform. Note that any other functional basis can
be applied in place of the Haar basis. Our choice was motivated by simplicity of
calculating the corresponding coe�cients and by its expressive power.
To begin by, we recall the construction and the main properties of the Haar

transform. By I we denote the multi-index I = (j; k) with j = 0; 1; 2; : : : and
k = 0; 1; : : : ; 2j � 1 . By I we denote the set of all such multi-indices.
Let now the function  (t) be de�ned by

 (t) =

8>>><
>>>:
0 t < 0;

1 0 � t < 1=2;

�1 1=2 � t < 1;

0 t > 1:

(3.2)

For every I = (j; k) , set

 I(t) = 2j=2 (2jt� k): (3.3)
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Clearly the function  I is supported to the interval [2�jk; 2�j(k + 1)] . It is well
known that each measurable function f can be decomposed in the following way

f(t) = c0 +
X
I2I

cI I(t): (3.4)

This means that the problem of recovering the function f can be transformed to
the problem of estimating the coe�cients cI by given data. Since we have only n

observations, it makes no sense to estimate more (in order) than n coe�cients. We
restrict therefore the total number of considered levels j . Let some j1 be �xed such
that

2j1+1
� n:

Set

Ij = f(j; k); k = 0; 1; : : : ; 2j � 1g

for the index set corresponding to j th level. We change now the in�nite decompo-
sition (3.4) by the �nite approximation

P
I2I(j1)

cI I(t) where the index set I(j1)

contains all level sets Ij with j � j1 . Taking into account the structure of the
null hypothesis, we complement the set of functions ( I ; I 2 Ij); j � j1 , with two
functions  0 � 1 and  1(t) = t , that is

I(j1) = f0; 1g +

j1[
j=0

Ij: (3.5)

The idea of the proposed procedure is quite clear. One estimates �rst all the
coe�cients (cI; I 2 I(j1)) by data. If our function f is really linear, this means
that all the coe�cients cI for I 6= 0; 1 should be zero. This is just what we wish
to verify.
Before we begin with our procedure, let us note that the functions  0 and  I ,

I 2 I , form the ortonormal basis in L2[0; 1] with respect to Lebesgue measure on
[0; 1] . When dealing with real data, we change the integral by the �nite sum over
design points. It may occur that these functions  I are no more ortonormal and are
not orthogonal to each other in L2(�n) , where �n is the empirical design measure,
�n(A) =

Pn

i=1 1(Xi 2 A) . To cope with this, we change the functions  I by its
standardized versions  0I : for I = (j; k) ,

 0I(t) = ��1
I  (2jt� k); (3.6)

where  is due to (3.2) and the normalizer �I is de�ned by

�2I =

nX
i=1

j (2jXi � k)j2: (3.7)

(Recall that d = 1 and hence Xi takes values in the interval [0; 1] .) Particularly,
�20 = n , �21 = (X2

1 + : : :+X2
n) , and

�2I =MI = #fi : Xi 2 [2�jk; 2�j(k + 1))g; I 2 I:

In the sequel, we approximate the function f by linear combinations of the func-
tions  0I , I 2 I(j1) . Let g be a function observed at point X1; : : : ;Xn . De�ne
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kgkn by

kgk2n =

nX
i=1

g2(Xi):

Determine a column-vector ��(j1) = (��I ; I 2 I(j1)) as a minimizer of the error of
approximation,

�
�(j1) = arginf

�(j1)

kf �
X

I2I(j1)

�I 
0

Ikn: (3.8)

Such a vector exists by sure (probably not unique).
We begin by estimating the coe�cients (��I ; I 2 I(j1) by the least square method.

To get an explicit representation of the least square estimator (LSE) �̂(j1) of �
�(j1) ,

we introduce matrix notation.
First of all, we make an agreement to identify every function g on R

d with the
vector (g(Xi); i = 1; : : : ; n) in Rn . Particularly, the model function f is identi�ed
with the vector (f(Xi); i = 1; : : : ; n) .
Denote by Nj the number of elements in each level j ,

Nj = #(Ij) = 2j

and let N(j1) be the total number of elements in the set I(j1) ,

N(j1) = 2 +

j1X
j=0

Nj = 1 + 2j1+1: (3.9)

Introduce n�N(j1) -matrix 	(j1) = ( i;I ; i = 1; : : : ; n; I 2 I(j1)) with elements

 i;I =  0I(Xi) = ��1
I  I(Xi); I 2 I(j1); i = 1; : : : ; n: (3.10)

Now the approximation problem (3.8) can be rewritten in the form

��(j1) = arginf
�(j1)

kf �	(j1)�(j1)k
2
n:

The solution to this quadratic problem can be represented as

��(j1) =
�
	T (j1)	(j1)

��1
	T (j1)f; (3.11)

where the sign T means transposition. Strictly speaking, this representation is
valid only if the matrix 	T (j1)	(j1) is not degenerate. In the general case, one

may use the similar expression for ��(j1) when understanding
�
	T (j1)	(j1)

��1
as

a pseudo-inverse matrix.
Since the function f is observed with a noise, we consider the least squares

estimator �̂(j1) of the vector ��(j1) which is de�ned by minimization of the sum
of residuals square,

�̂(j1) = arginf
�(j1)

kY �	(j1)�(j1)k
2
n = arginf

f�I2I(j1)g

nX
i=1

0
@Yi � X

I2I(j1)

�I 
0

I(Xi)

1
A

2

: (3.12)

Here Y means the column-vector with elements Yi; i = 1; : : : ; n .
Let V (j1) be the pseudo-inverse of 	T (j1)	(j1) ,

V (j1) =
�
	T (j1)	(j1)

��1
:
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Then

�̂(j1) = V (j1)	
T (j1)Y: (3.13)

One gets by (3.1) in a usual way that �̂(j1) is a Gaussian vector with the mean
�
�(j1) and the covariance matrix V (j1) ,

�̂(j1) � N (��(j1); V (j1)) : (3.14)

The proposed testing procedure is based on the fact that for a linear function f ,
all the coe�cients ��I , I 6= 0; 1 , are zero and therefore, the corresponding estimates

�̂I are Gaussian zero mean random variables.
We proceed as follows. We start with j1 = 0 and repeat the calculation for each

j1 till the �nest resolution level j(n) de�ned as

j(n) = blog2(n)� 1c: (3.15)

For each j1 � j(n) , let �̂(j1) be de�ned by (3.12). Denote by �̂j1 the part of the

vector �̂(j1) corresponding to the level j1 ,

�̂j1 = (�̂I; I 2 Ij1):

At the step j1 , we analyze the subvector �̂j1 only. Following to Spokoiny (1996a),
we introduce two kinds of tests: the �rst one, so called `local test', analyses each

term �̂I ; I 2 Ij1 , separately; the second one is levelwise, i.e. all the estimates

�̂I ; I 2 Ij1 , are used for calculating the corresponding test statistic.

Let vI;I 0 , I; I 0 2 I(j1) , be the elements of the matrix V (j1) =
�
	T (j1)	(j1)

��1
.

Due to (3.14), one has under the null hypothesis �̂I � N (0; vI;I) and hence each

variable v
�1=2

I;I �̂I is standard normal (if vI;I > 0 ). The local test rejects the null
hypothesis if at least one such value exceeds certain logarithmic level,

�loc(j1) = 1

�
max
I2I(j1)

v
�1=2

I;I j�̂I j > �n

�
(3.16)

where

�n = 2
p
log n: (3.17)

In the de�nition (3.16) we use the fact that vI;I = 0 implies �̂I = 0 , see (3.13), and
we assume 0=0 = 0 . Note that both vI;I and �I depend on j1 . We do not show
explicitly this dependence only with the aim to minimize our notation.
The local test �loc is very sensitive to functions f containing localized 
uctua-

tions like jumps or jumps of derivatives. The next test, which was called a �2 -test
in Ingster (1993) and `detail' test in Spokoiny (1996a), allows to detect very small

but systematic component. It is based on the standardized sum of squares of �̂I ,
I 2 Ij1 . Let Vj1 be the submatrix of the matrix V (j1) corresponding to the level

j1 , i.e. Vj1 = (vI;I 0; I; I 0 2 Ij1) . In view of (3.14), the vector �̂j1 is under the
null Gaussian zero mean with the covariance matrix Vj1 . First we consider the case
when Vj1 is non-degenerate. Necessary corrections of the procedure for the general
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case will be discussed later on. If detVj1 6= 0 , then the vector �j1
= (�I ; I 2 Ij1)

de�ned as standardization of �̂j1 ,

�j1
= V

�1=2
j1

�̂j1 ; (3.18)

is under the null standard normal. We consider �2 -type statistics

Sj1 = k�j1
k2 =

X
I2Ij1

�2I : (3.19)

Obviously, for each f 2 F0 (i.e. for a linear f ), the distribution of Sj1 does not
depend on f and we denote by E0 and D0 the corresponding expectation and
variance. One has clearly

E0Sj1 = Nj1 ;

D0Sj1 = E0(Sj1 �E0Sj1)
2 = 2Nj1 :

Following to Spokoiny (1996a), we consider test statistics Tj1 of the form

Tj1 =
Sj1 �E0Sj1p

D0Sj1
= (2Nj1)

�1=2(Sj1 �Nj1): (3.20)

One may expect that at least when Nj1 is large enough, the value Tj1 is asymptot-
ically normal. We de�ne therefore

�detail(j1) = 1 (jTj1 j > �n) (3.21)

with the same �n as above.
In the case with det Vj1 = 0 , denote by V �

j1
the pseudo-inverse of Vj1 and set

Sj1 = �̂
T

j1
V �

j1
�̂j1 ; (3.22)

N 0

j1
= tr(V �

j1
Vj1): (3.23)

Then clearly Sj1 is again a �2 -statistic, now with N 0

j1
degree of freedom. Partic-

ularly

E0Sj1 = N 0

j1
;

D0Sj1 = E0(Sj1 �E0Sj1)
2 = 2N 0

j1
:

Further we proceed as above with Tj1 from (3.20) and N 0

j1
in place of Nj1 .

Finally we reject the linear hypothesis H0 if one of �loc(j1) or �detail(j1) does,

�� = max
0�j1�j(n)

maxf�loc(j1); �detail(j1)g: (3.24)

4. Main results

In this section we present the results describing asymptotic properties of the pro-
posed testing procedure. We split our results by evaluating separately the error
probabilities of the �rst and second kinds. Such an approach is motivated by di�er-
ence in necessary conditions on the model and especially on the design X1; : : : ;Xn .
The result describing the error probabilities �f0(�

�) of the �rst kind is valid under
very mild assumptions on the design. This is a very important and desirable prop-
erty of each `good' testing procedure: whatever the design is, when the underlying
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function is really linear, the test rejects null with a small probability. To provide
with a high sensitivity of the test, we need in more strong regularity conditions on
the design.
Recall that every function g on R

d is identi�ed with the vector (g(Xi); i =
1; : : : ; n) in Rn . Particularly, f is identi�ed with (f(Xi;m); i = 1; : : : ; n) and  0I
is understood as the vector with elements ��1

I  I(Xi;m) . Recall also the notation
kgk2n =

Pn

i=1 g
2(Xi) .

Denote by L(j) the linear subspace in R
n generated by the functions f 0Ig ,

I 2 Ij0 ; 0 � j0 < j ,

L(j) =

8<
:

j�1X
j0=0

X
I2Ij0

�I 
0

I

9=
; :

By �(j + 1)f we denote the closest to f point from L(j) w.r.t. the distance
k � kn ,

�(j + 1)f = arginf
g2L(j)

kf � gkn = arginf
g2L(j)

nX
i=1

jf(Xi)� g(Xi)j
2:

We write also �n for �(j(n) + 1) .
Let �� be the test introduced above.

Theorem 4.1. Let observations Yi;Xi , i = 1; : : : ; n; obey the regression model
(1.1). If the function f is linear, then

�f (�
�) � P f (�

� = 1) � �1(n)! 0;

where �1(n) depends on n only and �1(n)! 0 as n!1 .

Now we state the results concerning the sensitivity of the proposed test �� . The
�rst assertion is purely statistical and it shows under which conditions we detect
an alternative with high probability. Next we show how these conditions can be
transferred into a more usual form about the rate of testing.

Proposition 4.1. Let ��j = (��I ; I 2 Ij) be the subvector of the vector ��(j) from

(3.11) corresponding to j th resolution level of the �rst component and let Vj be the
corresponding covariance submatrix. If, for some j � j(n) , it holds

T �

j � 2�(j+1)=2��j
TV �1

j ��j > 2�n;

then

P f (�detail(j) = 0) � �(n)! 0; n!1;

where �(n) depends on n only. If, for some j � j(n) , it holds

T �

j;1 � max
I2Ij

v
�1=2

I;I j��I j > 2�n;

then

P f (�loc(j) = 0) � �(n)! 0; n!1;

with the same �(n) .
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The result of this proposition means that the test �� detects with a probability
close to one any alternative for which at least one from the corresponding values T �

j

and T �

j;1 exceeds the level 2�n . Therefore, one may suppose that the error of the
second kind may occur only if one has

T �

j � 2�n; 0 � j � j(n); (4.1)

T �

j;1 � 2�n; 0 � j � j(n): (4.2)

It remains to understand what follows for the function f from these inequalities.
For this we need to impose some regularity conditions on the design and smoothness
conditions on the function f .
Regularity (or smoothness) conditions on a function f de�ned on the interval

[0; 1] can be formulated in a di�erent forms. We choose a way based on the accuracy
of approximation of this function by piecewise polynomials of certain degree s .
Given j � j(n) , denote by fAI ; I 2 Ijg the partition of the interval [0; 1] into the
intervals of the length 2�j : if I = (j; k) then AI = [k2�j ; (k + 1)2�j ) . Next, for
an integer s , de�ne Ps(j) as the set of piecewise polynomials of degree s � 1 on
the partition fAIg i.e. every function g from Ps(j) coincides on each AI with a
polynomial a0+a1x+: : :+as�1x

s�1 where the coe�cients a0; : : : ; as�1 may depend
on I . Now the condition that a function f has regularity s can be understood in
the sense that this function is approximated by functions from Ps(j) with the rate
2�js , or, more precisely,

inf
g2Ps(j)

�Z 1

0

jf(t)� g(t)j2dt

�1=2
� C2�js

where a positive constant C depends on s only.
In our conditions we change the integral by summation over observation points.

This helps to present the results in a more readable form without changing the sense
of required conditions. It can be easily seen that if the design is regular, then the
both forms are equivalent up to a constant.
Let now a function f be �xed. Let also j0 be such that 2j0�1 � s . Set for

j � j0

rs(j) = inf
g2Ps(j�j0)

kf � gkn = inf
g2Ps(j�j0)

"
nX
i=1

jf(Xi)� g(Xi)j
2

#1=2
: (4.3)

The quantity rs(j) characterizes the accuracy of approximation of f by piecewise
polynomials. In our procedure, we use the Haar approximation which corresponds
to the case with s = 1 .
Next we quantify the design regularity. Set

u�(j) = inf
I2Ij

2jMI=n; (4.4)

u�(j) = sup
I2Ij

2jMI=n: (4.5)

Here MI = #fi : Xi;1 2 AIg . Design regularity means particularly that u�(j) is
bounded away from zero i.e. each interval AI contains enough design points Xi .
Our design condition will be formulated in term of the functions rs(j); u�(j); u

�(j)
and of the matrix Vj which is submatrix of V (j) = (	T (j)	(j))�1 , see Subsection
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3.2, Vj = (vI;I 0 ; I; I 0 2 Ij) . Clearly Vj is a Nj�Nj -matrix, Nj = 2j . Set

v�(j) = kVjk; (4.6)

Here the norm kAk of a matrix A is understood as the maximal eigenvalue of this
matrix or equivalently, kAk = sup
:k
k=1 kA
k where sup is taken over 
 2 RNj

and k
k2 = 
21 + : : :+ 
2N(j) . One may de�ne v�(j) as the maximal eigenvalues of

Vj . We will understand design regularity in the sense that Vj is non degenerate and
v�(j) are bounded for large enough j . Note that the values v�(j) , u�(j) and u�(j)
are closely related to each other, namely, the regularity condition in term of v�(j)
is stronger than in term of u�(j) and u�(j) . Indeed, u�(j) and u�(j) characterize
only the properties of the projection of the design on intervals AI corresponding to
j th level whenever v�(j) speak also about identi�ability of the coe�cients ��I from
this level.

Theorem 4.2. Let condition (D) hold. There exist constants C1 and C2 such
that if, for some j � j(n) , the model function f satis�es the following inequality

inf
a;b
kf � a� b 1k

2
n � C1r

2
s(j) + C2

u�(j)

u�(j)
v�(j)2j=2�n (4.7)

with  1(x) = x , then

P f (�
� = 0) � �3(n)! 0; n!1;

where �(n) is shown in Proposition 4.1.

Remark 4.1. It is of interest to compare this result with more standard results on
the rate of hypothesis testing. For instance, it was shown in Ingster (1982) that if
f belongs to a Sobolev ball Ws(1) with

Ws(1) =

�
f :

Z 1

0

jf (s)(x)j2dx � 1

�
;

f (s) being s th derivative of f , then the optimal rate of testing is n�2s=(4s+1) . But
the corresponding testing procedure makes heavily use of knowledge of s . Concern-
ing our procedure, it is adaptive i.e. we do not need to know s . Next, the condition
f 2 Ws(1) yields n�1=2rs(j) � C2�js and, if the design is regular (that is all v�(j)
are bounded), then the optimization over j in the right hand-side of (4.7) gives the

rate (n=�n)
�2s=(4s+1) for the deviation of the function f from the space of linear

functions. Therefore, our procedure provides with the near optimal rate of testing
by some logarithmic factor which can be viewed as the price for the adaptation.

Remark 4.2. The result of Theorem 4.2 helps to understand what happens in the
case when our design is not regular and, for instance, u�(j) = 0 for all large j . It
was already mentioned that the procedure can be applied in this situation too and
the error probability of the �rst kind is very small. Concerning the error proba-
bility of the second kind, the inspection of the proof shows that design irregularity
decreases the sensitivity of our procedure in the following sense: there exist smooth
alternatives with probably large L2 -norm which are not detected. But this case
corresponds to the situation when f is deviated from the best linear approximation
only in the domain where are very few design points. It seems that there is no
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testing method which could help to detect such an alternative. For the remaining
alternatives our testing method is still sensitive.

The result of Theorem 4.2 is formulated for the case when smoothness properties
of the function f are measured in L2 -norm. It can be seen from the proof that
for this situation it su�ces to apply only the test �detail which just corresponds
to testing in L2 -norm. At the same time, it was shown in Lepski and Spokoiny
(1995) and Spokoiny (1996b) that the case when we measure smoothness properties
in some norm Lp with p < 2 leads to modi�cation of the testing procedure to attain
the optimal rate of testing. The latter choice with p < 2 corresponds to situation
of a function f with inhomogeneous smoothness properties, particularly when this
function has jumps or jumps of derivatives. Di�erent testing procedures which allow
rate optimal and even exact asymptotically optimal testing in this situation, can be
found in Lepski and Spokoiny (1995), Ingster (1993, 1996), but all of them requires
knowledge of p . Another approach was proposed in Spokoiny (1995) with the aim
to construct an universal testing procedure which is near optimal for each p . This
approach is based on combination of two testing methods one of them corresponds
to testing in L2 -norm and another one corresponds to testing in L1 -norm. The
above proposed testing procedure exploit just this idea. We conclude by stating one
more result in this spirit.
Given j � j(n) , let ��(j) = (��I ; I 2 I(j)) be due to (3.11) and let ��j =

(��I ; I 2 Ij) be the subvector tested at j th step. The test �detail(j) is sensitive
when k��jk

2 � C�n2
j , see Proposition 4.1 and Lemma 5.1 below. At the same time,

the test �loc(j) is sensitive in the situation when at least one coe�cient ��I is greater
than C 0�n . This means that it is reasonable to apply the test �loc when the most
of coe�cients from j level are small and a few of them are of order �n . This just
corresponds to the case of a function with inhomogeneous smoothness properties,
particularly to a function with jumps.
Set

w(j; t) =
X
I2Ij

j��I j
21(j��I j � t): (4.8)

We exploit the fact that under some regularity condition on f , the value w(j; t) is
small for j large enough.

Theorem 4.3. Let also some s be �xed. There are constants C1; C2 and C3 such
that if, for some j1 � j2 � j(n) , the model function f satis�es the following
inequality

inf
a;b
kf � a� b 1k

2
n � C1r

2
s(j2) +

v�(j2)u
�(j2)

u�(j2)

"
C22

j1=2�n + C3

j2X
j=j1

w(j; tj)

#

with tj = 2�n
p
v�(j) , then

P f (�
� = 0) � �(n)! 0; n!1;

where �(n) is the same as in Proposition 4.1.
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As a corollary of the last result, we show that our testing procedure provides with
the near optimal rate of testing over Sobolev balls Ws;p(1) with p < 2 and s � 1 ,

Ws;p(1) =

�
f :

Z 1

0

jf (s)(x)jpdx � 1

�
:

Corollary 4.1. There is a constant C4 > 0 depending on n and design X1; : : : ;Xn

only such that if f 2 Ws;p(1) with s � 1 and sp� 1 + p=2 > 0 , and if

inf
a;b
kf � a� b 1k

2
n � C4n

�(2sp�1+p=2)=(2sp�1+p)�2(p�1)=(2sp�1+p)
n

then

P f (�
� = 0) � �(n)! 0; n!1;

where �(n) is from Proposition 4.1.

By comparison with the results from Lepski and Spokoiny (1995) or Spokoiny
(1996a) we see that the rate shown in this corollary is near optimal by the loga-

rithmic factor �
2(p�1)=(2sp�1+p)
n .
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5. Proofs

In this section we prove Theorems 4.1 through 4.3 and other statements from the
above.

5.1. Proof of Theorem 4.1

At the �rst step, we reduce the case of a linear null hypothesis about f to the case
with the simple null f � 0 .
Under the null hypothesis, the function f is linear, f = �0+�1 1 . Then clearly all

the remaining coe�cients of the vector �(j1) = (�I; I 2 I(j1)) are zero. Taking into
account the model equation (1.1) we conclude that when considering test statistics

based on �̂j1 one may change �0 , and �1 by zero without any in
uence on their
behavior, i.e. we reduce the problem to the simple zero null.
At the next step, we evaluate the error probabilities of the �rst kind for the tests

�loc and �detail .

Given j � j(n) , let �̂I , I 2 Ij , be the elements of the vector �̂j and let
Vj = (vI;I 0; I; I 0 2 Ij) be the corresponding covariance matrix. The local test

�loc(j) is based on statistics TI = v
�1=2

I;I �̂I , and

P (�loc(j) = 1) �
X
I2Ij

P (jTIj > �n):

Obviously one can represent TI in the form TI = a1Y1 + : : : + anYn with some
coe�cients ai depending on I and on the design X1; : : : ;Xn . Using the model
equation (1.1) with zero in place of f , we get

TI =

nX
i=1

ai�i = �I :

Recall that the choice of normalizer v
�1=2

I;I for �̂I was made to provide standard
normality of the stochastic term �I = a1�1 + : : :+ an�n . Hence

P (jTIj > �n) = P (j�I j > �n) � 2 expf��2n=2g:

This yields

P (�loc(j) = 1) = P

�
max
I2Ij

jTIj > �n

�
�
X
I2Ij

P (jTIj > �n)

� 2j+1 expf��2n=2g

and

P (�loc = 1) �

j(n)X
j=0

P (�loc(j) = 1) � 2j(n)+2 expf��2n=2g:

Recall that the de�nition of j(n) implies 2j(n)+1 � n and hence

P (�loc = 1) � 2n expf�2 log ng = on(1):
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Next we consider the test �detail . Let us �x again some level j � j(n) . We
suppose for simplicity that the matrix Vj is of the full rank. The general case can
be studied in the same way.

The subtest �detail(j) is based on the statistic Sj = k�jk
2 = kV

�1=2
j �̂jk

2 . Again

we can represent �j = V
�1=2

j �̂j in the form

�j = A(Y ) = A(�) = �j

where A is a linear operator from R
n into RNj and �j is a standard normal vector

in RNj . Now one has

P (�detail(j) = 1) = P (jSj �Njj >
p
2Nj�n)

� P

���k�jk2 �Nj

�� > �n
p
2Nj

�
� P

���k�jk2 �Nj

�� > �n
p
2Nj

�
:

Next, see Petrov (1975),

P

 ��k�jk2 �Nj

��p
2Nj

> 2
p
log n

!
� expf�{ log ng = n�{

with { � 2 . Therefore,

P (�detail(j) = 1) � n�{:

Summing up over all j from zero to j(n) we conclude that

P (�detail = 1) �

j(n)X
j=0

P (�detail(j) = 1) � n�{ log n! 0;

as n!1 . This completes the proof of Theorem 4.1.

5.2. Proof of Proposition 4.1

Let, for some j � j(n) and some I 2 Ij ,

jv
�1=2

I;I ��I j > 2�n:

We use the decomposition v
�1=2

I;I �̂I = v
�1=2

I;I ��I + �I where �I is standard normal.
Clearly

P f(�loc(j) = 0) � P f

�
jv
�1=2

I;I �̂I j < �n

�
= P f

�
jv
�1=2

I;I ��I + �I j < �n

�
� P f (j�I j > �n) � e��

2

n=2 ! 0; n!1;

as required.
Next we consider the situation when

T �

j = 2�(j+1)=2��j
T
V �1
j ��j > 2�n: (5.1)
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For notational simplicity, we suppose that the matrix Vj is non-degenerate. We will
show that under the above assumption,

P f(Tj < �n) � �(n)! n; n!1; (5.2)

that obviously implies the assertion.
Recall that in the case with detVj 6= 0 , one has Tj = 2�(j+1)=2(Sj � 2j) where

Sj = kV
�1=2
j �̂jk

2 . By construction, we may represent the vector V
�1=2
j �̂j in the

form

V
�1=2
j �̂j = bj + �j

where bj = V
�1=2
j ��j and �j is a standard Gaussian vector. Notice that

kbjk
2 = ��j

T
V �1
j ��j = 2(j+1)=2T �

j :

Denote


j = kbjk
�1
X
I2Ij

bI�I :

Clearly 
j is a standard Gaussian random variable and one can decompose

Sj = kbj + �jk
2 = kbjk

2 + k�jk
2 + 2kbjk
j:

Now one has

P f(jTjj < �n) = P
���kbjk2 + k�jk

2
� 2j + 2kbjk
j

�� > �n2
(j+1)=2

�
� P

�
2�(j+1)=2

jk�jk
2
� 2j j > 3

4
T �

j � �n
�
+ P (j
jj >

1
4
T �

j
�1=2):

It remains to note that 3
4
T �

j � �n � �n=2 in view of (5.1) and we end up using the
arguments from the proof of Theorem 4.1.

5.3. Proof of Theorem 4.2

We begin again by reduction of the testing problem with a linear null to the problem
with the simple zero null hypothesis. De�ne coe�cients �0; �1 by

(�0; �1) = arginf
(a;b)

kf � a� b 1kn = arginf
(a;b)

nX
i=1

(f(Xi)� a� bXi)
2:

We set

f 0 = f � �0 � �1 1:

Similarly to the proof of Theorem 4.1, we change f by f 0 . With this change,
the vectors ��(j) will be transformed into �0(j) , having the same subvectors ��j ,
j � 0 . At the same time, by the triangle inequality for all a; b ,

kf 0 � a� b 1kn � kf � (a� �0)� (b� �1) 1kn

� %(n):

Here we set

%(n) = inf
a;b
kf � a� b 1kn:
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Obviously the function f 0 has the same smoothness proprieties as f

inf
g2Ps(j)

kf 0 � gkn � rs(j):

From this point, we may change the original regression function f by f 0 . About
this new function f we know that

kfkn = inf
a;b
kf � a� b 1kn � %(n); (5.3)

inf
g2Ps(j)

kf � gkn � rs(j); (5.4)

��(j) = arginf
�(j)

kf �	(j)�(j)kn; (5.5)

for all j from zero to j(n) .
Now we turn directly to the proof of the theorem using the result of Proposi-

tion 4.1. We show that the condition (4.7) of the theorem with C1 and C2 large
enough along with (5.3) and (5.4) contradict to the constraints from (4.1).
First we rewrite the latter constraints in term of k��jk . Recall that �

�

j is the sub-

vector of ��(j) corresponding to j th level, and Vj is the corresponding covariance
submatrix of V (j) .

Lemma 5.1. If T �
j = 2�(j+1)=2��j

T
V �1
j ��j � 2�n , then

k��jk
2
� 2(j+3)=2�nv

�(j): (5.6)

Similarly, the inequality T �

j;1 = maxI2Ij v
�1=2

I;I j��I j � 2�n implies

max
I2Ij

j��I j � 2�n
p
v�(j): (5.7)

Proof. The both statements are the direct consequences of the de�nition of the norm

of a matrix. Indeed, denote �j = V
�1=2
j ��j . Then T �

j = k�jk
2 and ��j = V

1=2
j �j .

Next, obviously kV
1=2
j k =

p
kVjk =

p
v�(j) . Particularly this yields that

k��jk
2 = kV

1=2
j �jk

2
�

�
kV

1=2
j k k�jk

�2
� v�(j)T �

j ;

and (4.1) implies (5.6).
Similarly one has vI;I � kVjk for all I 2 Ij and hence

j��I j = v
1=2

I;I jv
�1=2

I;I ��I j �
p
v�(j)T �

j;1:

Recall the notation L(j) for the linear space generated by functions  I , I 2 Ij0 ,
with 0 � j0 < j . We denote also by �(j)f the projection of f onto the space
L(j) with respect to the norm k � kn ,

�(j)f = arginf
h2L(j)

kf � hkn:

Particularly, �(0)f denotes the projection of f on the space of linear functions
and one has by (5.3) �(0)f = 0 .

Lemma 5.2. For each j � j(n) ,

k�(j + 1)fkn � k�(j)fkn + k��jk:
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Proof. Since L(j � 1) � L(j) , then

�(j)f = �(j)�(j + 1)f:

When denoting f(j +1) = �(j+1)f , one has therefore �(j)f = �(j)f(j+1) and
we have to show that

k�(j)f(j + 1)kn � kf(j + 1)kn � k��jk:

In view of (5.5)

f(j + 1) =
X
I2I(j)

��I 
0

I :

Denote by fj the part of this sum corresponding to the last level Ij in I(j) ,

fj =
X
I2Ij

��I 
0

I :

By construction, the functions  0I , I 2 Ij , are ortonormal w.r.t. to the inner
product k � kn and particularly

kfjk
2
n =

X
I2Ij

j��I j
2 = k��jk

2:

Next, obviously f(j + 1) � fj 2 L(j) , and by de�nition of �(j) ,

kf(j + 1)��(j)f(j + 1)kn � kf(j + 1)� (f(j + 1) � fj)kn = kfjkn = k��jk

and the assertion follows by the triangle inequality.

Lemma 5.3. Given j1 � j(n) , let (4.1) hold true for all j � j1 . Then

k�(j1)fk
2
n � {12

j1=2�nv
�(j1) (5.8)

with {1 = 23=2(21=4 � 1)�2 .

Proof. Recursive application of Lemma 5.2 gives

k�(j1)fkn �

j1�1X
j=0

k��jk:

Here we have used that �(0)f = 0 . Since the norm v�(j) obviously increases with
j , then this result along with the bound (5.6) yields

k�(j1)fkn �

j1�1X
0

�
2(j+3)=2�nv

�(j1)
�1=2

=
�
23=2�nv

�(j1)
�1=2 j1�1X

j=0

2j=4

and the assertion follows by straightforward calculation.

Let some j1 � j(n) be �xed and let g 2 Ps(j1 � j0) be such that

kf � gkn � rs(j1):

Lemma 5.4. There is a constant {2 > 0 depending on s only and such that for
each j � j(n)

k�(j)fkn � {2u
�(j)=u�(j) (kfkn � rs(j)) :
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Proof. Let g 2 Ps(j � j0) be such that kf � gkn � rs(j) . Then

k�(j)fkn = k�(j)g +�(j)(f � g)kn � k�(j)gkn � k�(j)(f � g)kn

� k�(j)gkn � rs(g):

Recall that g is a piecewise polynomial function on the partition AI , I 2 Ij�j0 and
the projection �(j)g means the approximation of each polynomial on interval AI

of length 2�(j�j0) by piecewise constant functions with piece length 2�j . Therefore,
it su�ces to prove that for each piece AI and every polynomial P (x) = a0+ a1x+
: : :+ as�1x

s�1 , it holdsX
AI

[�(j)P (Xi)]
2
� {u�(j)=u�(j)

X
AI

P 2(Xi)

where the constant { depends on s only. The similar fact with integration instead
of summation over AI was stated in Ingster (1993) and we present here only a
sketch of the proof for our situation.
The key idea of the proof can be formulated as a separate statement.

Lemma 5.5. Let u� � 1 , u� � 1 and let � be a measure on the interval [0; 1]
such that

u�2
�j0 � �(Ak) � u�2�j0 (5.9)

for all intervals Ak = [k2�j0 ; (k + 1)2�j0) , k = 0; 1; : : : ; 2j0 . Then there exists
a constant { depending on s only and such that for every polynomial P (x) =
a0 + a1x+ : : :+ as�1x

s�1

2j0�1X
k=0

�Z
Ak

P (x)�(dx)

�2
� {u�=u

�

Z 1

0

P 2(x)�(dx):

Proof. We begin by reducing the case of an arbitrary u� and u� to the case with
u� = u� = 1 . De�ne measure �0 on [0; 1] by d�0=d�(x) = u�2

�j0=�(Ak) if x 2 Ak .
Due to (5.9), d�0=d� � 1 and obviously �0(Ak) = u2�j0 . Next, similarly d�=d�0 =
u�1
� 2j0�(Ak) � u�1

� u� . Now

2j0�1X
k=0

�Z
Ak

P (x)�(dx)

�2
�

2j0�1X
k=0

�Z
Ak

P (x)�0(dx)

�2
;

Z 1

0

P 2(x)�0(dx) � u�1
�
u�
Z 1

0

P 2(x)�(dx):

Therefore, it su�ces to show that

2j0�1X
k=0

�Z
Ak

P (x)�0(dx)

�2
� {

Z 1

0

P 2(x)�0(dx);

or, equivalently to consider the case when �(Ak) = 2�j0 for all k = 0; : : : ; 2j0 � 1 .
Let a = (a0; : : : ; as�1) be the vector of coe�cients of P . Then obviouslyZ 1

0

P 2(x)�(dx) � Ckak2
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where kak2 = a20+: : :+a
2
s�1 . Introduce matrix M with elements �k;l =

R
Ak
xl�(dx) ,

k = 0; : : : ; 2j0 � 1; l = 0; : : : ; s� 1) . Then Ma is a vector in the space R2j0 and

2j0�1X
k=0

�Z
Ak

P (x)�(dx)

�2
= kMak2:

Now we use that kMak2 = aTMTMa � kak2=k(MTM)�1k . It remains to note that
the conditions s < 2j0�1 and �(Ak) = 2�j0 yield that k(MTM)�1k � C for some
constant C depending on s only.

Application of this result to each interval AI , I 2 Ij�j0 yields the desirable
assertion.

Summing up the results of Lemma 5.1 through 5.4 we resume that the inequality

kfkn � rs(j) + C
p
2j=2�nv�(j)u�(j)=u�(j) with C large enough contradicts to the

constraints (4.1) and the theorem is proved.

5.4. Proof of Theorem 4.3

We proceed in the same line as in the proof of Theorem 4.2. The di�erence is only
in evaluating the norm k�(j)fkn , see Lemmas 5.2 and 5.3. Similarly to Lemma 5.2
one can show that

k�(j + 1)fkn � k�(j)fkn + k��jk:

(We use here the same notation as above.)
Next, in view of the constraints from (4.2) and Lemma 5.1, one has

k��jk
2 =

X
I2Ij

j��I j
2 =

X
I2Ij

j��I j
21(j��I j � tj) = r(j; tj)

where tj = 2�n
p
v�(j) . Using this bound for j between j1 and j2 and the bound

from Lemma 5.2 for j < j1 , we estimate

k�(j2)fkn � {12
j1�nv

�(j1) +

j2X
j=j1

r(j; tj):

This allows to complete the proof by the same arguments as for Theorem 4.2.

5.5. Proof of Corollary 4.1

Let j � j(n) and ��j = (��I ; I 2 Ij) is the subvector of �(j) corresponding to j th

level. It is well known, see Triebel (1992) that if f 2 Ws;p(1) for s � 1 and if the
design is regular, then the sum

fj =
X
I2Ij

��I 
0

I

ful�ll the condition

n�1

nX
i=1

jfj(Xi)j
p
� C2�jsp:
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By de�nition, all the functions  0I , I 2 Ij , have non intersecting supports and

j 0I j � ��1
I =M

�1=2

I , where MI is the number of design points in I th interval and
due to (4.4) MI � n2�ju�(j) . This yields

nX
i=1

jfj(Xi)j
p =

X
I2Ij

j��I j
pMI�

�p
I � (n2�ju�(j))

1�p=2
X
I2Ij

j��I j
p:

Hence X
I2Ij

j��I j
p
� Cn2�jsp(n2�ju�(j))

�1+p=2
� C 0np=22�j(sp�1+p=2)

where C 0 depends on design only (through u�(j) ). This gives

w(j; t) =
X
I2Ij

j��I j
21(j��I j � t) � t2�p

X
I2Ij

j��I j
p � t2�pC 0np=22�j(sp�1+p=2):

Since sp� 1 + p=2 > 0 we obtain

j2X
j=j1

w(j; tj) � C 00np=2�2�pn 2�j1(sp�1+p=2):

Here tj = 2�n
p
v�(j) and C 00 depends on the design only. Now one selects j1

to minimize the sum C22
j1=2�n + C 00np=2�2�pn 2�j1(sp�1+p=2) that leads to the rate

n�(2sp�1+p=2)=(2sp�1+p)�
2(p�1)=(2sp�1+p)
n shown in the corollary.
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