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Dictionary learning based regularization in quantitative MRI:
A nested alternating optimization framework

Guozhi Dong, Michael Hintermüller, Clemens Sirotenko

ABSTRACT. In this article we propose a novel regularization method for a class of nonlinear inverse
problems that is inspired by an application in quantitative magnetic resonance imaging (MRI). It is a
special instance of a general dynamical image reconstruction problem with an underlying time dis-
crete physical model. Our regularization strategy is based on dictionary learning, a method that has
been proven to be effective in classical MRI. To address the resulting non-convex and non-smooth opti-
mization problem, we alternate between updating the physical parameters of interest via a Levenberg-
Marquardt approach and performing several iterations of a dictionary learning algorithm. This process
falls under the category of nested alternating optimization schemes. We develop a general such algo-
rithmic framework, integrated with the Levenberg-Marquardt method, of which the convergence theory
is not directly available from the literature. Global sub-linear and local strong linear convergence in
infinite dimensions under certain regularity conditions for the sub-differentials are investigated based
on the Kurdyka–Łojasiewicz inequality. Eventually, numerical experiments demonstrate the practical
potential and unresolved challenges of the method.

1. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a well-established, non-invasive medical imaging technique.
Mathematically, MRI involves solving an ill-posed inverse problem to reconstruct an image of a spe-
cific region of the body from noisy Fourier measurements. These measurements represent samples of
the spatial frequency content of the tissues’ magnetization. In classical MRI, the reconstructed image
primarily reflects contrast information, which is heavily influenced by the scanner modality and the spe-
cific sampling pattern used. Therefore recent progress in the field concentrates on the inference of real
biophysical parameters from these measurements. The methods developed to address this challenge
fall within the domain of quantitative magnetic resonance imaging (qMRI) (see [24, 17, 43], and for a
recent overview including data-driven reconstruction techniques, see [58]). One particularly success-
ful approach in this field is magnetic resonance fingerprinting (MRF) [43], which serves as the starting
point for this article. MRF is an advanced imaging technique that allows for the simultaneous quantifi-
cation of multiple tissue properties by acquiring highly undersampled magnetic resonance data. Unlike
traditional MRI methods, the method in [43] leverages a unique sequence design followed by a dictio-
nary matching process to map the biophysical parameters of interest. However, this two-step process
has two main disadvantages. First, it requires solving a highly undersampled, high-dimensional linear
inverse problem. Second, it relies on the use of a pre-simulated dictionary or database, which often
introduces noticeable discretization errors. Recently in [24, 57] and also [62] strategies that directly
use the underlying physical model associated with the Bloch equation [12] were proposed for the re-
construction process. This leads to a nonlinear inverse problem with given data, generated according
to

(1) f δ = F (utrue) + η, utrue ∈ Uad,

where the goal is to find the physical parameters utrue of interest in some predefined set Uad ⊂ X ,
which is a subset of some function space X . We only have access to the available measurements f δ,
which are corrupted by noise η with an amplitude of δ ≥ 0. In section 2, we describe this nonlinear
inverse problem and the notation in detail and derive the properties, necessary for our analysis. Since
the Fourier data in MRF is usually highly undersampled, we have to apply regularization techniques
in order to obtain meaningful solutions without artifacts and amplified noise. For this purpose classical
variational methods that obtain an estimator by solving an often nonsmooth optimization problem such

DOI 10.20347/WIAS.PREPRINT.3135 Berlin 2024



Dong et. al. 2

as

(2) min
u∈Uad

1

2
∥F (u)− f δ∥2L2(Ω,CL) + λR(u)

are still of fundamental importance. Here usually R : X → R denotes a convex but often non-
smooth regularization term which encodes a-priori knowledge of the solution utrue. The regulariza-
tion parameter λ > 0 balances the effect of the regularizer R and the so called data discrepancy
∥F (u) − f δ∥L2(Ω,CL). Classical examples include the Total Variation (TV) regularization or sparse
regularization for a given basis. For TV regularization, we define R(u) = ∥Du∥M, where ∥Du∥M
represents the Radon norm of the distributional gradient of an image u ∈ BV (Ω). For more details
and a rigorous mathematical description of these terms, refer to [55, 19, 8].In sparse regularization,
as discussed in [44, 56], it is assumed that the true image is sparse in some basis (φn)n∈N ⊂ H for
a Hilbert space H . This assumption leads to the formulation of the regularizer:

R(u) =
∑
n∈N

|⟨u, φn⟩H |.

Methods of this kind have been intensively studied during the past decades. We refer to [56, 39, 37, 28]
for classical textbooks. However, these approaches are too general, and have certain limitations to
specific applications. In particular in quantitative imaging, one aims for estimating precise parame-
ter values instead of the qualitative image contrast. Therefore one major drawback of the universal
regularizers in this case is that they often introduce systematic biases into the solution, e.g. the TV
regularizer may compress the function values. The second limitation is that they rely entirely on simple
a-priori assumptions, such as sparsity of wavelets or Fourier coefficients. These assumptions, while
useful in practice, can be too restrictive and may not fully capture the complexity and structure of
the data. In many real-world scenarios, data contains hidden patterns or correlations that cannot be
easily modeled by handcrafted basis functions. To address this, researchers have been increasingly
interested in developing data-driven approaches, such as learning regularizers from the data itself,
see [5] for an overview. While many of these approaches have practically outperformed the classical
methods in (2), they often come at the price of limited interpretability and robustness. The former is
often encountered in neural network based approaches, while in the latter case small changes in f δ

or hyper-parameters in the algorithm may lead to large changes in the reconstruction, cf. [30, 3]. In
this work, we try to balance the interpretability and the usage of training data via dictionary learning
which has been applied very successfully to imaging and in particular qualitative MRI applications in
[49, 50, 52]. In subsection 2.3 we will describe dictionary learning regularization in detail. In general,
the approach works on patches that are cut out of the image u and tries to solve the inverse problem
simultaneously while decomposing every patch into a product of an unknown joint dictionary D ∈ D
and sparse coefficients C ∈ C with some predefined sets of matricesD, C. Eventually we will end up
with a non convex and non smooth optimization problem

min
u,D,C∈Uad×D×C

J(u,D,C) =
1

2
∥F (u)− f δ∥2L2(Ω,CL) +

α

2
∥∇u∥2L2(Ω)

+ λ

(
1

2
∥Pu−DC∥2F + β∥C∥1

)
.(3)

Here, P extracts patches from the image u, vectorizes them, and assembles them into a large matrix.
Additionally, λ, α, β > 0 represent parameters (see subsection 2.3 for details on the notation).
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Problems like (3) are typically solved using alternating optimization techniques, following the general
pattern outlined below:

Initialize with u0, D0, C0 ∈ Uad ×D × C.
For k = 0, 1, . . . do

1. Update physical parameter uk by a complex update procedure.
2. Make one (computationally cheap) update step for the dictionary Dk.
3. Make one (computationally cheap) update step for the sparse coefficients Ck.
4. Go back to 1.

However, this approach might be suboptimal in some cases. To understand why, consider solving the
problem

min
D∈D,C∈C

1

2
∥DC − Pu∥2F + β∥C∥1,

which is typically done by alternating between update steps for D and C . In this process, we effec-
tively denoise every patch Pu. As a result, the dictionary learning process alone can be viewed as a
powerful denoiser. However, when only one update step is applied to D and C , this denoising effect
may not be strong enough. A natural improvement, therefore, is to perform multiple updates of D and
C before updating the actual physical parameter of interest, i.e. u. This leads directly to the concept of
nested optimization schemes, where a nested inner loop is used to solve the dictionary learning prob-
lem more thoroughly, up to near stationarity. The nested scheme can be formally stated as follows:

Initialize with u0, D0, C0 ∈ Uad ×D × C.
For k = 0, 1, . . . do

1. Update uk by a complex update procedure.
2. For j = 1, 2, . . . do until some stopping criterion is satisfied

j1. Make one (computationally cheap) update step for the dictionary Dk.
j2. Make one (computationally cheap) update step for the sparse coefficients Ck.
j3. Go back to j1.

4. Go back to 1.

In section 3 we will describe the nested optimization algorithm in detail and investigate its conver-
gence to stationary points of the objective function introduced in subsection 2.3. We present a global
convergence analysis that leads to classical sublinear convergence rates and investigate local strong
convergence under the framework of the Kurdyka–Łojasiewicz (KL) inequality. For further details on
the KL inequality, see also [13, 6, 7]. The one-step procedure can be examined using the convergence
framework proposed in [29], which generalizes the approach introduced in [7]. Though, the nested
scheme outlined above does not satisfy the necessary descent condition with respect to all vari-
ables (u,D,C). Recently, nested optimization techniques have been studied in the finite-dimensional
setting [33, 34], demonstrating superior empirical performance compared to the one-step approach.
However their framework does only allow for functions that are strongly convex in the nested direction.
Moreover, these works assume that the KL inequality holds at every point of the objective, a condition
that is challenging to verify in infinite-dimensional problems.

Contributions. Here we briefly summarize the contributions of the article.

■ We present a regularization strategy based on orthogonal dictionary learning for the nonlinear
inverse problem of qMRI, as introduced in section 2. This method strikes a balance between low
contrast bias, data adaptivity, and interpretability. To the best of the authors knowledge, the only
comparable approach in the literature is found in [40], where dictionary learning is combined with
a slightly different signal model for qMRI. Their focus is on the reconstruction of the relaxivity
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parameter R1 := 1/T1 and m0 , see section 2 for the terminology. However, convergence
theory is not addressed in their study.

■ We address the resulting nonconvex and nonsmooth optimization problem using a nested opti-
mization algorithm, inspired by [33, 34], but under different assumptions and with the u-variable
in an infinite-dimensional space. Our problem does not fit within the framework of [34], as it
lacks the partial strong convexity required there, and we do not assume that the entire objective
satisfies the KL-inequality. Furthermore, while our nested update steps are more general, our
conclusions are also somewhat weaker, as we do not achieve global strong convergence. It is
worth noting the large body of recent work on block alternating optimization strategies, such
as [7, 15, 48]. These approaches typically rely on the KL inequality in finite-dimensional set-
tings and often require solving a global optimization problem in each update direction. Neither
of these assumptions holds in our framework.

2. DICTIONARY LEARNING BASED REGULARIZATION FOR QUANTITATIVE MRI

We will only outline very briefly the fundamental ideas of the signal generation process in MRI. For
a more detailed account we refer to classical textbooks such as [17, 42, 59] and for related research
papers to [23] and [24]. We will follow mostly the presentation in [24].

2.1. Brief introduction to the physics of qMRI. In MRI, the source of contrast in an image Ω ⊂ R2

arises from the dynamics of magnetic moments within a slice of the patient’s body located at x ∈ Ω.
These magnetic moments evolve under the influence of an externally controlled magnetic fieldB(t, x),
where t ∈ [0, T ] denotes time. The evolution of the magnetic moment m : [0, T ] × Ω → R3 is
commonly modeled by the Bloch equations which is given by

∂tm(x, t) = m(t, x)× γB(t, x)−

 m1(t, x)/T2(x)
m2(t, x)/T2(x)

(m3(t, x)−meq)/T1(x)

 , m(0, x) =

 0
0

m0(x)

 .

Here, γ > 0 represents the gyromagnetic ratio, while T1, T2 : Ω → R denote the relaxation times,
describing how quickly the three-dimensional magnetic moments relax back to the equilibrium state
meq ∈ R3 after being excited by the external magnetic field B(t, x). The magnetic field often consists
of three parts

B(t, x) = B0(x) +B1(t, x) + (0, 0, G(t) · x)T .
Here B0(x) denotes a very strong constant magnetic field that points into the positive z direction.
B1(t, x) is only applied for a very short time and excites the magnetic moment away from the equi-
librium such that a transversal component of the magnetization occurs. It is also called RF-pulse. The
time between to consecutive pulses is called repetition time (TR). G(t) is called gradient-field and is
used for spatial frequency encoding. Under suitable assumptions one can show that the signal, that is
measured at a receiver coil in a very short time after an RF-pule is applied and turned off immediately
can be approximately described by

S(t) ≈
∫
Ω

ρ(x)m12(t, x)e
−i

∫ t
0 G(τ)·xdτ dx,

where we introduced the notation m12(t, x) := m1(t, x) + im2(t, x) ∈ C and further physical
quantity, the proton-spin density ρ : Ω→ R that is commonly interpreted as the local density of (pre-
dominately) hydrogen protons or “spins” located at x ∈ Ω. Consequently, in theory the measurement
process can be modeled by a composition of the nonlinear solution operator of the Bloch-equation and
the Fourier-transform

S(t) ≈ F (ρ(·)m12(t, ·)) (
∫ t

0

G(τ) dτ)
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At the echo time t = TE, measurements are taken, and by manipulating the gradient field t 7→ G(t),
different frequencies can be sampled. In Cartesian sampling, the frequencies in two dimensions are
collected along parallel lines, with one full line being sampled between two consecutive pulses; see
[17] for a comprehensive overview of MRI physics and its practical applications. In classical MRI, after
each pulse, the scanner must wait until the magnetization m approximately returns to the equilibrium
state meq before the next RF pulse can be applied. Due to resulting time constraints and the potential
for motion artifacts, only a subset of frequencies in the Fourier space (also called k-space) can be
sampled. We assume that the measured signal at echo time yTE = ρ(·)m12(TE, ·) remains con-
stant during the measurement process. The image yTE is then reconstructed by inverting the sub
sampled Fourier transform of the acquired data. Note that by sampling only a single image yTE , the
information about the underlying physical parameters, namely T1(x), T2(x), and ρ(x), is lost, and
only contrast information can be obtained. This means that while the image captures variations in
signal intensity, it does not allow for direct estimation of the tissue-specific relaxation times or proton
density that contribute to the signal.

In qMRI, the goal is not to recover a single image yTE but to estimate the underlying spatially de-
pended physical parameters of the Bloch equation:

x→ u(x) = (T1(x), T2(x), ρ(x))
T ,

which we will model as an element in L2(Ω,R3) in the forthcoming sections. Magnetic Resonance
Fingerprinting (MRF) is a recent and particularly effective technique in qMRI. The idea is to collect not
just one, but a sequence of highly under sampled images with a very short repetition time:

yt = ρ(·)m12(t, ·) t = 1, . . . , L

The number of collected images is denoted by L ∈ N and typically ranges between 100 and 1000 in
practical applications. Here it is assumed that the data needed to form a full image is acquired at each
time point. Crucially, there is no need to wait for the magnetization to return to equilibrium between
pulses. In the pioneering work [43], the authors employed an Inversion Recovery Steady-State Free
Precession (IR-SSFP) sequence. Using this protocol, the solution to the Bloch equations at echo times
indexed by k = 1, . . . , L can be approximated by a discrete dynamical system, cf. [43, 17], given by

(4) mk+1(T(x)) = Ek(T(x))R(αk)mk(T(x)) + bk(T(x)), m0(x) ∈ R3,

where we used the notation T(x) = (T1(x), T2(x)). The matrix R(α) is an orthogonal rotation matrix
depending on the Flip angle αk ∈ (0, 2π) and Ek : R2 → R3×3, bk : R→ R3 are given by

Ek(T) =

exp(−TRk

T2
) 0 0

0 exp(−TRk

T2
) 0

0 0 exp(−TRk

T1
)

 , bk(T) =
[
1− exp

(
−TRk

T1

)]0
0
1


for T = (T1, T2) ∈ R2

>0 and repetition times TR1, . . . ,TRL, which are specified by the scanning
protocol.

Remark 2.1. Note that Ek : R2
>0 → R3×3 and bk : R2

>0 → R3 are only well-defined for elements
T1, T2 > 0. However the extension to R2 is obvious. We define

Ẽk(T) = lim
n→∞

Ek(Tn) b̃k(T) = lim
n→∞

bk(Tn),

where Tn ∈ (0,+∞)2 for every n ∈ N and Tn → proj(0,+∞)2(T) as n → ∞. One can easily
check that this extension is well defined and does not depend on the choice of the sequence (Tn)n.
Additionally, in this way we extended Ek and bk to C∞-functions that are defined everywhere on R2.
We will from now on assume that Ek and bk are defined everywhere and are smooth.
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2.2. The inverse problem of qMRI and its mathematical properties. Using the time-discrete dy-
namical system in (4), we are able to write the whole data generating process, which maps the true
physical parameter utrue = (ρtrue, T1,true, T2,true) ∈ L2(Ω,R3) to the data f δ ∈ L2(Ω,C), that is
measured at the receiver coil, as a single equation. This equation, also known as forward equation or
forward model reads

(5) f δ = F (utrue) + η, ∥η∥L2(Ω,CL) ≤ δ,

where η ∈ L2(Ω,CL) is complex noise and δ ≥ 0 the noise level. We also made use of the forward
operator

(6) F : L2(Ω,R3)→ L2(Ω,CL), u 7→ [S1F ◦ Π(u)1, . . . , SLF ◦ Π(u)L].
In (6), the sequence S1, . . . , SL : L2(Ω,C) → L2(Ω,C) denote a number of sampling operators
that cut out the desired frequencies that are actually sampled and the operator Π : L2(Ω,R3) →
L2(Ω,CL) maps the physical parameter u = (ρ, T1, T2) ∈ L2(Ω,R3) to the transversal component
of the time discrete magnetization process described by the dynamical system (4), i.e.

(7) Π(u)(x) = ρ(x)[(m12(T1(x), T2(x))1, . . . , (m12(T1(x), T2(x)))L]
T .

The inverse problem of qMRI is then to measure noisy data f δ ∈ L2(Ω,CL) and to find a good
approximation of utrue. We also refer to [24] for a detailed account on this setup.

Remark 2.2 (Representation as a superposition operator). Note that the operator aboveΠ : L2(Ω,R3)→
L2(Ω,CL) can be conveniently represented as a superposition operator using the function

(8) π : R3 → CL π(u) = ρ[(m12(T1, T2)1, . . . , (m12(T1, T2))L]
T .

In the equation above, the function π takes as input the arguments u = (ρ, T1, T2) ∈ R3, indicating
that it operates in a pixel-wise manner. For a detailed discussion on the superposition operator, we
refer to [31, 4].

Many properties of the function π will carry over to the associated superposition operator Π. Hence
we start our analysis by collecting some differentiability and stability properties the mapping π in the
following theorem. As usual we will make use of the notation Lk(X, Y ) for the space of k-linear
and bounded operators between two Banach spaces, X and Y . The first and second order Frechet
derivatives for a function f : X → Y at x ∈ X are denoted by f ′(x) ∈ L(X, Y ) and f ′′(x) ∈
L2(X, Y ). Moreover we make use of the norm ∥f∥C(X,Y ) = supx∈X ∥f(x)∥Y for a continuous and
bounded function f : X → Y . For the sake of readability, we will again write T = (T1, T2) ∈ R2.

Theorem 2.3 (Properties of the pointwise solution map). Let π : R3 → CL and m : R2 → R3×L be
defined as in (8). Then the following statements hold

(i) (Differentiability) The mappings π : R3 → CL and m : R2 → R3×L infinitely differentiable.
(ii) (Boundedness) There is a constant C = C(L,m0) > 0 such that the following bounds hold

true

∥m∥C(R2,R3×L) ≤ C ∥m′∥C(R2,L(R2,R3×L) ≤ C ∥m′′∥C(R2,L2(R2,R3×L) ≤ C.

(iii) (Lipschitz-properties) Denote ui = (ρi,Ti) for i = 1, 2. If |ρi|) ≤ b for i = 1, 2 and some real
number b > 0, then we find a constant L = L(b) > 0 that depends on b, such that

∥π(u1)− π(u2)∥2 ≤ Lb∥u1 − u2∥2
∥π′(u1)− π′(u2)∥L(R3,CL) ≤ Lb∥u1 − u2∥2

(iv) (Stability) There is a constant Cs > 0 such that

(9) ∥π(u1)− π(u2)∥2 ≥ C1∥u1 − u2∥2
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Proof. Note that (i) is a direct consequence of the corresponding properties of Ek and bk. Let us prove
(ii). For this purpose we first investigate the properties of the time discrete magnetization m : R2 →
R3L. The Fréchet derivatives of m are computed iteratively using the chain rule and the sum rule. For
directions h, h1, h2 ∈ R3, we obtain

mk+1(T) = Ek(T)Rkmk(T) + bk(T),(10)

m′
k+1(T)[h] = E ′

k(T)[h]Rk ·mk(T) + Ek(T)Rk ·m′
k(T)[h] + b′k(T)[h],(11)

m′′
k+1(T)[h1, h2] = E ′′

k (T)[h1, h2]Rk ·mk(T) + E ′
k(T)[h1]Rk ·m′

k(T)[h2]

+ E ′
k(T)[h2]Rk ·m′

k(T)[h1] + Ek(T)Rk ·m′′
k(T)[h1, h2]

+ b′′k(T)[h1, h2].(12)

Since Rk : R3 → R3 are rotation matrices, we have ∥Rk∥L(R3,R3) = 1. From (10) we directly see
that

∥mk+1(T)∥2 ≤ ∥Ek(T)∥L(R3×3)∥mk(T)∥2 + ∥bk(T)∥2 ≤ C∥mk(T)∥2 + b.

For constants b, C > 0 that are uniformly bounded in k. Here we used the boundedness of the
function t 7→ exp(−1/t) on R. Hence it is easy to infer by iterating over all k that ∥m(T)∥R3×L ≤ C
for some uniform constant C > 0 by induction. Similarly, using (11), we show for ∥h∥2 = 1 that

∥m′
k+1(T)[h]∥2 ≤ ∥E ′

k(T)[h]∥2C + ∥Ek(T)∥L(R3×3)∥m′
k(T)∥L(R3,R3) + ∥b′k(T)∥L(R3,R3)

≤ C∥h∥2C + ∥Ek(T)∥L(R3×3)∥m′
k(T)∥L(R3,R3) + ∥b′k(T)∥L(R3,R3).

From the definition of Ek, bk, one easily infers that ∥E ′
k(T)∥L(R3,R3×3) ≤ C , ∥Ek(T)∥L(R3×3) ≤ C

and ∥b′k(T)∥L(R3,R3) ≤ C for a generic constant C > 0. Thus, by induction ∥m′∥L(R3,R3×L) ≤ C by
a possibly larger constant C > 0. Exactly the same argumentation applies to show that

∥m′′(T)∥L2(R3,R3×L) ≤ C

for all T ∈ R2 by making again C > 0 larger. This proves (ii). In order to see (iii) we note that by the
mean value theorem, which guarantees the existence of a constant Lm > 0 such that

∥m(T1)−m(T2)∥2 = ∥ ≤ Lm∥T1 − T2∥2,
∥m′(T1)−m′(T2)∥L(R3,R3×L) ≤ Lm∥T1 − T2∥2.

Hence, we have shown the Lipschitz continuity of π and π′. Consequently we obtain:

∥π(u1)− π(u2)∥2 = ∥ρ1m(T1)− ρ2m(T2)∥2
≤ |ρ1 − ρ2|∥m(T1)∥2 + |ρ2|∥m(T1)−m(T2)∥2
≤ ∥u1 − u2∥2C + bLm∥u1 − u2∥2.

The latter estimate proves the Lipschitz continuity of π as desired. Similarly, we obtain for a direction
h = (hρ, hT) ∈ R3 that

∥(π′(u1)− π′(u2))[h]∥2 ≤ ∥hρm(T1)− hρm(T2)∥2 + ∥ρ1m′(T1)[hT]− ρ2m
′(T2)[hT]∥2

≤ |hρ|∥m(T1)−m(T2)∥2 + |ρ1 − ρ2|∥m′(T1)∥2∥hT∥
+ |ρ2|∥(m′(T1)−m′(T2))[hT]∥2
≤ ∥h∥2Lm∥u1 − u2∥2 + ∥u1 − u2∥2C∥h∥2
+ bLm∥u1 − u2∥2∥h∥2
≤ (Lm + C + bLm)∥u1 − u2∥2∥h∥2,

which proves eventually the Lipschitz continuity in (iii) for Lb = (Lm + C + bLm). □
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Note that in particular (9) guarantees that the parameters u can be in principle identified from complete
measurements. The next theorem establishes properties of the corresponding superposition operator
in (7) using the theory, which is developed in [31].

Theorem 2.4 (Properties of the solution operator). Consider the map π : R3 → CL for a bounded do-
main Ω ⊂ Rn with Lipschitz boundary. Then the corresponding superposition operator, or the solution
operator of the time discrete Bloch equation, introduced in (7), satisfies the following properties:

(i) The operator Π maps all of Lp(Ω,R3) into all of Lq(Ω,CL) for exponents 1 ≤ p ≤ q <∞.
(ii) (Frechet-differentiability) The operator is Frechet differentiable as a mapping between the spaces

Π : Lp(Ω,R3)→ L2(Ω,CL) for p ≥ 4. The Frechet-derivative is given by

(13) Π′ : Lp(Ω)→ L(Lp(Ω), L2(Ω)) DΠ(u)[h](x) = π′(u(x))h(x) for p ≥ 4.

(iii) (2nd order Frechet-differentiability) The operator Π is two times Frechet differentiable as a map-
ping between the spaces Π : Lp(Ω,R3) → L2(Ω,CL) for p ≥ 6. The 2nd order Frechet-
derivative is given by

(14) Π′′ : Lp(Ω)→ L(Lp(Ω), L2(Ω)) Π′′(u)[h1, h2](x) = π′′(u(x))h1(x)h2(x) for p ≥ 6.

Proof. We employ the theory on abstract superposition operators developed in [31] and make use of
the notation u = (ρ,T) ∈ R3 as above. For (i) we have to verify the growth condition

∥π(u)∥2 ≤ c+ c∥u∥
p
q

2

for all u ∈ R3 some c > 0. Since π(u) = ρ ·m12(T) we directly obtain ∥π(u)∥2 = |ρ|∥m12(T)∥2 ≤
∥u∥2∥m(T)∥2 and consequently the assertion (i). For (ii) we recall [31, Theorem 7]. For the contin-
uous F-differentiability of Π we have to verify that the mapping u 7→ π′(u(·)) is continuous as a
mapping from Lp(Ω,R3) to Lr(Ω,L(R3,CL)) for r = pq/(p − q). This can be shown by verifying
again the growth condition

∥π′(u)∥L(R3,CL) ≤ c+ c∥u∥
p
r
2

for all u ∈ R3 and some c > 0. Since ∥π′(u)[h]∥2 = ∥hρm(T) + ρm′(T)[hT]∥2 ≤ |hρ|∥m(T)∥+
|ρ|∥m′(T)∥2∥hT∥2 again for a direction h = (hρ, hT) ∈ R3. By the boundedness of m(T) and
m′(T) we obtain ∥π′(u)[h]∥2 ≤ (c + c∥u∥2)∥h∥2 for some c > 0 as desired. Since p/r = (p −
q)/q = 1 for p = 4 and q = 2 the statement follows. In order to show (iii) we invoke theorem 9 of
[31]. Completely analogous to (ii) we have to show that u 7→ π′′(u(·)) is continuous as a mapping
from Lp(Ω,R3) to Ls(Ω,L2(R3,CL)) for s = pq/(p − 2q), which again can be done by verifying
the growth condition

∥π′′(u)∥L2(R3,CL) ≤ c+ c∥u∥
p
s
2

for all u ∈ R3 and some other c > 0 as above. Calculating

π′′(u)[h1, h2] = h2
ρm

′(T)[h1
T] + h1

ρm
′(T)[h2

T] + ρm′′(T)[h1
T, h

2
T]

yields indeed the growth condition ∥π′′(u)[h1, h2]∥2 ≤ (c + c∥u∥2)∥h1∥2∥h2∥2 for all h1, h2 ∈ R3

with decomposition hi = (hi
ρ, h

i
T). Hence the growth-condition is satisfied for p/s = 1 from which

we get 1 = p/s = (p − 2q)/q = (p − 4)/2 using q = 2. Hence for p ≥ 6 the growth-condition is
satisfied, and second order Frechet-differentiability holds. □

2.3. Regularization by dictionary learning. The core idea behind dictionary learning is to identify
a representation system or basis directly from the data, rather than relying on predefined bases like
wavelets, polynomials or Fourier basis. However, learning a basis for a whole discrete image involves
a large number of degrees of freedom, making the learning process complex and prone to overfitting.
To mitigate this, a common approach is to restrict the learning process to small image patches rather
than the entire image. These patches are extracted from the discretized image, which helps reduce
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Dictionary learning based regularization in quantitative MRI 9

the complexity while still capturing local image structures. Let us briefly outline how dictionary learning
is used to regularize linear inverse problems before incorporating it into our nonlinear model (5). The
pioneering approach in [2] used dictionary learning in a two-step procedure. In the first step, the goal
is to decompose a data matrix X , containing lots of clean image patches, into a rather small dictionary
D ∈ D of basis elements and corresponding sparse representations C ∈ C by solving the problem

(15) min
D∈D,C∈C

1

2
∥DC −X∥2F + ∥C∥0.

Here we made use of the Frobenious norm ∥·∥F . The setD of admissible dictionaries is often defined
to prevent multiple solutions arising from rescaling, e.g. by choosing D to be the set of matrices with
normalized columns or the set of orthonormal matrices. On the other hand, the set C that defines the
space for the sparse coefficients is usually the entire space. The matrix X = [p1, . . . , pN ] typically
contains a large number N of vectorized image patches pi ∈ RK , where each patch pi represents
a small region of an image. The matrix D ∈ D ⊂ RK×M contains the dictionary elements, with
D = [φ1, . . . , φM ] consisting of columns φi ∈ RK , each of which corresponds to a learned basis
vector or ätomïn the dictionary. If the number of dictionary elements M exceeds the patch dimension
K (i.e., M > K), the dictionary is called overcomplete. The main assumption behind dictionary
learning is that clean image patches can be well represented using only a few dictionary elements,
meaning that

pi =
M∑
j=i

φjcij for certain coefficients cij ∈ RM with ∥cj∥0 ≪M,(16)

where ∥c∥0 denotes the number of nonzero entries of a vector c. Writing (16) in a vector matrix no-
tation, we obtain X = DC with a sparse matrix C . Once the factorization is completed, the second
step involves using these learned dictionary atoms to find an estimate of utrue ∈ L2(Ω) from mea-
surements f δ = F (u) + η by solving a problem of the type

(17) min
u∈L2(Ω),C∈C

∥F (u)− f δ∥2L2(Ω) +
λ

2

(
∥PDhu−DC∥2F + β∥C∥0

)
where Dh : L2(Ω) → RN is a not further specified discretization operator. The two step approach
in (17) has been successfully applied to several linear inverse problems during the past decade, cf.
[5] and the references in the corresponding section. It has been recognized recently, [50, 49] that
very good results can also be obtained by learning the dictionary while reconstructing the image. This
approach combines the tasks of dictionary learning and image reconstruction into a single optimization
framework, allowing both processes to inform and to enhance each other. This idea leads to the
following optimization problem:

(18) min
u∈L2(Ω),D∈D,C∈C

∥F (u)− f δ∥2L2(Ω) +
λ

2

(
∥PDhu−DC∥2F + α∥C∥0

)
,

not discussing issues related to infinite dimensionality or the existence of solutions here. In [52, 51, 53]
the approach in (18) has been further developed and successfully applied to the linear inverse problem
of MRI, i.e. where F = S ◦ F with an undersampling operator S and the Fourier transform F . This
resulted in a number of interpretable, robust, and data-adaptive regularization methods, see also [53]
for an overview. Additionally, these methods appear to significantly reduce the contrast bias typically
introduced by methods of the type (2).To address issues concerning the existence of solutions, we
introduce a small strongly convex term ∥∇∥2L2(Ω). Additionally, to ensure the problem remains contin-
uous, we replace the ∥ · ∥0-seminorm with the convex and continuous ℓ1-norm. This relaxation is a
standard approach in the field of compressed sensing, as discussed in [?]. We eventually end up with
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the following dictionary regularized qMRI problem, which we aim to solve in the following sections:

min
(u,D,C)∈Uad×D×RK×M

1

2
||F (u)− f δ||2L2(Ω,CL) +

α

2
∥∇u∥2L2(Ω) +

λ

2

(
∥PDhu−DC∥2F + β∥C∥1

)(P0)

Let us briefly fix the termininology in (P0)

Assumption 2.5 (On the qMRI problem). We consider the following assumptions for problem (P0):

Q1. The space of admissible parameters is H1
0 (Ω,R3) where Ω = [0, 1]2 for simplicity.

Q2. The set of admissible parameters is given by

Uad = {u ∈ H1
0 (Ω,R3) : a ≤ ui(x) ≤ b for a.e. x ∈ Ω}.

Q3. Let h = 1/N for some N ∈ N. The discretization space UN is given by

UN = span{N−21Ωi,j
: Ω→ R | i, j = 1, . . . , N},

where every Ωi,j ⊂ Ω is defined as Ωi,j = (i−1, j−1)+[0, 1/N ]× [0, 1/N ]. The discretiza-
tion (projection) operator Dh : L2(Ω) → UN , for the meshsize h = 1/N is consequently
defined separately on every patch as

(Dhu)|Ωi,j
=

1

N2

∫
Ωij

u(x) dx,

Q4. The forward operator F : H1
0 (Ω,R3) is given by (6).

Q5. For the space of admissible matrices we choose D = Ok := {M ∈ RK×K : M⊤M = I},
which is also called Stiefel-Manifold, see [1]. The space of admissible Matrices is C = RK×N2

.

Remark 2.6 (Choice of the dictionary space). We select the space of orthogonal matrices as the
Ansatz space for the dictionary due to its ability to enable simple and fast update steps, while still
maintaining good reconstruction quality. Various extensions can be introduced to incorporate more
complex and sophisticated models, as proposed, for example, in [53] for linear inverse problems.

3. A NESTED LEVENBERG-MARQUARDT TYPE OPTIMIZATION ALGORITHM

The goal in this section is to derive an optimization algorithm in order to find stationary points of the
objective function (P0) introduced in the previous section. However, in order to keep the presentation
simple, we will only analyse the problem for the reconstruction of a single u ∈ H1

0 (Ω), instead of
using the space H1

0 (Ω,R3). The convergence analysis is the same. The Hilbert space H1
0 (Ω) will

be equipped with the inner product ⟨u, v⟩H1(Ω) = ⟨u, v⟩L2(Ω) + ⟨∇u,∇v⟩L2(Ω), which is equivalent
to ⟨u, v⟩H1

0 (Ω) = ⟨∇u,∇v⟩L2(Ω) by the Poincaré inequality, cf. [8]. For regularization parameters
α, λ > 0, we consider the following class of optimization problems on the space X := H1

0 (Ω)× Z ,
where Z is a finite-dimensional abstract Hilbert space that is not further specified.
(P1)

min
u∈H1

0 (Ω),z∈Z
J(u, z) :=

1

2
∥F (u)−f δ∥2L2(Ω,CL)+

α

2
∥∇u∥2L2(Ω)+h(u, z)+R1(u)+IUad

(u)+R2(z).

During the analysis we will also use the notations

fα(u) := f(u) +
α

2
∥∇u∥2L2(Ω) :=

1

2
∥F (u)− f δ∥2L2(Ω,CL) +

α

2
∥∇u∥2L2(Ω).(19)

Moreover, make the following assumptions for the abstract problem in (P1).

Assumption 3.1 (Assumption on the problem class (P1)). For the problem class (P1), we make the
following assumptions.
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B2.) The function F : Lp(Ω)→ L2(Ω,CL) is two times continuously Frechet-differentiable and the
Frechet-derivatives at the point u ∈ Lp(Ω) are denoted by DkF (u) ∈ Lk(Lp(Ω), L2(Ω)) for
k = 1, 2. The whole objective J : H1

0 (Ω)× Z is assumed continuous on dom(J).
B3.) The set of admissible parameters Uad has the form

Uad = {u ∈ H1
0 (Ω) | a ≤ u(x) ≤ b for almost every (a.e.) x ∈ Ω },

for some positive real numbers 0 < a < b.
B4.) The space Z is a finite dimensional Hilbert space and the function h : X → R satisfies:

H1.) h is bounded from below, proper and twice continuously differentiable on L2(Ω)× Z .
H2.) u 7→ h(u, z) is convex for every element z ∈ Z .
H3.) The gradient u 7→ ∇zh(u, z) is Lipschitz-continuous, and there is a uniform bound

C > 0 on the Lipschitz constants, i.e

∥∇zh(u1, z)−∇zh(u2, z)∥Z ≤ L∇hh(·,z)∥u1 − u2∥H1
0 (Ω),

with L∇hh(·,z) ≤ C for all z ∈ Z .
B5.) The function R1 : H1

0 (Ω) → R is proper, lower semi-continuous and convex. The function
R2 : Z → R is proper, lower semi-continuous and coercive on Z , i.e. ∥z∥Z → ∞ implies
R2(z)→∞. Note that R2 will be usually non convex.

It is clear, that the dictionary learning regularized problem in (P0) is a specific case of the problem class
presented in (P1) for the choice h(u, z) = 1

2
∥PDhu−DC∥F and Z = (D,C) ∈ RK×K ×RK×N

and R2(D,C) = IOK
(D) + β∥C∥1. Let us briefly investigate existence of solutions.

Theorem 3.2 (Existence of solutions for (P1)). Let the statements under 3.1 hold true. Then Problem
(P1) has a solution (u∗, z∗) ∈ Uad × Z .

Proof. We use the direct method of calculus of variation. Let (un, zn)n be an infimizing sequence,
which exists since J is bounded from below. We observe, that (∥∇un∥L2)n is bounded by the defini-
tion of J . Hence, by the Poincaré inequality, cf [8], we infer also the boundedness of (∥un∥H1

0 (Ω))n.
Using the coercivity of R2 we also obtain the boundedness of (∥zn∥Z)n. Therefore there exists a
subsequence which (after relabeling) converges to some element (u∗, z∗) strongly in L2(Ω)×Z due
to the compact embedding H1

0 (Ω) ↪→ L2(Ω). As the set Uad is sequentially closed in the strong
L2(Ω)-topology and the mapping F : L2(Ω) → L2(Ω) is continuous, we infer by classical lower
semicontinuity arguments that (u∗, z∗) is a global solution of (P1). □

3.1. The algorithm and its global convergence analysis. Let us now consider the optimization
scheme for finding stationary points of (P1). However, before stating the algorithm, we must clarify
what we mean by stationarity.

Mathematical preliminaries. Let us briefly recall the mathematical setup needed for the analysis of non
smooth and non differentiable optimization problems. For a comprehensive account, we refer to the
monographs [45, 54]. Fur our purpose we will just follow the presentation in [29]. Let us consider a
function f : H → R, which is proper and lower semi-continuous and defined on a Hilbert space
H with dual space H∗ = L(H,R). We first need a suitable notion of derivative in the nons mooth
setting.

Definition 3.3 (Subdifferentials). Let x ∈ dom(f) and f : H → R closed and proper.

(i) We call an element p ∈ H∗ Frechet-subgradient at x ∈ dom(f), if

lim inf
y→x,y ̸=x

f(y)− f(x)− ⟨p, y − x⟩H∗

∥y − x∥
≥ 0.
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The set of Frechet-subgradients at x is called Frechet-subdifferential and is denoted by ∂̂f(x).
If x /∈ dom(f), we set ∂̂f(x) = ∅.

(ii) We call an element p ∈ H∗ (limiting)-subgradient at x ∈ dom(f), if there exists sequences
(xk)k∈N and (pk)k∈N such that pk ∈ ∂̂f(xk) for every k and xk → x and pk ⇀ p as k →∞.
As before we define ∂f(x) = ∅ if x /∈ dom(f).

We call an element x ∈ H a stationary point of f if

0 ∈ ∂f(x).

For the special structure in this work, it is important to calculate subdifferentials of functions that are
defined on a Cartesian product spaces and allow a composition into a differentiable and a non-smooth
term.

Theorem 3.4 (Chain rule, [45, Proposition 1.107]). The following two calculus rules hold true:

(i) Let f(x) = g(x) + h(x) for g, h : H → R proper and closed. If in addition g is continuously
differentiable in a neighbourhood of x ∈ dom(f), then

∂f(x) = ∇g(x) + ∂h(x).

(ii) If f : H1 ×H2 → R is defined on a Cartesian product of two Hilbert spaces H1, H2 and has
the structure f(x1, x2) = f1(x1) + f2(x2) for fi : Hi → R proper and closed, then

∂f(x1, x2) = ∂f1(x1)× ∂f2(x2).

Consequently, we may compute the subdifferential of the objective J : H1
0 (Ω) × Z → R defined in

(P1) as:

∂J(u, z) = {∇fα(u) + λ∇uh(u, z) + λ∂R1(u), λ∇zh(u, z) + λ∂R2(z)} .

To measure the distance to stationarity, we will also need the notion of the lazy slope, defined as

dist(0, ∂f(x)) := inf
p∈∂f(x)

∥p∥H∗ .

While always finite, there might be situations where the infimum is not attained. The next lemma is of
fundamental importance if we want to show that the limit of a sequence of almost stationary points is
a stationary point. Before we state the result, let us recall, that a sequence (xk)k∈N converges in the

f -attentive sense to x∗ ∈ H if xk → x∗ and f(xk)→ f(x∗). We write xk
f→ x∗ in this case.

Lemma 3.5 (Stationarity of the limit). Let xk ∈ H for every k ∈ N and assume that the follow holds
true

xk
f→ u∗ and dist(0, ∂f(uk))→ 0 as k →∞.

Then 0 ∈ ∂J(x∗), i.e. x∗ ∈ H is stationary.

Proof. For a proof we refer to [29]. □

Description of the algorithm. As already outlined in the introduction of this article, we aim at solving
(P1) by alternating between between an update step for the z-variable, denoted by z-step, and the
u-variable, called u-step. We will describe both steps in detail in the following paragraphs.
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Solution for the z-step. Given the iterate uk ∈ H1
0 (Ω), our goal in the z-step is to solve the problem

(P k
z ) min

z∈Z
gk(z) := h(uk, z) +R2(z)

up to limiting-stationarity. For this purpose we assume to be given an abstract algorithm which is
specified by a number of transition rules An

k : Z → Z to define the next iterate, given the current
one. Formally this means zn+1

k = An
k(z

n
k ) starting from z0k := zk ∈ Z . This algorithm will produce a

so called descent sequence, defined next:

Definition 3.6 (Descent sequence). A descent sequence for problem (P k
z ) is a sequence of points

(zn)n∈N ⊂ Z such that the following two inequalites hold true:

(i) (Sufficient descent of function values) There is a σ1 > 0 such that

(20) gk(z
n+1) ≤ gk(z

n)− σ1

2
∥zn+1 − zn∥2Z for all n ∈ N.

(ii) (Gradient inequality) There is a σ2 > 0, such that

(21) dist(0, ∂gk(zn+1)) ≤ σ2∥zn+1 − zn∥Z for all n ∈ N.

Many algorithms in the literature are known to produce descent sequences, cf. [6, 7, 15, 14]. However,
accelerated algorithms such as FISTA are known for their non-monotone convergence behavior and
do not satisfy these properties; see [10].

Assumption 3.7 (On the update algorithm in the z-step). We assume that our algorithm for minimizing
(P k

z ), defined by an update mechanismAn
k : Z → Z produces a descent sequence for (P k

z ).

Let us briefly formalize the algorithm for the z-step.

Algorithm 1 Computation of a near stationary point for the z-step at the k-th outer loop iteration.

1: Get (uk, zk) ∈ H1
0 (Ω)× Z , accuracy ηk > 0.

2: Initialize with z0k = zk and compute z1k = A0
k(z

0
k).

3: Set n = 1.
4: while ∥znk − zn−1

k ∥ ≥ ηk do
5: Compute zn+1

k = An(z
n
k ) ∈ Z such that (20) and (21) hold true for constants σ1, σ2 > 0.

6: Set n = n+ 1.
7: end while
8: Set zk+1 := znk

k where nk ∈ N is the first iterate such that ∥znk
k − znk−1

k ∥ < ηk.
9: Return zk+1 = znk

k .

From the properties (20) and (21) we directly infer the following lemma, which describes the funda-
mental behaviour of every descent sequence.

Lemma 3.8. Let (uk, zk) ∈ H1
0 (Ω) × Z , accuracy ηk > 0 be given such as in algorithm 1. For the

generated sequence the following properties hold:

(i) The sequence of function values converges monotonically to its infimum, i.e.

gk(z
n
k )↘ g∗k := inf

n∈N
gk(z

n
k ) ≥ 0 as n→∞.

(ii) The following estimate holds true for every N ∈ N
N∑

n=1

∥znk − zn−1
k ∥2Z ≤

2(g(z0k)− g(zNk ))

σ1

≤ 2(g(z0k)− g∗k)

σ1

.

In particular ∥znk − zn−1
k ∥Z → 0 and dist(0, ∂g(znk ))→ 0 as n→∞ .
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(iii) The following estimate holds for the lazy slope and every N ∈ N

min
n=1,...,N

dist(0, ∂g(znk )) ≤

√
σ2
2

2σ1

(
g(z0k)− g(zNk )

N

)
.

Proof. Simple calculations. A proof can be for instance found in [15]. □

Remark 3.9 (Complexity of algorithm 1). Based on the above inequalities, we may also derive that

min
n=1,...,N

∥znk − zn−1
k ∥2Z ≤

2(g(z0k)− g(zNk ))

σ1N
.

Consequently, if an accuracy parameter ηk > 0 is given, this bound implies that ∥znk − zn−1
k ∥Z ≤ ηk

after at most N(ηk) steps, where

N(ηk) =
2(g(z0k)− g(znk

k ))

σ1η2k
.

For example, if the accuracy parameter ηk = k−γ for some γ > 0 is given, then the stopping index
satisfies

(22) nk ≤
2(gk(zk)− gk(zk+1))

σ1

k2γ ≤ 2(J(uk, zk)− J(uk+1, zk+1))

σ1

k2γ.

Solution for the u-step. Let us now consider the step for u. We update the physical parameter of
interest, u ∈ H1

0 (Ω), by performing exactly one Levenberg-Marquardt step, i.e. for a given iterate
(uk, zk+1) ∈ H1

0 (Ω)× Z , we consider the following optimization problem:

(Pu) uk+1 = argmin
u∈Uad

gλk
(u, uk) +

α

2
∥∇u∥2L2(Ω) + h(u, z) +R1(u).

Here gλk
(u, v) is a model function that approximates f and is defined as follows

gλk
(u, v) := g(u, v) +

λk

2
∥u− v∥2H1

0 (Ω)

:=
1

2
∥F ′(uk)[u− uk] + F (uk)− f δ∥2L2(Ω) +

λk

2
∥u− v∥2H1

0 (Ω).(23)

We further define the approximation error eλk
g(u, v) := gλk

(u, v) − f(u). Let us first ensure that
the problem (Pu) has a solution.

Theorem 3.10 (Existence of solutions for the subproblems). Given zk+1 ∈ Z , uk ∈ H1
0 (Ω) and

λk > 0 the problem (Pu) has a unique solution.

Proof. The proof follows similar arguments as the proof of 3.2. The uniqueness is a consequence of
the λk-strong convexity of gλk

(·, uk) for every k ∈ N. □

Let us establish some classical estimates for the model function defined in (23).

Theorem 3.11 (Fundamental inequalities for the model-function.). Let 3.1 hold true. Then there are
L1, L2 > 0 such that

∥∇f(u)−∇f(v)∥H−1(Ω) ≤ L1∥u− v∥H1
0 (Ω),(24)

|g(u, v)− f(u)| ≤ L2

2
∥u− v∥2H1

0 (Ω),(25)

for every pair u, v ∈ Uad.
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Proof. We prove (24) first. For this purpose let u, v ∈ Uad and recall that

∇f(u) = F ′(u)∗(F (u)− f δ) ∈ H−1(Ω).

By definition, we obtain for h ∈ H1
0 (Ω) and u, v ∈ Uad

|⟨∇f(u)−∇f(v), h⟩H−1(Ω)| = |⟨F (u)− f δ, F ′(u)[h]⟩L2(Ω) − ⟨F (v)− f δ, F ′(v)[h]⟩L2(Ω)|
≤ (∥F (u)∥L2(Ω) + ∥f δ∥L2(Ω))∥(F ′(u)− F ′(v))[h]∥L2(Ω)

+ ∥F (u)− F (v)∥L2(Ω)∥F ′(u)[h]∥L2(Ω).(26)

It is easy to see, using the L∞-boundedness of Uad, that ∥F (u)∥L2(Ω) + ∥f δ∥L2(Ω) ≤ C1 for some
C1 > 0. Furthermore we obtain, by invoking the continuity of the sampling operator, that

∥F (u)− F (v)∥2L2(Ω) ≤
∫
Ω

∥π(u)− π(v)∥2 dx ≤ C2∥u− v∥2L2(Ω),

for some generic constant C2 > 0, see also 2.3. Using a similar argumentation as in 2.4 and again
the L∞ boundedness of Uad, we also find a constant C3 > 0 with

∥F ′(u)[h]∥2L2(Ω) ≤
∫
Ω

∥π′(u)∥2L(R3,CL)∥h∥
2
2 dx ≤ C3∥h∥2H1

0 (Ω).

Moreover, based on the Lb-Lipschitz-continuity of π we conclude

∥F ′(u)− F ′(v)[h]∥2L2(Ω) ≤
∫
Ω

∥(Dπ(u)−Dπ(v))[h]∥2 dx

≤ L2
b

∫
Ω

∥u− v∥2∥h∥2 dx

≤ L2
b∥u− v∥2L4(Ω)∥h∥2L4(Ω).

After involving suitable embedding constants, we obtain from (26) that (24) holds true.

Let us now prove (25). For this purpose, we let w1, w2 ∈ L2(Ω) arbitrary and observe∣∣∣∣12∥w1 − f δ∥2L2(Ω) −
1

2
∥w2 − f δ∥2L2(Ω)

∣∣∣∣ ≤ ∣∣⟨w2 − f δ, w1 − w2⟩L2(Ω)

∣∣+ 1

2
∥w1 − w2∥2L2(Ω)

Taking w2 = F (v) ∈ L2(Ω) and w1 = F ′(u)[v − u] + F (u) ∈ L2(Ω) we deduce∣∣∣∥F (u) + F ′(u)[v − u]− f δ∥2L2(Ω) − ∥F (v)− f δ∥2L2(Ω)

∣∣∣ ≤ ∥F (v)− f δ∥L2(Ω)B +B2,

with B := ∥F (v)− F (u)− F ′(u)[v − u]∥L2(Ω). We estimate B from above using the inequality

∥F (v)− F (u)− F ′(u)[v − u]∥L2(Ω) ≤ C∥v − u∥2L4(Ω),

for some C > 0. The latter follows from the corresponding property of π, namely

∥π(v)− π(u)− π′(u)[v − u]∥2 ≤
∫ 1

0

∥π′(u+ τ(v − u))− π′(u))∥2∥v − u∥2 dτ.

Since v, u ≤ b almost everywhere, by definition of Uad, π′ is Lipschitz on Uad. Hence we deduce

B2 ≤
∫
Ω

∥π(v)− π(u)− π′(u)[v − u]∥22 dx ≤
C4

2

∫
Ω

∥v − u∥42 dx =
C4

2
∥u− v∥4L4(Ω),

for some C4 > 0 that depends on b. This shows (3.1). Consequently we estimate∣∣∣∥F (u) + F ′(u)[v − u]− f δ∥2L2(Ω) − ∥F (v)− f δ∥L2(Ω)

∣∣∣ ≤ C
1/2
4

2
∥F (v)− f δ∥L2∥v − u∥2L4(Ω)

+
C4

2
∥v − u∥4L4(Ω).(27)
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Note that again ∥u− v∥L4(Ω) ≤ C5(∥v∥L∞(Ω) + ∥u∥L∞(Ω)) ≤ 2C5b for some constant C5 > 0 and
that ∥F (v)−f δ∥L2(Ω) ≤ C6 for v ∈ Uad by the same argumentation. Combining these observations
with the continuous embedding H1

0 (Ω) ↪→ L4(Ω) in (27), we obtain a constant C > 0 with∣∣∣∥F (u) + F ′(u)[v − u]− f δ∥2L2(Ω) − ∥F (v)− f δ∥L2(Ω)

∣∣∣ ≤ C∥v − u∥2H1
0 (Ω).

Thus the proof is finished. □

From the previous result in 3.11 we directly obtain the following majorization property:

f(u) ≤ g(u, uk) +
L2

2
∥u− uk∥2H1

0 (Ω) for all u ∈ Uad.

Given a positive descent constant Cdesc > 0, we may then chose the step-size λk ≥ L2 +Cdesc and
deduce

J(uk+1, zk+1) ≤ J(uk, zk+1) +
L2 − λk

2
∥uk − uk+1∥2H1

0 (Ω)

≤ J(uk, zk+1)−
Cdesc

2
∥uk − uk+1∥2H1

0 (Ω),(28)

where we also used the minimization property of uk+1 ∈ Uad.

The overall algorithm. Let us now describe the overall algorithm to find stationary points of Problem
(P1).

Algorithm 2 Computation of a stationary point of (P1).

1: Get initial values (u0, z0) ∈ H1
0 (Ω)× Z , stopping accuracy ε1, ε2 > 0, accuracies of the nested

subroutine (ηk)k∈N and descent parameter Cdecs > 0.
2: Set k = 0.
3: while no stopping criterion is satisfied, do
4: z-step: Given (uk, zk) ∈ H1

0 (Ω)× Z and accuracy ηk > 0, compute zk+1 ∈ Z
5: using the abstract descent algorithm 1.
6: u-step: Compute a global solution û(λk) ∈ Uad of

(29) min
u∈Uad

gλk
(u, uk) +

α

2
∥∇u∥2L2(Ω) + h(u, z) +R1(u),

7: that satisfies the sufficient descent condition

(30) J(û(λk), zk+1) ≤ J(uk, zk+1)−
Cdesc

2
∥û(λk)− uk∥2H1

0 (Ω).

8: Set uk+1 = û(λk).
9: Set k = k + 1.

10: if ∥uk − uk−1∥H1
0 (Ω) < ε1 and ∥zk − zk−1∥Z < ε2 then

11: stop the while loop.
12: end if
13: end while
14: Return (uk, zk) as reconstruction.

The algorithm above only accepts the next iterate u(λk) ∈ Uad in the u-step (29), if the descent
condition (74) is satisfied. In case L2 > 0 from 3.11 is known in advance, then λk can be chosen
such that λk ≥ L2 + Cdesc to ensure that this descent property holds true. However in practice this
constant is rarely known which is why we have to rely on an adaptive backtracking strategy in order to
find a suitable λk. This strategy is described in the following algorithm.
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Algorithm 3 Backtracking search for algorithm 2

1: Get σ3 ∈ (0, 1), τ > 1 and λ0 > 0
2: Set λ = λ0 and solve (29) with parameter λ > 0 to obtain u(λ).
3: while J(u(λ), zk+1) > J(uk, zk+1)− λσ

2
∥u(λ)− uk∥2H1

0 (Ω)
do

4: Set λ← τλ.
5: Recompute u = u(λ) by solving (29) with the new λ > 0.
6: end while
7: Return û = u(λ) and step size λk := λ.

Let us briefly argue that the line search strategy terminates after finitely many iterations.

Lemma 3.12. Consider the algorithm 2 above together with the line search strategy algorithm 3 at
the k-th iterate. Given uk and the line search parameters (σ, λ0), the iterates of the backtracking
algorithm converge after at most j∗ = logτ (L2/(1 − σ)λ0) iterations. In particular the sequence of
step sizes satisfies Cdesc := σλ0 ≤ λk ≤ λ0τ

j∗ and is bounded in k.

Proof. The proof is standard but we repeat it here for the convenience of the reader. Given a current
step size parameter λ > 0 consider the unique solution u(λ) ∈ H1

0 (Ω) of (29). Using 3.11 we directly
obtain

J(u(λ), zk+1) ≤ J(uk, zk+1)−
(
λ− L2

2

)
∥u(λ)− uk∥2H1

0 (Ω)

with the constant L2 > 0 from 3.11. Hence, whenever σλ ≤ (λ− L2) we also have

J(u(λ), zk+1) ≤ J(uk, zk+1)−
(
σλ

2

)
∥u(λ)− uk∥2H1

0 (Ω),

which is the condition for acceptance in the backtracking algorithm above. Thus when initialized with
λ0 then the line-search stops if στ jλ0 ≤ (τ jλ0−L2) which happens after at most j = logτ (L2/(1−
σ)λ0) steps. □

Let us now state a basic global convergence result for algorithm 2. We are now able to show the global
sublinear convergence result.

Theorem 3.13 (Global convergence to stationarity). Let 3.1 and 3.7 hold true and let (uk, zk)k∈N ⊂
H1

0 (Ω) × Z be a sequence that is generated by algorithm 2 with step sizes λk ≥ Cdesc + L2 > 0
for k ∈ N. In addition assume that the sequence of accuracy parameters are square summable, i.e.∑

k η
2
k < +∞. Then the following holds

(i) The sequence (uk, zk)k∈N is bounded in H1
0 (Ω)× Z .

(ii) The function values converge monotonically to its infimum and the lazy slope converges at
globally sub linear rate, i.e. there is a constant C > 0 such that

min
k=1,...,N

dist(0, ∂J(uk, zk)) ≤ C

√
(J(u0, z0)− J(uN , zN)) +

∑∞
k=0 η

2
k

N
,

Proof. We start with (i). As in the remark after 3.11 we obtain

J(uk+1, zk+1) ≤ J(uk, zk+1)−
Cdesc

2
∥uk+1 − uk∥2H1

0 (Ω)

for every k ∈ N. Taking into account the descent property of algorithm 1, namely

J(uk, zk+1) ≤ J(uk, zk)−
σ1

2

(nk−1)∑
i=0

∥zi+1
k − zik∥2Z
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we directly obtain

J(uk+1, zk+1) ≤ J(uk, zk)−
Cdesc

2
∥uk+1 − uk∥2H1

0 (Ω).

Consequently, since J is bounded from below, the sequence (J(uk, zk))k converges monotonically
to its infimum. By the same arguments as in the existence proof 3.2, we conclude the boundedness of
(uk, zk)k in H1

0 (Ω)× Z . In order to show (ii) we deduce from 3.11, that

eλk
(uk+1, uk) = gλk

(u, uk)− f(u)

=
1

2
∥F ′(uk)[u− uk] + F (uk)− f δ∥2L2(Ω) +

λk

2
∥u− uk∥2H1

0 (Ω) −
1

2
∥F (u)− f δ∥2L2(Ω)

≥ λk − L2

2
∥u− uk∥2H1

0 (Ω) ≥
Cdesc

2
∥u− uk∥2H1

0 (Ω),

where L2 > 0 is the constant from 3.11 and Cdesc > 0 is the given descent constant. We now invoke
the optimality system for uk+1 given zk+1. This yields

(31) 0 ∈ ∇1g(uk+1, uk)− α∆uk+1 +∇uh(uk+1, zk+1) + λk(uk+1 − uk) + ∂R1(uk+1),

which follows from standard (convex) subdifferential calculus in the space H−1(Ω). We set for abbre-
viation

Ak := F ′(uk+1)
∗[F (uk+1)−f δ]−F ′(uk)

∗(F ′(uk)[uk+1−uk]+F (uk)−f δ)−λk(uk+1−uk) ∈ H−1(Ω)

and rewrite (31) as

Ak ∈ ∇f(uk+1)− α∆uk+1 +∇uh(uk+1, zk+1) + ∂R1(uk+1) = ∂uJ(uk+1, zk+1).

Using 3.11 and the chainrule it is not difficult to see that

∥Ak∥H−1(Ω) ≤ C1∥uk+1 − uk∥H1
0 (Ω)

for some C1 > 0. For the z-step we obtain for arbitrary w ∈ ∂R2(zk+1)

∥∇zh(uk+1, zk+1) + w∥Z = ∥∇zh(uk+1, zk+1)−∇zh(uk, zk+1)∥Z + ∥∇zh(uk, zk+1) + w∥Z .
≤ C2∥uk+1 − uk∥H1

0 (Ω) + ∥∇zh(uk, zk+1) + w∥Z ,

where we used 3.1 H3. in the last inequality to find the constant C2 > 0. We further observe by the
minimization property, that

eλk
(uk+1, uk) = gλk

(uk+1, uk)− f(uk+1)

≤ f(uk) +
α

2
∥∇uk∥2L2(Ω) + h(uk, zk+1) +R2(zk+1) +R1(uk)

− α

2
∥∇uk+1∥2L2(Ω) − h(uk+1, zk+1)−R1(uk+1)−R2(zk+1)− f(uk+1).

Using the fact that h(uk, zk+1) +R2(zk+1) ≤ h(uk, zk) +R2(zk) by the property (20), we infer

eλk
(uk+1, uk) ≤ J(uk, zk)− J(uk+1, zk+1).

Consequently, from all previous inequalities, we deduce for every k ∈ N

∥Ak∥2H−1(Ω) + ∥∇zh(uk+1, zk+1) + w∥2Z ≤ (C2
1 + 2C2

2)∥uk+1 − uk∥2H1
0
+ 2∥∇zh(uk, zk+1) + w∥2Z

≤ 2(C2
1 + 2C2

2)

Cdesc

eλk
(uk+1, uk) + 2∥∇zh(uk, zk+1) + w∥2Z

≤ 2(C2
1 + 2C2

2)

Cdesc

(J(uk, zk)− J(uk+1, zk+1))

+ 2∥∇zh(uk, zk+1) + w∥2Z .(32)
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By the sum-rule for the convex subdifferential (cf. [9]) and 3.4 including the remark below, we conclude
that

(Ak,∇zh(uk+1, zk+1) + w) ∈ ∂J(uk+1, zk+1)

and therefore, by definition of the lazy slope, also

dist(0, ∂J(uk+1, zk+1))
2 ≤ 2(C2

1 + 2C2
2)

Cdesc

(J(uk, zk)− J(uk+1, zk+1))+2∥∇zh(uk, zk+1)+w∥2Z .

Taking the infimum over all w ∈ ∂R2(zk+1) we deduce

dist(0, ∂J(uk+1, zk+1))
2 ≤ 2(C2

1 + 2C2
2)

Cdesc

(J(uk, zk)− J(uk+1, zk+1)) + 2ηk.

Summing from 0 to N − 1 in turn leads to

N−1∑
k=0

dist(0, ∂J(uk+1, zk+1))
2 ≤ 2(C2

1 + 2C2
2)

Cdesc

(J(u0, z0)− J(uN , zN)) + 2
N−1∑
k=0

η2k.

Consequently, with C :=
√

max(2, 2(C2
1 + C2

2)/Cdesc) > 0, we obtain

(33) min
k=1,...,N

dist(0, ∂J(uk, zk)) ≤ C

√
(J(u0, z0)− J(uN , zN)) +

∑N−1
k=0 η2k

N
,

which proves the assertion in (ii). □

3.2. Local convergence analysis under KL-inequality. In this section we investigate local strong
convergence of the overall algorithm 2. We are particularly interested in conditions, under which we
can maintain fast local convergence of the Levenberg-Marquardt algorithm. For this purpose we need
slightly more restrictive assumptions, compared to the requirements in the previous subsection.

Assumption 3.14 (For the local convergence analysis). Let (xk)k = (uk, zk)k denote the sequence
generated by algorithm 2. As (xk)k is bounded, there exists a weak limit point (u∗, z∗) ∈ H1

0 (Ω)×Z .
We assume throughout this section the following conditions:

C1. The operator F : H1
0 (Ω) → L2(Ω) is twice continuously differentiable. This is true for the

qMRI problem, for instance, if n ≤ 3, see 2.4.
C2. For any weak accumulation point (u∗, z∗), there is a κ > 0 and a stationary point u∗(z∗) ∈

H1
0 (Ω) of J(·, z∗), such that

(34) ⟨∇2fα(u∗(z∗))[h], h⟩H−1(Ω) ≥
κ

2
∥h∥2H1

0 (Ω) for every h ∈ H1
0 (Ω).

C3. For any fixed given u∗ ∈ H1
0 (Ω), the function z 7→ g(z) = h(u∗, z) + R2(z) satisfies the

KL-inequality with exponent β = 1 − 1/q, q > 2 at z∗, i.e. there are constants η, CKL > 0
and a radius εKL > 0 such that

(35) g(z)− g(z∗) ≤ CKL dist(0, ∂zg(z))
q

whenever g(z∗) < g(z) < g(z∗) + η and z ∈ BεKL
(z∗). Note that here, the quantities

q, εKL, CKL, η depend on u∗.

Remark 3.15 (General KL-inequality). The KL-inequaltity with a given exponent is only a special case
of the general KL inequality which is investigated in [6, 7] and has the form

(36) φ′(g(z)− g(z∗)) dist(0, ∂ug(z)) ≥ 0.
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For a certain concave C1-function φ : (0, η) → R+, also called desingularization function. We
directly see that we obtain (35) from (36) by using φ(t) = C1−β

KL tβ . We will not go further into details
here and refer to [7] for details.

Remark 3.16 (Discussion of 3.14.). The additional conditions, in particular C2. are necessary in order
to apply the generalized implicit function theorem by Robinson, [26, 38], which is important to get a
local Lipschitz continuous parameterization z 7→ u∗(z) from z to a stationary point u∗(z) around
z∗ ∈ Z . The assumption C2. has become a standard tool in finite dimensional optimization during the
recent years, cf. [6, 7, 15]. The KL-inequality can be verified for a large number of functions using the
theory of real algebraic functions or more generally for functions definable in an o-minimal structure,
cf. [7, 13, 47] and the references therein. Here a large KL-exponent β ∈ (0, 1] (corresponding to
a q → ∞) is usually connected to fast local convergence behaviour as it increases the sharpness
around the stationary set. Using the aforementioned toolboxes from real-algebraic geometry in finite
dimensions, it is often easy to infer the existence of some KL-exponent β ∈ (0, 1). However the
computation of a concrete β for a certain objective is usually very difficult. We refer to [41, 61] for
an overview on existing approaches. Extensions to infinite dimensions are discussed in [20, 13, 35]
with applications to gradient-flow problems. In the infinite dimensional setup, the computation of KL-
exponents is even more delicate, as the finite dimensional toolbox, using the theory of real algebraic
geometry is to the best of the authors knowledge not available.

Note that by the assumptions we have that u∗ ∈ Uad satisfies a quadratic growth property around
u∗ in u-direction. However, for the subsequent part, we need uniform growth properties, for which the
following lemma forms the basis.

Lemma 3.17 (Uniform Taylor bound). Let u∗ ∈ H1
0 (Ω) such that

⟨∇fα(u∗)[h], h⟩H−1(Ω) ≥
κ

2
∥h∥2H1

0 (Ω) for all h ∈ H1
0 (Ω).

Then there is an ε > 0 such that

fα(u) ≥ fα(u0) + ⟨∇fα(u0), u− u0⟩H−1(Ω) +
κ

8
∥u− u0∥2H1

0 (Ω),

whenever ∥u0 − u∗∥H1
0 (Ω) < ε and ∥u0 − u∥H1

0 (Ω) < ε.

Proof. The proof is a consequence of Taylors formula with integral remainder, i.e.

fα(u) = fα(u0) + ⟨∇fα(u0), u− u0⟩H−1(Ω) +
1

2
⟨∇2fα(u0)[u− u0], u− u0⟩H−1(Ω)

+

∫ 1

0

(1− τ)⟨[∇2fα(u0 + τ(u− u0))−∇2fα(u0)][u− u0], u− u0⟩H−1(Ω) dτ.

DOI 10.20347/WIAS.PREPRINT.3135 Berlin 2024



Dictionary learning based regularization in quantitative MRI 21

Adding and subtracting ⟨∇2fα(u∗)[u− u0], u− u0⟩H−1(Ω) and using the assumptions, we deduce

fα(u) = fα(u0) + ⟨∇fα(u0), u− u0⟩H−1(Ω) +
κ

4
∥u− u0∥2H1

0 (Ω)

+
1

2
⟨[∇2fα(u0)−∇2fα(u∗)][u− u0], u− u0⟩H−1(Ω)

+

∫ 1

0

(1− τ)⟨[∇2fα(u0 + τ(u− u0))−∇2fα(u0)][u− u0], u− u0⟩H−1(Ω) dτ

≥ fα(u0) + ⟨∇fα(u0), u− u0⟩H−1(Ω) +
κ

4
∥u− u0∥2H1

0 (Ω)

− 1

2
∥∇2fα(u0)−∇2fα(u∗)∥L(H1

0 (Ω),H−1(Ω))∥u− u0∥2H1
0 (Ω)

−
∫ 1

0

(1− τ)∥∇2fα(u0 + τ(u− u0))−∇2fα(u0)∥L(H1
0 (Ω),H−1(Ω))∥u− u0∥2H1

0 (Ω) dτ.(37)

As fα : H1
0 (Ω)→ R is two times continuously differentiable, we may take ε1 > 0, such that

(38) ∥∇2fα(v1)−∇2fα(v2)∥L(H1
0 (Ω),H−1(Ω)) ≤

κ

8

for all v1, v2 ∈ H1
0 (Ω) such that ∥vi − u∗∥H1

0 (Ω) < ε1 for i = 1, 2. Hence for ε := ε1/2, we obtain
for ∥u− u0∥H1

0 (Ω) < ε and ∥u0 − u∗∥H1
0 (Ω) < ε that obviously ∥u0 − u∗∥H1

0 (Ω) < ε < ε1 and

∥u0 + τ(u− u0)− u∗∥H1
0 (Ω) ≤ ∥u− u0∥H1

0 (Ω) + ∥u0 − u∗∥H1
0 (Ω) < ε+ ε = ε1

for τ ∈ (0, 1). Hence, from (37) and(38), we obtain

fα(u) ≥ fα(u0) + ⟨∇fα(u0), u− u0⟩H−1(Ω) +
(κ
4
− κ

16
− κ

16

)
∥u− u0∥2H1

0 (Ω),

which yields the desired estimate. □

We will now show that the set-valued map, which sends z to the set of stationary points of J(·, z) is
indeed a single valued and Lipschitz continuous map.

Lemma 3.18 (Implication Robinsons implicit function theorem). Let 3.14 hold true at a weak accu-
mulation point (u∗, z∗) ∈ H1

0 (Ω) × Z and denote again by u∗(z∗) ∈ H1
0 (Ω) a stationary point of

J(·, z∗) for which (34) holds true. Then there is an ε > 0 such that the solution mapping

ω : Z ⇒ H1
0 (Ω) ω(z) = ∂uJ(·, z)−1(0)

admits a single-valued localization S : Z → H1(Ω) which satisfies S(z∗) = u∗(z∗) and which is
Lz∗-Lipschitz continuous in Bε(z

∗) for some Lz∗ > 0. Moreover, whenever ∥z∗ − zk+1∥Z < ε the
following inequalities hold for a constant C1 > 0 independend of k ∈ N:

∥S(zk+1)− uk∥H1
0 (Ω) ≤ C1∥uk+1 − uk∥H1

0 (Ω),(39)

J(S(zk+1), zk+1) +
κ

8
∥S(zk+1)− S(z∗)∥2H1

0 (Ω) ≤ J(S(z∗), zk+1),(40)

∥S(zk+1)− S(z∗)∥H1
0 (Ω) ≤ Lz∗∥zk+1 − z∗∥Z .(41)

Proof. For the proof we will summarize both convex terms into one R̃1(u) = R1(u) + IUad
(u) and

use the notation R1 for both. By assumption, u∗(z∗) ∈ ω(z∗) or equivalently, u∗(z∗) solves the
generalized equation

0 ∈ G(u, z∗) + ∂R1(u) := ∇f(u)− α∆u+∇uh(u, z
∗) + ∂R1(u),
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posed in H−1(Ω). We want to apply the generalized implicit function by Robinson in the version [25],
Theorem 8.5, see also [26]. For this purpose consider an approximated generalized equation around
z∗ ∈ Z , namely

0 ∈ Gz∗(u) + ∂R1(u),

with Gz∗ : H
1
0 (Ω)→ H−1(Ω) being defined as

Gz∗(u) := ∇f(u∗(z∗)) +∇2f(u∗(z∗))[u− u∗(z∗)]− α∆u+∇uh(u, z
∗).

In order to apply the generalized implicit function theorem, we need to show the strong regularity of
the linearized equation. For this purpose, it is sufficient to verify that the solution map of this equation,
i.e.

Sz∗ : H
−1(Ω)→ H1

0 (Ω) Sz∗(p) = (Gz∗ + ∂R1)
−1(p),

has a Lipschitz-continuous single valued localization around p = 0. This follows from the fact that
p ∈ Gz∗(u) + ∂R1(u) if and only if

Sz∗(p) ∈ argmin
u∈H1

0 (Ω)

⟨∇2f(u∗(z∗))[u−u∗(z∗)], u−u∗(z∗)⟩H−1(Ω)+
α

2
∥∇u∥2L2(Ω)+h(u, z∗)−⟨p, u⟩H−1(Ω)+R1(u).

As this problem is κ-strongly convex, with κ > 0 from 3.14, it is a standard result that the associated
solution mapping Sz∗ is single-valued and 1/κ -Lipschitz continuous. Moreover, we note that the
approximation error

e(u, z) := Gz∗(u)−G(u, z) = ∇f(u)−∇f(u∗(z∗))−∇2f(u∗(z∗))[u− u∗(z∗)],

does not depend on z, which implies for the partial uniform Lipschitz-modulus L̂ipu∗(Gz∗−G; (u∗(z∗), z∗))
as introduced in [25, p.8], that

L̂ipu∗(Gz∗ −G; (u∗(z∗), z∗)) = lim sup
u1,u2→u∗(z∗)

z→z∗

∥e(u1, z)− e(u2, z)∥H−1(Ω)

∥u1 − u2∥H1
0 (Ω)

= lim sup
u1,u2→u∗(z∗)

∥∇f(u1)−∇f(u2)−∇2f(u∗(z∗))[u1 − u2]∥H−1(Ω)

∥u1 − u2∥H1
0 (Ω)

.

Using the mean value theorem, we obtain

∥∇f(u1)−∇f(u2)−∇2f(u∗(z∗))[u1 − u2]∥H−1(Ω)

≤
(∫ 1

0

∥∇2f(u2 + τ(u1 − u2))−∇2f(u∗(z∗))∥H−1(Ω) dτ

)
∥u1 − u2∥H1

0 (Ω),

and henceforth

L̂ipu∗(Gz∗ −G; (u∗(z∗), z∗)) = lim sup
u1,u2→u∗(z∗)

∥∇f(u1)−∇f(u2)−∇2f(u∗(z∗))[u1 − u2]∥H−1(Ω)

∥u1 − u2∥H1
0 (Ω)

.

≤ lim sup
u1,u2→u∗(z∗)

(∫ 1

0

∥∇2f(u2 + τ(u1 − u2))−∇2f(u∗(z∗))∥H−1(Ω) dx

)
→ 0,

as u1, u2 → u∗(z∗). Hence, by [25, Theorem 8.5], the mapping ω : Z ⇒ H1
0 (Ω) has a single

valued Lipschitz continuous localization S : Z → H1
0 (Ω) in a ball Bε(z

∗) with a Lipschitz-constant
0 < Lz∗ ≲ 1/κ. Thus, the first part of 3.18 is shown. Now, consider the first order optimality condition
for deriving uk+1 given z = zk+1, as in (Pu). In this way we obtain the following variational inequality:

(42) R1(u) ≥ −⟨∇f(uk+1)−α∆uk+1 +∇uh(uk+1, zk+1)− qk, u− uk+1⟩H−1(Ω) +R1(uk+1),

for every u ∈ H1
0 (Ω), where we defined qk ∈ H−1(Ω) as

qk := F ′(uk+1)
∗[F (uk+1)− f δ]− F ′(uk)

∗(F ′(uk)[uk+1 − uk])− λk(uk+1 − uk)
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viewed as an element in H−1(Ω). Considering as well the first order optimality conditions for the
stationary point S(zk+1) ∈ H1

0 (Ω), we obtain again a variational inequality of the second kind,
(43)
R1(u) ≥ −⟨∇f(S(zk+1))− α∆S(zk+1) +∇uh(S(zk+1), zk+1), u− S(zk+1)⟩+R1(S(zk+1)),

for all u ∈ H1
0 (Ω). Adding (42) with u = S(zk+1) and (43) with u = uk+1 yields

0 ≥ ⟨∇f(S(zk+1))−∇f(uk), S(zk+1)− uk+1⟩H−1(Ω) + α∥∇(S(zk+1)− uk+1)∥2L2(Ω)

+ ⟨∇uh(S(zk+1), zk+1)−∇uh(uk+1, zk+1), S(zk+1)− uk+1⟩H−1(Ω) − ⟨qk, S(zk+1)− uk+1⟩H−1(Ω).

By shifting the term with qk on the other side, we obtain the desired bound:

∥S(zk+1)− uk+1∥2H1
0 (Ω) ≤ ∥qk∥H−1(Ω)∥S(zk+1)− uk+1∥H1

0 (Ω)

≤ C̃∥uk+1 − uk∥H1
0 (Ω)∥S(zk+1)− uk+1∥H1

0 (Ω)

for a constant C̃ > 0. The estimate ∥qk∥H−1(Ω) ≤ C̃∥uk+1 − uk∥H1
0 (Ω) follows as in the proof of

3.13. If ∥u∗(zk+1)− uk+1∥H1
0 (Ω) = 0, (39) is obvious. For the other case we obtain from the triangle

inequality

(44) ∥u∗(zk+1)− uk∥H1
0 (Ω) ≤ (C̃ + 1)∥uk+1 − uk∥H1

0 (Ω),

thus (39) follows with C1 = C̃ +1. By possible making ε > 0 smaller we may deduce (40) from 3.17:
By this lemma there is ε1 > 0, such that

fα(u) ≥ fα(S(zk+1)) + ⟨∇fα(S(zk+1)), u− S(zk+1)⟩H−1(Ω) +
κ

8
∥u− S(zk+1)∥2H1

0 (Ω),

whenever ∥u− S(zk+1)∥H1
0 (Ω) < ε1 and ∥S(z∗)− S(zk+1)∥H1

0 (Ω) < ε1. Hence, if ∥z − zk+1∥Z <

ε1/Lz∗ , we deduce

fα(S(z∗)) ≥ fα(S(zk+1)) + ⟨∇fα(S(zk+1)), S(z
∗)− S(zk+1)⟩H−1(Ω) +

κ

8
∥S(z∗)− S(zk+1)∥2H1

0 (Ω),

from which (40) follows by using the convexity of h(·, zk+1) + R1 and the first order stationarity of
S(zk+1) for J(·, zk+1). □

Remark 3.19. In the following part of the article, we will always use the notation

S : Bε(z
∗) ∩ Z → H1

0 (Ω)

for the single valued localization of ω from 3.18.

Using 3.18 we show, that any weak accumulation point (u∗, z∗) of the sequence that satisfies C2. of
3.14 is a stationary point of J .

Theorem 3.20 (Strong subsequential convergence to stationary points). Assume that (xk)k∈N ⊂
H1

0 (Ω)×Z is generated by algorithm 2 and let x∗ = (u∗, z∗) ∈ H1
0 (Ω)×Z be a weak accumulation

point of that sequence. If C2. of 3.14 holds true for a stationary point u∗(z∗) of J(·, z∗), then u∗ =
u∗(z∗) and (u∗, z∗) is a limiting stationary point of J .

Proof. According to 3.18, there is a radius ε > 0 such that the solution map is well-defined and has
a single valued localization S : Z → H1

0 (Ω) which is Lz∗-Lipschitz continuous on Bε(z
∗). As z∗

is a weak accumulation point, there is, by finite dimensionality of Z , a subsequence (zkm)m∈N with
zkm → z∗ as m→∞ and with zkm ∈ Bε(z

∗) for all m ∈ N. Moreover, we obtain by (3.18)

∥ukm − S(z∗)∥H1
0 (Ω) ≤ ∥ukm − S(zkm)∥H1

0 (Ω) + ∥S(zkm)− S(z∗)∥H1
0 (Ω)

≤ ∥ukm − ukm+1∥H1
0 (Ω) + Lz∗∥zkm − z∗∥Z → 0 as m→∞.
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Here, we used, that ∥uk − uk+1∥H1
0 (Ω) → 0 as k → ∞ and the choice of the subsequence.

Therefore, the subsequence (ukm)m∈N also converges to S(z∗) strongly and we obtain u∗ = S(z∗)
by the uniqueness of weak limit points. We conclude

xkm → x∗ strongly in H1
0 (Ω)× Z,

J(ukm , zkm)→ J(u∗, z∗) by continuity,

dist(0, ∂J(xkm))→ 0, as m→∞.

By 3.5 we infer that (u∗, z∗) is a limiting stationary point of J . □

As of now, we only considered subsequential convergence of the sequence, and investigated sub-
linear convergence rates. However we are now interested, which conditions are necessary in order
to maintain fast local convergence. However, before presenting the corresponding theorem, we need
slightly more general descent inequalities. Note that 3.14 is not needed for the following lemma.

Lemma 3.21 (Fundamental inequalities). For arbitrary u ∈ Uad and step sizes λk − L2 ≥ Cdesc the
following inequalities hold true for any k ∈ N and u ∈ H1

0 (Ω)

J(u, zk+1) ≥ J(uk+1, zk+1) +

(
2λk − L2

2

)
∥uk+1 − uk∥2H1

0 (Ω) −
(
λk + L2

2

)
∥u− uk∥2H1

0 (Ω),

(45)

J(uk, zk) ≥ J(uk+1, zk+1) +

(
2λk − L2

2

)
∥uk+1 − uk∥2H1

0 (Ω) + σ1

nk−1∑
i=1

∥zi+1
k − zik∥2Z .

(46)

Here, L2 > 0 denotes again the constant in 3.11.

Proof. By the definition of J and 3.11 we obtain directly the following inequality

J(u, zk+1) = f(u) +
α

2
∥∇u∥2L2(Ω) + h(u, zk+1) +R1(u) +R2(zk+1)

≥ g(u, uk)−
L2

2
∥u− uk∥2H1

0 (Ω) +
α

2
∥∇u∥2L2(Ω) + h(u, zk+1) +R1(u) +R2(zk+1).

Now we invoke the λk-strong convexity of gλk
(·, uk) with respect to the H1

0 (Ω)-norm, i.e.

(47) gλk
(v, uk) ≥ gλk

(u, uk) + ⟨∇1gλk
(u, uk), v − u⟩H−1(Ω) +

λk

2
∥u− v∥2H1

0 (Ω)
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must hold for any v ∈ H1
0 (Ω). Consequently we estimate:

J(u, zk+1) ≥ gλk
(u, uk)−

(
λk + L2

2

)
∥u− uk∥2H1

0 (Ω)

+
α

2
∥∇u∥2L2(Ω) + h(u, zk+1) +R1(u) +R2(zk+1)

≥ gλk
(uk+1, uk) +

λk

2
∥uk+1 − uk∥2H1

0 (Ω) −
(
λk + L

2

)
∥u− uk∥2H1

0 (Ω)

+
α

2
∥∇u∥2L2(Ω) + h(uk+1, zk+1) +R1(u) +R2(zk+1) by (47).

≥ g(uk+1, uk) +
L2

2
∥uk+1 − uk∥2H1

0 (Ω) +

(
2λk − L2

2

)
∥uk+1 − uk∥2H1

0 (Ω)

−
(
λk + L2

2

)
∥u− uk∥2H1

0 (Ω) +
α

2
∥∇u∥2L2(Ω) + h(uk+1, zk+1) +R1(uk+1) +R2(zk+1)

≥ f(uk+1) +

(
2λk − L2

2

)
∥uk+1 − uk∥2H1

0 (Ω)

−
(
λk + L2

2

)
∥u− uk∥2H1

0 (Ω) + h(uk+1, zk+1) +R1(uk+1) +R2(zk+1),

which yields the desired estimate (45). We continue by setting u = uk in (45) and obtain

J(uk, zk+1) ≥ J(uk+1, zk+1) +

(
2λk − L2

2

)
∥uk+1 − uk∥2H1

0 (Ω).

Using the descent property of nested inner loop algorithm, (20) for some σ1 > 0, we further conclude

J(uk, zk+1) ≤ J(uk, zk)− σ1

nk−1∑
i=1

∥zi+1
k − zik∥2Z .

Combining the previous two inequalities yields (46). □

Let us now prove, that strong local linear convergence to a stationary point is maintained, if the function
z∗ 7→ h(u∗, z) + R(z) satisfies the KL-condition with exponent q > 2 at z∗. The proof strategy is
inspired by the work [27].

Theorem 3.22 (Local convergence of (2)). Let (xk)k ⊂ H1
0 (Ω) × Z be generated by algorithm 2

such that 3.14 holds true at a weak accumulation point x∗ ∈ H1
0 (Ω)×Z . Moreover, assume that the

accuracies of the inner loop are given by ηk ≲ k−γ , γ > 1/2. Then, there is a radius r > 0 such that
if z0 ∈ Br(z

∗), the following statements hold true:

(i) The function values converge linearly, i.e. there is Q1 ∈ (0, 1) such that

(48) J(uk+1, zk+1)− J(u∗, z∗) ≤ Q1 (J(uk, zk)− J(u∗, z∗)) for any k ∈ N

(ii) The iterates also converge with a linear rate, i.e. there exists a C > 0 and a Q2 ∈ (0, 1) such
that

(49)
√
∥uk − u∗∥2

H1
0 (Ω)

+ ∥zk − z∗∥2Z ≤ CQk
2 (J(u0, z0)− J(u∗, z∗)) for any k ∈ N

Proof. As the proof is a bit technical, we divide it into parts. First note, by 3.20 we obtain that (u∗, z∗) ∈
Uad × Z is even a strong accumulation point and also limiting-stationary for the objective J . Taking a
strongly convergent subsequence and the continuity of J into account, we even infer that

(50) J(xk)→ J(x∗), as k →∞,
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which will be important in order to make the application of the desingularization φ : (0, η) → R+

possible.

Step I: There is an ε > 0 and a Q1 ∈ (0, 1) independent of k ∈ N such that if ∥zk+1 − z∗∥Z < ε
implies

(51) J(uk+1, zk+1)− J(u∗, z∗) ≤ Q1 (J(uk, zk)− J(u∗, z∗)) .

We start with proving (51). First let us fix ε1 > 0 according to 3.18 such that z 7→ S(z) ∈ H1
0 (Ω) is

well defined and single valued for all z ∈ Bε1(z
∗) and such that the inequalities (39), (40), (41) hold

true for ∥zk+1−z∗∥ ≤ ε1. An application of the general descent 3.21 with u = S(zk+1) consequently
yields

J(S(zk+1), zk+1) ≥ J(uk+1, zk+1)+

(
2λk − L2

2

)
∥uk+1−uk∥2H1

0 (Ω)−
(
λk + L2

2

)
∥S(zk+1)−uk∥2H1

0 (Ω)

If ∥S(zk+1)− uk∥2H1
0 (Ω)

= 0, nothing is to show. Otherwise we obtain from the latter inequality

J(uk+1, zk+1)− J(S(zk+1), z
k+1) ≤ ∥uk+1 − uk∥2H1

0 (Ω)

((
λk + L2

2

)
C2

1 −
(
2λk − L2

2

))
=: CL,λk

∥uk+1 − uk∥2H1
0 (Ω),(52)

where C1 > 0 is the constant from 3.18 with ∥S(zk+1) − uk∥H1
0 (Ω) ≤ C1∥uk − uk+1∥H1

0 (Ω). If
J(u∗, zk+1) ≤ J(u∗, z∗) the quadratic growth in 3.17 implies J(u∗(zk+1), zk+1) ≤ J(u∗, z∗) as
well. Consequently from (52) we obtain

J(uk+1, zk+1)− J(u∗, z∗) ≤ CL,λk
∥uk+1 − uk∥2H1

0 (Ω).(53)

Invoking the descent inequality (46), we find a generic constant C2 > 0 such that

(54) J(uk+1, zk+1)− J(u∗, z∗) ≤ C2 (J(uk, zk)− J(uk+1, zk+1)) .

If instead J(u∗, zk+1) > J(u∗, z∗), we deduce from the KL-inequality with exponent β = 1− 1/q ∈
(0, 1/2) and the continuity of J the existence of an εKL > 0 with J(u∗, z∗) < J(u∗, zk+1) <
J(u∗, z∗) + η and

J(u∗, zk+1)− J(u∗, z∗) = h(u∗, zk+1) +R2(zk+1)− h(u∗, z∗)−R2(z
∗)

≤ CKL dist(0, ∂zJ(u
∗, zk+1))

q,

whenever ∥zk+1 − z∗∥Z ≤ εKL. Application of the triangle inequality yields

J(u∗, zk+1)− J(u∗, z∗) ≤ CKL dist(0, ∂zJ(u
∗, zk+1))

q

≤ CKL

(
dist(0, ∂zJ(uk, zk+1) + C3∥u∗ − uk∥H1

0 (Ω)

)q
≤ CKL(dist(0, ∂zJ(uk, zk+1) + C3∥u∗ − u∗(zk+1)∥H1

0 (Ω)

+ C3∥u∗(zk+1)− uk∥H1
0 (Ω))

q.

For a constant C3 > 0 that bounds the Lipschitz constant of ∇zh(·, zk+1). From (21), we know that
dist(0, ∂zJ(uk, zk+1)) ≤ σ2∥znk

k − znk−1
k ∥Z and by 3.18 we have

∥u∗(zk+1)− uk∥H1
0 (Ω) ≤ Lz∗∥uk+1 − uk∥H1

0 (Ω).
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Hence, also using
∑n

i=1 ai ≤
√
n
√∑n

i=1 a
2
i for ai ≥ 0 we estimate

J(u∗, zk+1)− J(u∗, z∗) ≤ CKL

(
σ2∥znk

k − znk−1
k ∥Z + C1C3∥uk+1 − uk∥H1

0 (Ω)

+C3∥u∗(zk+1)− u∗∥H1
0 (Ω)

)q
≤ CKL

(
σ2
2∥z

nk
k − znk−1

k ∥2Z + (C1C3)
2∥uk+1 − uk∥2H1

0 (Ω)

+C2
3∥u∗(zk+1)− u∗∥2H1

0 (Ω)

) q
2

≤ CKL

(
σ2
2

nk−1∑
i=0

∥znk
k − znk−1

k ∥2Z + (C1C3)
2∥uk+1 − uk∥H1

0 (Ω)

+ C2
3∥u∗(zk+1)− u∗∥2H1

0 (Ω)

) q
2

.

Using the convexity of x 7→ xq/2 as q > 2 and summarizing all constants, we infer the existence of a
constant C4 > 0 such that

J(u∗, zk+1)− J(u∗, z∗) ≤ C4

(
nk−1∑
i=0

∥zi+1
k − zik∥2Z + ∥uk+1 − uk∥2H1

0 (Ω)

) q
2

+ C4

(
∥u∗(zk+1)− u∗∥2H1

0 (Ω)

) q
2
.

Using the descent inequality (46), we deduce

J(u∗, zk+1)− J(u∗, z∗) ≤ C4 (J(uk, zk)− J(uk+1, zk+1))
q
2 + C4

(
∥u∗(zk+1)− u∗∥2H1

0 (Ω)

) q
2
.

(55)

Now choose min(εKL, ε1) ≥ ε2 > 0, such that ∥z∗ − zk+1∥Z < ε2 implies

(56) ∥u∗(zk+1)− u∗∥q−2

H1
0 (Ω)
≤ κ

8C4

.

Also taking into account (40), we obtain for ∥zk+1 − z∗∥Z < ε2 from (55) that

J(u∗(zk+1), zk+1)− J(u∗, z∗) ≤ C4 (J(uk, zk)− J(uk+1, zk+1))
q
2

≤ C5(J(uk, zk)− J(uk+1, zk+1)),(57)

where we introduced a constant C5 > 2C4 > 0 possibly larger then 2C4 (since xq/2 ≤ x only for
x ≤ 1). Now adding (52) and (57) we obtain

J(uk+1, zk+1)− J(u∗, z∗) ≤ CL,λk
∥uk+1 − uk∥2H1

0 (Ω) + C5 (J(uk, zk)− J(uk+1, zk+1)) .

Recall that the inequality above holds only in the case J(u∗, zk+1) > J(u∗, z∗). However by taking
into account also the other case in (54) and again invoking the descent inequality (46), we find a
generic constant C > 0, such that

(58) J(uk+1, zk+1)− J(u∗, z∗) ≤ C (J(uk, zk)− J(uk+1, zk+1)) .

The previous inequality (58) can be equivalently rephrased as follows, which will ensure the linear
convergence of function values later on:

J(uk+1, zk+1)− J(u∗, z∗) ≤
(

C

1 + C

)
(J(uk, zk)− J(u∗, z∗))

=: Q1 (J(uk, zk)− J(u∗, z∗)) .(59)

The inequalities (58) and (59) only hold under the premise, that ∥zk+1 − z∗∥ ≤ ε := ε2. This
eventually proves (51) and therefore step I.
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Step II: Show, that there is an 0 < r ≤ ε such that z0 ∈ Br(z
∗) implies zk ∈ Bε(z

∗) for all k ∈ N.

We will construct the radius r > 0 iteratively. We start choosing r := ε > 0 such that z0 ∈ Bε(z
∗)

where ε > 0 is given from Step I. Then, using the stopping index nk ∈ N in algorithm 1 we recall
from 3.9 that

(60) nk ≤
2k2γ(J(xk)− J(xk+1))

σ1

for all k ∈ N.

Hence we deduce for the next iterate,

∥z1 − z∗∥Z ≤ ∥z1 − z0∥X + ∥z0 − z∗∥Z

≤

√√√√n0

n0−1∑
i=0

∥zi+1
0 − zi0∥2Z + ∥z0 − z∗∥Z

≤
√

2/σ1(J(x0)− J(x1) + ∥z0 − z∗∥Z
≤
√

2/σ1(J(x0)− J(x∗)) + ∥z0 − z∗∥Z ,(61)

where the last inequality follows from J(xk) ≥ J(x∗) for all k, by the remark at the beginning of the
proof. Invoking continuity of J we may reduce r > 0 such that also z1 ∈ Bε(z

∗).
Now we assume that zj ∈ Bε(z

∗) for j = 0, . . . , k for some k ∈ N. We take very briefly the general
viewpoint of KL-functions in (36) and call the desingularization function φ : (0, η) → R+ as in the
convergence analysis in [7]. By eventually making r > 0 smaller we may assume, again by continuity
of J , that J(xj) < J(x∗)+η for all j ≥ 0. Hence the KL-inequality is applicable for zj , j = 0, . . . , k.
We then deduce by concavity of φ that

(62) φ(J(xj)− J(x∗))− φ(J(xj+1)− J(x∗)) ≥ φ′(J(xj)− J(x∗))(J(xj)− J(xj+1)).

Note, that for the KL-exponent β = 1 − 1/q with q > 2, we have that φ(t) = tβ and φ′(t) ≲ t−
1
q .

Therefore we estimate first for general j ≥ 0

φ′(J(xj)− J(x∗)) ≳
1

(J(xj)− J(x∗))
1
q

≳
1

Q
j
q

1 (J(x0)− J(x∗))
1
q

,(63)

where we used zj ∈ Bε(z
∗) for j = 0, . . . , k and inequality (51) from Step I. From the descent

inequality (46) we infer that there exists a constant C6 > 0 with

J(xj)− J(xj+1) ≥ C6∥uj+1 − uj∥2H1
0 (Ω) + C6

nj−1∑
i=0

∥zi+1
j − zij∥2Z

≥ C6∥uj+1 − uj∥2H1
0 (Ω) +

C6

nj

∥zj+1 − zj∥2Z

≥ C6

nj

(
∥uj+1 − uj∥2H1

0 (Ω) + ∥zj+1 − zj∥2Z
)
=

C6

nj

∥xj+1 − xj∥2X .(64)

Then it is concluded from (62), (63) and (64) that

C6

nj

∥xj+1 − xj∥2X ≤ Q
j
q

1 (J(x0)− J(x∗))
1
q (φ(J(xj)− J(x∗))− φ(J(xj+1)− J(x∗))) ,(65)
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and henceforth

∥xj+1 − xj∥X ≲
√
njQ

j
2q

1 (J(x0)− J(x∗))
1
2q (φ(J(xj)− J(x∗))− φ(J(xj+1)− J(x∗)))

1
2

≤ 2njQ
j
q

1 (J(x0)− J(x∗))
1
q + 2 (φ(J(xj)− J(x∗))− φ(J(xj+1)− J(x∗)))

≲ 2j2γQ
j
q

1 (J(x0)− J(x∗))
1
q + 2 (φ(J(xj)− J(x∗))− φ(J(xj+1)− J(x∗))) ,(66)

where we used Young’s inequality in the second step and 3.9 for the estimate of nj ≲ j2γ in the last.
We deduce by summing from j = 0, . . . , k and using (66) that

∥zk+1 − x∗∥Z ≤ ∥xk+1 − x0∥X + ∥z0 − z∗∥Z

≤
k∑

j=0

∥xj+1 − xj∥X + ∥z0 − z∗∥Z

≲ (J(x0)− J(x∗))
1
q

k∑
j=0

j2γQ
j
q

1

+ 2
k∑

j=0

(φ(J(xj)− J(x∗))− φ(J(xj+1)− J(x∗))) + ∥z0 − z∗∥Z

≲ (J(x0)− J(x∗))
1
q

∞∑
j=0

j2γQ
j
q

1

+ φ(J(x0)− J(x∗))− φ(J(xk+1)− J(x∗)) + ∥z0 − z∗∥Z ,

where
∑∞

j=0(j)
2αQj

1 < +∞. Denote the constant hidden in the ” ≲ ” to be C7 > 0 and if

(67) C7(J(x0)− J(x∗))
1
q

+∞∑
j=0

j2γQ
j
q

1 + C7φ(J(x0)− J(x∗)) + C7∥z0 − z∗∥Z < ε,

then also zk+1 ∈ Bε(z
∗). This is possible by choosing a smaller r > 0. Eventually, by induction we

have shown Step II. It is important to note, that actually no constant hidden in ” ≲ ” above does
depend on k.

Step III: Show that the assertions of the theorem are true.

Using the results from steps I and II, the linear convergence of function values in (i) follows immediately.
Now, let us prove the strong convergence of the sequence (xk)k. By Step I and Step II, we have that
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zk ∈ Bε(z
∗) for all k ≥ 0 and therefore for arbitrary l ∈ N

∥zk+l − zk∥2Z + ∥uk+1 − uk∥2H1
0 (Ω) ≤

k+l∑
j=k

∥zi+1 − zi∥Z + ∥ui+1 − ui∥2H1
0 (Ω)

≤
k+l∑
j=k

nj

(
nj−1∑
i=0

∥zi+1
j − zij∥2Z + ∥uj+1 − uj∥2H1

0 (Ω)

)

≤
k+l∑
j=k

nj (J(xj)− J(x∗))

≲ (J(x0)− J(x∗))
k+l∑
j=k

j2γQj
1

= (J(x0)− J(x∗))Qk
1

l∑
j=0

(j + k)2γQj
1

≲ (J(x0)− J(x∗))Q
k
2
1 Q

k
2
1 k

2γ

+∞∑
j=0

(j + 1)2γQj
1 → 0 as k →∞,(68)

where we used again the definition of the accuracy ηk ≲ k−γ . Hence (xk)k∈N is a Cauchy sequence
in H1

0 (Ω) × Z and converges to some element (ũ, z̃) strongly. As (u∗, z∗) is a weak accumulation
point by assumption we infer (ũ, z̃) = (u∗, z∗). The linear convergence in (iii) follows from (68), by

sending l→∞ and using C = supk Q
k
2
1 k

2γ
∑+∞

j=0(j + 1)2γQj
1 and Q2 = Q

1/2
1 in (49). □

Remark 3.23. Let us comment briefly on the results of 3.22. It is interesting in two different aspects
and it also provides hints on possible future research directions and potential ways to improve the
algorithm.

1. The strong monotonicity of the Hessian of fα, as stated in 3.14, is a somewhat restrictive
condition but a classical assumption in second-order and Gauss-Newton methods to achieve
locally fast convergence (see the classical references [11, 46]). Without the inclusion of the
learning term, i.e. if h(u, z) + R2(z) = 0, the argument in [27] would guarantee locally linear
convergence. However, when the learning term h(u, z) + R2(z) is included, we require an
artificially high KL-exponent q > 2 to preserve locally fast convergence. To benefit practically
from this result, it might be useful to incorporate alternative discrepancy terms h(·, ·) that exhibit
sharper local curvature. This could help improve convergence behavior and enhance the overall
performance of the algorithm. However this is out of the scope of the current article.

2. From the convergence proof above, it becomes evident that the local convergence behavior is
almost entirely determined by the convergence properties of the sequence (zk)k. It is crucial
to ensure that this sequence stays within a potentially very small neighborhood of the station-
ary point z∗. Although this is a strong assumption, and the exact radius ε in 3.22 is unknown
and difficult to verify in practical applications, it highlights the importance of good initialization
for the variable z. This can be achieved through appropriate pre-training. However, a detailed
algorithmic and theoretical investigation of this observation lies beyond the scope of the present
work.
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4. NUMERICAL EXPERIMENTS

We present the numerical results of the nested alternating algorithm applied to the qMRI problem (P0).
For spatial discretization, we adopt the approach from [24], where a simple finite difference scheme is
used. Further details can be found in [24]. In addition, the update steps for the variable z = (D,C)
must be specified. Here, we roughly follow the methods proposed in [50, 52], which apply blind dic-
tionary learning regularization to the linear MRI problem. For the reader’s convenience, the algorithm
from their work, along with some of its key properties, is included in algorithm 5 in the appendix. The
ground truth parameters for our numerical experiments are displayed in Figure 1. The ground truth im-
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FIGURE 1. The set of ground truth parameters T1, T2 (milliseconds) and proton den-
sity ρ (dimensionless).

ages (physical parameters) follow a standard configuration commonly used for testing qMRI methods,
and has been employed in previous studies, such as [23, 24]. To streamline the parameter search and
improve the conditioning of the subproblems, we scaled both the T1 and T2 variables to the range
[0, 250] ms. Although these ranges differ from typical relaxation times, which typically lie in the ranges
T1 ∈ [0, 6000] ms and T2 ∈ [0, 600] ms, this adjustment provides a simplified setting that effectively
demonstrates the performance of our algorithm. while still being relevant for practical applications.

The discrete optimization problem. For our numerical tests, we employ a uniform grid and a finite
differences discretization for the variable u = (ρ, T1, T2). This approach leads us to consider the
space U := Rn1×n2×3, where n1, n2 ∈ N denote the number of pixels in each direction. In our case,
we set n1 = n2 = 256. We also make use of the classical finite difference approximations for the
image gradient, denoted by∇h : Rn1×n2 → Rn1×n2×2, and the Laplace operator with zero boundary
conditions, denoted by ∆h : Rn1×n2 → Rn1×n2 , with a mesh-size h > 0. If ∇h and ∆h are applied
on elements of U , we will use the same notation and apply the operators component wise, i.e.

∇̃h : U → U1 := R3×n1×n2×2, ∇̃hu = (∇hρ,∇hT1,∇hT2),

∆̃h : U → U, ∆̃hu = (∆hρ,∆hT1,∆
hT2),

for u = (ρ, T1, T2) ∈ U . We equip both spaces, U,U1, with the following scaled norms, defined by:

∥u∥2U :=
h2

M2
1

∥ρ∥22 +
h2

M2
2

∥T1∥22 +
h2

M2
3

∥T2∥22,(69)

∥v∥2U1
:=

h2

M2
1

∥v1∥22 +
h2

M2
2

∥v2∥22 +
h2

M2
3

∥v3∥22,(70)
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where we used M1 = 100 and M2 = M3 = 250 as scaling parameters. This results in the following
discrete problem:

min
(u,D,C)∈X

Jd(u,D,C) :=
h2

2
∥A ◦ Πd(u)− f δ∥22 +

α

2
∥∇u∥2U1

+ IUad
(u)

+
3∑

i=1

λj

(
1

2
∥P [

1

Mj

uj]−DjCj∥2F + βj∥Ci∥1
)
,(P2)

which we aim to minimize over the space X := U × O3
K × RM×K×3 using the admissible set of

parameters Uad

(71) Uad =

{
u = (ρ, T1, T2) ∈ U

∣∣∣∣ ρij ∈ [0, 110], (T1)ij ∈ [0, 300], (T2)ij ∈ [0, 300]
for all 1 ≤ i ≤ n1 and 1 ≤ j ≤ n1

}

In (P2), the discrete variant of the Bloch solution operator is given by

Πd : U → Cn1×n2×L [Πd(u)]ijl = π(uij)l, 1 ≤ l ≤ L,

where π : R3 → CL is the function, defined in (8). Moreover, the linear operator A, modelling the
observation process, is defined by

(72) A : Cn1×n2×L → Cn1×n2×L [Ay]ijl = SlF [yl] 1 ≤ l ≤ L.

In the definition above, F : Cn1×n2 → Cn1×n2 denotes the normalized, discrete 2D-Fourier trans-
form and Sl : Cn1×n2 → Cn1×n2 denotes a predefined sampling pattern which acts on the l-th
magnetization slice as

Sl(y)i,j =

{
yij if frequency yij ∈ C is sampled.

0 if yij is not sampled.

Regarding the sampling-pattern, we follow exactly the setting in [24]. Moreover, we make use of the
linear patch extraction operator P , which cuts out small image patches and puts them into a large
matrix. More precisely, we define:

P : Rn1×n2 → RM×K Pu =
[
R11u,R21u, . . . Rn11u,R12u,R22u . . . Rn12u, . . . , R1n2u, . . . Rn1n2u

]
.

for j = 1, 2, 3. Here Rkl : Rn1×n2 → RM is an operator that extracts a patch of size p× p from an
image u ∈ Rn1×n2 , where the top-left corner of the patch is located at pixel (k, l). The extracted patch
is then vectorized into a column vector of size K = p2. We use overlapping patches, as described in
[49, 52] such that exactly M = n1 ·n2 can be extracted. The normalization factor 1/Mj is introduced
because, empirically, we observed improved reconstruction quality for the dictionary learning problem
when the data is normalized. Additionally, this normalization significantly simplifies the process of
hyperparameter tuning. The overall discrete version of algorithm 2 is eventually given by:
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Algorithm 4 Computation of a stationary point of (P2).

1: Get initial values (u0, D0, C0) ∈ U3N×O3
K×RK×M×3, parameter γ > 0 to define the stopping

accuracy for the nested subroutine, step-size parameter for the u-step λ0 > 0, τ > 1 and σ3 ∈
(0, 1), ε1, ε2 > 0.

2: Set k = 0.
3: while no stopping criterion is satisfied do
4: Dictionary-learning-step: Given (uk, Dk, Ck) ∈ U ×O3

K × RM×K×3

5: for j = 1, 2, 3 do:
6: Use algorithm 5 with initialization D0

k := (Dk)j , C0
k := (Ck)j and

7: stopping accuracy ηk := kγ
√
∥C0∥2F + ∥D0∥2F for the problem :

min
D∈OK ,C∈RM×K

1

2
∥DC − P [

1

Mj

uj]∥2F +
βj

λj
∥C∥1,

8: to obtain (Dk+1)j ∈ OK and (Ck+1)j ∈ RK×M .
9: end for

10: u-step: Given (uk, Dk+1, Ck+1) ∈ U ×O3
K × RM×K×3.

11: for j = 1, . . . do:
12: Take λ0 > 0, set λk := λ0τ

j and compute a global solution û(λk) ∈ Uad of

(73) min
u∈Uad

gdλk
(u, uk) +

α

2
∥∇hu∥2U1

+
3∑

j=1

λj

2
∥P [

1

Mj

u]− (Dk+1)j(Ck+1)j∥2F ,

13: where gdλk
(·, uk) : U → R is defined as the discrete analogue of the model in (23) as

gdλk
(u, uk) :=

h2

2
∥A ◦ Π′

d(uk)[u− uk] + F (uk)− f δ∥22

+
λk

2

(
∥u− uk∥2U + ∥∇h(u− uk)∥2U1

)
,

14: until the descent condition

Jd(û(λk), Dk+1, Ck+1) ≤ Jd(uk, Dk+1, Ck+1)

− σ3λk

2

(
∥û(λk)− uk∥2U + ∥∇hû(λk)−∇huk∥2U1

)
,(74)

15: is satisfied.
16: end for
17: Set uk+1 = û(λk).
18: Set k = k + 1.
19: if ∥uk − uk−1∥2U + ∥∇huk −∇huk−1∥2U1

< ε21 and ∥Dk −Dk−1∥2F + ∥Ck −Ck−1∥2F < ε22
then

20: stop the while loop.
21: end if
22: end while
23: Return uk ∈ U as the desired physical parameter.

Details on the implementation. The main difficulty in the implementation of algorithm 4 is the solution
of the subproblem (73). We use the built-in quadratic programming solver in MATLAB, which relies on
the trust-region subspace method, combining techniques from [22] and [16]. However, the subproblem
is still very delicate to solve, as the Hessian involves the term:

(75) (Πd)
′(uk)

∗A∗A(Πd)
′(uk),
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with A being the matrix defined in (72). Note that if Sl = Id for every 1 ≤ l ≤ L, i.e. if no subsampling
is applied, then A∗A = I . If instead subsampling is used, i.e. if Sl ̸= Id, l = 1, . . . , L, the matrix in
(75) is generally dense and of large scale, which complicates the solution procedure of the subproblem
significantly. To mitigate this issue, we follow the approximation approach, proposed in [60] and replace
the term F ′(uk)

∗F ′(uk) by the approximation

(76) (Πd)
′(uk)

∗A∗A(Πd)
′(uk) ≈

1

r
(Πd)

′(uk)
∗(Πd)

′(uk).

where r ∈ N is the undersampling rate. In our experiments in the next paragraph we use r ∈
{16, 32}. Let us comment that, while the quality of this approximation seems well documented in
practical applications, a rigorous proof that quantifies potential deviations is missing.

Two experiments with different noise levels and under sampling. We test our algorithm on two artificial
testcases. For both we take the groundtruth image utrue ∈ U depicted in Figure 1 and simulate noisy
data using the forward operator according to

(77) f δ = A ◦ Πd(utrue) + σ2N (0, I).

We utilize complex noise with a standard deviation of σ2 > 0 and apply Cartesian subsampling pat-
terns, following the approach in [24]. In the first experiment, we use a 16× undersampling rate and
set the noise standard deviation to σ = 2. In the second experiment, the undersampling rate is in-
creased to 32× and the standard deviation to σ = 5. For both experiments, we fix L = 100, a small
yet realistic value for practical applications. Our method is compared against the BLIP reconstruction
technique proposed in [23] and the Levenberg-Marquardt method from [24]. It is important to note
that the Levenberg-Marquardt method guarantees convergence for zero-residual problems, where
∥F (utrue) − f δ∥L2(Ω,CL) = 0. For other configurations, the outcome is strongly influenced by the
number of algorithm steps executed, and convergence to stationary points is not typically expected.
Although numerous well-established stopping criteria exist in the inverse problems literature, we do
not apply them in this study. Instead, we manually adjust the number of Levenberg-Marquardt steps
for our experiments. For the linear system that must be solved at each update step of the Levenberg-
Marquardt method, we employ the approximation (76). We also compare our algorithm with the dic-
tionary learning algorithm, where, instead of using the nested update procedure, only a single update
step for both D and C is performed. We refer to this algorithm as one-step-dictionary-learning or
dictionary learning (one step). The parameter settings, along with a description of the parameters for
both configurations, are presented in Figure 2.

Results and observations. The results of all algorithms are visually presented in Figure 6 for the small
noise case with 16× undersampling and in Figure 7 for the 32× undersampling with a higher noise
level. The relative errors

∥Xreconstruction −Xgroundtruth∥2
∥Xgroundtruth∥2

for X ∈ {ρ, T1, T2} are shown in Figure 3 for the low noise regime and in Figure 4 for the high noise
regime. We observe that, in all experiments, the nested algorithm consistently produces the smallest
relative error. While the difference compared to the one-step approach is visually almost unnoticeable,
the quantitative values show improvements of up to 10 percent. Additionally, the function values are
lower in comparison, as seen in Figure 5. The results for the 32× undersampling are particularly
promising, as the Levenberg-Marquardt method was unable to produce meaningful results in this
scenario. However, one downside of the algorithm is, that the subproblems in (73) become very ill-
conditioned for small mesh sizes h > 0 and step-size parameters λk. This leads to convergence
issues, forcing us to set h = 1 and to stop the algorithm after 100 iterations in most cases for time
reasons, rather than waiting for the stopping criterion in line 19 of algorithm 4 to be met. More tailored
algorithms could improve performance in this regard.
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List of parameters for algorithm 4
Parameter Description Value

α = (α1, α2, α3) ∈ R>0 Regularization parameters for the sparsity of C . 0.0045 ∗ (1, 1, 1)
0.0095 ∗ (1, 1, 1)

λ = (λ1, λ2, λ3) ∈ R>0 Stepsize parameters in eq. (73) 45 ∗ (1, 1, 1)
50 ∗ (1, 1, 1)

(λk
D, λ

k
C) ∈ R>0 Step size parameter for the dictionary learning sub-

problem in algorithm 5.
(1, 1)

γ > 0 Accuracy parameter for the nested algorithm 5. See
also the input of algorithm 4.

0.75

(λ0, τ, σ3) ∈ R>0 Parameters for the backtracking search in algorithm 4. (1, 8, 0.5)
(M1,M2,M3) ∈ R>0 Scaling parameters for the norm in (70). (100, 260, 260)

p ∈ N Patch size of the squared p× p patches 8
K ∈ N Size of the orthogonal dictionary K = p2 64
h ∈ R>0 Mesh-size for the differential operators 1

FIGURE 2. The list and the description of the different parameters in algorithm 4. The
upper value corresponds to the experiment with 16× undersampling factor and the
lower value to the experiment with 32× undersampling. If only one value is provided,
we used this value for both experiments.

5. CONCLUSION AND OUTLOOK

In this paper, we propose a dictionary learning-based regularization approach to solve a parame-
ter identification problem within a general framework involving a time-discrete dynamical system as
a physical prior. This is a nonlinear inverse problem, where dictionary learning is used to adapt the

Numerical results of the algorithm.
BLIP Levenberg Marquardt Dictionary learning (one step) Dictionary learning (nested)

T1 0.231 0.155 0.091 0.086
T2 0.26 0.177 0.09 0.077
ρ 0.25 0.222 0.12 0.12

FIGURE 3. Results of the reconstruction algorithm for moderate 16× undersampling
and low noise.

Numerical results of the algorithm.
BLIP Levenberg Marquardt Dictionary learning (one step) Dictionary learning (nested)

T1 1.195 0.838 0.192 0.184
T2 0.733 0.4 0.204 0.185
ρ 0.236 0.305 0.136 0.134

FIGURE 4. Results of the reconstruction algorithm for moderate 32× undersampling
and higher noise.
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FIGURE 5. Comparison of function values over iteration number for the one-step ap-
proach (orange) and the nested optimization algorithm (blue). In (a), the graph corre-
sponds to the 16× undersampling regime, and in (b), to the 32× undersampling. The
nested method demonstrates a faster reduction in function values in both cases.

regularizer based on the given image data. Our primary motivation is to develop innovative and ac-
curate methods for quantitative MRI, which leads to the minimization of a highly complex objective
function. To address this large-scale, nonconvex, and nonsmooth optimization problem, we employed
a nested alternating scheme and attempt to establish a theoretical foundation for better understanding
the optimization process under regularity assumptions on the subdifferential. We demonstrate strong
subsequential convergence and provide a result indicating that artificially high KL-exponents are re-
quired to maintain fast linear convergence of the algorithm. The theory does not align with classical
block optimization frameworks, which are typically investigated under the assumption of a global KL
inequality. In fact, block optimization schemes in the nonconvex regime are still not well understood.
From an optimization standpoint, and with regard to convergence rates, most existing results rely on
the use of the global KL-exponent, which is difficult to determine in many practical applications. Ad-
ditionally, to the best of our knowledge, fast local convergence rates for block optimization schemes
have not been well studied in the literature. For this reason, we sought in this work to examine the
blocks separately and to investigate conditions on the dictionary learning problem that ensure overall
fast local convergence.
Another remaining issue is that the choice of step size λk > 0 has not been thoroughly investigated.
We anticipate that incorporating acceleration techniques, such as those developed by Nesterov, or
more universal methods, could lead to faster convergence rates. Exploring these strategies could fur-
ther improve the efficiency of the algorithm.
From inverse problems point of view, many questions related to regularization theory of the proposed
formulation are open. For instance, the stability of the regularized solutions, and their convergence to
the model solutions. This naturally raises the question of how to select the parameters λ and β in the
numerical implementation, which is a critical issue but not addressed in the paper. This problem re-
mains open even in the finite-dimensional case for linear inverse problems, and there are no available
results for the infinite-dimensional, nonlinear context.

As a starting point, in the limit as δ → 0 , which represents the noise-free case, in (P0), we would
formally end up with the following optimization problem

(78) min
u,D
∥D⊤PDhu∥1,γ s.t. F (u) = f 0,

where ∥ · ∥1,γ is the Moreau-Yosida regularized ℓ1-or Hubernorm. However, it remains unclear to what
extent (P0) is capable of identifying a good dictionary and producing a high-quality reconstruction,
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even in the noise-free case. These so-called identifiability issues are challenging to analyze, even
in the context of pure matrix factorization problems, as discussed in [32, 21, 36], and they appear
to be unexplored in the context of nonlinear inverse problems. It is worth noting that blind-dictionary
regularization shares several similarities with recently studied deep image priors, where instead of
learning a dictionary, a neural network is trained jointly with the reconstruction process. Some recent
recovery guarantees for this approach can be found in [18] and the references therein.
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FIGURE 6. Comparison of the estimated parameters T1 and T2 (milliseconds) and
proton density ρ (dimensionless; relative ratio). The figure compares the reconstruc-
tion quality of the BLIP method, the Levenberg-Marquardt approach from [24], and the
dictionary learning approach proposed in this work for the 16× undersampling case.
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FIGURE 7. Comparison of the estimated parameters T1 and T2 (milliseconds) and
proton density ρ (dimensionless; relative ratio). The figure compares the reconstruc-
tion quality of the BLIP method, the Levenberg-Marquardt approach from [24], and the
dictionary learning approach proposed in this work for the 32× undersampling case.
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APPENDIX: DICTIONARY LEARNING ROUTINE

Let us briefly describe the dictionary learning algorithm from [52]. Note that we need to apply this
algorithm for any ui ∈ {ρ, T1, T2} separately. The algorithm described below aims at computing a
stationary point of the objective

(79) min
D∈OK ,C∈RM×K

1

2
∥DC − Pu∥2F + β∥C∥1

for a given single image u ∈ Rn1×n2 . It can be seen as a denoising algorithm for the patches collected
in the matrix Pu.

Algorithm 5 Orthogonal dictionary learning by alternating optimization, [52]

1: Get u ∈ Rn1×n2 , (D0, C0) ∈ OK × RM×K , accuracy η > 0, sparsity regularization parameter
β > 0 and step-size parameters λn

D, λ
n
C > 0, for n ∈ N.

2: Set n := 0;
3: Initialize with (Dn, Cn) := (D0, C0) .
4: while no stopping criterion is satisfied do
5: Compute Dn+1 ∈ OK by solving

(80) Dn+1 ∈ argmin
D∈OK

1

2
∥DCn − Pu∥2F +

λn
D

2
∥D −Dn∥2F .

6: Compute Cn+1 ∈ RM×K by solving

(81) Cn+1 ∈ argmin
C∈RM×K

1

2
∥Dn+1C − Pu∥2F +

λn
C

2
∥C − Cn∥2F + β∥C∥1.

7: Set n = n+ 1.
8: if ∥Dn −Dn−1∥2F + ∥Cn − Cn−1∥2F ≤ η2k then
9: stop the loop.

10: end if
11: end while
12: Return (Dn, Cn).

We collect the properties of algorithm 5 in the following lemma.

Lemma 5.1 (Properties of the dictionary learning algorithm). Consider algorithm 5. Then the following
assertions are true:

(i) Problem (80) admits a closed form solution, which is given by

Dn+1 = UV ⊤,

where UΣV ⊤ = (Pu)C⊤
n + λn

DDn is the singular value decomposition.
(ii) Problem (81) admits a closed form solution, which is given by

Cn+1 = proxβn∥·∥1

(
D⊤

n+1Pu+ λn
CCn

1 + λn
C

)
, βn =

β

1 + λn
C

,

where the proximal operator proxβn∥·∥1 : R
M×K → RM×K is defined as the soft-thresholding

operator

[proxβn∥·∥1(C)]i,j =


Cij − βn if Cij ≥ β

0 if −βn ≤ Cij ≤ βn

Cij + βn if Cij ≤ β
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(ii) Let the sequences (λn
D, λ

n
C)n∈N be bounded, i.e. aD ≤ λn

D ≤ bD and aC ≤ λn
C ≤ bC

for 0 < aD, aC , bD, bC and all n ∈ N. Then the sequence (Dn, Cn)n∈N that is produced
by algorithm 5 is a descent sequence for problem (79) in the sense of 3.6 with parameters
σ1 = min(aD, bC) and σ2 = max(LC , bC , bD), where

LC := sup
n∈N
∥Cn∥F < +∞.

Proof. The proof of this statement is standard and we exclude it here for the sake of brevity. □
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