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Data-driven methods for quantitative imaging
Guozhi Dong, Moritz Flaschel, Michael Hintermüller,

Kostas Papafitsoros, Clemens Sirotenko, Karsten Tabelow

ABSTRACT. In the field of quantitative imaging, the image information at a pixel or voxel in an underly-
ing domain entails crucial information about the imaged matter. This is particularly important in medical
imaging applications, such as quantitative Magnetic Resonance Imaging (qMRI), where quantitative
maps of biophysical parameters can characterize the imaged tissue and thus lead to more accurate
diagnoses. Such quantitative values can also be useful in subsequent, automatized classification tasks
in order to discriminate normal from abnormal tissue, for instance. The accurate reconstruction of these
quantitative maps is typically achieved by solving two coupled inverse problems which involve a (for-
ward) measurement operator, typically ill-posed, and a physical process that links the wanted quanti-
tative parameters to the reconstructed qualitative image, given some underlying measurement data. In
this review, by considering qMRI as a prototypical application, we provide a mathematically-oriented
overview on how data-driven approaches can be employed in these inverse problems eventually im-
proving the reconstruction of the associated quantitative maps.

1. INTRODUCTION

The combined and sophisticated use of large imaging data and deep neural networks towards improv-
ing image processing and reconstruction algorithms is nowadays ubiquitous. Essentially most of the
current state-of-the-art imaging tasks incorporate some (machine) learning component that provides
a priori information or structure to the final image reconstruction. This a priori information is necessary
as imaging problems are often ill-posed and available data are typically degraded and incomplete. A
typical example is Magnetic Resonance Image (MRI) reconstruction in which the data are formed from
noisy subsampled Fourier coefficients of the contrasting tissue image [193]. In the classical setting of
variational, i.e. minimization based image reconstruction, prior information is included via a regular-
ization functional. Often the latter represents a model for imposing sparsity of certain image related
features, while suppressing adverse noise. An example for such a functional is the total variation (TV)
regularization [165, 37, 131] which promotes sparsity of discontinuities (often referred to as “edges”) of
reconstructed image intensities while featuring piecewise constant reconstructions. The latter is often
an unwanted side-effect of the TV-regularization leading to the development of generalized versions
of TV; see, e.g., [27, 114]. Rather than defining regularizers “manually” on a case-by-case basis, in
modern data-driven regimes the regularization functional is merely learned automatically from refer-
ence data. Inspired by an underlying class of image features (contained also in the training data),
this typically allows to impose a more sophisticated structure to the final image . For such a tech-
nique, several approaches are conceivable. Here we mention only two. Indeed, for once one may
“train” the regularizer by using only the given datum to adapt the reconstruction to its paramount fea-
tures in the spirit of unsupervised learning or one uses large datasets of degraded ground truth data
(paired or unpaired) in order to learn the desired image distribution and impose this as prior informa-
tion [9, 101, 112, 140, 168]. These techniques have been intensively developed concerning qualitative
imaging. Regarding the latter, the reconstruction values at pixels do not themselves entail any crucial
information (e.g. any diagnostic value), rather the quality of a reconstruction is judged according to its
overall image structure and visual quality. This coins the term structure-informed learning in imaging
for this category of reconstruction methods.

Prior information to image reconstruction can also be imposed by taking advantage of the physical pro-
cesses governing the data acquisition. Mathematically, the acquisition physics can often be expressed
in terms of (partial (P) or ordinary (O)) differential equations (DE) which then govern the reconstruc-
tion process. Considering such DE constraints is particularly relevant in quantitative imaging where
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Dong et. al. 2

one is interested in the numerical values of biophysical parameters (in physical units) associated with
the imaged object as these values provide objective characteristics of the imaged matter or tissue.
Among others, quantitative MRI (qMRI) is a prominent example in this imaging category. Indeed, in
qMRI the relevant biophysical parameters are the (longitudinal and transversal) relaxation times (T1

and T2) and the proton density (ρ); see Subsection 2.2 below for an explanation of these parameters.
Specific values of these parameters are related to specific tissue types. Modelling the time evolution of
tissue magnetization, given the aforementioned biophysical parameters, leads to the Bloch equations,
a system of ODEs associated with every voxel of an imaged domain [21, 193]. Often, however, such
a differential equation model is an idealized representation or a simplification of a far more complex
underlying physical process. Sometimes the latter may be even unknown in detail or too complicated
to be modelled precisely (from first principles). Under such circumstances, experimental data can pro-
vide insights into the underlying physics and may help to (approximately) learn a mathematical model
of the involved physical processes. For the latter, nowadays one benefits from the remarkable versatil-
ity and approximation properties of deep neural networks (DNNs) [79]. Once models of the underlying
physical laws have been learned, then these data-driven models are embedded into the image recon-
struction process providing further information [59]. For this overall category of methods, we use the
term learning-informed physics in imaging throughout this review.

Notably as far as imaging applications are concerned, learning-informed physics approaches are sig-
nificantly less studied than structure-informed learning techniques. In general, the aim of this review
paper is to provide a unified presentation of both categories, with a special focus on recent develop-
ments of the former one. For the sake of illustration we use (q)MRI as a prototype application.

The remainder of this paper is organized as follows: In Section 2, we describe model-based methods
with an emphasis on qualitative and quantitative MRI reconstruction. We recall the classical variational
regularization methods for inverse problems for the qualitative MRI problem and physics-integrated
methods (e.g. Magnetic Resonance Fingerprinting and related extensions), but still model-based, for
the quantitative setting. We proceed with data-driven approaches in Section 3 for both qualitative and
quantitative MRI, starting from dictionary approaches to methods incorporating deep neural networks.
We also highlight certain statistics-based post-processing techniques for qualitative MR images to-
wards a subsequent improved reconstruction of the quantitative maps. In the same section we also
collect recent developments in learning-inform physics in quantitative imaging, with a focus on learn-
ing the Bloch solution map for qMRI. The review ends by a section on FAIR data management in
mathematical image processing in Section 4.

2. MODEL-BASED METHODS

In order to set the stage for our main focus on quantitative reconstruction, we start this review by
discussing classical model-based methods for qualitative imaging. In particular, we collect here vari-
ational methods with a special focus on popular regularization strategies and solution algorithms. In
this way, we believe that the similarities and (yet) differences between qualitative and quantitative
approaches become apparent. Regarding quantitative methods, in Subsection 2.2 we shall see that
typical quantitative imaging problems admit a variational formulation with an objective inspired by a
qualitative approach but subject to certain physics-based constraints which involve (as unknowns) the
quantitative parameters of interest. Let us mention that qualitative methods are by now rather classical
and there already exists a plethora of reviews, see, e.g., [18, 26, 30, 39, 35, 101, 173]. Hence, we can
be brief here.

When considering the quantities of interest (such as image intensities or physical parameters) as func-
tions over an image domain, rather than vector, matrix or tensor quantities with finitely many entries,
respectively, relating to, e.g, a pixel grid which represents the (discrete and finite dimensional) image
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domain, many of the problems presented here can be studied in an infinite dimensional function space
setting. Such a framework raises numerous interesting and challenging mathematical, algorithmic, and
numerical questions. However, for the sake of exposition and unification of presentation we formulate
problems in a discrete, i.e., finite dimensional, setting (e.g., on a grid of finitely many pixels/voxels) and
make specific remarks regarding their function space analogues.

2.1. Variational methods for imaging and qualitative MRI. The classical problem in imaging is to
compute an approximation u of an underlying ground truth image utrue, where u, utrue ∈ X with
X denoting a set of functions mapping from some Euclidean space to Rm. When m = 1, often
u(x) models the image intensity at a point x. In the discrete setting for u this corresponds to the
intensity at a specific pixel (in a 2D image domain). In order to make the distinction from quantitative
imaging, we already stress here that in the qualitative regime, the precise values of u, whose range
is often dictated by some a priorly chosen scale such as, e.g., u(x) ∈ [0, 1], are not of paramount
importance. Rather one is merely interested in salient features of the image, like structure, geometry,
contrast, or in any other information that can be used, for instance in diagnostic procedures upon
direct visual inspection, e.g., for detecting tumours. Typically, utrue is not directly accessible, but rather
through available (measured) data y. A common model for y is

(2.1) y = Autrue + η.

Here A : X → Y is the forward operator which models some degradation (e.g. by convolution,
incompleteness, etc.) or it reflects an image transformation from the image space X into a data space
Y . For instance in MRI, it denotes a subsampling P of the Fourier coefficients of the original image
utrue [131], i.e., A := PF with F the Fourier transform. In contrast, in computerized tomography (CT)
it denotes the Radon transform [142], which collects (typically a limited number of) integrals along lines
reflecting X-ray attenuations by different tissues in the body. The variable η in (2.1) represents a noise
component and it is modelled as a highly oscillatory function in Y (with zero mean). Noise is often the
result of measurement errors, random degradation processes or transmission losses. Note also that
while we consider an additive noise term in (2.1) , noise may also occur in the measurement process
in a nonlinear way. This may give rise to, e.g., multiplicative noise (see [80]) which then requires an
according adaptation of (2.1). Unfortunately, the direct inversion of A and, thus, the exact recovery
of utrue from y is hampered by the presence of noise, but also by the fact that A is often singular or
ill-conditioned. These facts render the reconstruction problem an ill-posed inverse problem. A popular
way to overcome the latter is by imposing regularization on the reconstruction process via utilizing
prior information on u. Following the variational approach to inverse problems, this leads to solving the
minimization problem

(2.2) min
u∈X

J (u) := D(Au, y) +R(α;u).

Above, D represents a data discrepancy or fidelity term. It is designed to ensure that the reconstruc-
tion, i.e., the minimizer of the overall energy J , is close to the data y in a suitable sense. In fact, its
proper choice is often mainly dictated by the statistics of the noise, with D(Au, y) = 1

2
∥Au−y∥22 be-

ing the appropriate form for Gaussian-type noise. In contrast, when salt-and-pepper or random-valued
impulse noise is present, respectively, then the use of the ℓ1 norm is preferable, i.e., D(Au, y) =
∥Au − y∥1, and the Kullback-Leibler divergence [118] is the appropriate choice for Poisson noise.
The latter is characteristic for tomographic problems, such as CT or Positron Emission Tomography
(PET). For the sake of exposition and also motivated by our example modality of MRI where the noise
can be considered of Gaussian type, in what follows we will use an ℓ2 fidelity term. The quantity R de-
notes the regularization term or prior with respect to the quantity of interest u, and α > 0 represents
a scalar or distributed regularization weight. The main purpose of R is to counteract ill-conditioning
(due to properties of A) and to filter noise (due to the presence of η in (2.1)).
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FIGURE 1. Qualitative MRI reconstruction example for small (left) and large (right)
scalar regularization parameter α. Here the data come from brain phantom data (mid-
dle) from the Brain Web Simulated Brain Database Data [24, 48, 119].

In general, the literature on regularization functionals is rather extensive. It went through a significant
development especially after the introduction of the Total Variation (TV) regularization in the early
1990s [165]. Its discrete version corresponds to the ℓ1-norm of the gradient of the image intensity,
balanced by a positive regularization parameter α > 0 against data fidelity:

(2.3) TV(u) = α∥∇u∥1.
TV-regularization based reconstructions typically exhibit a piecewise constant structure, also referred
to as staircasing effect. The latter is often undesirable. Consequently, higher-order extensions of the
total variation have been considered as a remedy. The most prominent choice of such higher order
regularizers, is perhaps the Total Generalized Variation (TGV) of order 2 [27], whose discrete version
reads

(2.4) TGV(u) = min
w

α∥∇u− w∥1 + β∥Ew∥1,

where α, β > 0 are regularization parameters and E denotes the symmetrized gradient (1/2)(∇w+
∇w⊤). It promotes piecewise affine reconstructions, which are often visually more appealing than
piecewise constant ones.

Remark 2.1 (Function space versions of classical regularizers). In the function space setting,
TV is defined as the total variation of the finite Radon measure Du that represents the dis-
tributional derivative of a function u ∈ L1(Ω). When indeed the derivative of u admits such
a representation, then we say that u ∈ BV(Ω), the space of functions of bounded vari-
ation [73, 6]. Similar are the corresponding definitions for TGV. The study of TV, TGV and
other derivative-based regularizers in their respective function space formulation has also re-
ceived considerable attention in imaging. This is due to their useful mathematical properties
that can provide information about the structure imposed on images, such as the preserva-
tion of edges (discontinuities in u) and the promotion of piecewise constant/affine structures
[138, 34, 93, 173, 162, 149].

Very large values of regularization parameters typically result in over-regularization leading to over-
smoothed reconstructions. While this might benefit the reconstruction of large homogeneous areas in
images (where ∇u ≈ 0) it can also result in cartoon-like reconstructions with a significant loss of de-
tails. On the other hand, very small values of regularization parameters generally preserve details but
may also yield reconstructions with noticeable noise and artifacts due to the underlying ill-posedness;
compare Figure 1 for a representative example in (qualitative) MRI reconstruction. This suggests a lo-
cal adaptation of the regularization strength which can be achieved by a spatially varying regularization
parameter / weight. Here the parameter α (and also β in TGV) is spatially varying (pixel-dependent)
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rather than a scalar only. Thus, one has α = α(x), and similarly for β. Then the corresponding regu-
larization functionals, i.e., weighted TV and TGV, are defined in their discrete version respectively as
follows:

TV(u;α) = ∥α∇u∥1,(2.5)

TGV(u;α, β) = min
w

∥α(∇u− w)∥1 + ∥βEw∥1.(2.6)

Clearly, the automatic determination of the spatially varying parameters α and β along with u rep-
resents a formidable challenge: (i) One has to identify criteria for the quality of a choice of (α, β).
Such criteria will depend on u and the noise statistics. (ii) A mathematical model for jointly finding
u and (α, β) has to be developed. The formulation needs to accomodate the identification of sev-
eral quantities which enter the problem in different ways. (iii) An efficient algorithmic treatment has to
be developed to keep the overall computational burden acceptable. Indeed, one has to cope with a
non-convex and also non-smooth optimization task.

It has turned out that primal-dual equilibrium formulations are particularly suitable for these tasks.
In [61] for TV-regularization and Gaussian noise an augmented Lagrangian type update scheme for
a fidelity (not regularization) weight was proposed, while simultaneously reconstructing u. It utilizes
Gumbel statistics, i.e., statistics of the extremes, to develop a local quality measure for the associated
fidelity weight. Indeed, the spatially varying weight can be interpreted as a Lagrangian multiplier for
a localized version of the image residual. Then the multiplier gets updated as long as the localized
image residual does not satisfy a local variance bound; otherwise the fidelity weight remains fixed. The
choice of the variance bound is delicate and utilizes the statistics of the extremes. This approach was
later extended to ℓ1-TV reconstruction [98], the reconstruction of color images [62], and to TGV [25].
Another very suitable approach to simultaneously identifying u and (α, β) relies on bilevel optimization
which we briefly describe next, but we also refer the interested reader to the reviews [101, 31, 54]. The
bilevel formulation for computing optimal spatially varying regularization parameters reads

(2.7)


min
u,α

L(u, α)

subject to u ∈ argmin
u∈X

∥Au− y∥22 +R(α;u),

where α denotes all relevant regularization parameters, such as for instance α in (2.5) or (α, β) in
(2.6). Furthermore, L denotes an upper level objective which is to be minimized over both the image
u and α under the constraint that u is the solution of the variational problem with regularization pa-
rameter α. Borrowing terminology from mathematical game theory, one may consider α the “leader”
and u = u(α) the “follower”, that accepts any choice of α issued by the leader and reacts optimally
by minimizing the objective in the constraints of (2.7). Consequently, as in the above primal-dual equi-
librium setting L has to implement criteria for measuring the quality of u(α). For instance, L may
equal the distance of u(α) to the ground truth utrue, i.e. ∥u(α) − utrue∥22. In practice, this approach
typically involves a training set of true data in the spirit of supervised learning [31, 54] which, however,
makes the approach susceptible to overfitting [55]. This can be remedied by developing ground-truth-
free upper level objectives like the one introduced in [96, 97] for TV, which is inspired by a dual version
of the localized residual estimators of [61]. Later this approach was also used for TGV and general
convex regularizers [102, 147]. As in [61], there are statistics-based objectives aiming to enforce a
localized version of the residuals Au − y that allows the computation of spatially varying regulariza-
tion parameters without using any ground truths. In Figure 2 we depict a TGV-based qualitative MRI
reconstruction where the regularization parameter α of TGV is spatially varying and computed by the
ground-truth-free bilevel approach in [102, 177].

DOI 10.20347/WIAS.PREPRINT.3105 Berlin 2024



Dong et. al. 6

0
100

200

0
100

200

1.5

2.0

2.5

3.0

3.5

·10−2

FIGURE 2. Qualitative MRI reconstruction (left) using TGV with a spatial varying reg-
ularization parameter α (right), computed via a bilevel optimization scheme. Observe
how the weight attains small values in the bottom right part of the image, where most
of the fine scale details are present, leading to their preservation.

Remark 2.2 (Function space versions of bilevel problems in imaging). Bilevel problems in imag-
ing of the type (2.7) have also been extensively studied in infinite dimensions; see all of the
aforementioned references for bilevel approaches. Here additional challenges arise. For in-
stance, one must ensure that the pairing of the (now function) α with the gradient of u (now
measure Du) e.g.

∫
α(x)d|Du| is well defined. The latter is true for instance when α is contin-

uous [96, 147], see [53] for an investigation concerning even weaker requirements. Additional
complications arise in the case of vanishing weights [93, 15], which is typically avoided by con-
straining the corresponding minimization variable in (2.7) to be bounded away from zero. Fur-
ther challenges exist when devising numerical solution algorithms for (2.7). In general, these
problems fall into the realm of mathematical programs with equilibrium constraints (MPECs);
see, e.g., [130, 146] for rather general accounts in finite dimensions and [95] for a comprehen-
sive discussion of MPEC stationarity for a specific problem class in infinite dimensions. Typically,
MPECs suffer from constraint degeneracy. As a consequence, for the derivation of stationar-
ity conditions it requires advanced non-smooth analysis techniques other than the classical
Karush-Kuhn-Tucker (KKT) theory; see [55, 95]. More specifically, one is usually confronted
with a variety of stationarity conditions; some providing strong conditions avoiding spurious so-
lutions, but being hard to compute, whereas others are somewhat easier to compute, but too
weak a filter for (local) optimality. Also, due to the structure of the feasible set, the design of
solution algorithms is challenging for this problem class.

We close this section by mentioning that there is a broad literature on solvers for the TV- resp. TGV-
regularized reconstruction problem. However, as in this review we are primarily interested in different
reconstruction models, here we do not dwell on discussing solvers in detail. Rather, we only refer to
the first-order primal-dual algorithm for non-smooth convex minimization problems in [38], the second-
order-type semismooth Newton method for TV-regularization in [92, 99], the duality-based multigrid
scheme in [40], and the divide-and-conquer algorithm using graph-cuts in [50]. This selection indicates
the versatility in solver developments for variational regularization approaches.

2.2. Model-based methods for quantitative MRI. In addition to the single equation (2.1) in qualita-
tive imaging, the quantitative imaging problem also involves a (typically nonlinear) operator e that links
the image utrue to a (bio-)physical quantity of interest qtrue via

(2.8) e(utrue, qtrue) = 0.

Often, e(u, q) = 0 is given by a system of ordinary or partial differential equations modelling an
underlying physical process. Consequently, the aim of quantitative imaging is to identify the value q for
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every pixel (or voxel in the case of MRI) given some measurements y that correspond to the qualitative
parameter utrue. Hence, the resulting general (and idealized) formulation of the reconstruction problem
can be stated as follows: Given y, estimate q (close to qtrue) and an associated u (close to utrue) such
that

(2.9)

{
e(u, q) = 0,

y = Au+ η.

In practice, however, due to ill-posedness of this reconstruction task, one can only expect approximate
satisfaction of the above equalities.

In what follows, we focus on quantitative MRI as the underlying imaging modality. But let us also
mention that other modalities fit the framework (2.9), too. Two specific examples are Photoacoustic
Imaging [56, 64] and Magnetic Resonance Elastography [103], respectively. In the case of MRI we
recall that the measured data y represent an incomplete (i.e. subsampled via P ) set of the Fourier
coefficients of an emitted signal. The latter encodes information about the total magnetization m of
the nuclear spins of hydrogen atoms with (proton) density ρ of the tissue of interest aligned to a
strong external magnetic field B. The underlying physical dynamics of m are governed by the Bloch
equations, which are a system of ODEs:

(2.10)
∂m(t)

∂t
= m(t)× γB(t)− (mx(t)/T2,my(t)/T2, (mz(t)−meq)/T1) ,

given some initial (equilibrium) condition. The relaxation terms in (2.10) occur due to the excitation of
m from equilibrium state with an electromagnetic radio-frequency wave at resonance frequency of the
nuclear spins with the gyromagnetic ratio γ. The excitation usually distorts m(t) from its equilibrium
direction by a flip angle FA to some initial value m(0), where the relaxation starts. The quantity
meq is the equilibrium magnetization, and T1 and T2 are the relaxation times of the longitudinal and
transverse component of m (relative to B) with tissue dependent values, respectively. In case of
magnetic field inhomogeneities the transverse relaxation time is slightly different and denoted by T ⋆

2 ;
in order to access T2 a special re-focussing pulse is needed with the scope of so-called spin-echo
sequences. The relaxation process releases again energy in the form of electromagnetic waves which
can then be recorded by receiver coils as so-called echos after echo times TE. Thus, the equation
e(u, q) = 0 of the general setting (2.9) takes now the form

(2.11) u = ρB(q)

where u = ρm, q = (ρ, T1, T2) and B : q 7→ m is the solution map of the Bloch equations (2.10).
For convenience of notation, by Π : q 7→ u we denote the map defined in (2.11), and sometimes in a
slight misuse of notation we also refer to this map as the Bloch solution map.

MRI generates its power from the possibility to employ a variety of different sequences, i.e., spin
excitation schemes, each focussing on different tissue properties and resulting in a different image
contrast. Often, a second spin excitation is performed after repetition time TR even if full recovery of
the equilibrium state of the magnetization m(t) has not yet been reached. This is typically reflected
in the respective signal equations derived as solutions of (2.10). Specific choices of the flip angle FA,
the repetition time TR, and the echo time TE enhance the tissue contrast with respect to T1, T2 (or
T ⋆
2 ), or ρ. This leads to T1-weighted, T2-weighted, proton density-weighted images, respectively.

Bloch solution maps for specific excitation sequences. For some specific magnetization-excitation-
sequences the Bloch solution map Π, or a satisfactory approximation thereof, can be stated explicitly.
This is the case, for example, for a multi-echo Fast Low-Angle Shot (FLASH) sequence [85] for small
flip angles a. In this case, the Bloch map is given by the Ernst equation [65]. By denoting the echo time

DOI 10.20347/WIAS.PREPRINT.3105 Berlin 2024



Dong et. al. 8

and repetition time of this specific sequence by TE and TR, respectively, then we have (see [91]):

u = C · sin a · 1− e−R1·TR

1− cos a · e−R1·TR
· e−R⋆

2 ·TE,(2.12)

where R1 = 1/T1 and R⋆
2 = 1/T ⋆

2 is the apparent transverse relaxation time. Here, C is proportional
to the equilibrium magnetization m and thus also to the proton density C = c · ρ, with c a spatially
varying factor related to the detection sensitivity [190]. The variation of TE within the multi-echo se-
quence and the flip angle allows for the estimation of R⋆

2, ρ and R1[154]. In practice, the approach
uses two flip angles, one for proton weighted images and one for T1-weighted images, with six to
eight echos at different TE each. Then, (2.12) can be re-parametrized with the so-called ESTATICS
model [189] for estimating the apparent transverse relaxation time R⋆

2 jointly from the two weightings:

u = uT1 · e−R⋆
2 ·TE, for the T1-weighted echos,(2.13)

u = uPD · e−R⋆
2 ·TE, for the proton density-weighted echos.(2.14)

It makes use of the fact that the decay constant R⋆
2 of the exponential signal decay with TE, cf. Eq.

(2.12), is identical for all weightings. Thus, we can simply write

(2.15) u = Π(uPD, uT1 , R
⋆
2),

where Π can be written as in (2.13) and (2.14).

Another popular flip angle sequence pattern is the Inversion Recovery balanced Steady State Free
Precession (IR-bSSFP) [171]. Through this choice, the solution of the Bloch equations can be simu-
lated by solving a discrete linear dynamical system; see for instance [52, 57].

Returning to (2.9) and recalling the notation for the Bloch solution map, one needs to estimate q where

(2.16)

{
u = Π(q),

y = Au+ η.

An alternative and perhaps more practical formulation is

(2.17)

{
u = Π(q),

u = Recon(y),

where “Recon” denotes an arbitrary reconstruction scheme for the qualitative MR image u given the
k-space data y. For instance, in view of our previous discussion on classical variational methods, one
may consider

(2.18)

{u = Π(q),

u = argmin
ũ

1

2
∥Aũ− y∥22 +R(α; ũ).

Note that (2.18) can be interpreted as a coupled equilibrium system (for finding (u, q)) when replacing
the convex reconstruction problem by its (necessary and sufficient) first-order optimality or Euler-
Lagrange condition. Below we summarize two families of approaches for tackling (2.17), namely the
two-step approaches and the integrated-physics method.

Two-step approaches for qMRI. As the name suggests, in this family of approaches the qualitative
MRI reconstruction problem, i.e. the second problem in (2.17), is solved first to obtain u and then one
uses the first equation to obtain the quantitative parameters q. However, due to the presence of noise,
artifacts, the fact that u cannot be expected to equal utrue, as well as due to challenges that arise from
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inverting Π, one relaxes the physical law to arrive at a nonlinear regression problem of the type

(2.19)


min
q

1

2
∥Π(q)− u∥22,

u = argmin
ũ

1

2
∥Aũ− y∥22 +R(α; ũ).

We note that different quantitative reconstruction schemes will result from considering (2.19) and solv-
ing the qualitative problem with different choices of R, including the spatially adapted TV/TGV from
Section 2.1. Two particular instances of this technique are highlighted in the next section on data-
driven methods.

The original magnetic resonance fingerprinting (MRF) [132] is a popular method also closely related
to (2.19). In MRF, a series of L qualitative images (u(1), . . . , u(L)), corresponding to a sufficiently rich
excitation sequence with L read-out times, are reconstructed with no regularisation, i.e., with R = 0.
This sequence is chosen, such that the Bloch solution map can be explicitly computed (in closed form,
e.g. when using (IR-bSSFP)). In an offline phase, a series of Bloch responses B(q) pertinent to a
range of realistic values for q are simulated (fingerprints) and stored in form of a dictionary denoted by
Dic. Finally, the time series that results from considering the values in time of the qualitative images
at a specific voxel is mapped to its closest fingerprint. Then this voxel is assigned the value of q that
corresponds to that fingerprint. We outline this procedure in more detail in Algorithm 1 and note that
the associated B(q) refers to the x, y-components of the magnetizations.

Algorithm 1 Magnetic Resonance Fingerprinting (MRF) for q = (ρ, T1, T2) [132]

(i) Qualitative reconstructions:
Reconstruct the series of L qualitative images u = (u(1), . . . , u(L)) by solving

u(ℓ) ∈ argmin
u

∥P (ℓ)Fu− y(ℓ)∥22 using u(ℓ) = F−1(P (ℓ))⊤y(ℓ), ℓ = 1, . . . , L.

(ii) Voxel-wise matching to the pre-computed fingerprints:
For every voxel i = 1, . . . , N , extract the closest fingerprint to the time-series u(i) =

(uℓ(i))Lℓ=1 according to

B(qi) = argmin
B(q)∈Dic

1

2

∥∥∥∥ B(q)
∥B(q)∥2

− u(i)

∥∥∥∥2
2

.

Then assign (T1(i), T2(i)) to the i-th voxel and compute its proton density value ρi as

ρi =
∥u(i)∥2
∥B(qi)∥2

.

We note that the qualitative reconstructions in the first step of MRF suffer from severe artifacts due
to the typical subsampling and the absence of regularization. As a result, L must be quite large to
produce robust results; see [57] for an analysis of the interplay of these two steps. Another drawback
of the method is the computational burden of dictionary matching, since the latter is typically very large.
Improved versions of MRF aiming to tackle some of these challenges have subsequently appeared.
For instance, in [52] a projected Landweber iteration, called BLIP, is proposed. In this approach the
qualitative images are projected onto the dictionary in every iteration; see also related extensions in
[77]. In [136], low-rank regularization on the qualitative reconstructions u was introduced. In [137] the
dictionary containing the pre-computed magnetization trajectories was compressed using a low rank
approximation in order to reduce the complexity of the second projection step in (2.19). Building on this
idea of simplifying the expensive projection step several more sophisticated methods were developed.
A brief summary over existing data-driven methods is provided in Section 3 below and for a very
comprehensive and systematic review we refer to the recent overview article [176].
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Integrated-physics approaches for qMRI. The previous approaches are highly dependent on the fine-
ness of the dictionary. The latter is related to a sufficiently fine discretisation of the quantitative param-
eter space in order to yield accurate results. This, however, also results in an increased computational
effort. In order to avoid the use of a precomputed dictionary, one can revisit (2.17) and impose the
physical equation u = Π(q) as a constraint instead of projecting onto the dictionary. In that case the
regularization R is applied directly to the quantitive map q:

(2.20)

 min
u,q∈Cad

1

2
∥Au− y∥22 +R(α; q),

subject to u = Π(q),

which leads to the following reduced (integrated physics) formulation

(2.21) min
q∈Cad

1

2
∥A ◦ Π(q)− y∥22 +R(α; q).

Notice that the minimization for q must be performed over a range of feasible (i.e. realistic) physical
values, denoted here by a convex set Cad. The latter encodes a specific range of values depending
on the inspected tissue types. The above optimization without the explicit regularization term R was
proposed [57]. In that work, a projected Levenberg-Marquardt (L-M) iteration was adopted to solve
(2.21), which is a regularized version of a projected Gauss-Newton scheme. We outline this technique
in Algorithm 2.

Algorithm 2 Levenberg-Marquardt iteration for physics-integrated qMRI
(e.g. Eq. (2.20) with no explicit regularization) [57]

Given q0 ∈ Cad and a sequence {λn}n∈N of positive real numbers with λn ↓ 0, iteratively solve the
following problems for n = 0, 1, 2, . . .:

(2.22)

ỹn = y − A ◦ Π(qn),
hn = argmin

h
∥Π′(qn)h− A†ỹn∥22 + λn∥h∥22,

qn+1 = PCad(qn + hn),

Terminate the iteration according to a discrepancy principle; see [57] for details.

Here, PCad is the projection operator onto the feasible set Cad. The operator Π′ is the Frechét derivative
of the parameter-to-solution map of the Bloch equations, and A† is the generalized inverse of the sub-
sampled Fourier transform, i.e. A† = F−1P †, where P † is the zero filling operator, and F−1 is
the inverse Fourier transform. For comparing a variety of algorithms for qMRI, we present a set of
examples in the following. Our tests are based on synthetic data from an anatomical brain phantom,
publicly available from the Brain Web Simulated Brain Database [24, 48, 119]. More details on how to
generate this data can be found in [57] or [52].

The results for each of the above mentioned algorithms can be found in Figures 3 and 4. We use the
MRF reconstruction as initialization for the L-M algorithm, and compare that with the result of the BLIP
algorithm when using a relatively refined dictionary. The advantage of integrated-physics approaches
is evident by checking the reconstructions in Figure 3 as well as quantitatively by looking at the error
maps in Figure 4. In this example, we have used a time series of the 1/8 Cartesian-subsampled k-
space data (Fourier coefficients of magnetizations) of length 40. In the original MRF algorithm (typically
requiring a large time series of k-space data), this test setting is far from yielding a reasonable result,
while BLIP has improved a little by enforcing the projection to the Bloch manifold. But still one observes
deficiencies. The method with integrated physics, however, appears to be efficient and it returns the
best results among the three methods.
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FIGURE 3. From left to right (columns): The estimated parameters T1, T2 and the
proton density. From top to bottom (rows): The ground truth, MRF, BLIP, and the inte-
grated model with the L-M algorithm.

The results in [57] show that the proposed integrated physics model can work well for settings where
an explicit solution formula for the Bloch equations is available. However, in most cases (excitation
sequences) the Bloch equations have no explicit solution formula. In addition, from a practitioners
perspective the Bloch equations appear to be only a simplified mathematical model under some as-
sumptions. As in reality these assumptions are often not realistic, one indeed requires a more complex
model. In this vein, deep learning turns out to be a useful data-driven technique for learning or approxi-
mating such physical models. In Subsection 3.3 we will therefore discuss extracting physical laws from
data.
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FIGURE 4. Error maps of each estimated parameters for the three algorithms. From
left to right: the errors for T1, T2 and the proton density. From top to bottom: MRF,
BLIP, and the integrated model with the L-M algorithm. Note the different scales in all
the three methods reflecting the largest errors in the estimation.

3. DATA-DRIVEN METHODS

From variational to data-driven regularization. Traditional regularization techniques as introduced in
Section 2.1 are based on strong theoretical foundations and often provide good results in many practi-
cal applications. However, in many situations important structure in the data may escape “handcrafted”
regularizers. An example substantiating this claim is depicted in Figure 7 where the wavelet decom-
position of a clean image is shown on the left. Natural clean images are assumed to have a sparse
wavelet decomposition which is exploited to reconstruct images by solving the problem

(3.1) min
u∈X

1

2
∥Au− y∥22 + λ∥Wu∥1.

Here W denotes the discrete wavelet transform. Such strategies have been analyzed for instance in
[51, 81, 82, 32, 63, 67]. Despite good practical results the underlying assumption in (3.1) is simply
that the wavelet-coefficients of the true image Wutrue are sparse in the sense that ∥Wutrue∥0 is
small. However, looking at the first image in Figure 7, we clearly observe that image information is
“hidden” in the coefficients. Indeed, they are not just sparse, but accumulated at edges and highly
correlated across different scales. This correlation between wavelet-coefficients is not captured by the
simple model in (3.1). To address this issue, one natural strategy is to not only design regularization
strategies by taking into account obvious a priori assumptions like sparsity, but to learn parts of the
regularization from data. In this vein, during the past decade various methods have emerged; see [9]
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for a comprehensive overview. A more recent article along the same lines is [86], while data-driven
reconstruction strategies with a focus on medical imaging are presented in [167, 161].

One of the first approaches in this direction which directly builds on the ideas of wavelet-regularization
is dictionary learning where the goal is to find a sparse linear representation of a large amount of
given image patches which can then be used as a data-driven regularizer. Dictionary learning usually
involves the solution of the non-convex and non-differentiable problem

(3.2) min
D∈D,C∈C

∥DC −X∥2F + λ∥C∥0,

where D is a set of admissible dictionaries, C is the set of sparse coefficients, X is a collection of clean
image patches and again λ > 0 denotes some regularization parameter that controls the sparsity of
the coefficients. Here and in the forthcoming part of the article ∥M∥F denotes the classical Frobenius
norm of a matrix M . In a second step the dictionary can be used as a regularizer in the sense that the
following problem is solved

(3.3) min
u,C

µ

2
∥Au− y∥22 +

1

2
∥Ru−DC∥2F + λ∥C∥0,

to obtain an estimate for the ground truth. Here R is an operator that extracts patches from the image,
cf. Section 3.2 for details. It has been recognized later that a decent regularization effect can also be
obtained by training the dictionary simultaneously to reconstructing the image u. The corresponding
method is called blind compressed sensing and is reviewed below in Section 3.2, where also its
applicability to qMRI is demonstrated. Dictionary learning methods in general have been proven to be
very successful in medical imaging during the past decade [158, 121, 125] and are still being used
frequently in practice due to their high interpretability, cf. e.g. [148, 161]. A potential drawback is the
limited expressivity as the final reconstruction method is still of the same type as (3.1) and it is not yet
clear whether the approach is suited to capture all complex imaging structures needed to represent
natural images.

Towards interpretable neural networks for linear inverse problems. For more flexibility and to better
model these complex structures, methods based on various types of neural networks have become
increasingly popular over the recent years and represent the state of the art in many imaging appli-
cations today [129, 188, 124]. However, these methods often lead to uninterpretable outcomes and
unstable reconstruction algorithms, in the sense that small changes in the setup can lead to significant
changes in the image reconstruction [7, 144]. Nevertheless, the practical results are very impressive,
which is why there is a natural demand to combine deep learning strategies with interpretable and
robust reconstruction methods for inverse problems. One of the earliest attempts in this direction is
called algorithm-unrolling. The motivation is to start from an iterative scheme which is known to con-
verge against the solution of (2.2) and to interpret this scheme as a neural network. In [83] the ISTA
algorithm (see [17] for details) is under consideration, which is defined subsequently via

(3.4) uk+1 = proxskR(α,·)(uk − skA
T (Auk − y)) = proxskR(α,·)(W

1
kuk +W 2

k y) u0 ∈ X,

when applied to the problem (2.2) with D(Au, y) = 1
2
∥Au − y∥22. Here we set W 1

k = I − skA
TA

and W 2
k = skA

T and define Sk(α, y,W, u0) to be the k-th iterate of the algorithm when ini-
tialized at u0, with data y, regularization parameter α, step sizes sk > 0 and matrices W =
(W 1

0 , . . .W
1
k ,W

2
0 , . . .W

2
k ). Here proxskR : X → X denotes the classical proximal operator from

convex analysis, see [163]. Note that for R(u) = ∥u∥1 this proximal operator is a piecewise differ-
entiable and nonlinear function which acts component-wise. Hence in this case Sk(α, y,W, u0) can
be understood as a k layer neural network with input u0, weights W and activation function proxskR.
In [83] the W -matrices are replaced by general matrices that can be learned from data by solving the
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following problem

(3.5) min
W

1

2M

M∑
i=1

∥Sk(α, yi,W, u0,i)− utrue,i∥22

using automatic differentiation such as implemented in nowadays popular software libraries [1, 151]
again using training data (utrue,i, yi)i=1,...,M . For an overview on automatic differentiation and how it
is applied to learning problems, we refer to [16]. It could be shown in experiments that this approach
leads to very good outcomes, already when only a few iterations are unrolled. However by replacing
all matrices W 1

k ,W
2
k by neural networks, a massive loss of interpretability has to be claimed such

that many (open) questions naturally arise: Does the method still converge as the number of unrolled
iterates tends to infinity? What is the connection to the optimization problem (2.2), and which regular-
ization properties are inherited from the corresponding variational problem? Moreover due to the slow
convergence of proximal gradient type algorithms many iterations need to be unrolled, which might
lead to memory issues [107]. Some research has been conducted in order to overcome these limi-
tations, and also the convergence issue has been addressed, see [43, 127] and [41] for an overview
over existing results. A natural idea to retain more interpretability compared to pure unrolling is to re-
duce the number of parameters that are learned in the variational model. For instance, in [2] only the
step-sizes are learned. Despite the facts that algorithm unrolling delivers nice practical results in gen-
eral and also addresses the issues of interpretability to a certain extent there are also shortcomings,
such as, e.g., the large amount of memory consumption. In addition it is noted in [72] that the method
does not converge in all scenarios when k → ∞, and the reconstruction quality might heavily dete-
riorate when the number of unrolled parameters is increased during test-time. This is why in [13, 72]
the authors provide a strategy, called (deep) equilibrium models, to learn parameters directly in the
limit-point of the unrolled method. For this purpose note that any minimizer u of (2.2) has to satisfy the
fixed point equation

(3.6) u = proxsR(α,·)(u− sAT (Au− y)) ≈ Dθ(W
1u+W 2y), s > 0.

where again W 1 = I−sATA, W 2 = sAT and Dθ is a parametrized approximation of proxsR, e.g.,
by a neural network with weights θ. The idea is now to learn W = (W 1,W 2) and θ from training
data by differentiating through the implicitly given fixed-point in (3.6). The strategy is applied to linear
inverse problems in [72] and is further analyzed in [192, 23, 68]. A related method which addresses the
convergence problem and parametrizes the prox-operator is the highly flexible Plug-and-Play approach
[186]. Here also primal-dual algorithms like ADMM [186] or variants of ISTA [70] are considered which
make use of proximal operators. But in contrast to deep equilibrium models where the parameters W, θ
are learned in an end-to-end fashion, the authors in [186] interpret the prox-operator as a denoiser
and replace it by a more powerful denoiser Dθ : X → X , often parametrized by a neural network
with weights θ. In a second step after the denoiser is chosen the method is used iteratively as

(3.7) uk+1 = Dθ(uk − skA
T (Auk − y)),

where again sk > 0 denotes the step size in iteration k. After the first attempts of the method using
off-the-shelf denoisers like BM3D [49] have been proven to be successful, practitioners started to
use state-of-the-art methods based on neural networks as denoisers. Due to the possibly complex
structure of these denoisers it is a priori unclear whether the plug-and-play algorithm converges or not.
This issue has been addressed in [164, 169, 70, 110] using quite restrictive classes of denoisers or
neural networks, see also the recent overview article [90] where additionally regularization properties
of the plug-and-play approach are discussed.

Data-driven methods for qMRI. As already pointed out in Section 2.2 the existing methods for quan-
titative MRI can be roughly divided into two different approaches. The first one, explained in (2.17),
reconstructs a high number of MRI-images solving a linear inverse problem to subsequently use these
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images in a second step to find quantitative parameters that match the reconstructed signal from the
first stage. The second class of methods, also called physics-integrated approaches directly com-
putes the physical parameters using the corresponding physical model based on the Bloch equation
in (2.10). In principle every data-driven method for linear inverse problems from the introduction of this
section can be used to enhance the two-step-procedure. First, the method reconstructs the magne-
tization trajectories for each pixel in the domain of interest and then the nonlinear projection step is
carried out. In [108, 33, 88] sparsity and low rank regularization techniques are used for the signal
reconstruction while in [20, 195] deep learning based methods are proposed. A very recent example
which also falls into this category and combines total variation based regularization with an unrolling
methodology is presented in [115]. Here the starting point is the bilevel problem (2.7). In the spirit of
the unrolling methodology already discussed above, the lower level problem is replaced by k ∈ N
steps of an iterative solver (in this case the primal-dual-hybrid-gradient method proposed in [38]) that
is known to converge against a solution of the lower level problem. Mathematically speaking,

(3.8) Sk(α, y, u0) → argmin
v∈X

1

2
∥Au− y∥22 + ∥α∇u∥1, as k → ∞,

where Sk(α, y, u0) denotes the k-th iterate of the unrolled algorithm for data y, with regularization
parameter α and initialization u0. The spatially dependent regularization parameter α is then replaced
by a rather small neural network y → αθ(A

†y) with weights θ and the input being the zero filling
solution A†y. The overall learning problem eventually reads

(3.9) min
θ

1

2M

M∑
i=1

∥Sk(αθ(A
†yi), yi, A

†yi)− utrue,i∥2.

Here we use again a training set of clean and distorted images (yi, utrue,i)i=1,...,M of size M . Given
new test-data that is generated according to y = A ◦ Π(qtrue) + η with noise η as in (2.16), the
method reconstructs first

(3.10) u∗ ∈ argmin
u∈X

1

2
∥Au− y∥22 + ∥αθ(A

†y)∇u∥1,

using A†y here as the input of the neural network since it already contains significant image struc-
ture. Subsequently the nonlinear projection problem in (2.19) is solved to obtain an estimate of qtrue.
Besides data-driven two-step techniques for qMRI where the data-driven aspect mostly refers to the
first linear reconstruction step there are also methods which aim at modifying the nonlinear projection
step in (2.19) to infer the tissue parameters. In [137] it was empirically shown that the magnetization
for different MR sequences actually features a low-rank structure, which was then used to reduce
the complexity needed for the tissue parameter inference given a reconstructed magnetization signal.
Building on this idea more complex models where used in order to modify or even fully replace the
projection step, cf. [10, 47, 44]. Most recent techniques combine data-driven regularization techniques
with the first and the second reconstruction step and end up using an end-to-end learning based strat-
egy. We mention here [75, 179] and refer to the comprehensive overview article [176] for a general
account including recent references.

In the subsequent part of this article we will present three approaches to incorporate data-driven
techniques into the reconstruction process for qMRI. The first one, outlined in Section 3.1, is a two
step-approach which uses a data adaptive technique for the linear reconstruction step in (2.19). In
particular, it addresses the problem that traditional variational reconstruction methods such as TV
reconstruction [165] often lead to a bias in contrast, which might result in a systematic error in the
tissue parameters. The second approach, described in Section 3.2, uses integrated physics and a
regularization strategy based on dictionary learning, which has been proven successful in particular
for unbiased linear estimation of highly under sampled k-space data when no or only a small amount of
training data is available. The method which is summarized in Section 3.3 falls also into the category of
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integrated physics but uses training data to modify the solution map of the Bloch equation. In contrast
to the neural network based methods described above, the goal here is not only to allow for faster
inference of the parameters, but also to account for uncertainties in the physical model.

3.1. Data-driven bias-free post-processing methods suitable for qMRI. Statistical methods for
imaging focus on properties of the error term η that is usually considered to be a random variable. Its
distribution usually depends on the image acquisition method, often, but not always, additive Gaussian
noise in equation (2.1) is appropriate. Specifically, let us assume data yi at locations i to be distributed
as yi ∼ Pθi with some density p(·, θi) depending on some local parameter θi (typically from Rp) with
the probability distribution belonging to some parametric (typically exponential) family.

For imaging data usually a structural assumption can be formulated, i.e., there exists a disjoint par-
titioning of the space of the positions i, such that θi is constant within each partition. Based on this
assumption, an iterative adaptive reconstruction method for the true parameter θi called Propagation-
Separation approach was defined in [153]. There, a locally adaptive weighting scheme W

(k)
i =

{w(k)
ij } at a voxel i at iteration step k is employed for a weighted maximum likelihood estimator

(3.11) θ̂
(k)
i = argmax

θ

∑
j

w
(k)
ij log(p(yi, θi)),

where the sum is over all neighboring voxels j with non-vanishing weights w(k)
ij . More specifically, the

adaptive weights at step k are defined as

(3.12) w
(k)
ij = Kloc(l

(k)
ij ) ·Kst(s

(k)
ij ),

i.e., the product of two kernel functions Kloc and Kst. The first factor in the kernel definition then refers
to the Euclidean distance

(3.13) l
(k)
ij = ||i− j||2/h(k)

in the design space using a bandwidth h(k), the second factor refers to a distance in feature space

(3.14) s
(k)
ij = N

(k−1)
i · KL(θ̂(k−1)

i , θ̂
(k−1)
j )/λ

where KL refers to the Kullback-Leibler distance of the two respective probability distributions, λ
is the adaptation parameter of the procedure and N

(k−1)
i =

∑
j w

(k)
ij approximates the variance

reduction from the k − 1-th step. The resulting procedure, adaptive weights smoothing, with some
increasing sequence of bandwidths h(0), . . . , h(k⋆) performing k⋆ steps results in noise reduced pa-
rameter estimates θ̂

(k⋆)
i that do not suffer from the blurring observed in non-adaptive methods but

does edge-preserving smoothing.

In [152], a variant of the adaptive weights smoothing employing a statistical penalty s(k)ij as the maxi-
mum over a local (rectangular) patch of voxels was defined. This patchwise adaptive smoothing com-
bines the iterative procedure outlined above with the idea of patchwise comparisons used by non-local
means (NLM) [29]. The resulting procedure combines the edge preserving property of the original
method while avoiding the cartoon-like appearance of the reconstructed image that is the result of the
structural assumption above. In [152] the method was extensively compared with TV and TGV based
reconstruction methods, see the Figure 6 and 7 within this paper. In Figure 5, we provide an example
reconstruction of a noisy MR image (from fully sampled k-space), where T1 weighted example data
has been taken from the IXI Dataset [111].

The adaptive weights smoothing procedure can be applied to estimate quantitative MRI parame-
ters using a physical model. We will rely on model (2.12) and more specifically the ESTATICS re-
parametrization (2.13) and (2.14) to estimate quantitative parameters like the proton density ρ or
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FIGURE 5. From left to right: MR image with artificial Gaussian noise and fully sam-
pled k-space. Reconstruction with patchwise adaptive smoothing. Original noise-free
image. The adaptive smoothing is capable of removing the noise and preserving the
details of the image.

relaxation times T1 or T ⋆
2 . First, we solve the optimization problem:

(3.15) θ̂LS = argmin
θ

n∑
i=1

(ui − Π(uPD, uT1 , R
⋆
2))

2

to infer on θ = (uPD, uT1 , R
⋆
2). The sum is calculated over all n echos of the two sequences from the

multi-echo MPM measurement. Comparing (2.12) and (2.13), (2.14) it is straightforward to determine
the remaining quantitative parameters R1, and A (if TRT1 and TRPD are equal) by

R̂1 = − ln

(
ûT1 − ûPD · sin aT1

sin aPD

ûT1 · cos aT1 − ûPD · sin aT1
sin aPD

· cos aPD

)
/TR,(3.16a)

Â =
(1− cos aT1 · e−R̂1·TR)

sin aT1 · (1− e−R̂1·TR)
· ûT1 .(3.16b)

The actual measurements within an MPM sequence are corrupted by noise which will be propagated to
the model parameter maps. The adaptive weights smoothing procedure outlined above can be used
to reduce the noise in the quantitative maps while preserving the fine structures of the brain tissue
that can be seen in the images. First we make use of the fact that the ESTATICS re-parametrization
(2.13) and (2.14) of the signal model (2.12) has a low parameter-induced nonlinearity and leads to
approximate Gaussianity of the estimates

u⃗(0) =
(
û
(0)
T1
, û

(0)
PD, R̂

⋆(0)
2

)⊤
.

A voxelwise estimate Σ̂ for the covariance of the parameter estimates can be obtained from the least
squares estimation procedure [154]. These three-dimensional parameter maps are then iteratively
smoothed by an increasing sequence of bandwidths hk for k = 0, . . . , k⋆ and the definition of locally
adaptive as outlined above. Specifically, the the statistical penalty s(k)ij defined as

(3.17) s
(k)
ij = N

(k−1)
i ·

(
u⃗
(k−1)
i − u⃗

(k−1)
j

)⊤
Σ̂−1

i

(
u⃗
(k−1)
i − u⃗

(k−1)
j

)
based on the estimates u⃗

(k−1)
i and u⃗

(k−1)
j and the sum of weights N

(k−1)
i =

∑
j w

(k−1)
ij from the

previous step. The new estimates in step k are obtained by

(3.18) u⃗
(k)
i =

∑
j

w
(k)
ij u⃗(0)/

∑
j

w
(k)
ij .
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NEX=1 (original) NEX=1 (adaptive) NEX=1 (non-adaptive)

NEX=3 (original) NEX=3 (adaptive) NEX=3 (non-adaptive)

NEX=1 (original) NEX=1 (adaptive) NEX=1 (non-adaptive)

NEX=3 (original) NEX=3 (adaptive) NEX=3 (non-adaptive)

NEX=1 (original) NEX=1 (adaptive) NEX=1 (non-adaptive)

NEX=3 (original) NEX=3 (adaptive) NEX=3 (non-adaptive)

FIGURE 6. Reconstruction of quantitative MR parameters, i.e., R1, R⋆
2, and ρ, i.e.,

proton density PD, after applying adaptive smoothing with comparison to the result ob-
tained from threefold repeated data (NEX=3) and with non-adaptive smoothing, i.e.,
when a classical Gaussian filtering is applied. While the non-adaptive Gaussian fil-
tering does remove the noise at the cost of blurring, the adaptive method is able to
preserve the fine structural details. The comparison between the single data with the
threefold repetition shows, that adaptive smoothing is capable of saving image acqui-
sition time by using less data with a comparable resulting map.

At the last iteration step k = k⋆ the final smoothed maps

u⃗(k⋆) =
(
û
(k⋆)
T1

, û
(k⋆)
PD , R̂

⋆(k⋆)
2

)⊤
,

can be used within (3.16a) and (3.16b) to get implicitly smoothed quantitative maps. The application
of this procedure to real MPM data from [139] is shown in Figure 6.

3.2. Dictionary learning approaches for qMRI. Instead of learning the, possibly spatially depen-
dent regularization parameter as proposed in Section 2.1, the goal of dictionary-learning is to learn a
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sparse representation of a class of clean images. This is motivated by the success of Wavelet based
methods and the observation that most natural images admit a sparse representation in some or-
thonormal basis, cf. [133] for an overview on wavelets. In Figure 7 a clean image is shown together
with its wavelet-decomposition. In the second and third image a large number of wavelet coefficients
are gradually set to zero. Still, the image retains most of its structural features which indicates that the
essential information is stored in only a small number of coefficients. Since learning a basis or dictio-
nary for the entire image has too many degrees of freedom, the classical approach is to learn sparse
representations for small image patches [4]. During this subsection, we will work with pre-discretized
complex images u ∈ Cn×m =: X , where m × n is the number of pixels. For such an image let
Ri : Cn×m → CP denote the linear operator that cuts out a quadratic image patch of size p× p and
puts it into a row-vector of size P = p2. Here the index set I is an enumeration of a selection of the
possible n×m patches that can be cut out of the image u, see [159] for details. For simplicity we will
work with I indexing the set of all possible m · n patches of an image. The underlying assumption is
that every patch Riutrue, i ∈ I , which is cut out of the ground-truth image can be represented as a
sparse linear combination of K ∈ N image atoms φ1, . . . , φK ∈ CP in the sense that

(3.19) Riutrue =
K∑
l=1

cliφl ∥ci∥0 ≤ si ≪ min{K,P}, i ∈ I,

where the sparsity si ∈ N of every patch Riutrue is a priori unknown but significantly smaller then the
number P of pixels in each patch and the number K of dictionary elements. Note that (3.19) can also
be written in a matrix vector form Ru = DC where the operator R : Cm×n → CP×mn applies Ri

to every patch indexed by i ∈ I , D = (φ1, . . . , φK) ∈ CP×K denotes the unknown dictionary and
C = (c1, . . . , cmn) ∈ CK×mn is the collection of sparse coefficients. If the number of atoms K is
strictly larger then P the dictionary is called overcomplete. The approach in [4] suggests to start with
a training set X = (x1, . . . xM) ∈ CP×M of M training patches of clean images that represent a
large variety of image structures. These patches are collected in a large matrix X ∈ CP×M for which
the following problem is solved

(3.20) min
D∈D,C∈CM×K

1

2
∥X −DC∥2F + λ∥C∥s.

Here D ⊂ RP×K is the set of admissible dictionaries, often chosen to be the set of column normalized
dictionaries, i.e. ∥φi∥2 = 1 for i = 1, . . . , K and s ∈ [0, 1] defines the sparsity promoting regularizer.
Note that the problem (3.20) is non-convex and non-differentiable and finding a global solution of this
problem is known to be NP-hard, cf. [185]. Therefore possible solution algorithms focus on computing

FIGURE 7. The image on the left shows the Haar-Wavelet coefficients of a clean im-
age, the second image shows the clean image when the only the largest 10% of the
coefficients are kept. The rest is set to zero. On the right image less than 5% of the
coefficients are kept.
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stationary points under usage of techniques from variational analysis [159, 178] or on greedy type
algorithms, see [4]. Once the dictionary D ∈ D is found, the following problem is solved

(3.21) min
u∈X,C∈CP×mn

µ

2
∥Au− y∥22 +

1

2
∥Ru−DC∥2F + λ∥C∥s

to find the estimation of utrue. For s = 1 the problem is convex and can be efficiently solved using
classical (accelerated) splitting algorithms like FISTA [17]. For s < 1 again the problem is non-convex
(even locally non-Lipschitz for C = 0 which challenges solution algorithms and stationarity character-
izations [100]).

Blind compressed sensing. A related method is blind compressed sensing or blind transform learning,
cf. [158, 159, 178]. While the dictionary learning approach presented above requires the solution of the
non-convex problem (3.20) in a first offline-training-phase requiring lots of training data, the authors
in [74] noticed that very good results can already be obtained by assuming a relatively small (often
quadratic) dictionary size and by learning the dictionary simultaneously to the reconstruction process.
This idea leads to the optimization problem

(3.22) min
u∈X,D∈D,C∈CP×mn

µ

2
∥Au− y∥22 + ∥Ru−DC∥2F + λ∥C∥s.

Let us briefly sketch the details of [159] where an efficient update strategy is combined with a conver-
gence analysis. We will focus on learning an orthogonal transform here, while the approach presented
in [159] also allows for more general dictionaries. This corresponds to the choice

(3.23) D = {D ∈ CK×K |DHD = I}.
The general idea of the solution algorithm is to update one variable while keeping the others fixed
and then iterate cyclically. We start with the update of the coefficients, i.e. we want to optimize over
C ∈ CK×K while keeping D and u fixed. The resulting optimization problem in the k-th step of the
algorithm reads for given Dk ∈ D and uk ∈ X :

Ck+1 ∈ argmin
C∈CP×mn

1

2
∥Ruk −DkCk∥2F +

λC,k

2
∥C − Ck∥2F + λ∥C∥s,(3.24)

whose solution has a closed form in terms of the well known proximal operator, see [163]. Here we
took advantage of the orthogonality of the transform D−1 = DH . Let us now consider the update for
the transform D for fixed uk, Ck+1 and previous iterate Dk. We want to calculate in this step

(3.25) Dk+1 ∈ argmin
D∈D

1

2
∥DCk+1 −Ruk∥2F +

λD,k

2
∥D −Dk∥2F .

It is remarkable that the non-convex problem in (3.25) which involves the solution of a quadratic objec-
tive on the matrix manifold D ⊂ CK×K has a closed form solution, that can be computed as fast as
the singular-value-decomposition of RukC

H +λD,kDk can be computed. In general the minimizer is
not unique, cf. [159]. Once we have updated the dictionary D the last step requires the update for the
image u. Therefore the following problem needs to be solved

(3.26) uk+1 ∈ argmin
u

µ

2
∥Au− y∥22 +

1

2
∥Ru−Dk+1Ck+1∥2F +

λu,k

2
∥u− uk∥2.

The equivalent first-order system of this quadratic optimization problem reads

(3.27)
(
µAHA+R⊤R + λu,kId

)
u = AHy +R⊤Dk+1Ck+1 + λu,kDk+1

The system in (3.27) is in general very large and can only be solved approximately for a general
forward operator A, e.g. using methods of conjugate gradient type [78]. However in the case of the
MRI operator and a special form of R this system has a closed form solution which can be com-
puted easily [158, 159] for details. The schematic overall algorithm for the linear MRI problem is
depicted in Algorithm 3. The procedure can be shown to converge against a stationary point in the
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Algorithm 3 Blind Compressed Sensing [158]

Given u0 ∈ X,D0 ∈ D, C0 ∈ CP×nm and a sequence {λu
n, λ

D
n , λ

C
n }n∈N of positive real numbers,

iteratively solve the following problems for n = 0, 1, 2, . . .:
(1) Compute Ck+1 given uk, Dk by formula (3.24).
(2) Compute Dk+1 formula (3.25).
(3) Compute uk+1 using formula (3.27).

If a stopping criterion is met, return uk.

limiting sense [163] under the assumption that the overall objective function satisfies the so called
Kurdyka-Lojasiewicz-inequality (KL-inequality) [12, 11] and there exists a constant c > 0 such that
min{λk,u, λk,D, λk,C} ≥ c for every k . In [159] a refined convergence result is presented which
does neither require the KL-inequality nor the step-size bounds but only yields convergence up to a
subsequence. For a proof of this result and details see again [159]. A prototypical numerical result of
the discussed approach is presented in Figure 8.

FIGURE 8. From left to right: Sampling mask, zero filling solution, dictionary learning
solution as described in Algorithm 3 .

Blind compressed sensing for qMRI. Despite the relatively high computational effort the methodology
of blind dictionary learning has recently been proven to be successful also for qMRI, [116, 178]. We
recall the optimization problem for qMRI which was considered also in (2.21):

min
q∈Cad

µ

2
∥A ◦ Π(q)− y∥22 +

1

2
∥q∥22,

with the minor modification that we put the penalty parameter in front of the data discrepancy term.
However instead of using a Tikhonov regularisation approach with a smooth quadratic penalty as
proposed in [57], a regularization strategy via blind dictionary learning is proposed in [116] and some
ongoing work [178]. Analogously to the corresponding method for qualitative MRI which is described
at the beginning of this subsection we aim at solving the optimization problem

(3.28) min
q∈Cad

µ

2
∥A ◦ Π(q)− y∥22 +R(q),

where the regulariser R(q) is given by another minimization problem

(3.29) R(q) = inf
D∈D,C∈C

1

2
∥Rq −DC∥2F + α∥C∥s.

Here again s ∈ [0, 1] specifies the sparsity promoting regularizer which was also proposed in the
linear case and the set C is the set of sparse coefficients. R denotes the linear patch-extraction
operator and µ, α > 0 balance overall the regularization effect introduced by learning the dictionary.
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The eventual optimization problem reads

(3.30) min
(q,D,C)∈Cad×D×C

µ

2
∥A ◦ Π(q)− y∥22 +

1

2
∥Rq −DC∥2F + α∥C∥s

In [178] a model based optimization algorithm is proposed in order to find limiting-stationary points
of (3.30). While the update steps for the sparse coefficients C and the dictionary D look similar to
the steps in (3.24) and (3.25) respectively, the update step of the tissue parameter q does not require
the solution of a linear equation as in (3.27) but the solution of a non convex constrained optimization
problem. For this purpose a Levenberg-Marquardt approximation is employed and the eventual update
step reads
(3.31)

qk+1 = argmin
q∈Cad

µ

2
∥A◦Π′(qk)[q−qk]+A◦Π(qk)−y∥22+∥Rq−Dk+1Ck+1∥2F +

λq,k

2
∥q−qk∥22.

In [178] a line-search strategy is proposed to find the step size-parameter λq,k > 0 that has to
be adjusted in dependence of the unknown Lipschitz constant of Π′ in order to guarantee a sufficient
descent of the objective in each step of the algorithm. The overall method alternates between the three
optimization steps and is shown to converge against a limiting-stationary point. Prototypical numerical
results from [178] are depicted in Figure 9, where the dictionary learning approach is compared against
the pure Levenberg-Marquardt method from Section (2.2) and the BLIP method in [52]. Here the
number of image frames was chosen to be L = 200 and the under-sampling factor is 16. Moreover
small complex noise was added to the under sampled Fourier data. The details can be found in [178]
where also extensions of the methods are discussed.

Despite the practical success of the dictionary learning methods described above, there are still many
open theoretical questions. First of all even for qualitative MRI the corresponding optimization prob-
lem (3.22) is a non-convex and non-differentiable program which depends on the initialization, the
optimization algorithm, the parameter choice, and also the choice of the sampling pattern. Moreover
it is a priori unclear if a solution of (3.22) or even more difficult a solution of (3.30) has anything to
do with ground truth data-generating dictionary. This question of the so called identifiability has been
discussed in [180, 71, 175, 84] but is in general still an open problem. Further theoretical progress
has concentrated mostly on different facets of the classical dictionary learning problem in (3.20). In
[181, 182] the structure of minimizers and stationary points is studied. More sophisticated minimization
algorithms are for instance considered in e.g. [113, 120]. The question of whether alternating minimiza-
tion schemes are able to recover the data generating dictionary is investigated in [8, 3, 160, 123] under
some specific probabilistic model.
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Remark 3.1 (Function space versions of dictionary learning). Most of the work on patch-based
dictionary learning was done in the finite dimensional set-up, i.e. a pre-discretized image with
a fixed number of pixels was assumed. Generalisations of patch-based dictionary learning are
inherently difficult as the generalisation of the patch extraction operator is not clear. The straight-
forward way would first apply a discretization to an image in the function space X and cut the
patches out of the discretization. But in this way R has a nullspace where no regularization
acts at all and also the solution again depends on a pre selected discretization. Recently a
variant of dictionary learning called convolutional dictionary learning was proposed which does
not rely on patches but on kernels which are convolved against sparse coefficients [69, 150]
to reconstruct the image. Convolutional dictionary learning admits a natural extension to infi-
nite dimensions which is studied in [36]. In addition to these difficulties on the modeling side,
also the extension of the convergence theory, in particular of the KL-inequality, towards infinite
dimensions seems delicate. While there are some generalizations towards Hilbert spaces [22]
and also to general metric spaces [89] available which are used to study the convergence of
gradient flow problems, the application to inverse problems is rarely studied in the literature.
This is due to the fact that the verification of the KL-inequality is more involved since its con-
nection to real-semialgebraic geometry, as it is usually used for finite dimensional problems
[12, 11], is to the best of our knowledge not available.
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FIGURE 9. From left to right: T1, T2, ρ reconstruction. From top to bottom: Ground
truth, BLIP, Levenberg-Marquardt, Dictionary learning approach.
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3.3. Learning-informed physics in quantitative imaging.

3.3.1. General set-up. The quantitative methods for imaging discussed in Section 2.2 rely on the as-
sumption that the equations that govern the physical constraints of the inverse problem are known
a priori. This is a valid assumption if the governing physical model is derived from well-established
physical arguments that are validated experimentally. Often, however, the physical equations are of
phenomenological nature only and rooted in empiricism, such that it might be advisable to substitute
the physical model or parts of it by learning-informed components, which are trained based on avail-
able physical data. Learning-informed models have the advantage that they are versatile in describing
correlations and structures in given physical data. Consequently, utilizing learning-informed models re-
duces the risk of introducing modeling errors caused by false physical assumptions. Further, learning-
informed models can reduce the computational cost associated with the evaluation of the models, e.g.,
when learning an efficient-to-evaluate control-to-state map for control problems like those described
in Section 2.2. In the following, we discuss some recent advances of learning-informed physical con-
straints for general inverse problems and then in particular with respect to the qMRI problem.

We begin by considering a physics-constrained inverse problem, which is a general version of the
integrated-physics qMRI approach (2.20) discussed in Section 2.2

(3.32)

 min
u,q∈Cad

1

2
∥Au− y∥22 +R(α; q),

subject to e(u, q) = 0.
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FIGURE 10. From left to right: Error-maps for the T1, T2 and ρ reconstruction. Top to
bottom: BLIP, Levenberg-Marquardt, Dictionary learning approach.
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Input {qi}N
i=1

Output {ui}N
i=1

(Partially) unknown
Physical process

u = Π(q)

Learning-informed
model

u = ΠN (q)

Learning-informed optimization

min
(u,q)

1
2
∥Au − y∥2

2 + R(α; q)

subject to u = ΠN (q)
q ∈ Cad

1

FIGURE 11. Learning a (partially) unknown physical process Π and embedding the
learned map ΠN to the integrated-physics optimization problem.

Recall here that the (possibly nonlinear) physical constraint e(u, q) = 0, which may take the form
of an ordinary or partial differential equation, relates the state variable u and the control variable q.
We assume that the physical constraint e(u, q) = 0 is well-posed such that for a given control q, the
state u that satisfies the physical constraint is unique, i.e., we can define (e.g., via the implicit function
theorem) the control-to-state (or parameter-to-solution) map

(3.33) u = Π(q).

In Section 2.2, it was assumed that the physical constraint e(u, q) = 0 and the control-to-state
operator Π are a priori known, and in particular it could be expressed by the Bloch equations. As
aforementioned, in this section, we seek to substitute the physical model or parts of it by learning-
informed components. Here we distinguish between two conceptually different strategies. The first
strategy is to learn the physical model in its implicit form e(u, q) = 0 from data. If e(u, q) = 0 is
an ordinary or partial differential equation, this could mean to learn the unknown differential oper-
ator or an unknown nonlinear term in the differential equation. This strategy has been followed by
[174, 28, 166, 155, 156, 45, 59, 58, 60], to name only a few. When the target of learning is the implicit
form of the physical model, computing the state for a given control is still needed after the learning
has taken place and it usually requires solving a differential equation. The alternative, conceptually
different strategy is to directly learn the explicit control-to-state operator Π from available data such
that the computation of the state for a given control becomes computationally more efficient and closer
to the true physical process. This approach was introduced in [59] and the overall idea is depicted in
the diagram in Figure 11, The focus of the following discussions lies on this latter strategy because
it is well-aligned with the integrated-physics approached discussed in Section 2.2. The strategy for
substituting the physical model by a learning-informed ansatz is to parameterize the unknown control-
to-state operator, i.e.,

(3.34) u = Π(q) ≈ ΠN (θ; q),

where θ ∈ Rℓ is a set of ℓ tunable parameters, for example the weights of a neural network. If labeled
data pairs (qi, ui) with i ∈ {1, . . . , N} are available, the tunable parameters can be calibrated by
minimizing the mismatch between model prediction and data in a supervised learning fashion

(3.35) min
θ

1

N

N∑
i=1

∥Π(θ; qi)− ui∥22 + r(θ).

where r denotes some potential regularization for θ reflecting prior information which one wants to
impose on θ. Also, in some cases additional constraints on θ might be relevant. Solving (3.35) is often
a very challenging tasks, giving rise to many current efforts in solver design. Also, non-smooth variants
of (3.35) are relevant in practice.
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3.3.2. Learning the Bloch solution map for qMRI. We turn back to the physics-constrained inverse
problem in (3.32) and consider it in the context of qMRI, i.e., we consider the Bloch equations as the
physical constraint (see Section 2.2) where, following the terminology from optimal control, the state
variable is the magnetization and the control variables are the physical tissue parameters. The liter-
ature reports different attempts to tackle the Bloch equations with machine learning. These attempts
can be classified into approaches that seek to learn the Bloch solution map or its inverse, or both
through encoder-decoder type models, as discussed in the following.

Learning the inverse of the Bloch solution map can, for example, be used to efficiently identify the
physical tissue parameters given the magnetization response, by leveraging deep neural networks as
demonstrated by [104, 187, 47, 143, 76, 105]. For instance, the work in [47] introduced the framework
DRONE (Deep RecOnstruction NEtwork), in which the inverse Bloch solution map is approximated by
a neural network that is trained on a simulated MRF look-up-table. The trained network requires less
memory and allows for faster predictions than the MRF look-up-table. In the other direction, neural
networks can for example be used to efficiently generate the Bloch look-up-table for MRF as shown
by [194] using generative adversarial neural networks (GANs), by [87] using feed-forward ANNs, and
by [126] using recurrent neural networks (RNNs).

Another approach in this context, aligned with Figure 11, is to learn the Bloch solution map and sub-
stitute it in the reduced (integrated physics) formulation given in (2.21). This idea was realized in [59]
where feed-forward ANNs have been utilized for learning the control-to-state operator N (q) ≈ Π(q).
This resulted in the following learning-informed optimization problem:

(3.36) min
q∈Cad

1

2
∥A ◦ N (q)− y∥22 +

α

2
∥∇q∥22,

where for simplicity a standard Tikhonov regularisation was employed for q albeit with small α in order
to stabilize the solution process. In Algorithm 4, we summarize the above procedure. We note that
in this approach the neural network N is trained in an offline phase, and then embedded into the
minimization problem (3.36). However, integrated learning techniques, i.e., training N while solving
(3.36), are conceivable.

Algorithm 4 A sketch of the learning-informed models for quantitative imaging

(1) Collect a set of training data which are resulting from the targeting physical models with (ex-
perimental or numerical) measurements.

(2) Build a neural network architecture to learn this physical model using the training data from
Step (1).

(3) Solve the optimization problem (3.36) with learning informed operators or constraints with
learning informed differential equations.

Remark 3.2. The description of Algorithm 4 looks quite abstract. Here we take an example to explain
the ideas with more details. For our qMRI example, the training data are collected from the dictionary
which is introduced in the MRF paper [132], see also [57]. The data consist of time series which
mimic the discretization of the Bloch equations, where the input is the tissue parameter, and the
output is the magnetization. Using this training data, we can learn the map from tissue parameters to
magnetization (it is a type of Nemytskii operator in the case of [132]). However, the learning approach
can be more general in the case where the Bloch equations are considered to be a simplification of a
more complicated physical process, and more data are available for the training. The architecture of
the neural network then depends on the format of the training data. For the time series data, residual
type neural networks are popular, see a description in [59], which is also the one we have used in the
numerical examples of this review. In terms of the third step, there are typically many ways to solve the
optimization problem. In the considered example, we have used a semismooth Newton type algorithm
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[94] to take care of the box constraints for the tissue parameters. For more details one can also refer
to [59].

We present some numerical examples in Figure 12, where we compute solutions of the optimization
problem (3.36). In this example, the neural network simulating the Bloch map is trained via a training
set which was obtained through discrete dynamics of simulated Bloch data. In particular, a set of
parameter pairs {qi}Ni=1 in the feasible domain of T1 and T2 is taken as inputs of the network, and
then the simulated Bloch dynamics resulting from all these pairs are regarded as the outputs. The
simulated k-space data in this example are generated using exactly the same setting as the one used
for Figures 3 and 4. For such a discrete time series, the Bloch map is a Nemytskii type operator, and
thus can be approximated sufficiently well in a uniformly bounded feasible set.
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FIGURE 12. The estimated parameters T1, T2 and ρ using the optimization framework
with learning-informed models. Top row are the estimated parameters, and bottom row
are the relative errors. By comparing the result with the ones in Figures 3 and 4, we
see that using learning-informed operator, the obtained results are comparable, and
the computational time is less in solving the optimization problem, since the learning is
done before hand, and heavy evaluation of the equation is avoided in every iteration.
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Remark 3.3 (Learning-informed qMRI in function space). The learning-informed optimization
problem for qMRI (3.36) can be also posed and analyzed in a function space setting [59]. The
key observation here is that the Bloch solution map Π and its approximation N can be regarded
as Nemytskii operators, with a voxel-wise action, i.e., Π̂, N̂ : Cad → [(L∞(Ω))3]L:

Π̂(ρ̂, T̂1, T̂2)(x) = Π(ρ(x), T1(x), T2(x))(3.37)

N̂ (ρ̂, T̂1, T̂2)(x) = N (ρ(x), T1(x), T2(x))(3.38)

for almost every x ∈ Ω. Here Cad is a subset of [L∞(Ω)+]3, i.e. L∞-functions that are bounded
away from zero, denoting feasible values for ρ̂, T̂1, T̂2 ∈ L∞(Ω). Note that N̂ can be in princi-
ple learned via the network N ≈ Π with inputs in R3. Under this setting, the analysis of (3.36)
in the function space setting can be performed. For instance in [59] convergence of the solution
of the learning-informed problem to the solution of the problem given in (2.21) was proved upon
increasing the approximation capability of the low dimensional network N and corresponding
error estimates were also provided.

Towards learning infinite dimensional physics operators for qMRI. Conventionally, the univer-
sal approximation theorem [106] considers neural network functions between finite dimensional
spaces. The idea of studying neural networks as approximators of functionals on infinite di-
mensional spaces has been initiated by [42], where two architectures were introduced; one for
approximating functionals (see also the related earlier work [170]) and one for approximating
operators. The number of parameters in these models can be substantially larger than in a
standard feed-forward network. Thus, training such a model requires more computational re-
sources; and [42] did not provide a practical training example. In recent years, as computers and
optimizers for machine learning models have become more and more powerful, a blossoming
of the idea of learning functionals or operators is observed [128, 19, 122, 117, 157]. Prominent
ANN architectures for learning operators between infinite-dimensional spaces are DeepONets
[128], which are inspired by the architecture presented in [42], and (Fourier) Neural Operators.
We see the opportunities of operator learning within the problems setting of the current paper,
where the qMRI physical model can be realized as an operator as well. Once a mature operator
learning scheme has been developed, it will not only improve the modeling process but also
contribute efficient solvers. Note that more realistic qMRI dynamics may involving partial differ-
ential equations. In this context, operator learning is an even more recent topic and one may
refer to the papers [128, 19, 122, 117, 157] and the references therein.

4. TOWARDS FAIR DATA

Similar to all mathematical research, the imaging field is intrinsically tied to research data. This encom-
passes the image data y used for applying the mathematical methods, its parameter sets, and even
the algorithms themselves along with intricate workflows employed for image processing. The digital-
ization trend has spurred substantial data growth. Particularly evident in data-driven methodologies,
this data’s availability has become fundamental for research. However, overlooking effective research
data management could result in “dark data” [172], posing challenges to research reproducibility and
contributing to the broader issue known as the reproducibility crisis in science [14].

In response to these challenges and the overarching call for open science and open data, Tim Berners-
Lee’s 5-star principles [66] and the more recent FAIR (Findable, Accessible, Interoperable, Reusable)
principles [191] have emerged. These principles provide guidance and categorization of compliance
levels for research output and data. Similarly, the complementary FAIR4RS [46] principles have been
formulated to address the specific requirements of research software.
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Despite their distinct characteristics, open data and FAIR principles share a unifying objective: enhanc-
ing the accessibility of research data, much like how journal publications have been provided to the
scientific community, facilitating the practice of building upon existing knowledge. Open data and open-
source software should be accessible to all under fitting open licenses. In contrast, the FAIR principles
delineate the methods and conditions for human and machine data access. Moreover, they introduce
stringent prerequisites for metadata descriptions and formats, enhancing findability, interoperability,
and potential reusability.

Specifically, findability encompasses assigning a distinct identifier, furnishing comprehensive meta-
data descriptions, and indexing the data within a resource that’s both searchable by humans and
machines, streamlining researcher access. Accessibility ensures that researchers with interest can
approach the data using standardized, open, and cost-free communication protocols. The metadata
remains perpetually accessible, even if the data itself isn’t or becomes inaccessible over time. In-
teroperability empowers data use across different contexts from their original purpose. Reusability
necessitates meticulous documentation aligned with community standards, facilitating reproducibility
and enabling other researchers to utilize a dataset for their own applications. This reusability also
mandates releasing the data with a fitting license.

In an attempt of a community-driven approach to make research data FAIR and provide appropriate in-
frastructures for storage, collection of the scientific knowledge, and innovative services to enable new
scientific results, the German government decided to fund the building of a National Research Data
Infrastructure [141]. In particular, the community approach is realized by discipline-specific consortia
that address the needs of the respective area in science. The consortium for mathematics, the Mathe-
matical Research Data Initiative (MaRDI)[184, 135, 134], has started its work in 2021 and is gradually
releasing new services to the mathematical community such as specific data repositories, services
for creating and maintaining a data management plan and a MaRDI knowledge graph to connect the
mathematical knowledge, software, publications, and data.

Mathematical research projects in the area of imaging may benefit from an existing data infrastructure
while also contributing to its contents. This already starts at the proposal phase, where an appropriate
research data management plan has to be developed in accordance with the requirements of the
funding agency [183]. Besides the description of the data used and created within the project such
a plan usually contains the elaboration on its documentation, e.g., with rich metadata, thoughts on
storage in appropriate data repositories, assignment of suitable licenses, descriptions of availability
to third-parties and responsibilities within the project, and more general measures to increase the
FAIRness of the project data and software. Such a research data management plan is usually a living
document adjusted to the needs of the project over time.

Projects for mathematical imaging general should consider research data such as: images used for al-
gorithmic evaluation, collections of images used for training and testing, software scripts for processing
examples, implementations of algorithms in some more general-use software, knowledge about the
algorithm and related publications and software as contribution to the MaRDI knowledge graph. Natu-
rally, some of these data are generated within the project, others are often re-used from other available
resources, such as OpenNeuro [145], the Human Connectome Project [109], the Alzheimer’s Disease
Neuroimaging Initiative [5], or [24] for simulated brain data in the field of neuroimaging. It should be
considered natural for research project to publish its generated data and software in a FAIR manner as
described above in the same way as it is common for the scientific articles describing and discussing
the scientific results. This will increase visibility of the research, enhance its reproducibility, prevent
re-invention of the wheel by duplicated efforts for data, software, and knowledge creation, and lower
the burden to start new research.
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