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A stabilized total pressure-formulation of the Biot’s poroelasticity
equations in frequency domain: numerical analysis and
applications

Cristian Carcamo, Alfonso Caiazzo, Felipe Galarce, Joaquin Mura

Abstract

This work focuses on the numerical solution of the dynamics of a poroelastic material in the fre-
quency domain. We provide a detailed stability analysis based on the application of the Fredholm
alternative in the continuous case, considering a total pressure formulation of the Biot’s equations.
In the discrete setting, we propose a stabilized equal order finite element method complemented
by an additional pressure stabilization to enhance the robustness of the numerical scheme with
respect to the fluid permeability. Utilizing the Fredholm alternative, we extend the well-posedness
results to the discrete setting, obtaining theoretical optimal convergence for the case of linear fi-
nite elements. We present different numerical experiments to validate the proposed method. First,
we consider model problems with known analytic solutions in two and three dimensions. As next,
we show that the method is robust for a wide range of permeabilities, including the case of dis-
continuous coefficients. Lastly, we show the application for the simulation of brain elastography
on a realistic brain geometry obtained from medical imaging.

1 Introduction

This paper focuses on the simulation of poroelastic materials following Biot’s equations [5], in which
the interplay of bulk deformation, fluid flow, and fluid pressure is modeled coupling linear elasticity
with a flow through a deformable porous media. This model has been widely applied in diverse fields
ranging from hydrology and geomechanics (see, e.g., [43]) to biomechanics [37]), and fluid transport
in soft tissue such as perfusion [41],[36]

Our work is motivated by the application of poroelastic modeling for the solution of inverse problems
in tissue imaging, in particular in Magnetic Resonance Elastography (MRE) (see, e.g., [21} [34]), an
acquisition technique which is sensitive to tissue motion. In MRE, the tissue undergoes a harmonic
excitation at given frequencies, while the tissue displacement field is reconstructed via phase-contrast
MRI. Combining the reconstructed displacement with a physical tissue model allows hence to estimate
relevant biomechanical parameters. Recent applications of poroelastic tissue models in the context of
inverse problems in MRE can be found, e.g., in [29} [39].

From the perspective of numerical analysis, there are several works focusing on suitable numerical
methods for poroelastic materials, including standard Galerkin method [27], adaptive algorithms [22],
mixed variational formulations through the introduction of a Lagrange multiplier and related [1} 124}, 142],
Discontinuous Galerkin [30], adaptive strategies (also for multiple-network poroelasticity equations)
[13] 125, 133], highlighting also new methods facilitating the use of general meshes such as Hybrid High
Order (HHO) method [6] or Virtual Element Method (VEM) [9]. Additionally, in [4], an overview of the
Theory of Porous Media restricted to small deformations and its discretization is provided.
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C. Carcamo, A. Caiazzo, F. Galarce, J. Mura 2

We propose and analyze a numerical scheme in the frequency domain based on equal-order finite
elements, a choice which allows to maintain low the computational cost also in three dimensions.
The scheme use a displacement-pressure-total pressure formulation, equipped with a residual-based
stabilization term, inspired by the work of [28] in the static setting, which ensures stability between the
space of displacements and the space of total pressures.

The main contribution of this work concerns the detailed numerical analysis, in the continuous and in
the discrete settings. Using the Fredholm alternative, we extend the results of [28] to the frequency
domain, showing that the total pressure formulation is stable under the assumption of stability of the
underlying elastic problem. In particular, we show that the operator definining the differential problem
can be written as a compact perturbation of a bijective one (see, e.g., [15} 132} [23]).

One of the most difficult scenarios to deal with is the case of low permeability regions. In those situ-
ations, so-called poroelastic locking might result in nonphysical fast pressure oscillations, which can
be cured using particular finite element spaces [31, 128]. In the context of inverse problems, where the
parameters are unknown a priori, it is therefore of utmost importance to consider a numerical method
that can robustly handle the appearance of low permeability regions throughout the domain. To this
purpose, we propose an additional pressure stabilization, which introduces an additional control on
the pressure gradient. The stabilization term, inspired by a Brezzi-Pitkdranta stabilization [8] acts as
an artificial local permeability when the physical permeability becomes too low.

We benchmark the proposed method in several numerical tests, validating the expected convergence
orders, as well as the robustness of the formulation for low permeabilities.

The rest of the paper is organized as follows. Section |2] introduces the model problem. The analysis
in the continuous case is presented in Section [3] while Section [4] discusses the proposed numerical
method and the extension of the well-posedness analysis in the case of the considered stabilized
finite element formulation. The numerical results are presented in Section[5] while Section[g]draws the
conclusions.

2 Model Problem

2.1 Linear poroelasticity in the harmonic regime

Poroelasticity describes the coupled motion of solid matrix deformation and fluid flow in a porous
medium. The equations governing the dynamics consist of a balance of linear momentum for the solid
phase, a mass conservation equation for the fluid phase, and a constitutive relation that relates the
stress and strain in the solid phase to the fluid pressure.

Following Biot’s theory (see, e.g., [5} 35, 26]), we consider the motion of a poroelastic medium in a
sufficiently regular computational domain € C R¢. The medium is described by a displacement field
u : Q) — R?%and a pressure field p : 2 — R both serving as solutions to:

puy —dive +Vp=0 inQ x[0,T]

Sepr + adivu; — iAp =0 inQx[0,7] M
127

In (), the symbol o represents the Cauchy solid stress, defined as

o = 2pee(u) + AV - w)L, @
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A stabilized for the Biot’s poroelasticity equations 3

where () is the infinitesimal strain tensor, I represents the identity tensor, and the Lamé coefficients
are given by
E Ev

Me = — =

2(1+v)’ A+0)(1—20)

as functions of the Young modulus E and of the Poisson ratio v.

The parameter & in represents the permeability of the porous medium, while 1¢, p > 0 denote
the fluid viscosity and density, respectively. Additionally, o > 0 is the Biot-Willis parameter, B is the
so-called Skempton’s parameter, and the mass storage parameter S, is defined as

S. =3a(l —aB)(1—2v)(BE) ™.

Following the approach of [28], we then introduce the total pressure
¢ =p—Atr(e(u)). 3)

This work is motivated by applications in which the material undergoes harmonic excitation at a given
frequency (see, e.g., the case of elastic tissue imaging such as MRE [16] [21]). We hence focus on
system (1) in the harmonic regime for a single given frequency w:

—w?pu — div (2pee(u) — ¢I) = 0
: a e K
i <SE + X> wp — szqb — M_pr =0, (4)
¢ —p+ Atr(e(u)) =0.

With a slight abuse of notation, we will denote the (complex-valued) w-Fourier modes of velocity,
pressure, and total pressure as u, p, and ¢, respectively, while 7 represents the imaginary unit.

Moreover, we introduce the (dimensionless) parameter

_SA 3va(l — aB)

0 : =
« * aB(1+v)(1 —2v)?

+1. (5)

The system shall be complemented by appropiate boundary conditions on the displacement and
pressure fields. Throughout the rest of this work, we assume that the boundary of the domain is
decomposed as

90 =T,UT,.

Denoting ¢ as the outward normal vector to the boundary, we consider boundary conditions of the

form
u=0 onl,
u (6)
on=g" onl),

for the displacement, and
p=0 onl,
K
_anp = gp on 1_"u, (7)
My

for the pressure.
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2.2 Weak formulation

Let us consider the standard Sobolev spaces L?(£2) and H'(£2) of complex-valued functions equipped
with the inner products

(u,v)q = (u,v)2(0) = / uv, (8)
Q

and

ou Ov
) 9)

d
u, v = (u,v = (u,v)q + >
(wvha = (wo)m@ = (mo)e ZZ (89@ ox;
respectively, where U stands for the complex conjugate of v. In (9), the parameter ¢ denotes a typical
length of the domain €2, and it has been introduced for the purpose of maintaining consistency in
physical units.

Let us also denote with || - ||o and || - || the standard norms induced by the above inner products,
and introduce the seminorm
d 2
]2 = du
! — aZEZ Q’

such that ||v]|; = ||v]|o + £*|v]1, forany v € H(Q).

For any subset in I' C 092, we also denote by L?(T") the space of integrable functions on I and by
(-, -)r the corresponding inner product.

In the above setting, let us introduce the functional spaces

H={v:Q-C vecH(Q):v=00nT,}
P={q:Q—=C,qe H(Q) :q=00nT,} (10)
S = L*(9),

as well as the product space U := H x P x S, equipped with the norm

7= 2 24 2 gl AR 11
(v, ¢, Ol = 2u HE(U)HMWWHQHﬁ 1€115 (1)

As next, we introduce the bilinear forms

ar: HxH—C, ai(u,v) = —w’p(u,v)+2pu. (e(u),e(v)) (12)

as: Px P —C, as(p,q) = i0A"(p,q) + (Vp,Vq) (13)
[ pwar

b:Hx S — C, b(u §) = —(divu,§) (14)

B SxH—C, i"(6,v) = —(6,dive) (15)

C'PXS—>(C c(p, &) = —A"1(p,¢&) (16)

:SxP—C, c(o,q) = -2 (0q) (17)

d:SxS—C, d¢&) = A (,8). (18)

Multiplying the equations of system () by v € H, ¢ € P, and £ € S, respectively, integrating by
parts, and imposing the boundary conditions (6)-(7), we consider problem: Find 4 = (u,p, ¢) € U
such that

(A(4),v) = (F,9) (19)

DOI 10.20347/WIAS.PREPRINT.3101 Berlin 2024



A stabilized for the Biot’s poroelasticity equations 5

forall v = (v,q,&) € U, where A: U — U™ is defined by

(A(d), B) = a1(u,v) + (6, 0) + as(p, @) + ic* (¢, q) + (¢, &) + ¢(p,§) = b(u, &), (20)
and F € U™ is defined by
1

(F,v) :=(g",v)r, + ;<g”,q>ru. (21)

We also introduce the operators B: U — U™ and C : U — U™ defined by

(B(w), B) == ai(u,v) + b"(¢,v) + az(p, q) + d(¢,€) — b(u, ), (22)

and
(C(4),v) = ic"(¢,q) +c(p, ), (23)
respectively. These operators allow us to rewrite

A=B+C. (24)

The decomposition (24) will be utilized to establish the well-posedness of the weak formulation (20)-
by employing Fredholm’s alternative (see, e.g., [15]). The alternative states that an operator is
bijective if it can be written as a sum of a bijective operator and a compact operator.

3 Analysis of the continuous problem

3.1 Preliminaries

To begin with, let us recall a few essential theoretical results which will be required for the upcoming
analysis.

Theorem 1 (Poincaré inequality). There exists a positive constant C'p , depending on €2, such that
lglls < Cpl®|qls, (25)

forallqg € H'().

Proof. See, e.g., [7]. O

Theorem 2 (Trace inequality). Assuming that §2 has a Lipschitz boundary andp € R with1 < p <
00, the following trace inequality holds: there exists a constant C' > ( such that

1 1
[ollor = V(v,v)r < Cllv|§lvlt, (26)

forallv € H'(Q)?.

Proof. See, e.g., [7]. H
Theorem 3 (Korn inequality). There exist a positive constant C'i;, dependent on €1, such that
[v]ly < Ck [le(w)]fo, (27)

holds for allv € H'(2)?.

DOI 10.20347/WIAS.PREPRINT.3101 Berlin 2024



C. Carcamo, A. Caiazzo, F. Galarce, J. Mura 6

Proof. See, e.g., [11], Theorem 6.15-4]. O

For the following proofs, the following weaker definition of coercivity and is required.

Definition 4 (T'-coercivity). Let (V, (-,-)v) and (W, (-, -)w ) be two Hilbert spaces. A linear operator
L :V — W*is called T—coercive if there exists T € L(V, W) bijective and a constant & > 0,
such that

[{L(v), T())| = &l .

holds forallv € V.

As demonstrated in [10], the property of T'—coercive is sufficient to establish the well-posedness of
the corresponding bilinear form.

Theorem 5. Let L : V' — W™ be a linear operator, and let (L(u), v) be the induced bilinear form
over the product space V' x W . Then, the following statements are equivalent:

i) The problem (L(u),v) = (f,v) is well-posed, forany f € W
i) L is T'—coercive.

For the proof, we refer the reader to [10].

Finally, the following result will be used to show the well-posedness of the variational problem, exploit-
ing the structure of the operators in the product space U = H x P x S.

Theorem 6. Let (V, (-,-)y) and (Z, (-,)z) be two Hilbert spaces and let us consider a linear oper-
atorT:V x Z — V* x Z* on the product space that can be written in the form

T(v, 2) = (g v ) (z) — (A() + B*(2), B(v) + C(2)) (28)

for bounded linear operators A : V — V*, B:V — Z*, andC : Z — Z*. Assume that:

i) A is elliptic, i.e., there exists o > 0 such that (A(v),v)y > «||v||3 forallv € V,
ii) B is surjective, i.e., there exists 3 > 0 such that | B*(z)||v > B||z||z forall z € Z,
iii) C'is positive semidefinite, i.e., (C(z),z) >0 Vz € Z.

Then, T is bijective.

Proof. See [19, Lemma 3.4 ] and [18, Lemma 2.1]. O

3.2 Well-posedness
Our analysis of the poroelasticity problem (4) is built upon a key assumption. Specifically, we suppose
that the underlying elasticity equation is well-posed at the continuous level in the space H. To formally

introduce this hypothesis, we define the scalar products on H as follows:

(v, w)o, = p(v,w)q

DOI 10.20347/WIAS.PREPRINT.3101 Berlin 2024



A stabilized for the Biot’s poroelasticity equations 7

(v, w)14, = 2pe(e(v), (w))o
(Ua w)LHe,P = (Uv w)Lue + (Iv7w)07ﬂ

Here v, w € H, and denote the associated norms as ||v||o,,,

V1., and [[v][14.p-

Given that {2 is bounded and assuming that the boundary 0f2 is sufficiently regular, one can conclude
that H is compactly embedded into LQ(Q)d (see, e.g., [15]). Therefore, there exists a Hilbert basis of
L*(Q)? composed of eigenfunctions of the elasticity operator, i.e., there exists a family (v,,, \,), €
H x R such that v,, # 0 and

(U, W), = A (U, w)o, Yw € H,

lim A, = 400, (29)

n—o0

lonllipe, =1

Hence, for any v € H, it holds

V= E AnUyp, Qp = (v7vn)l,ue,p7
n>0

and [[0]3,.., = D"l

n>0

Our assumption is then formulated as follows.

Assumption 1 (Well-posedness of the underlying elasticity problem). Let \,, be the eigenvalues in-
troduced in (29). We assume that

(I) w2 ¢ ()\n>n20;
(i) There existsm € N | T = max{n € N | w? > \,}.

Firstly, we show the continuity of A and F in the chosen norm.

Lemma 7 (Continuity). There exist two constants 11,12 > 0, depending on the physical and geomet-
rical problem parameters such that

A [lv < m dllu (30)

and

Hﬂbéw(MMwﬁW%Mm) a1

Proof. The results follow from the Cauchy-Schwarz inequality and from the inequality (26). One ob-
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C. Carcamo, A. Caiazzo, F. Galarce, J. Mura 8

tains:
(AG), )] <
olullollo + 2l alo)lo + S pllllall + —— 17l Vall
+10l0IV - wllo -+ Bololallo + 19 -l + A~ ollolell + X~ iplblilo
< (L2 1) apletwolletlo + (§(50) "+ € )bl

2/te w o Hpw o

/20 \/E i p -1/2 - 1/2

X g lelo + ax ()oYl
W @

V2 0ke

)\3/20 \/E
+—¢2—§e V20 e (@)lloA €l + A [[lloli€ o

. -1/2 o 1/2
~|—a)\_1/2(—) ( ) A2 11€]lo

W o o pw o
<m |[dllv [|]lu

K
iy

where

2 2 -1 1/2
m:gm{MHe( 5 ) Loy Mk VA

2te D) [ fw 2le

~1/2 ~1/2
a2 R ! M P /
wwa) 2 Hwa |

For the right hand side, it holds

(F:9) <llg*llor, vllor, +11g"lorullallor.
2

C
<Cillg*llor,|v]i + Ojr 19" llo,r Il all1,

where we have used the inequalities and (26). The estimate follows then from the Cauchy-
Schwarz inequality, i.e.,

1/2 1/2
(%) <ns (Hg“ua,pp ; ugpuaru) (rvr% ; uqu%) < (ngHo,rp ; nguo,pu) 15l

~1/2
_ K 1
1o = Cy max {(QMe) V2, <m> E} ' (33)

O

where

Let (v,,) be the eigenvectors introduced in (29). Let us now consider the index 77 introduced in As-
sumption[f]and the subspace

H™ = spang<,<m(vn) -

Let IIgz- be the orthogonal projection on H™ and let T := I — 211-, where I is the identity on
H.
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A stabilized for the Biot’s poroelasticity equations 9

Lemma 8. Leta(-,-) be the bilinear form introduced in (12). Under the hypotheses of Assumption
it holds

(i) ay(-,-) is T-coercive, and

(i) the bilinear form (u,v) — a1 (u, llg-(v)) is positive definite, i.e.,

ai(v,llg-(v)) >0,Vv € H. (34)
Proof. The proof follows the approach presented in [10]. First, it is noteworthy that, based on the

T n { n — —

+vU,, n>Mm.

Thus, T? = I, implying that T is bijective. For the T-coercivity, it shall be proven that there exists a
constant v, depending on w and (A,,),>o such that

aq (’U, T('U)) 2> Qmin ||,U||%,ue,p
for all v € H.

To this end, we follow [10, Prop. 1], which allows to obtain

a(v,T(v)) = Z anar (v, Zanal v,))

0<n<m n>m
= Z anal + Z oznal v 'vn
0<n<m n>m
— Z a, [wz(v,vn)o — (v,v,)1 #e Z an (0, V)10 w2(v,vn)0,p}
0<n<m n>m
w* — A\, 9 9
- > () w2 () @bz el
0<n<m
(35)
ith i, = i w2y
WIIN Opnin = mlnnzo oM,
The inequality can be demonstrated using analogous steps. One obtains
ai (v, lg- (v)) = Z apaq (v Z apar (v, v,) =
0<n<m 0<n<m
2
= Z Qp |:w (’U’ 'Un)O,p - ('U, ’Un)l,,u,ej| (36)
0<n<m
2
w— A .
= Z (1—)\n) &721 2> Qmin Oéi > 07
0<n<m T An 0<n<m
where i, = min,>g 1+>\/\ and Qi 7 0 due to Assumptlonand the properties (29).
O

Lemma 9. Let a;(-,-) and as(-,-) be the bilinear forms introduced in equations and (T3), re-
spectively. The bilinear form a(-,-) : (H x P) x (H x P) — C, defined by

a((u,p); (Iva Q)) = al(ua U) + &2(]9, q)a
for (u,p), (v,q) € H x P, is elliptic.

DOI 10.20347/WIAS.PREPRINT.3101 Berlin 2024
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Proof. Let (v,q) € H x P.From T + 2lly- = I it follows that
Rea;(v,v) = Rea; (v, T(v)) + 2Re ay (v, [Ig- (v), (37)

for all v € H. Using Lemmal|g|and inequality one obtains

K Y
R R = mzn2 e o —— \Y 5> a 2 e b —— f )
0 01(0.9)-+Ro02(0.0) = a2 [20) -+ IVl > (2w B+l

(38)
with
& = min {mnin, Cp'} - (39)

O

Lemma 10. The bilinear form b defined in satisfies a continuous inf-sup condition, i.e., there
exists 1 > 0 such that

b v, &
sup 228 > 5 e, (40)
verr [V
v#O
forall§ € S.
Proof. See, e.g., [20]. O

The previous results allow to prove the first main result.

Lemma 11. The operator B defined in equation is bijective.

Proof. The proof relies on decomposing the operator B3 as in (28). We observe that, for all £ € S'it
holds
Red(&, &) = A7[€[[5 > 0.

Combining this result with Lemma[9] and Lemma[10] allows us to infer bijectivity of 3 using Theorem
6 O

Lemma 12. The operator C, defined in equation (23), is compact.

Proof. The compactness of C follows from the fact that C = A1 o i., where I : L*(Q2) — L*(Q)
and .. represents the identity operator along with the compact embedding from H*(2) into L?(2)
(for details, see [28, Lemma 2.2]). O

Lemma 13. Under the hypothesis of Assumption (), the operator A is injective.

Proof. Letv € U such that A(¥) =0, i.e.,

From
(A(©),8) = = pllvlls + 2pelle(0) 13 + 02 gllF + ——IIValls
o

— A& q) = A (g, ) + ATIENG

DOI 10.20347/WIAS.PREPRINT.3101 Berlin 2024



A stabilized for the Biot’s poroelasticity equations 11

one obtains (A € R)
Im{A(%), %) =0« 0A [lqllg — A" Re (§,q) = A7"Im(q,§) =0,
and hence, using (¢,¢) = (£, q),
ATIm(§,q) = A7 0]lgllf — AT Re (&,q) (41)
,0

Analogously, from Re(A(v), ¥) = 0, one obtains
K _ _ _
0 = —w?p|lvl§ + 2pclle()]l5 + WIIV(JH% +ATHIm (E,9) = AT Re (&, 9) + AT
K N _ _
= —wpllvll§ + 2pelle(v)F + WIIVCJH% +A70glls — 227" Re (€, 9) + ATHIE]IS
=l + 20202 + —— [Vl + 2 qll3 + A gl
0 0T e o™ -, lldllo 0
—2X"Re (&, q) + XIS
K S, _
= —w?pllvlg + 2pclle(v)][5 + IValls + = llqlly + A7 (lglls — 2Re (&, q) + [1€]]5) -
M rwar «
(42)
Hence, from . )
Re(¢, q) < [I€llollallo < S1IENG + §IIQ|I3 (43)
and Lemma[@l one obtains
0> 2permnlle()|I2 + —— || Vq|]2 + %IIQ\Ig (44)
B e’ «Q
which is satisfied only for (v, ¢) = (0, 0). At the same time, (v, ¢) = (0, 0) yields
0= (A(9),9) = A'[<]l3
and thus & = 0, concluding the proof. 0O

Using Lemmas [{1] [12] [T3]and the Fredholm'’s alternative allows to state the main stability result.
Theorem 14 (Well-posedness). The problem has a unique solution u* € U, and there exists a

positive constant C' such that there holds

14" |lv < C|Fllu < Clllgllora + lgrellor, |- (45)

Remark 1. Note that is equivalent to the following inf-sup condition:

(A@). )] )

3 > (0: inf
P> 0 Bl S yE Tl =

UeU  Feu
#0540

4 Analysis of the discrete problem

This section is dedicated to the well-posedness and stability analysis of the discrete problem arising
using a stabilized finite element formulation of (19).

DOI 10.20347/WIAS.PREPRINT.3101 Berlin 2024
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4.1 Stabilized finite element formulation

Let {74 }n>0 denote a shape-regular triangulation of Q. For an element T € T:, we denote with Az
the diameter, introducing

h:=max{hy: T € T,}

as the characteristic mesh size. Let us also assume that there exist a constant A, > 0 such that
h < hy, for all triangulations. Denoting P;(T") (j € N) as the space of polynomials of total degree
less than or equal to j over an element 7' € 7T, we define the following continuous finite element
spaces:
H), = {v" € C(Q)* : v"|r € PL(T), VT € T} NH
P, = {thC’(ﬁ) :qh|T€Pl(T),VT€ﬁ}ﬂP (47)
Sp={&"€ C(Q) : "y € Pu(T), VT € Tp}
andlet U;, = H;, x P, x S;,. The analysis presented in the following part can be applied to general

finite element triples. However, we focus on the case of equal-order elements, i.e., choosing k = [ =
m.

It is well known that, in this case, the discrete spaces do not satisfy an inf-sup condition. For this
reason, the discrete formulation will be equipped with additional stabilizations. On the other hand, the
choice of equal order elements is motivated by the reduced computational cost, particularly evident in
realistic three-dimensional examples.

For the stabilized methods, we consider the residual of the momentum equation:
R(v", &") == WPpv" 4 2u.dive(v") — VEP. (48)

Additionally, we introduce an additional term inspired by the Brezzi-Pitkaranta stabilization (see [8])
and define the operator Sy, : U}, — U7, as follows:

2
(Sn(@"), 8") =06, > (R, ¢"), R(v", "))+ 62 Y i1 (Vp", V"),  (49)

aw
T€eTh TET;, My

where 6; > 0 and &, > 0 are two stabilization parameters.

Both terms are designed to address the lack of inf-sup stability in the finite element spaces. In partic-
ular, the second term can be seen as an artificial permeability which becomes relevant only for small
values of xk and it aims to handle instabilities that may arise in the low permeability range (see, e.g.,
[31], [40]).

Remark 2. For clarity, the Brezzi-Pitkdranta term is only necessary for small values of k, i.e., when
k < 1. Otherwise, it suffices to consider 65 = 0.

The proposed finite element formulation reads:
Problem 1. Find 4" = (u”, p", ¢") € U}, such that

(Ap(@h),s"y = (F, 8", V&' e Uy, (50)
where

Ay =B+8,+C. (51)
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A stabilized for the Biot’s poroelasticity equations 13

4.2 Well-posedness of the discrete problem

The well-posedness of problem will be addressed based on the decomposition (51), following an
argument analogous to the one used in Section

First, let us define the following mesh-dependent norm over U j,:

4 . h7
15" 15, = 18"l + 61 D WHIR(" M5+ 62 Y MfT IVallg o (52)

aw
TeT TeT,

In what follows, we will also use the following inverse inequalities: there exist two constants C'; and
C' such that
2|3 Ry (12 2 Ry (12
hz||dive(v") |57 < Crlle(@™)|I5r (53)

and 3
W IV |13 < CRIIO" G 1, (54)

for any element 7" in the triangulation and for all v € Hj,.

We begin stating a result analogous to Theorem [5, valid for the discrete setting.

Theorem 15. Let (V},), and (W},);, be two families of finite dimensional Hilbert spaces such that
dimV};, = dimW},, Yh, and let (Ly,),, a family of operators Ly, : V}, — W, uniformly bounded in h.
Then, the followings statements are equivalent:

(i) The problem Lyu;, = f is well-posed and (L; ')}, is uniformly bounded;

(i) (Lp)n is T-coercive.
Proof. See [10, Th. 2]. O

The following lemma concerns the orthogonality of the Galerkin finite element method, which is only
achieved asymptotically (~ O(h?)) or when &, = 0.

Lemma 16 (h2-Galerkin Orthogonality). Let & and @' be the solutions of and (50), respectively.
Assume thatu € HN H*(Q)%, p € pN H*(Q),and ¢ € SN H(Q). Then, it holds

— —hy\ —h\ h% h
<Ah(u u ),’U > - 5271627’ [if QW (vpv Vq )T7 (55)
h

forall 3" € U,

Proof. It holds
(Ap(d —a™), d") = (A(@), ") + (Su(@), ") — (An(a"), o") = Sy ().

Using the assumption on the regularity of the solution of (19), i.e., u € HN HQ(Q)d and ¢ €
SN H'(£2), one can conclude that w?pu + 2p.dive(u) — Vé = 0, and hence

_ h%
S(t) =06, )

—(Vp, V" r.
TET, ry
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C. Carcamo, A. Caiazzo, F. Galarce, J. Mura 14

The next lemma shows the continuity of the stabilized finite element operator A;,.

Lemma 17 (Continuity of .A;). There exist two positive constants 13 and 1, such that, for any a" e
U,, we have

ISu(@")| < ms l|@" o and || Au(@")I| < 0 |16 |or.

Proof. Let 4", %" € U}, Using the inverse inequalities ad we obtain

1 Z R (W pu + 2pcdive(u”) — Vo', wpv" + 2u.dive(v") — VEM) 1
TeTh

<t 3 1 (ol + 2 (o + 196" o )
TeTh

(W2P||Uh\|o,T + 24 ||div e(v™) o + |’V§h||0,T>

<t 3 (phe o + 20 Cs lew o + Gl )

TeT

(w2phT||vh||o,T T 20" o + éz||€h||o,T)

s 2
<§; max {wzp ho(21) Y2, (2pe) 2 O, CI)\l/Q}

211/2
[ ) ((2Me)1/2|\uh“o,T T (22 () or + >\1/2H¢hHo,T) } x

TeT,

211/2
[ ) (<2ue>1/2nvhuo,T T (@2) 20 ox + A-Wushuo,T) }

TeT

- 2
<38y max {w?p ho(240) V%, (2p1.)/2 Cp, CA2}

1/2
{Z (2ueuuhu§,T+2ueus<uh>|r§,T+A1||¢hH3,T)} x

TeT,

1/2
|5 (2ot + 20"+ AR )|
TETh
1/2

~ 2
=30, max (o ho(250 % 20t O (2l + 2+ 210 )

1/2
(QMeH”h||(2) T2 le(o) 2+ xlnshns)
- 2
<38y max {w?p ho(240) V%, (2410) /2 Cr, CA2}
1/2

<2ue(CPCK)2||€(uh)|IS + 2pele(u®) 15 + Achzﬁhllﬁ)

1/2
(2ue(CPCK)2H€(vh)H3 + 241l (0" I + A1H€'"”H§)

~ 2
<38 max {w?p ho(20) 2, (241)2 Cp, N2, | (14 (CrpCie)) [ |16
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A stabilized for the Biot’s poroelasticity equations 15

On the other hand,

h? h?
0y Y ——(Vp", V")r <6 > ——||Vp ozl V" loxr

= rer, MW
hg K hy2 i hy|2 i
< | — \Y% \Y
<o (") (T Il (X 190 8s)

TeT,

<6 (%) " )18 o

TeT,

(56)

~ 2 2
So, taking 73 = 30, max {oﬂp ho(2p0) Y2, (2ue) Y2 C1, CI)\I/Q} (14 (CpCk)?) + b, (%’) , we
arrive to
IS (@")|| < nsll@" v (57)

Inequality proves the continuity of Sj,. Combined with the continuity of A shown in Lemma (7),
we can conclude that Ay, is also continuous, i.e.,

(An(@"), ") < nall@"|lv]|3" v, (58)
with 14 = 11 + 3.

O

From continuity, it follows that the discrete norm is equivalent to the continuous norm (T7). In fact,
the inequality || 4|z, > ||U||3; is straightforward. On the other hand, by taking i < h and appealing
to the inequalities and (56), we obtain

h2

_h _h _h

31, = 15" 1+60 3 IR (", M) 262 S2 "L |ValR s < (145) 18" 3 (59)
TET rer, Hf

As in the continuous case, the stability of the finite element method relies on the decomposition of the
operator A}, into an elliptic B + S), and a compact operator C. The compactness of C in the discrete
case follows with an argument analogous to Lemma([12] The next lemma shows the coercivity of the
operator B + S;,.

Lemma 18 (Coercivity of B + Sy). Let B, := B + S),. There exists a positive constant cy, which
depends on the frequency w and on the domain €}, such that

Re(By,(6"), ") > au|| 8" (|3, (60)

Proof. Due to the fact that H™ is of finite dimension, it is possible to construct a space H, such
that the latter is an approximation of the former. This can be achieved by considering approximations
(V") o<n<m of the basis (v,,)o<n<m. Therefore, we can define the space

H}: = Spanogngm(UZ) :

Now, similar to the continuous case, we define T}, := Iy, — 2P, of £L(H)},), whose properties are
studied in [10]. Although the analysis is omitted here, we can assert that under the construction of this
discrete operator, the same result as in the continuous problem is achieved, as stated in Theorem (8).
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C. Carcamo, A. Caiazzo, F. Galarce, J. Mura 16

By applying Theorem for the discrete T},-coercivity of A, we obtain
Re(B,(4"), 3") =Re(A;(v"), v") + Re(As(q"), ¢") + Re(D(¢"), &) + Re(S(5"), v")
- R _
>ar (Bl @+ ) + AN+ S A IR( €

TET,
0 i

where ay = min{ay, 1}.

Finally, the injectivity of A;, is proven in the following lemma.

Lemma 19 (Injectivity of A). The operator Ay, is injective.

Proof. Let 3" € U}, such that A, (4") = 0. Then,

0 =2|(A ("), ")
> Re(Au(8"), ") + Im( A ("), 5"
"), 6

(A, ("), 8") + RelAa(q >,qh>+Re<®<sh>7sh>+A-1(|m<s,q>—Re@,q))

oAl = A7 ( Im(€, q) + Rel, q>) T Re(S(5"), ")

- _ _ Se
> Ctmin2Ate||£(T") [ + o+ ATIEME = ATMIEME = AT " IS + —lla" 113

FATG G+ 01 > HHIRE 5 +8 >

TeTh TeT,

. i
81 3 MIRE e+ -

TeTh TeTh

qhHo,T

>O‘mm2M6H€< )‘O

qhHO,Tu

and then " = 0, ¢" = 0 and R(4", £") = 0, and in consequence £ = 0. O

To conclude this section, the following result establishes the existence and uniqueness of the solution
for the discrete problem.

Theorem 20 (Well-posedness of the discrete problem). There exists hy > 0 such that for all h > hy
the discrete problem has unique solution @"* € U),. Moreover, there exists a positive constant
C} independent of h such that

(@1, < ClFll, < €197 + gl ) 1)
or equivalently, there exists a positive constant 33 > 0 such that

(An("), 5")

Bs||@" ||, < sup — (62)
hEUh HU HUh
h+g
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A stabilized for the Biot’s poroelasticity equations 17

Proof. The proof follows from the application of Lemmas (12), and plus the Fredholhm alter-
native. O

4.3 Convergence

This section is dedicated to the convergence properties of the method. To this purpose, we assume
additional regularity of the solution, i.e., considering the space

W = H*(Q)4 x H*(Q) x H*(Q),
where k is the order of the finite element spaces (47), and the Lagrange interpolation operators
I HNH Q)Y — H),

Ih: PN H™HQ) — Py (63)
Ih.SNH(Q) = S).

Then, there exists a constant C\, > 0 such that,
|lv — Zhollo + hlv — Zho|, < CLhf o)y, Yo e HN H™(Q)?
lg — Zpqllo + hlg — Zpaly < Ch™Halesr, Vg€ PN H™HQ) (64)
1€ = Zsllo < ClahElr, V€ € SN H(Q),
forall 1 < k < r (see, e.g., [14, Theorem 1.103]). Let us also define Z" := (I, I8 T%).

The next result concerns the theoretical rate of convergence for the Galerkin scheme ({9).

Theorem 21. [Convergence] Let 4 and @' be the solutions of and respectively. In addition,
assume thatu € U N'W. Then, for1 < k < r, there exist two constants C, Cy > 0, independent
of h, such that,

i — @ |y < Cyh* (Hqu+1 + [|plle+1 + ||¢Hk> + G0, h* || Vpllo (65)

Proof. Hereafter, for (u, p, ¢) € (H, P, S) and for (u”, p", ¢") € (Hy,, Py, Sy), let us introduce the
notations
E(d) =4 —TI"t= (u—Thu,p—Ipp,¢ — T)

and

Let 3" € U},. Using Lemma and Lemma (16) we obtain

- Sh _h
Bs|| En(w, d")|| < sup |(Ap(Ep(d,a")), ")

sheuy, Hﬁh”Uh
f;h¢5

2

h
L (Vp,Vq")r
w

'<Ah<E<a>>, 7 -6 Y

TETh
< sup .
sheuy, thHUh
sh#0
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Utilizing the continuity of .A;, (inequality (58)) we get

|(An(E(@)),7")| < nal E(@) ||| ||, < Cuah” (|u|k:+1 + [plisr + |¢|k) 15" |er,

In addition, it holds

1 1/2 1/2
2 2 h|l2
<t (S Iwslke) (T IveiE)

oW

hi h
62 ) faw(vp, Vq*)r

TET TET TET

Iz h2 h % It (66)

K Sh
= () 19l () 19
K oW
with C = (ufa/{)*%, which allows to conclude
| (4, 6" < B3 ' Cla b (\U\kﬂ + [plrr1 + Wk) + B3 Ca 62 1 || Vplfo -
Applying the triangle inequality and using yields
S p - "
|t — a" v, <[E(W)|v, + [|En(d, d")|v,
< (U 6570k (Juleos + I + 16l ) + 557 Coba 2 [Tl

concluding the proof. O

5 Numerical Examples

This section is devoted to the numerical results. The first three examples aim at validating the method
and the theoretical expectations presented in Section [] For these purposes, we introduce some an-
alytical solutions. Since every solution v is a complex function, they are written as v = (Rev Imw).
Additional examples will address the robustness of the solver in layered domains as well as its ap-
plication in a realistic setting using a brain geometry segmented from magnetic resonance medical
images.

Concerning the computational aspect, the software MAD ([17], chapter 5) is used for the finite element
framework, based upon the linear algebra library PETSc [3]. The inversion of the system of equations
is done by means of the MUltifrontal Massively Parallel sparse direct Solver (MUMPS, [2]).

5.1 Example 1: Validation against an analytical solution

We first validate the numerical method in a case in which the problem can be solved analytically,
and whose solution is given by,
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0.0e+00 1.0e+00 00e+00 80e+00 00e oo 1.0e+00 0.0e+00 2 4.0e+00 7.5e-14 1.4e+02 14e-12  57e+02
[ o

-

(a) Ure uzm, pre plm (e) ¢re (f) ¢im
@) ure” ) Wim", ) Pre” ) Dim”" k) o7 M S

Figure 1: Example 1 (2D): Analytical solution (top) and numerical results of (4) for h = 0.0625. The
parameters in (@9) are set to 6; = 0.5 and d; = 0, due to the comparatively high value of x (see
Table [1).

) (=12 (z—1)(x+2)%(y + 1)
=(Rew Imu) —( y(z — 1) 2z%y(x — 1) )

p=(Rep ) = (s (2 ) ox (%) (1 ontra 1+ o)
¢=(Rep Imo)
Gm(2)0%< >—Au@@mm)(1_mammu+mwmw)_Mﬂqmu»)

(67)

for 2D on the unit square and,

(z—1)%2y*(2 +2) (z—1)2°*(z+1)
=(Reu Imu) = [ #%y(z 4+ 1)*(z — 1) (x 1?23 (2 — 2)
(. — Day(z+2)*  2%y(z—1)(z —2)?

p=(Rep Imp) = ( <_> (_> (1 — cos(ma))(1 + cosm)))
¢ =(Re¢ Img)
(cos( )sm(m) Atre(Rew) sm( )(1+COS(7Ty))(1+cos(7rz))—)\tra(lmu))

(68)
for 3D on the unit cube, respectively.

Boundary conditions are prescribed according to the exact solutions (67) and (68), evaluated on the

sets:
P ={(z,y) eR*: 2 =0,y =1},

and,
2P ={(z,y) eR*:x =1,y =0},

for pressure and velocity in 2D (resp.), and on,

3D _ 3., _ _ _
P ={(r,y,2) eR°:2 =0, 2 =1,y =0},
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and,
LY ={(z,y.2) eR® 1y =12=0,2=1},

for pressure and velocity in 3D, respectively.

The set of physical parameters for both 2D and 3D simulations, is described in table ().

Parameter F [dyn/cm?] v ug[Poise] k[em?*] w  plgriem?]

Value 102 04 1.0 0.1 1.0 1.0

Table 1: Parameters used for the examples with analytical solutions.

The computational domain is based on several refinements of a unstructured triangular/tetrahedron
mesh (coarsest discretization h = 1 mm). The 2D numerical solutions for this example are shown in
Figure[1] together with the exact solutions (67).

Figure [2] shows the error with respect to the exact solution for displacement, pressure, and total pres-
sure, as a function of the mesh size, setting 6; = 0.5 and do = 0.0. The convergence rates confirm
the theoretical expectations discussed in Section [4|both for linear and quadratic finite elements.

We can draw the same conclusion for the three-dimensional case by inspection of the convergence
results in Figure 3

2
10 Lot
10! . — Ju-u"[30
10 h
5 10° 5 — Ip=pP"l1a
L0 g0 — 16-9¢"Ia
-2 1072 === olh?)
10 o(h)
1073 1073
102 1071 10° 1072 107! 10°
h h
(a) P1 (2D) (b) P2 (2D)

Figure 2: Example 1 (2D). Error for displacement, pressure, and total pressure as a function of the
mesh size, for linear (left) and quadratic (right) finite elements.

— Ju-uf|q
— lp=pP"lra
— 1¢=9" 10
—= o(h?)

O(h)

Error

107t 10°
h

(a) P1 (3D) (b) P2 (3D)

Figure 3: Example 1 (3D). Error for displacement, pressure, and total pressure as a function of the
mesh size, for linear (left) and quadratic (right) finite elements.

To demonstrate the relevance of the Brezzi-Pitk&ranta stabilization term for low permeabilities, Figure
shows the numerical error for three different mesh sizes and a wide range of permeabilities. ¢ The
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stabilized version (0, = 1) leads to a very robust solver with an error independent on the permeability.
This is in contrast with the 0, = 0 case, where the error significantly increases in the low permeability
range.

h=0.7 h =0.088 h =0.022
10° P T T T T T T T T T T T T T T T T T T T T T T T
102 F
10% | 1
-
Qo
—
LE‘ 10'
10% 4 10k
S IR — ;
I I I I I f f f ! I I I i ! ! ! ! L] 100 bl I f f f I I 1 =)
1078 10=7 107® 10=° 10~* 1072 1072 10~' 10° 1078 1077 107® 10~° 107* 107 1072 10~' 10° 107% 1077 107® 10~° 107* 107* 1072 10~" 10°
K K K
— Py — P ——— Py stab. —— P stab.

Figure 4: Example 1 (2D): Numerical error as a function of the permeability parameter « for different
mesh sizes, comparing the case 6, = 0 (red and blue curves) with the stabilized version d; = 1
(magenta and green curves).

5.2 Example 2: Layered domain

In this section we considered a two-dimensional domain containing layers with different permeabilities.
The purpose of this example is to validate the robustness of the numerical solutions, in particular of the
pressure, in presence of discontinuous coefficients, spanning different orders of magnitude. Address-
ing such problems is relevant in different fields of applications, including soil mechanics and biomedical
engineering, particularly in scenarios where the system parameters are affected by uncertainty and/or
have to be estimated.

We set Q = [0, 1] x [0, 1], decomposed in three subdomains with ; = 1073 cm? for y € [0, 1/3],
Ko = 107* em?, fory € [1/3,2/3] and k3 = 10° cm® for y = [2/3, 1]. (see Figure[5). The values
of the other physical parameters are provided in Table

Parameter E [dyn/cm?] v {4y [Poise] K [cm?] w [Hz] p [griem?]

Value 102 0.45 1072 1073]107*]107° 25|50|75|100|125 1.0

Table 2: Parameters used for the Example (5.2) with different permeabilites.

Concerning the boundary conditions, we set a Neumann boundary condition on the square bottom
of magnitude 10~2 dyn/cm? pointing upwards, zero displacements at the top of the geometry, and a
constant pressure field at the bottom of 10~2 dyn/cm?.

We consider an unstructured triangular mesh with characteristic size of h = 4 x 10~% cm, and
stabilization parameters d; = w2 (inf-sup stabilization) and &, = 1 (pressure stabilization).

The magnitude of the solutions obtained for different values of w are shown in Figures [g] for dis-
placement and total pressure. The solutions for the pressure are analyzed in more detail in Figure[7]
highlighting that the numerical solution is not affected by the discontinuities and by the small values of
the permeability.
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k3 = 1072 cm?
=10"* cm?
K1 = 1073 cm?

=10" 2dyn/cm
on = (0,—1072) dyn/cm?

Figure 5: Example 3 (layered domain): Set-up of the computational domain with varying permeability
(on a coarse mesh).

0. 0e+00 5 3e-05 0. Oe+00 Ae 5 6.6e-05  0.0e+00 1.4e-04  0.0e+00 3.1e-05

| —

5, Oe 03 5 3603 4. 7e 03 7 9603  3.2e-05 27602 1. 3e 05 1 56-02
wlez wleHz w = 25 Hz w:50Hz

Figure 6: Example 3 (layered domain): Magnitudes of the displacement and total pressure solutions for
different excitation frequencies. The stabilization parameters in aresetto d; = w 2and dy = 1.0
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0.010 w=1Hz
= 0.008 —— w=10Hz
€ — w=25Hz
1%

r w=50Hz

0.006
)

[
5 0.004
@
[
a 0.002
0.000 k

00 02 04 06 08 10
Position [cm]

Figure 7: Example 3 (layered domain): Pressure profiles at vertical control line. The solver shows a
robust behavior against discontinuities in the permeability field. The permeability interfaces are indi-
cated with black lines in the right plot.

Although an exact solution for this benchmark is not available, One can further infer the validity of the
results in terms of the expected elastic behavior of the wave within the media The parameter set of
the simulations impose a wave speed \/E/p = 10 cm/s, leading to wavelengths of approximately
62 cm, 6.28 cm, 2.51 cm, 1.27 cm for frequencies of 1 Hz, 10Hz, 25 Hz and 50 Hz, respectively. This
explains why in the low frequency simulation the domain size (1 cm) does not allow a full wave cycle
to develop, whereas an almost full wavelength is depicted for w = 50H z.

5.3 Example 3: Three-dimensional brain geometry

The final test case considers the simulation of a magnetic resonance elastography (MRE) experiment
on a realistic brain geometry obtained from medical imaging. The computational mesh geometry is
depicted in Figure [8] The boundaries of the domain are decomposed in disjoint sets 02 = I'jeqc U
I'vire U Iientrictes, @nd we prescribe the following boundary conditions:

B MRE pulse: on = [0, 103, 0] on Tyge.

B Fixed sub-domain: Reu = Imu = 0 on I' .

M Intracraneal pressure: Re p = 10* dyn/cm? on O\ yentricies.-

B Pathological ventricle pressure: Rep = 1.1 x 10* dyn/cm? on Tentricies-

B Imp = 0on 0.

Parameter F 2y K w p

Value 10° [dyn/cm?] 0.4 0.01[Poise] 10~%[cm?] 10.0[Hz] 1.0 [gr/cm?]

Table 3: Parameter set for human brain simulation.
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Figure 8: Example 4 (brain elastography): Computational domain (Source: [16])

The intensity of the MRE pulse boundary condition is chosen to get physiological magnitudes for the
displacement fields. An intracranial pressure difference is imposed between the ventricles and the
exterior boundary, emulating pathological conditions.

The physical parameters are chosen to mimic the setting presented in [16] (see Table [3). To handle
the low permeability value, the Brezzi-Pitk&ranta stabilization term with d5 = 1 is considered.

The computational tetrahedral mesh has been generated from the segmented surface mesh using
the software MMG [12], and it is composed of 103k vertices and 511k tetrahedra. Employing a linear
equal-order interpolation for the unknowns leads to a problem with 516k degrees of freedom.

The numerical results with this configuration are depicted in figure [9}
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Figure 9: Example 4 (brain elastography): Numerical results for displacement (top row), pressure (mid-
dle row) and total pressure (bottom row).
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6 Conclusions

This paper proposes and analyzes a stabilized finite element method for the numerical solution of the
Biot equations in the frequency domain utilizing a total-pressure formulation. We focus on the case
of equal-order finite elements, introducing additional stabilization terms to cure numerical instabilities.
Moreover, an additional Brezzi-Pitkaranta stabilization is introduced to enhance robustness concerning
the discontinuities of material permeability.

The first contribution of this work is the detailed numerical analysis, in the continuous and the discrete
settings, of the total pressure formulation. In particular, using the Fredholm alternative [15, [38], and
the T-coercivity properties of the variational form [10], we show that the well-posedness results of [28]
in the time domain case can be extended to the frequency regime. The second contribution concerns
the proposed stabilization, which allows to enhancement of the robustness of the numerical method in
a wide range of tissue permeability and also in the presence of discontinuities.

Since the additional stabilization introduces a second-order consistency error, optimal convergence
can be proven only for linear equal-order finite elements. However, in practical situations, it is impor-
tant to observe that the stabilization can be introduced only where required (i.e., regions of very low
permeability), thus expecting numerical results of better quality than those suggested by the theoreti-
cal expectation. An optimal choice of the stabilization parameters depending on the local solutions or
considering local error estimators is the subject of ongoing research and is out of the scope of this
work.

The proposed method has been validated on simple examples against analytical solutions, as well as
considering a layered domain with varying permeability, and an example of a brain geometry obtained
from medical imaging. Future directions of this research will consider the application of the scheme in
the context of inverse problems for parameters or state estimation.

Acknowledgments

This research is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy - MATH+: The Berlin Mathematics Research Center
[EXC-2046/1 - project ID: 390685689]. The second author would like to acknowledge the financial
support from the project DI VINCI PUCV 039.331/2023, and the support of the student Mauricio Por-
tilla concerning a few advances on the software used for the numerical experiments within this work.

References

[1] E. Ahmed, F. Radu, and J. Nordbotten. Adaptive poromechanics computations based on a poste-
riori error estimates for fully mixed formulations of biot’s consolidation model. Computer Methods
in Applied Mechanics and Engineering, 347:264—-294, 2019.

[2] PR. Amestoy, |. S. Duff, J. Koster, and J.-Y. LExcellent. A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications,
23(1):15-41, 2001.

DOI 10.20347/WIAS.PREPRINT.3101 Berlin 2024



A stabilized for the Biot’s poroelasticity equations 27

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. Balay, S. Abhyankar, Adams. M.D., J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout,
W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, S. Zampini, and
H. Zhang. PETSc Web page, 2015.

F. Bertrand, M. Brodbeck, and T. Ricken. On robust discretization methods for poroelastic prob-
lems: Numerical examples and counter-examples. Examples and Counterexamples, 2:100087,
2022.

M. Biot. General theory of three-dimensional consolidation. Journal of Applied Physics,
12:155—-164, 1941.

D. Boffi, M. Botti, and D. A. Di Pietro. A nonconforming high-order method for the biot problem on
general meshes. SIAM Journal on Scientific Computing, 38(3):A1508—A1537, 2016.

S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. Springer
New York, NY, New York, 2007.

F. Brezzi and J. Pitkdranta. On the stabilization of finite element approximations of the stokes
equations. In Wolfgang Hackbusch, editor, Efficient Solutions of Elliptic Systems, volume 10 of
Notes on Numerical Fluid Mechanics. Vieweg+Teubner Verlag, Wiesbaden, 1984.

R. Birger, S. Kumar, D. Mora, R. Ruiz-Baier, and N. Verma. Virtual element methods for the
three-field formulation of time-dependent linear poroelasticity. Advances in Computational Math-
ematics, 47(1):2, 2021.

P. Ciarlet. T-coercivity: Application to the discretization of helmholtz-like problems. Computers &
Mathematics with Applications, 64:22—-34, 2012.

P. G. Ciarlet. Linear and nonlinear functional analysis with applications : with 401 problems and
52 figures. Society for Industrial and Applied Mathematics, 3600 University City Science Center,
Philadelphia, PA, United States, October 9 2013.

C. Dapogny, C. Dobrzynski, and P. Frey. Three-dimensional adaptive domain remeshing, implicit
domain meshing, and applications to free and moving boundary problems. J. Comp. Phys.,
262:358—378, 2014.

E. Eliseussen, M.E. Rognes, and T.B. Thompson. A posteriori error estimation and adaptivity for
multiple-network poroelasticity. ESAIM: M2AN, 57(4):1921-1952, 2023.

A. Ern and L. Guermond. Theory and Practice of Finite Elements. Springer Verlag New York,
NY, New York, 2004.

Lawrence C. Evans. Partial Differential Equations. American Mathematical Society, 2010.

F. Galarce, K. Tabelow, J. Polzehl, C.P. Panagiotis, V. Vavourakis, L. Lilaj, I. Sack, and A. Caiazzo.
Displacement and pressure reconstruction from magnetic resonance elastography images: Ap-
plication to an in silico brain model. SIAM Journal on Imaging Science, 2023.

F. Galarce Marin. Inverse problems in hemodynamics. Fast estimation of blood flows from medical
data. PhD thesis, INRIA Paris & Laboratoire Jacques-Louis Lions. Sorbonne Université, 2021.

G.N. Gatica, N. Heuer, and S. Meddahi. On the numerical analysis of nonlinear twofold saddle
point problems. IMA Journal of Numerical Analysis, 23(2):301-330, 2003.

DOI 10.20347/WIAS.PREPRINT.3101 Berlin 2024



C. Carcamo, A. Caiazzo, F. Galarce, J. Mura 28

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

G.N. Gatica, R. Oyarzua, and F. Sayas. Analysis of fully-mixed finite element methods for the
stokes—darcy coupled problem. Math. Comp., 80:1911-1948, 2011.

V. Girault and P-A. Raviart. Finite Element Approximation of the Navier-Stokes Equations.
Springer Berlin, Heidelberg, New York, 1979.

S. Hirsch, J. Braun, and |. Sack. Magnetic Resonance Elastography: Physical Background And
Medical Applications. Wiley, 2017.

A. Khan and D.J. Silvester. Robust a posteriori error estimation for mixed finite element approxi-
mation of linear poroelasticity. IMA Journal of Numerical Analysis, 41(3):2000—-2025, 10 2020.

R. Kress. Fredholm’s alternative for compact bilinear forms in reflexive banach spaces. Journal
of Differential Equations, 25:216—226, 1977.

J. J. Lee. Robust error analysis of coupled mixed methods for biot’s consolidation model. Journal
of Scientific Computing, 69(2):610-632, 2016.

Y. Li and L. T. Zikatanov. Residual-based a posteriori error estimates of mixed methods for a
three-field Biot’s consolidation model. IMA Journal of Numerical Analysis, 42(1):620-648, 10
2020.

H. Mella, E. Sdez, and J. Mura. A hybrid pml formulation for the 2d three-field dynamic poroe-
lastic equations. Computer Methods in Applied Mechanics and Engineering, 2023. To appear in
Computer Methods in Applied Mechanics and Engineering, 2023.

M.A. Murad and A.F.D. Loula. Improved accuracy in finite element analysis of biot’s consolidation
problem. Computer Methods in Applied Mechanics and Engineering, 95(3):359-382, 1992.

R. Oyarzia and R. Ruiz-Baier. Locking-free finite element methods for poroelasticity. SIAM J.
Numer. Anal., 54(5):2951-2973, 2016.

P. R. Perrinez, F. E. Kennedy, E. E. Van Houten, J. B. Weaver, and K. D. Paulsen. Magnetic reso-
nance poroelastography: an algorithm for estimating the mechanical properties of fluid-saturated
soft tissues. IEEE Transactions on Medical Imaging, 29(3):746—755, 2010.

P. J. Phillips and M. F. Wheeler. A coupling of mixed and discontinuous galerkin finite-element
methods for poroelasticity. Computational Geosciences, 12(4):417-435, 2008.

P. Joseph Phillips and M. F. Wheeler. Overcoming the problem of locking in linear elasticity and
poroelasticity: An heuristic approach. Computational Geosciences, 13:5-12, January 2009.

M. Renardy and R.C. Rogers. An Introduction to Partial Differential Equations. Texts in Applied
Mathematics. Springer New York, NY, 2 edition, 2004.

R. Riedlbeck, D. A. Di Pietro, A. Ern, S. Granet, and K. Kazymyrenko. Stress and flux reconstruc-
tion in biot’s poro-elasticity problem with application to a posteriori error analysis. Computers &
Mathematics with Applications, 73(7):1593-1610, 2017.

I. Sack. Magnetic resonance elastography from fundamental soft-tissue mechanics to diagnostic
imaging. Nat. Rev. Phys., 5:25-42, 2023.

R.E. Showalter. Diffusion in poro-elastic media. Journal of Mathematical Analysis and Applica-
tions, 251(1):310-340, 2000.

DOI 10.20347/WIAS.PREPRINT.3101 Berlin 2024



A stabilized for the Biot’s poroelasticity equations 29

[36] S. P. Sourbron and D. L. Buckley. Tracer kinetic modelling in mri: estimating perfusion and capil-
lary permeability. Physics in Medicine & Biology, 57(2):R1, dec 2011.

[37] D. R. Sowinski, M.D.J. McGarry, E. E. W. Van Houten, S. Gordon-Wylie, J. B. Weaver, and K. D.
Paulsen. Poroelasticity as a Model of Soft Tissue Structure: Hydraulic Permeability Reconstruc-
tion for Magnetic Resonance Elastography in Silico. Frontiers in Physics, 8:617582, 2020.

[38] O. Steinbach. Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer
New York, NY, New York, 2007.

[39] L. Tan, M. D. J. McGarry, E. W. Van Houten, M. Ji, L. Solamen, W. Zeng, J.B. Weaver, and K. D.
Paulsen. A numerical framework for interstitial fluid pressure imaging in poroelastic MRE. PLOS
ONE, 12(6):1—22, 06 2017.

[40] A.-T. Vuong. A Computational Approach to Coupled Poroelastic Media Problems. PhD thesis,
Technische Universitat Miinchen, 2016.

[41] J. Wang, M. Fernandez-Seara, S. Wang, and K. Lawrence. When perfusion meets diffusion:
in vivo measurement of water permeability in human brain. Journal of Cerebral Blood Flow &
Metabolism, 27(4):839—-849, 2007.

[42] S.-Y. Yi. Convergence analysis of a new mixed finite element method for biot’s consolidation
model. Numerical Methods for Partial Differential Equations, 30(4):1189—-1210, 2014.

[43] L. Zhang, L. Scholtés, and F. V. Donzé. Discrete element modeling of permeability evolution
during progressive failure of a low-permeable rock under triaxial compression. Rock Mechanics
and Rock Engineering, 54:6351-6372, 2021.

DOI 10.20347/WIAS.PREPRINT.3101 Berlin 2024



	Introduction
	Model Problem
	Linear poroelasticity in the harmonic regime
	Weak formulation

	Analysis of the continuous problem
	Preliminaries
	Well-posedness

	Analysis of the discrete problem
	Stabilized finite element formulation
	Well-posedness of the discrete problem
	Convergence

	Numerical Examples
	Example 1: Validation against an analytical solution
	Example 2: Layered domain
	Example 3: Three-dimensional brain geometry

	Conclusions

