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Gibbs measures for hardcore-SOS models on Cayley trees
Benedikt Jahnel, Utkir Rozikov

Abstract

We investigate the finite-state p-solid-on-solid model, for p = ∞, on Cayley trees of order
k ≥ 2 and establish a system of functional equations where each solution corresponds to a
(splitting) Gibbs measure of the model. Our main result is that, for three states, k = 2, 3 and
increasing coupling strength, the number of translation-invariant Gibbs measures behaves as
1 → 3 → 5 → 6 → 7. This phase diagram is qualitatively similar to the one observed for
three-state p-SOS models with p > 0 and, in the case of k = 2, we demonstrate that, on the
level of the functional equations, the transition p→∞ is continuous.

1 Setting, models and functional equations

Statistical-mechanics models on trees are known to possess rich structural properties, see for exam-
ple [5, 18] for general references. In the present note we contribute to this field by analyzing a hardcore
model that emerges as a limit of the p-SOS model that was recently introduced in [3]. The setting for
this∞-SOS model is as follows.

Let Γk = (V, L) be the uniform Cayley tree where each vertex has k + 1 neighbors with V being
the set of vertices and L the set of edges. Endpoints x, y of an edge ` = 〈x, y〉 are called nearest
neighbors. On the Cayley tree there is a natural distance, to be denoted d(x, y), being the smallest
number of nearest-neighbors pairs in a path between the vertices x and y, where a path is a sequence
of nearest-neighbor pairs of vertices where two consecutive pairs share at least one vertex. For a fixed
x0 ∈ V , the root, we let

Vn = {x ∈ V : d(x, x0) ≤ n} and Wn = {x ∈ V : d(x0, x) = n}

denote the ball of radius n, respectively the sphere of radius n, both with center at x0. Further, let
S(x) be the direct successors of x, i.e., for x ∈ Wn

S(x) = {y ∈ Wn+1 : d(x, y) = 1}.

Next, we denote by Φ = {0, 1, . . . ,m} the local state space, i.e., the space of values of the spins
associated to each vertex of the tree. Then, a configuration on the Cayley tree is a collection σ =
{σ(x) : x ∈ V } ∈ ΦV = Ω.

Let us now describe hardcore interactions between spins of neighboring vertices. For this, let G =
(Φ, K) be a graph with vertex set Φ, the set of spin values, and edge set K . A configuration σ is
called G-admissible on a Cayley tree if {σ(x), σ(y)} ∈ K is an edge of G for any pair of nearest
neighbors 〈x, y〉 ∈ L. We let ΩG denote the sets of G-admissible configurations. The restriction of
a configuration on a subset A of V is denoted by σA and ΩG

A denotes the set of all G-admissible
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B. Jahnel, U. Rozikov 2

configurations on A. On a general level, we further define the matrix of activity on edges of G as a
function

λ : {i, j} ∈ K → λi,j ∈ R+,

where R+ denotes the positive real numbers and λi,j is called the activity of the edge {i, j} ∈ K .
In this note, we consider the graph G as shown in Figure 1, which is called a hinge-graph, see for
example [2]. In words, in the hinge-graphG, configuration are admissible only if, for any pair of nearest-

Figure 1: The hinge-graph G with m+ 1 vertices.

neighbor vertices {x, y}, we have that

|σ(x)− σ(y)| ∈ {0, 1}. (1)

Let us also note that our choice of admissibilities generalizes certain finite-state random homomor-
phism models, see [6, 11], where only configurations with |σ(x)− σ(y)| = 1 are allowed.

Our main interest lies in the analysis of the set of splitting Gibbs measures (SGMs) defined on hinge-
graph addmissible configurations. Let us start by defining SGMs for general admissibility graphs G.
Let

z : x 7→ zx = (z0,x, z1,x, . . . , zm,x) ∈ Rm+1
+

be a vector-valued function on V . Then, given n = 1, 2, . . . and an activity λ = (λi,j){i,j}∈K ,
consider the probability distribution µ(n) on ΩG

Vn
, defined as

µ(n)(σn) =
1

Zn

∏
〈x,y〉∈Vn

λσn(x),σn(y)

∏
x∈Wn

zσ(x),x, (2)

where σn = σVn . Here Zn is the partition function

Zn =
∑

σ̃n∈ΩG
Vn

∏
〈x,y〉∈Vn

λσ̃n(x),σ̃n(y)

∏
x∈Wn

zσ̃(x),x.

The sequence of probability distributions (µ(n))n≥1 is called compatible if, for all n ≥ 1 and σn−1, we
have that ∑

ωn∈ΩG
Wn

µ(n)(σn−1 ∨ ωn)1{σn−1 ∨ ωn ∈ ΩG
Vn} = µ(n−1)(σn−1), (3)

where σn−1 ∨ ωn is the concatenation of the configurations σn−1 and ωn. Note that, by Kolmogorov’s
extension theorem, for a compatible sequence of distributions, there exists a unique measure µ on
ΩG such that, for all n and σn ∈ ΩG

Vn
,

µ({σ|Vn = σn}) = µ(n)(σn).

This motivates the following definition.
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Gibbs measures for hardcore-SOS models on trees 3

Definition 1. We call the measure µ, defined by (2) and (3), the splitting Gibbs measure correspond-
ing to the activity λ and the function z : x ∈ V \ {x0} 7→ zx.

Let A = AG =
(
aij
)
{i,j}∈K denote the adjacency matrix of G, i.e.,

aij = aGij =

{
1, if {i, j} ∈ K,
0, if {i, j} /∈ K,

then, the following statement describes conditions on zx guaranteeing compatibility of the distributions
(µ(n))n≥1.

Theorem 1. The sequence of probability distributions (µ(n))n≥1 in (2) are compatible if and only if,
for any x ∈ V , the following system of equations holds

zi,x =
∏

y∈S(x)

∑m−1
j=0 aijλi,jzj,y + aimλi,m∑m−1

j=0 amjλm,jzj,y + ammλm,m
, i = 0, 1, . . . ,m− 1. (4)

Proof. The proof is similar to the proof of [17, Theorem 1] and [16, Proposition 2.1].

Note that, in (4), the normalization is at the spin state m, i.e., we assume that, for all x ∈ V , we have
zm,x = 1.

In the remainder of the manuscript, we restrict our choice of activities in order to make contact to
p-SOS models defined via the formal Hamiltonian

H(σ) = −J
∑
〈x,y〉

|σ(x)− σ(y)|p, (5)

for p > 0 and coupling constant J ∈ R, see [3, 5, 18, 19] and references therein. The present note
then presents a continuation of previous investigations related to p-SOS models on trees with p > 0,
but now in the case where p = ∞. More precisely, we denote θ = exp(J) and consider the activity
λ = (λi,j){i,j}∈K defined as

λi,j =


1, if i = j

θ, if |i− j| = 1,

∞, otherwise.

(6)

We call the resulting hinge-graph model (with hinge-graph as in Figure 1) the∞-SOS model. Conse-
quently, for the∞-SOS model with activity (6), the equation (4) reduces to

z0,x =
∏

y∈S(x)
z0,y+θz1,y
θzm−1,y+1

zi,x =
∏

y∈S(x)
θzi−1,y+zi,y+θzi+1,y

θzm−1,y+1
, i = 1, . . . ,m− 1

zm,x = 1,

(7)

and, by Theorem 1, for any z = {zx : x ∈ V } satisfying (7), there exists a unique SGM µ for the∞-
SOS. However, the analysis of solutions to (7) for an arbitrary m is challenging. We therefore restrict
our attention to a smaller class of measures, namely the translation-invariant SGMs.
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B. Jahnel, U. Rozikov 4

2 Translation-invariant SGMs for the∞-SOS model with m = 2

Searching only for translation-invariant measures, the functional equation (7) reduces to

z0 =
(

z0+θz1
θzm−1+1

)k
,

zi =
(
θzi−1+zi+θzi+1

θzm−1+1

)k
, i = 1, . . . ,m− 1,

zm = 1.

(8)

In the following we restrict our attention to the case where m = 2. In this case, denoting x = k
√
z0

and y = k
√
z1, from (8) we get

x =
xk + θyk

θyk + 1
and y =

θxk + yk + θ

θyk + 1
. (9)

In particular, considering only the first equation of this system, we find the solutions x = 1 and

θyk = xk−1 + xk−2 + · · ·+ x. (10)

We start by investigating the case x = 1.

2.1 Case x = 1

In this case, from the second equation in (9), we get that

θyk+1 − yk + y − 2θ = 0 (11)

and hence, as a direct application of Descartes’ rule of signs, the following statement follows.

Lemma 1. For all k ≥ 2, there exist at most three positive roots for (11).

For small values of k, i.e., k = 2, 3, we can solve (11) explicitly and exhibit regions of θ where there
are exactly three solutions.

2.1.1 Case k = 2

In this case, the equation (11) coincides with the corresponding equation for p =∞ found in [7]. The
solutions are presented in Section 3 below.

2.1.2 Case k = 3

In this case, we can rearrange (11) as

θ =
y3 − y
y4 − 2

=: α(y),

where we assumed y 6= 4
√

2 since y = 4
√

2 is not a solution. It follows from Figure 2 that up to three
solutions y for (11) appear as follows. There exists θc ≈ 0.206 such that we have:

DOI 10.20347/WIAS.PREPRINT.3100 Berlin 2024



Gibbs measures for hardcore-SOS models on trees 5

Figure 2: Graph of the function α(y).

1) If θ ∈ (0, θc), then there are three solutions y1 >
4
√

2 and y2 < y3 < 1.

2) If θ = θc, then there are two solutions y1 >
4
√

2 and y2 < 1.

3) If θ > θc, then there is a unique solution y1 >
4
√

2.

We can derive the value of θc explicitly as follows. The equation α′(y) = 0 can be solved explicitly as

y0 =
√

1− c+ 1/c ≈ 0.635, with c =
3

√
1 +
√

2.

Since y0 ∈ (0, 1), the critical value θc is thus given by

θc = α(y0) =
(1− c)

√
c(1 + c− c2)

c4 − 3c2 + 2c− 2
√

2− 1
. (12)

2.2 Case x 6= 1

Let us consider the second situation as presented in (9).

2.2.1 Case k = 2

In this case, using (10) and the second equation in (9), we get

θ4x4 + (2θ2 − θ)x3 + (2θ4 − 2θ + 1)x2 + (2θ2 − θ)x+ θ4 = 0, (13)

which is a polynomial with symmetric coefficients and hence, denoting ξ = x + 1/x, (13) can be
rewritten as

θ4(ξ2 − 2) + (2θ2 − θ)ξ + (2θ4 − 2θ + 1) = 0,

which is equivalent to
θ4ξ2 + (2θ2 − θ)ξ + 1− 2θ = 0. (14)

But, this equation has two solutions ξ1,2 given in (28) below and thus we have up to four additional
solutions. Again, this case coincides with the corresponding equation for p = ∞ found in [7] and the
overview of solutions is presented in Section 3 below.
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B. Jahnel, U. Rozikov 6

2.2.2 Case k = 3

In this case, by (10) and the second equation in (9) we obtain

θ6x8 + (−θ6 + 3θ4 − θ2)x7+θ6x6 + (2θ6 − 3θ2 + 1)x5 + (−2θ6 + 6θ4 − 7θ2 + 2)x4

+ (2θ6 − 3θ2 + 1)x3 + θ6x2 + (−θ6 + 3θ4 − θ2)x+ θ6 = 0

(15)

and this equation may have up to eight positive solutions since, if θ < θ′′c ≈ 0.605, the number of
sign changes in the coefficients is eight. However, by computer analysis we can show that there exists
θ̂c ≈ 0.4812 such that, if θ < θ̂c, then (15) has precisely four positive solutions, if θ = θ̂c, then there
are precisely two solutions and, if θ > θ̂c, then there exists no positive solution (see Figure 3 for an
implicit plot). For example, if θ = 0.481, then the four positive solutions are given approximately by

0.2072006567, 0.2260627940, 4.423549680, and 4.826239530.

Figure 3: The implicit plot of (15). Left: For θ ∈ (0, θ̂c), there are two solutions in (0, 0.2927). Right:
For the same region of θ there are two fixed points in (3.41,∞) since both curves towards the right
side converge to zero.

Let us provide an analytical proof of this as well. Since (15) is symmetric, we divide both sides by x4

and denote η = x+ 1/x. Then, we arrive at

θ6((η2−2)2−2)+(−θ6+3θ4−θ2)η(η2−3)+θ6(η2−2)+(2θ6−3θ2+1)η−2θ6+6θ4−7θ2+2 = 0

and consequently

θ6η4 + (−θ6 + 3θ4 − θ2)η3 − 3θ6η2 + (5θ6 − 9θ4 + 1)η − 2θ6 + 6θ4 − 7θ2 + 2 = 0. (16)

Thus, each solution η > 2 of (16) defines two positive solutions to (15). Denoting t = θ2, we write (16)
as the following cubic equation with respect to t,

(η4 − η3 − 3η2 + 5η − 2)t3 + (3η3 − 9η + 6)t2 + (−η3 − 7)t+ η + 2 = 0,

DOI 10.20347/WIAS.PREPRINT.3100 Berlin 2024



Gibbs measures for hardcore-SOS models on trees 7

which is equivalent to

(η − 1)3(η + 2)t3 + 3(η − 1)2(η + 2)t2 − (η3 + 7)t+ η + 2 = 0. (17)

Now, again by the rule of sign changes, for each η > 2, this equation may have up to two positive
solution t = θ2 = t(η). For η > 2 let us introduce the new variables

w = (η − 1)t > 0 and E =
η3 + 7

(η − 1)(η + 2)
=: b(η). (18)

With this, (17) can be expressed as

w3 + 3w2 − Ew + 1 = 0 (19)

and we can solve the last equation with respect to E, which leads to

E = w2 + 3w + 1/w =: a(w).

Note that the function a(w) is monotone decreasing between 0 and 1/2 (because a′(w) = 0 has a
unique positive solution w = 1/2 and a(0) = a(+∞) = ∞) and increasing when w > 1/2. Thus,
the minimal value of E is given by a(1/2) = 15/4 and hence, for each E > 15/4, there are exactly
two positive solutions w1 = w1(E) and w2 = w2(E), with w1 < w2. If E = 15/4, then there exists
a unique wc = 1/2. If E < 15/4, then there is no solution, see Figure 4. From Figure 4 it is also

Figure 4: The graph of the function E = a(w).

easy to see that w1(E) is a decreasing function with values in (0, 1/2] and w2(E) is an increasing
function with values in [1/2,∞) with respect to the variable E > 15/4. Moreover,

lim
E→∞

w1(E) = 0 and lim
E→∞

w2(E) =∞,

and from the function b(η) given in (18), for E = 15/4, we get that

ηc = (7 + 3
√

57)/8 ≈ 3.707.

DOI 10.20347/WIAS.PREPRINT.3100 Berlin 2024



B. Jahnel, U. Rozikov 8

Note that, for the derivative of η 7→ b(η), we have

b′(η) =
(η + 1)2(η2 − 7)

(η − 1)2(η + 2)2
.

Consequently, b(η) is increasing for η >
√

7 ≈ 2.65 with a minimum value b(
√

7) = 21/(1 +
2
√

7) ≈ 3.34. For each E ≥ 15/4, since b(η) is an increasing function, from E = b(η) one
obtains a unique η ≥ ηc. As a consequence, w1(b(η)) is a decreasing and w2(b(η)) is an increasing
functions of η > ηc. Thus, η is a solution to the following two independent equations, obtained from
the first formula of (18),

w1(b(η)) = (η − 1)θ2. (20)

w2(b(η)) = (η − 1)θ2. (21)

Denoting by θ̃ the positive solution of the equation

1/2 = (ηc − 1)θ̃2,

see (18), we have

θ̃ =
2√

3
√

57− 1
≈ 0.4298.

Then, as can be seen in Figure 5, the following assertions hold.

i. If θ ∈ (0, θ̃), then (20) and (21) have a unique solution η > 2.

ii. If θ ∈ [θ̃, θ̂c), then (20) has no solution, but (21) has two solutions greater than 2.

iii. If θ = θ̂c, then (20) has no solution, but (21) has a unique solution.

iv. If θ > θ̂c, then both equations have no solution.

Consequently, under the above mentioned Conditions i.-ii., (16) has two solutions greater then 2, which
define four positive solutions for (15).

Remark 1. To find the exact critical value θ̂c mentioned above, one has to solve the following system
of equation with respect to unknowns θ̂c and η1

w′2(b(η1))b′(η1) = θ̂2
c and w2(b(η1)) = (η1 − 1)θ̂2

c .

With respect to Theorem 1, we can summarize our results for k = 3 in the following statement.

Theorem 2. For the∞-SOS model with m = 2 and k = 3, there exist critical values θc ≈ 0.206
(given explicitly by (12)) and θ̂c ≈ 0.4812 such that

1. If θ > θ̂c, then there is unique translation-invariant SGM.

2. If θ = θ̂c, then there are three translation-invariant SGMs.

3. If θ ∈ (θc, θ̂c), then there are five translation-invariant SGMs.

4. If θ = θc, then there are six translation-invariant SGMs.

5. If θ ∈ (0, θc), then there are seven translation-invariant SGMs.
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Gibbs measures for hardcore-SOS models on trees 9

Figure 5: Up-left: The graphs of η 7→ (η − 1)θ̂2
c (red),η 7→ w2(b(η)) (blue) and η 7→ w1(b(η))

(black). Up-right: The graphs of η 7→ (η − 1)0.22 (red), η 7→ w2(b(η)) (blue) and η 7→ w1(b(η))
(black). Down: The graphs of η 7→ (η − 1)0.15 (red), η 7→ w2(b(η)) (blue) and w1(b(η)) (black).

3 The p-SOS model with p→∞

In this section we exhibit the functional equations corresponding to the p-SOS model defined by the
Hamiltonian (5) and give results related to the case when p → ∞. The limiting equations turn out to
be the same equations as the ones for the∞-SOS model. Assuming k = m = 2, [7] establishes and
analyzes the translation-invariant SGMs of the p-SOS model corresponding to the positive solutions
of the following system

x =
x2 + θy2 + θ2p

θ2px2 + θy2 + 1
, (22)

y =
θx2 + y2 + θ

θ2px2 + θy2 + 1
. (23)

DOI 10.20347/WIAS.PREPRINT.3100 Berlin 2024
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In the following, we establish limits for the obtained solutions when p → ∞. First, from (22) we get
x = 1 or

θy2 = (1− θ2p)x− θ2p(x2 + 1). (24)

Remark 2. Since x > 0 we have that (24) can hold iff θ < 1.

3.1 Case 0 < θ < 1.

Let us distinguish two subcases.

3.1.1 Case x = 1

Solving by computer the cubic equation

θy3 − y2 + (θ2p + 1)y − 2θ = 0 (25)

and taking limits of each solution as p → ∞, we see that the solutions have the limits yi(θ), i =
1, 2, 3. The limiting functions have lengthy formulas, but their graphs can be simply plotted as shown
in Figure 6. Moreover, the critical value of θ for existence of more than one solution is obtained from
the discriminant of the cubic equation as p→∞, i.e.,

∆0(θ) =
1

27θ2

(
4(1− 3θ)3 − (2− 9θ + 54θ3)2

)
= 0.

Hence, by Figure 6 it is clear that there exists a unique θ0 ≈ 0.135 such that ∆0(θ0) = 0.

3.1.2 Case x 6= 1

In this case, there are up to four solutions when p > 0 is fixed. These solutions are defined by the
quantities ξ1(θ, p) < ξ2(θ, p) given by

ξ1,2(θ, p) :=
q

2

−3θq2+2(θ+1)q+2(θ2−1)∓θ
√
q(q+2θ−2)[(q−θ−1)2+(θ+1)(3θ−1)]

(q−θ−1)[θq2+(θ2−1)(q+θ−1)]
, (26)

where q = 1− θ2p , see [7]. Moreover, if

2 < ξ1(θ, p) ≤ ξ2(θ, p), (27)

one can find all four positive solutions xi = xi(θ, p), i = 4, 5, 6, 7 explicitly. In this case, as p→∞,
we check the Condition (27). From (26) we get

lim
p→∞

ξ1,2(θ, p) = ξ1,2(θ) :=
1

2θ3
·
(

1− 2θ ∓
√

(2θ − 1)(4θ2 + 2θ − 1)
)

(28)

and these numbers exist iff

(2θ − 1)(4θ2 + 2θ − 1) ≥ 0 ⇔ θ ∈ (0, (
√

5− 1)/4] ∪ [1/2, 1).

Thus, Condition (27) is satisfied iff θ ∈ (0, (
√

5 − 1)/4] (see Figure 7). Now using (28), for θ ∈
(0, (
√

5− 1)/4)), we obtain xi(θ), i = 4, 5, 6, 7. Since the last xi’s exist, we get

yi(θ) =
√
xi(θ)/θ, i = 4, 5, 6, 7.

DOI 10.20347/WIAS.PREPRINT.3100 Berlin 2024



Gibbs measures for hardcore-SOS models on trees 11

Figure 6: Left: The graphs of the functions θ 7→ y1(θ) (gray), θ 7→ y2(θ) (blue) and θ 7→ y3(θ)
(orange). Right: The graph of the function θ 7→ ∆0(θ) for θ ∈ (0, 1).

Figure 7: Left: The graphs of the functions θ 7→ ξ1(θ) (blue) and θ 7→ ξ2(θ) (black) for θ ∈ (0, (
√

5−
1)/4]. Right: The same graphs for θ ∈ [1

2
, 1).

3.2 Case θ > 1

In this case, assuming x = 1, from (25) we get a unique solution for large p, which has a limit
as p → ∞. If θ > 1 and x 6= 1 then the statement of Remark 2 is satisfied for any p > 0
and therefore there is no solution. We summarize the results of this section in the following statement
which essentially says that the number of translation-invariant SGMs remains unchanged in the limiting
model as p→∞.

Proposition 1. For the p-SOS model, as p → ∞, there exist critical values θ0 ≈ 0.135 and θ′0 =
(
√

5− 1)/4 ≈ 0.309 such that

1. If θ > θ′0, then there is a unique translation-invariant SGM.

DOI 10.20347/WIAS.PREPRINT.3100 Berlin 2024



B. Jahnel, U. Rozikov 12

2. If θ = θ′0, then there are three translation-invariant SGMs.

3. If θ ∈ (θ0, θ
′
0), then there are five translation-invariant SGMs.

4. If θ = θ0, then there are six translation-invariant SGMs.

5. If θ ∈ (0, θ0), then there are seven translation-invariant SGMs.

4 Conditions for non-extremality of translation-invariant SGMs

It is known that a translation-invariant SGM corresponding to a vector v = (x, y) ∈ R2 (which is a
solution to (9)) is a tree-indexed Markov chain with states {0, 1, 2}, see [5, Definition 12.2], and for
the transition matrix

P =


xk

xk+θyk
θyk

xk+θyk
0

θxk

θxk+yk+θ
yk

θxk+yk+θ
θ

θxk+yk+θ

0 θyk

θyk+1
1

θyk+1

 . (29)

Hence, for each given solution (xi, yi), i = 1, . . . , 7 of (9), we need to calculate the eigenvalues of
P. The first eigenvalue is one since we deal with a stochastic matrix, the other two eigenvalues

λj(xi, yi, θ, k), j = 1, 2, (30)

can be found via symbolic computer analysis, but they have bulky formulas. For example, in the case
x = 1, for each y the matrix (29) has three eigenvalues, 1 and

λ1(1, y, θ, k) =
(1− 2θ2)yk

θy2k + (2θ2 + 1)yk + 2θ
and λ2(1, y, θ, k) =

1

θyk + 1
.

However, we can still deduce the following relation.

Lemma 2. If θ ∈ (0, 1), then, for any solution y of (11), we have that

|λ1(1, y, θ, k)| ≤ λ2(1, y, θ, k).

Proof. Since λ2 > 0, we have to show that

−λ2(1, y, θ, k) ≤ λ1(1, y, θ, k) ≤ λ2(1, y, θ, k). (31)

It is easy to see that the inequality on the left is true for θ satisfying 1− 2θ2 ≥ 0. If 1− 2θ2 < 0 then
the inequality on the left is equivalent to

θ(1− θ2)y2k + yk + θ ≥ 0,

which is true for all θ < 1. Next, the inequality on the right of (31) is equivalent to the inequality

(θyk + 1)2 ≥ 0,

which is universally true, concluding the proof.
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Now, a sufficient condition for non-extremality of a Gibbs measure µ corresponding to P on a Cayley
tree of order k ≥ 1 is given by the Kesten–Stigum Condition kλ2 > 1, where λ is the second-largest
(in absolute value) eigenvalue of P, see [8]. Hence, denoting for i = 1, . . . , 7,

ηi(θ, k) = kλ2
2(xi, yi, θ, k)− 1 and Ki = {(θ, k) ∈ (0, 1)× N : ηi(θ, k) > 0},

using Lemma 2, we have the following criterion.

Proposition 2. Let µi denote the translation-invariant SGM associated to the tuple (xi, yi, θ, k). If
(θ, k) ∈ Ki then µi is non-extremal.

In order to employ the proposition, for k = 2 and k = 3, we find representations for Ki. In case k = 2
and xi = 1, we have for i = 1, 2, 3 that λ2(1, yi, θ, 2) = 1/(θy2

i + 1) and thus

ηi(θ, 2) =
2

(θy2
i + 1)2

− 1.

Hence, from Figure 8 it follows that, for µ1, the Kesten–Stigum condition is never satisfied, but for µ2

Figure 8: Left: The graph of the function η1(θ, 2), θ ∈ (0, 1). Right: The graphs of the functions
η2(θ, 2) (solid line) and η3(θ, 2) (doted line) when θ ∈ (0, 0.14).

and µ3 the condition is always satisfied, i.e., µ2 and µ3 are not-extreme.

In case k = 3 and xi = 1, we have for i = 1, 2, 3, using λ2(1, yi, θ, 3) = 1/(θy3
i + 1), that

ηi(θ, 3) =
3

(θy3
i + 1)2

− 1.

But, as shown in Section 2.1.2, if θ < θc ≈ 0.206, there exist two solutions y2, y3 < 1. For these
solutions we have

ηi(θ, 3) =
3

(θy3
i + 1)2

− 1 >
3

(θ + 1)2
− 1.

But, since θ < θc, we have that 3/(θ+ 1)2− 1 > 0 and we can formulate the following summarizing
result.
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Proposition 3. For θ < 1, k = 2 and k = 3 the translation-invariant SGMs corresponding to
solutions of the form (1, y) with y < 1 are not-extreme.

Let us note that for k = 3 and xi = 1 the translation-invariant SGM corresponding to the solution
y1 >

4
√

2 does not satisfy the Kesten–Stigum condition if θ > (
√

3− 1)/ 4
√

8 ≈ 0.435. Indeed, using
y1 >

4
√

2 we get

ηi(θ, 3) =
3

(θy3
1 + 1)2

− 1 <
3

(θ 4
√

8 + 1)2
− 1 < 0 ⇔ θ >

√
3− 1
4
√

8
.

Remark 3. Let us finally discuss further extremality conditions for translation-invariant SGMs. Various
approaches in the literature aim to establish sufficient conditions for extremality, which can be simplified
to a finite-dimensional optimization problem based solely on the transition matrix. For instance, the
percolation method proposed in [13] and [14], the symmetric-entropy method by [4], or the bound
provided in [12] for the Ising model in the presence of an external field. Different techniques are
employed also in [1] in order to demonstrate the sharpness of the Kesten-Stigum bound for an Ising
channel with minimal asymmetry.

However, since, in our case, the transition matrix corresponding to a translation-invariant SGM de-
pends on the solutions (xi, yi), which have a very complex form, it appears challenging to apply the
aforementioned methods to verify extremality. Furthermore, the difficulty increases when we only have
knowledge of the existence of a solution but lack its explicit form. Nonetheless, our results could serve
as a basis for numerical investigations of extremality in the future.
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