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Desynchronization of temporal solitons in Kerr cavities with
pulsed injection

Daria A. Dolinina, Guillaume Huyet, Dmitry Turaev, Andrei G. Vladimirov

Abstract

A numerical and analytical study was conducted to investigate the bifurcation mechanisms that
cause desynchronization between the soliton repetition frequency and the frequency of external
pulsed injection in a Kerr cavity described by the Lugiato-Lefever equation. The results suggest
that desynchronization typically occurs through an Andronov-Hopf bifurcation. Additionally, a sim-
ple and intuitive criterion for this bifurcation to occur is proposed.

Optical frequency combs have had a significant impact on several fields including spectroscopy, optical
ranging, metrology, exoplanet search, microwave photonics and optical communications [6, 26, 25, 27,
29, 33]. A conventional approach to frequency comb generation involves the use of optical microres-
onators. In particular, considerable attention has been paid to microcavity soliton frequency combs,
which have been experimentally observed in [14]. These combs are characterised by the generation
of temporal cavity solitons (TCSs), which are stable, periodic light pulses that maintain their shape
as they propagate. In simpler setups, TCSs are generated by injecting a continuous wave (CW) laser
into a microcavity. However, the use of pulsed injection can be advantageous as it allows a reduction
in the TCS excitation energy, a potential improvement in their properties, and the ability to tune the
TCS repetition frequency by synchronising it with the injection pulse repetition frequency. On the other
hand, to achieve this synchronization, the repetition frequency of the injected pulses must be close
to or a multiple of the free spectral range of the cavity. Therefore, it is important to study the locking
range and understand how it depends on the microcavity and external injection parameters.

A standard theoretical tool for describing TCS formation in microcavities is the paradigmatic Lugiato-
Lefever equation (LLE) [18]. The standard LLE is unable to describe the overlap of resonances
corresponding to different cavity modes, unlike the infinite-dimensional Ikeda map model [3, 10],
the locally injected LLE [15, 5], and the neutral delay differential equation (DDE) Kerr cavity model
[30]. Nevertheless it has proven to be a very efficient tool for describing high-finesse microcavities
used for optical frequency comb generation. The formation of 1D dissipative solitons in the LLE
under constant injection is well studied, see e.g. [1, 2, 9, 24]. Theoretical studies of microcavity
TCS generation by slowly modulated and pulsed injection have been carried out using the LLE in
[32, 20, 22, 17, 4, 31, 12, 13, 11, 7, 28]. For slightly modulated injection, an equation governing the
slow time evolution of the TCS coordinate has been derived using an asymptotic approach [7]. This
equation is applicable to describe the dynamics of the TCS in the case of a pulsed pump source,
where the injection pulse width is much larger than that of the TCS [12, 13, 11, 28]. The asymp-
totic equation for TCS motion in the presence of a small frequency mismatch between the injection
pulse repetition rate and the cavity free spectral range (FSR), leading to TCS drift, was investigated in
[12, 13, 11, 7, 28]. It was shown that even with zero mismatch, a symmetry-breaking bifurcation can
occur as the pulse peak power increases, resulting in a shift of the TCS position from the peak of the
injection pulse to its periphery.
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Here, using the LLE, we comprehensively investigate the bifurcation mechanisms leading to the un-
locking between the repetition rates of the injection pulse and the TCS in a synchronously pumped opti-
cal microcavity. We show that for a sufficiently broad injection pulse, unlocking occurs via an Andronov-
Hopf (AH) bifurcation rather than the saddle-node (SN) bifurcation responsible for the disappearance
of the stationary TCS, as predicted by the TCS drift equation. Furthermore, we introduce a simple
asymptotic criterion for the occurrence of the AH bifurcation, which requires only the knowledge of the
injection pulse shape and the TCS solution with homogeneous injection. This semi-analytical criterion
shows excellent agreement with results derived from numerical simulations of the LLE.

The paradigmatic Lugiato-Lefever equation (LLE) [18] is a widely used tool for studying the dynamics
of the electromagnetic field in Kerr resonators with coherent external injection, especially in microcav-
ities used for optical frequency comb generation [21, 23, 19]. This equation can be derived from the
Maxwell-Bloch equations under the slowly varying envelope approximation [19]. Recently, it has been
shown that the LLE can be obtained using a multiscale approach of Ref. [16] from the neutral delay
differential equation model [30] of an externally injected ring Kerr cavity. The resulting LLE, neglecting
third and higher order dispersion terms, can be expressed in the following form

∂A

∂t
= −V ∂A

∂ξ
+ i

∂2A

∂ξ2
+ i|A|2A− (1 + iθ)A+ η(ξ). (1)

In this context, A(ξ, t) is the normalized electric field envelope, t is the “slow” time, ξ is the “fast”
time, and θ is the normalized detuning of the pump laser from the nearest cavity resonant frequency.
The Kerr nonlinearity coefficient, the second-order dispersion coefficient, and the cavity decay rate
are normalized to unity by rescaling the field amplitude, the “fast” time, and the “slow” time variable,
respectively. The drift parameter V defines the small frequency difference between the repetition rate
of the input laser pulses and the free-spectral range of the cavity. The parameter η represents the
external coherent injection. In numerical calculations, we use Gaussian shape of the injection pulses
η(ξ) = p0 exp [−(d+ ic)ξ2], where p0 is the amplitude of the pumping, The parameter d (c) deter-
mines width (chirp) of the injection pulse.

Stationary TCS solutions computed numerically with homogeneous injection and relatively wide Gaus-
sian injection pulses with V = 0 (zero detuning between cavity FSR and pulse repetition rate) are
shown in Fig. 1. It can be seen that wide pulse injection has little effect on the shape of the TCS com-
pared to the homogeneous case. As shown in previous studies [12, 11], the position of the stationary
TCS depends on the amplitude of the injection pulse. When the amplitude is relatively small, the TCS
rests at the center of the pulse where the injection is at its maximum, see Fig. 1(b). When the injection
amplitude exceeds a critical value, p0 > pc, a spontaneous symmetry-breaking bifurcation occurs,
causing the TCS to lose stability at the center of the pulse. As a result of this pitchfork bifurcation, two
stable solutions appear whose stationary positions are shifted in both directions towards the periphery
of the injection pulse, see Fig. 1(c). Such a difference in TCS stability is caused by a drift due to the
inhomogeneity of the injection, which pushes the TCS towards or away from the peak of the pulse,
depending on the injection amplitude.

If the repetition frequency of the injection pulses differs from the cavity free spectral range, the TCS
experiences an additional drift caused by the presence of the derivative term proportional to the pa-
rameter V in Eq. (1). A stationary TCS can only exist if the drift caused by the frequency mismatch
is compensated by the opposite drift resulting from the injection gradient. Figure 2(a,b) shows the
dependence of the peak intensity and the displacement ξs of stationary TCS excited by Gaussian
pulses on the drift parameter V when p0 < pc. As V increases, the TCS becomes unstable and
loses synchronization through an AH bifurcation at the point V = VAH . This bifurcation leads to the
TCS oscillating in amplitude and coordinate, which exists in a small parameter range beyond the AH
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Figure 1: Stationary TCS of Eq. (1) under homogeneous η = 1.9 (a) and Gaussian pulse injection
with p0 = 1.9 < pc (b) and p0 = 2.1 > pc (c). For all panels: θ = 3.5, V = 0, d = 0.005 and
c = 0. Yellow dashed lines show the injection distribution. Black curves show TCS intensities. Here
and everywhere in calculations the length of the system is L = 100.

point. The transition to an oscillating TCS is illustrated in Fig. 3(a). As the drift parameter continues
to increase, two unstable TCSs merge at the SN bifurcation point V = Vsn and disappear. Another
desynchronization scenario is illustrated in Fig. 3(b), where an AH bifurcation is absent and the TCS
remains stable until the SN bifurcation. The corresponding behavior of the eigenvalue spectrum for
both scenarios can be seen in Fig. 6 (Appendix A). However, the range of detunings θ where this
second scenario occurs tends to zero in the limit of very broad injection pulses.

The dependence of the TCS peak intensity on the drift parameter V looks different when the injection
pulse peak intensity exceeds the pitchfork bifurcation threshold, p0 > pc, see Fig. 2(c). Here, in the
absence of frequency mismatch (V = 0), the TCS solution located at ξs = 0 [the highest point in
Fig. 2(c)] is destabilized by a pitchfork bifurcation, and two stable solutions shifted from ξ = 0 appear.
These solutions correspond to the intersection of the blue and red lines in Fig. 2(c). Since two stable
TCSs are initially shifted from the origin, the effect of frequency mismatch V and −V on them is
asymmetric. With a decrease (increase) of the frequency mismatch, a right (left) shifted TCS merges
with the destabilized TCS at a SN bifurcation point Vsn1 (−Vsn1). As it increases (decreases), such
a TCS first loses its stability through an AH bifurcation at the point VAH (−VAH ) and then merges
with an unstable TCS at the SN bifurcation point Vsn2 (−Vsn2). As in Fig. 2(b), panel (d) shows the
displacement of the TCS from the center of the injection pulse. It can be clearly seen that for both
p0 < pc and p0 > pc the AH bifurcation occurs when the displacement of the TCS from the pulse
center is maximal.

Note that if the frequency mismatch continues to decrease (increase) after reaching the SN point Vsn1
(−Vsn1), the solution drops to the nearest stable TCS branch, see Fig. 7 (Appendix A). Since such
transitions between different branches of stable TCSs are possible without loss of synchronization,
similar to the case p0 < pc for p0 > pc the synchronization range is limited by AH bifurcation.

Under inhomogeneous pumping, a TCS experiences a drift proportional to the gradient of the injection
inhomogeneity. On the other hand, if the repetition rate of the injection pulses slightly deviates from
the cavity free spectral range (FSR), the TCS also experiences a drift with the velocity V , which
is proportional to the difference in repetition frequencies. As reported in [13, 11, 7], when both the
inhomogeneity gradient and the drift parameter V are sufficiently small, the slow evolution of the TCS
position is governed by the equation:

dξt
dt

= −V + η11

〈
Reψ†

1

∣∣∣ζ〉+ η12

〈
Imψ†

1

∣∣∣ζ〉 , (2)

where ξt is the TCS coordinate and ζ = ξ − ξt. The function ψ†
1 = ψ†

1(ζ) is the translational
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Figure 2: TCS peak intensity (a,c) and position ξs (b,d) as functions of V . Upper (lower) panels corre-
spond to p0 = 1.9 < pc (p0 = 2.1 > pc). Stable and unstable solutions are indicated by solid and
dashed lines, respectively. Other parameters are θ = 3.5, d = 0.005, c = 0.

neutral mode of the operator adjoint to the linear operator L0 (see Appendix A) describing the TCS
stability in the LLE with homogeneous injection η = η(ξt). The quantities η11 = Re (∂ξη)ξ=ξt

and
η12 = Im (∂ξη)ξ=ξt

define the injection gradient evaluated at ξ = ξt. In Ref. [8] it was shown that for

real η(ξt) one gets
〈
Imψ†

1

∣∣∣ξ〉 η(ξt) = 2 in Eq. (2).

According to Eq. (2) for a stationary TCS with the repetition frequency locked to that of the injection
pulses the right-hand side of this equation must be equal to zero. This condition can be used to
determine the TCS trapping position ξt = ξs. Without loss of generality, we choose the phase of the
field in such a way that η(ξs) is real. If V is sufficiently large, larger than the maximum of the sum
of the second and third terms in the right-hand side of Eq. (2) synchronization cannot be achieved
and stationary TCS does not exist. The condition that the right-hand side of Eq. (2) is zero gives an
asymptotic estimate of the TCS SN bifurcations at V = ±Vsn shown in Fig. 2(a,b). In Fig. 4 the
curve corresponding to this asymptotic condition appears to be very close to the numerical TCS SN
bifurcation curve.

The dependence on η(ξs) of the second term C = η11

〈
Reψ†

1

∣∣∣ξ〉 from the right-hand side of Eq. (2)

for Gaussian pulses from Fig. 2 is shown in Fig. 5. Here the last term is zero since the injection pulses
are purely real. The maximum value of C = Cmax in Fig. 5(a) equal to Ṽsn agrees well with the
numerically calculated SN point Vsn in Fig. 2(a,b). The maximum (minimum) value of Cmax (Cmin) in
Fig. 5(b) equal to Ṽsn2 (Ṽsn1) agrees well with the numerically calculated Vsn2 (Vsn1) in Fig. 2(c,d).
Notably, the value of C calculated at the minimum value of η(ξs) agrees well with the numerically
calculated AH bifurcation point, C(ηmin) = ṼAH ≈ VAH . Note that similar rules work for chirped
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Figure 3: Transition from stationary to oscillating TCS via an AH bifurcation for θ = 3.5 (a). V =
0.053 < VAH (V = 0.0544 > VAH ) for t < 2 × 103 (t > 2 × 103). TCS collapse after a SN
bifurcation for θ = 4.427 (b). V = 0.0009 < Vsn (V = 0.001 > Vsn) for t < 103 (t > 103). Pulse
parameters are p0 = 1.9, d = 0.005 and c = 0.

a) BT b)

0
2.5

4.5

4

3.5

3

5

5.5

0.050.01 0.02 0.03 0.04
V

0 0.2 0.4 0.6 0.8
V

θ

2.5

4.5

4

3.5

3

θ

0 0.01 0.02

4.4

4.3

4.5

BT

Figure 4: Numerical and asymptotic synchronization boundaries for a pulse with p0 = 1.9 < pc,
d = 0.005, and c = 0 (a). The inset shows a zoomed-in region at the top of the synchronization
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injection pulses when the third term in the right-hand side of Eq. (2) is not zero, see Fig. 8 Appendix
A).

Although Eq. (2) provides a good approximation for the TCS SN bifurcation, our simulations show
that the desynchronization threshold is typically determined by the AH bifurcation rather than the SN
bifurcation. Therefore, an asymptotic analysis of the AH bifurcation boundary is presented below. The
frequency mismatch V shifts the stationary TCS towards the edge of the injection pulse. This gradually
reduces the injection level until it reaches the critical value of |η| = η0 at the point ξs = ξ0, which
corresponds to the TCS SN bifurcation in the LLE with homogeneous injection. No stable TCS can
exist under homogeneous injection for |η| < η0.

Let us separate real and imaginary parts of the LLE (1). Then we get two real equations for the compo-

nents of the vector A⃗ =
(
ReA ImA

)T
. Near the point ξ0 the injection vector η⃗ =

(
Re η Im η

)T
can be expanded as η⃗ ≈ η0

(
1 0

)T
+ ϵζη⃗1+ ϵ2ζ2η⃗2 with η⃗1 = (∂ξη⃗)ξ=ξ0

, η⃗2 = (∂ξξη⃗)ξ=ξ0
/2 and

ζ = ξ − ξ0. The drift parameter can be written as V ≈ ϵv0 + ϵ2v1.
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We look for the solution of the LLE in the form

A⃗ (ζ, t) ≈ A⃗0[ζ − ϵb(τ)] + ϵa (τ) ψ⃗0[ζ − ϵb(τ)]

+ϵA⃗1[ζ − ϵb(τ)] + ϵ2A⃗2[ζ − ϵb(τ), τ ], (3)

where the slow time is τ = ϵt and the neutral mode ψ⃗0(ζ) = ψ⃗0(−ζ) is an even eigenfunction of the
linear operator L0, describing the stability of the unperturbed solution A⃗0(ζ) of Eq. (1) with V = 0
and constant η = η0.

Substituting Eq. (3) into the LLE and collecting the zeroth order terms in ϵ, we obtain the equation for
the unperturbed TCS, which is automatically fulfilled. Collecting the first order terms in ϵ and using
the relations L0ψ⃗0,1 = 0, where ψ⃗1(ζ) = ∂ζA⃗0 = −ψ⃗1(−ζ) is the odd translational neutral mode

of L0, we get the equation −L0A⃗1 = ζη⃗1 − v0ψ⃗1. The solvability of this equation requires that the
right-hand side is orthogonal to ψ⃗1. Thus, we recover Eq. (2) with ξs = ξ0 and ∂tξ0 = 0 which can

be used to determine the drift parameter v0 = η11

〈
Re ψ⃗†

1

∣∣∣ζ〉 + η12

〈
Im ψ⃗†

1

∣∣∣ζ〉. Note, that similar

to ψ⃗1, the first order correction A⃗1 is an odd function of ζ . Then, collecting the second-order terms in
ϵ we get:

−L0A⃗2 = −ψ⃗0∂τa+ ψ⃗1∂τb+ ζ2η⃗2 − v1∂ζA⃗0 − (v0 + 1) ∂ζA⃗1

−av0∂ζψ⃗0 + η⃗1b+ N⃗ , (4)

where the two components of the vector N⃗ are quadratic forms of ∆⃗A = aψ⃗0 + A⃗1 given in the
Appendix A.

Solvability conditions of this equation give two equations (here we have used the properties of even-
ness of functions A⃗0, ψ⃗0 and ζ2 and oddness of functions A⃗1 and ψ⃗1):

∂τa = g0 + g1b+ g2a
2

∂τb = v1 + g3a. (5)

The expressions for g0...3 are given in the Appendix A.

λ2 − 2ag2λ− g1g3 = 0.
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The AH bifurcation occurs at the steady state solution with a = 0, which implies that v1 = 0 in
Eqs. (5). This means that the AH bifurcation occurs at V = ϵv0 corresponding to the point ξ = ξ0
with η = η0. For the parameters taken from Fig. 2(a,b) AH bifurcation occurs with λ ≈ ±0.2113i (see
the corresponding values of g0,1,2,3 in Appendix A). The eigenvalues of numerically obtained TCS in
AH point are λnum ≈ ±0.2059i which is in good agreement with asymptotic prediction. In our simula-
tions, when the TCS reaches the injection level η = η0, it undergoes an AH bifurcation. Subsequently,
with a further increase in the drift parameter V , the resulting unstable TCS is shifted back to larger
injection levels, η > η0. The asymptotic prediction of VAH agrees well with the numerically performed
stability analysis of TCS solutions, see Fig. 4. Besides, numerical analysis shows the presence of a
Bogdanov-Takens (BT) bifurcation, where the AH bifurcation curve meets the SN one. However, in a
limit of the infinitely wide pulse (ϵ → 0), BT point shifts to the top of the synchronization region at
V = 0, see Fig. 9 (Appendix A). This is consistent with the fact that the stationary state of Eqs. (5)

has a double zero eigenvalue with geometric multiplicity one when v1 = 0 and η⃗1 =
(
0 0

)T
(and,

hence, g1 = 0) since zero injection gradient must correspond to zero drift parameter V .

In conclusion, we conducted a comprehensive study of the bifurcation mechanisms that cause the
TCS repetition rate to desynchronize from that of the injection pulses in a synchronously pumped op-
tical microcavity modeled by the LLE. Both the moderate and large injection peak power cases are
considered. As previously demonstrated for moderate power, the TCS remains at the top of the injec-
tion pulse at zero repetition rate detuning. However, for large injection peak power, the TCS shifts to
the periphery of the injection pulse [12, 13, 11, 7, 28]. Our study shows that desynchronization usually
occurs through an AH bifurcation, which limits the locking range of the TCS when the injection pulse
is wide enough. We have presented a straightforward and easy-to-understand criterion for identifying
this bifurcation. It occurs when the TCS shift reaches a maximum and coincides with the point at which
the amplitude of the injection pulse decreases to a level equivalent to the TCS SN bifurcation observed
in LLE with homogeneous injection η = η0.Therefore, to determine the soliton displacement ξ0 at the
desynchronization threshold, it is necessary to know only the injection pulse profile and η0. The critical
mismatch V can then be determined from Eq. (2). Numerical and asymptotic evidence is presented
to substantiate the reliability of this criterion.

Supplemental document. See Appendix A for supporting content.

Appendix A

A.1 Asymptotic analysis

The linear operator L0 used in the asymptotic analysis is given by:

L0 =

(
−1− 2X0Y0 −∂ζζ + θ −X2

0 − 3Y 2
0

∂ζζ − θ + 3X2
0 + Y 2

0 −1 + 2X0Y0

)
,

where X0 = ReA0 and Y0 = ImA0 and A⃗0(ζ) is an unperturbed temporal cavity solution (TCS)
under homogeneous injection η(ζ) = η0.

The last term N⃗ in the right-hand-side of Eq. (4) can be written in the form :

N⃗ =
1

2

(
∆⃗A

T
H1∆⃗A

∆⃗A
T
H2∆⃗A

)
,

DOI 10.20347/WIAS.PREPRINT.3099 Berlin 2024
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where ∆⃗A = aψ⃗0 + A⃗1 and H1,2 are Hessian 2 × 2 matrices of second-order partial derivatives
for two equations obtained by separating the real and imaginary parts of Eq. (1) and are given by the
following matrices:

H1 =

(
−2Y0 −2X0

−2X0 −6Y0

)
, H2 =

(
6X0 2Y0
2Y0 2X0

)
.

Alternatively, this term can be written in the form N⃗ = N0Q⃗, where N0 is a 2× 3 matrix:

N0 =
1

2

(
∂X0L

1,1
0 ∂Y0L

1,1
0 + ∂X0L

1,2
0 ∂Y0L

1,2
0

∂X0L
2,1
0 ∂Y0L

2,1
0 + ∂X0L

2,2
0 ∂Y0L

2,2
0

)
=

(
−Y0 −2X0 −3Y0
3X0 2Y0 X0

)
and

Q⃗ =

 ∆⃗A
2

1

∆⃗A1∆⃗A2

∆⃗A
2

2


with ∆⃗Ak = aψ0k + A1k. The index k = 1 (k = 2) denotes real (imaginary) component of the
corresponding vector.

The expressions for the coefficients g0,1,2,3 from Eq. (5) are

g0 =
〈
ψ⃗†
0

∣∣∣ζ2η⃗2〉−
〈
ψ⃗†
0

∣∣∣∂ζA⃗1

〉
(v0 + 1) +

〈
ψ⃗†
0

∣∣∣N0n⃗0

〉
,

g1 =
〈
ψ⃗†
0

∣∣∣η⃗1〉 ,
g2 =

〈
ψ⃗†
0

∣∣∣N0n⃗1

〉
,

g3 =
〈
ψ⃗†
1

∣∣∣∂ζψ⃗0

〉
v0 −

〈
ψ⃗†
1

∣∣∣N0n⃗2

〉
,

where

n⃗0 =

 A2
11

A11A12

A2
12

 , n⃗1 =

 ψ2
01

ψ01ψ02

ψ2
02

 , n⃗2 =

 2A11ψ01

A12ψ01 + A11ψ02

2A12ψ02


and the neutral modes satisfy the biorthogonality conditions

〈
ψ⃗†
j

∣∣∣ψ⃗k

〉
=
∫ L/2

−L/2

(
ψ†
j1ψk1 + ψ†

j2ψk2

)
dξ =

δj,k with k, j = 0, 1,

Numerical example. For the injection pulse with d = 0.005, p0 = 1.9, and θ = 3.5 (what cor-
responds to parameters of Eq. (1) from Fig. 2(a,b)) the values of numerically calculated coefficients
are:

g0 = 1.7347, g1 = −2.9365, g2 = −0.36937, g3 = 0.015204.
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A.2 Numerical analysis

The motion of the eigenvalues illustrating two possible scenarios of TCS desynchronization with in-
creasing V are shown in Fig. 6. The first scenario shown in panel (a), where the TCS is first desta-
bilized by the AH bifurcation, is as follows: two negative real eigenvalues collide (panel 1a) and form
a complex conjugate pair. Then this pair approaches the imaginary axis (panel 2a) and crosses it,
causing the AH bifurcation. After that, the complex pair collides again in the right half of the complex
plane (panel 3a) and forms two real eigenvalues (panel 4a), one of which crosses zero and provides
the SN bifurcation. In the second scenario shown in Fig. 6(b), there is no AH bifurcation and the sec-
ond collision of the eigenvalues takes place in the left half of the complex plane (panel 3b), eventually
leading to a SN bifurcation. A case where the second collision takes place on the imaginary axis cor-
responds to a BT bifurcation. It is important to note that both eigenvalues shown in Fig. 6 have their
counterparts in the case of homogeneous injection. The eigenvalue closest to zero (in panels (1a)
and (1b)) corresponds to the zero eigenvalue associated with the translational neutral mode in the ho-
mogeneous case. The second eigenvalue is responsible for the SN bifurcation of the TCSs in Eq.(1)
with homogeneous injection. Thus, in the homogeneous case, two eigenvalues also correspond to the
neutral modes with different evenness.

1a
2a

3a

4a

θ = 4.427

1b

2b
3b

4b

a) b)

1a 2a 3a 4a

1b 2b 4b3b

θ = 4.425

Figure 6: Disappearance of AH bifurcation with increasing of θ. a) TCSs are destabilized by AH bi-
furcation before SN; b) TCSs are destabilized only by SN; 1-4a show eigenvalues responsible for
bifurcations for a branch in panel (a); 1-4b show eigenvalues responsible for bifurcations for a branch
in panel (b). In (a,b) the blue (red) curve shows stable (unstable) solutions. Parameters: p0 = 1.9,
d = 0.005, c = 0.

The transition between two branches of the TCS with sufficiently large p0 > pc is illustrated in Fig. 7. In
this figure the numerical integration of Eq. (1) was performed with V > Vsn1 and a TCS corresponding
to Vsn1 as initial condition. In panel (a) one can see how the TCS, initially shifted to the left of the
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Figure 7: Numerical integration of Eq. (1) with parameters taken from Fig. 2(c,d) (p0 = 2.1, d = 0.005,
c = 0). The value V is slightly larger than Vsn1 (V = 0.007) and an initial condition corresponds to
the shifted TCS at V = Vsn1. a) Transition of a TCS to another bifurcation branch marked by an arrow
in Fig. 2(c). b) Profiles of an initial condition (red), resulting TCS (blue) and injection pulse (yellow).

injection pulse peak, passes through the pulse center and ends up at the right tail of the pulse. Panel
(b) shows the initial and final field distributions and the shape of the injection pulse. Such a transition
corresponds to a jump from the SN point with V = Vsn1 to the other branch of stable TCSs, see an
arrow in Fig. 2(c) in the main text.
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Figure 8: a), b) Same as Fig. 2(a, b), but with chirped injection pulse (c = 0.01). c) Dependence of
the quantity C on the local pump η(ξs) for the chirped pulse.

Synchronization by a chirped injection pulse is illustrated in Fig. 8. In this case, the last term on the
right-hand side of Eq. (2) is nonzero and, together with the term proportional to η11, contributes to
the compensation of the drift V . Comparing Fig. 8(a) and Fig. 2(a), where the same form of a pulse
is used without chirp, it can be seen that the synchronization range increases with the chosen form
of the chirp function (ϕ = −cξ2). It is obvious that the opposite sign of the coefficient c reduces
the synchronization range. Panel (b) shows the dependence of the TCS stationary position on V .
Comparing the dislocation dependence on V of the TCS under injection without chirp in Fig. 2(b) and
with chirp in Fig. 8(b), one can see that the values of the maximum dislocations are close. Therefore,
we can conclude that the AH bifurcation occurs at a similar injection value η(ξs). Panel (c) shows the

dependence of the sum of the last two terms in Eq. (2) C = η11

〈
ψ†
11

∣∣∣ξ〉+ η12

〈
ψ†
12

∣∣∣ξ〉 on η(ξs).
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Figure 9: Bogdanov-Takens bifurcation points for seven different values of the injection pulse width:
d = 0.005, d = 0.0075, d = 0.01, d = 0.0125, d = 0.015, d = 0.0175, d = 0.02. Calculations
made for p0 = 1.9.

Fig. 9 demonstrates the dependence of the position of the BT bifurcation on the width of the injection
pulse. The value d = 0 corresponds to the homogeneous case and the width of the pulse is inversely
proportional to the value d. In the limit d→ 0 the BT bifurcation point moves to V = 0 and θ = θmax,
where θmax corresponds to the maximum value of detuning above which no soliton exists.
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