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Pressure-robust L2pΩq error analysis for Raviart–Thomas
enriched Scott–Vogelius pairs

Volker John, Xu Li, Christian Merdon

Abstract

Recent work shows that it is possible to enrich the Scott–Vogelius finite element pair by cer-
tain Raviart–Thomas functions to obtain an inf-sup stable and divergence-free method on general
shape-regular meshes. A skew-symmetric consistency term was suggested for avoiding an ad-
ditional stabilization term for higher order elements, but no L2pΩq error estimate was shown for
the Stokes equations. This note closes this gap. In addition, the optimal choice of the stabilization
parameter is studied numerically.

1 Introduction

This paper is concerned with a class of inf-sup stabilized Scott–Vogelius element methods introduced
in [6] for the Stokes equations

�ν∆u�∇p � f in Ω,
divpuq � 0 in Ω,

u � 0 on BΩ.
(1.1)

Here Ω � Rd, d P t2, 3u, is a bounded domain with polyhedral Lipschitz boundary BΩ, ν ¡ 0 is the
constant viscosity coefficient, and f P L2pΩq denotes the external body force. The unknowns are the
velocity field u and the pressure p.

A velocity-pressure finite element pair is called divergence-free if it preserves the divergence-free prop-
erty in the sense of L2pΩq, such as the well-known Scott–Vogelius pairs [10]. The construction of the
Scott–Vogelius elements is quite straightforward: Its velocity space consists of vector-valued continuous
piecewise polynomials with order k, while the corresponding pressure space consists of discontinuous
piecewise polynomials with order k � 1 (namely P k � P disc

k�1). Moreover, as a class of divergence-free
methods, it has many appealing properties which have been extensively studied in the literature, e.g.,
[7, 5, 9, 4, 1]. However, it is also well known that the stability condition of the Scott–Vogelius pairs is
not mild especially in three dimensions: It is only inf-sup stable on some special types of meshes with
k ¥ d or k ¥ 2d, e.g., see [11, 12].

Recently, in [8, 6], the authors proposed a new strategy for inf-sup stabilizing Scott–Vogelius pairs with
arbitrary order on general shape-regular simplicial meshes. Therein a suitable subspace of the classical
Raviart–Thomas space of order k � 1 was chosen to enrich the P k velocity space. For k   d, the
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enrichment involves also lowest-order Raviart–Thomas functions that need to be stabilized. The novel
discrete formulation does not involve any face integrals although the Raviart–Thomas elements are
tangentially discontinuous across interior faces. The resulting scheme is stable and still divergence-
free. Moreover, it is shown that the scheme can be reduced to a P k � P0 one for arbitrary k, that is,
all unknowns related to the enrichment part and higher-order pressures can be removed in the solution
process and then obtained by an inexpensive post-processing. However, since the velocity-velocity
bilinear form given in [6] is not symmetric except for the lowest order case, it is clear that for deriving
an optimal L2pΩq error estimate the standard duality argument technique has to be augmented, which
was not done in [6].

The main object of this paper is to provide an optimal L2pΩq error estimate for the enriched Scott–
Vogelius pairs, i.e.,

}u� uh} À hk�1|u|
H

k�1
pΩq
.

The estimate reflects the pressure-robustness of the scheme as it is pressure-independent and the
generic constant hidden in À depends on the shape-regularity of the mesh, but not on the mesh width
h or the viscosity ν. To obtain this result the usual dual estimate approach has to be complemented
with some estimate for the skew-symmetric part of the involved bilinear form. Since for k   d the hid-
den generic constant above also depends on the stabilization parameter for the lowest-order Raviart–
Thomas part of the enrichment, numerical studies are presented that investigate the optimal choice of
this stabilization parameter.

The paper is organized as follows. In Section 2 the enriched Scott–Vogelius element method from [6] is
briefly recalled. An optimal a priori L2pΩq error estimate is given in Section 3. Section 4 is devoted to
the numerical studies.

2 The inf-sup stabilized Scott–Vogelius finite element method

Standard notation for Lebesgue and Sobolev spaces is used. The inner product in L2pΩq andL2pΩq is
denoted by p�, �q and the induced norm by } � }. The symbol À is used for estimates where the constant
does not depend on the mesh width and the viscosity.

The finite element velocity space is given by V h :� V ct
h � V R

h on a shape-regular simplicial triangu-
lation Th, where V ct

h :� P k XH
1
0pΩq and V R

h � RT k�1 is the enrichment space contained in the
Raviart–Thomas space of order k � 1. For k � 1, V R

h consists of the functions in the lowest order
Raviart–Thomas space RT0 with vanishing normal boundary values, while for k ¥ d, V R

h consists of
some higher order Raviart–Thomas cell bubbles. The details of the construction of V R

h can be found in
[6]. The corresponding space of discretely divergence-free functions reads

V h,div :�
 
vh �

�
vct
h ,v

R
h

�
P V h : div

�
vct
h � vR

h

�
� 0

(
.

Then, the finite element problem can be formulated in V h,div: Find uh P V h,div such that

ah puh,vhq �
�
ν�1f ,vct

h � vR
h

�
for all vh P V h,div, (2.1)
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where the bilinear form is defined by

ah puh,vhq :�
�
∇uct

h ,∇vct
h

�
�
�
∆pwu

ct
h ,v

R
h

�
�
�
∆pwv

ct
h ,u

R
h

�
� aD

h

�
u

RT
0

h ,v
RT

0
h

	
.

Here, ∆pw is a piecewise defined Laplacian, aD
h is a stabilization term, and u

RT
0

h is the part of uR
h that

is contained in RT0. It can be identified by u
RT

0
h � IRT

0
uR

h where IRT
0

is the standard interpolator

into RT0. It is worth mentioning that, IRT
0
uR

h is zero exactly for k ¥ d, which means the method is
parameter-free in this case.

Let h denote the maximal diameter of the mesh cells of Th and let hT be a piecewise constant func-
tion that takes on each mesh cell the corresponding diameter of the cell. For the analysis, the only
requirement is the equivalence

aD
h

�
v

RT
0

h ,v
RT

0
h

	
�
���h�1

T v
RT

0
h

���2

. (2.2)

The bilinear form ah can be extended continuously to the space V � � V R
h with

V � :�
 
v PH1

0pΩq : @T P T ,∆|Tv P L2pT q
(
.

In this product space, the velocity of the exact solution pu, pq P V � Q :� H1
0pΩq � L2

0pΩq is
identified with pu,0q. The subspace of divergence-free functions reads

V �
0 � tv � pvct,0q : vct P V � and divpvctq � 0u.

Consistency of the method is proven in [6, Lemma 5.1] for u P V �
0 , i.e., it holds that

ahpu,vq �
�
ν�1f ,vct � vR

�
for all v P V �

0 � V h,div, (2.3)

which implies the Galerkin orthogonality

ah pu� uh,vhq � 0 for all vh P V h,div. (2.4)

In [6], the error analysis was performed in the norm

|||v|||2� :� |||v|||2 �
��hT ∆pwv

ct
��2
�
���div

�
p1 � IRT

0
qvR

	���2

with |||v|||2 :� ahpv,vq (2.5)

for all v P V � � V R
h . The following error estimate was shown in [6].

Theorem 2.1 (Pressure-robust velocity error estimate in the norm ||| � |||�) Let u P V � be the
weak velocity solution of (1.1) and uh P V h,div the discrete velocity solution of (2.1). Then it holds for
a shape-regular family of triangulations tThu that 1

|||pu,0q � uh|||� À inf
v
h
PV

h,div

|||pu,0q � vh|||�

¤ inf
v
ct
h
PV

ct
h

 
p1 � CF q}∇pu� vct

h q} � }hT ∆pwpu� v
ct
h q}

(
,

(2.6)

1The term }hT ∆pwpu� vcth q} in second inequality in (2.6) was missing in [6, Theorem 5.1].
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where CF is the stability constant of a Fortin interpolator which is characterized by (2.8) below. Addi-
tionally, if u PH`�1pΩq with 1 ¤ ` ¤ k, one obtains the error estimate

|||pu,0q � uh|||� À h`|u|
H

`�1
pΩq
. (2.7)

Proof The first inequality in estimate (2.6) has been proved in [6, Theorem 5.1]. Let us prove the
second one and (2.7). Let Π : V Ñ V h be a Fortin operator satisfying (see [6, Section 4])

|||Πv|||� ¤ CF }∇v} and pdivpΠvq, qhq � pdivpvq, qhq for all v P V , qh P Qh, (2.8)

where CF ¡ 0 is a positive constant which is independent of h, and Qh � Q is indeed the pressure
space consisting of the discontinuous piecewise polynomials of degree no more than k � 1. Note that
divpV ct

h q � Qh. Letwct
h P V ct

h be arbitrary,wh � pwct
h ,0q P V h and vh � wh � Πpu �wct

h q P
V h with u being the weak velocity solution of (1.1). From the equality in (2.8) one has vh P V h,div.
It follows from a triangle inequality, the estimate in (2.8), and the definition of ||| 
 |||� (see (2.5)) that

|||pu,0q � vh|||� ¤ |||pu,0q �wh|||� � |||Πpu�wct
h q|||�

¤ |||pu,0q �wh|||� � CF }∇pu�wct
h q}

� p1 � CF q}∇pu�wct
h q} � }hT ∆pwpu�w

ct
h q}.

Since wct
h is arbitrary, taking infimums on both side of the above estimate yields the second inequal-

ity in (2.6). Then (2.7) follows immediately from the approximation properties of V ct
h (e.g., see [2,

Theorem 4.4.4]). This completes the proof. l

Moreover, the following estimate is needed in the subsequent analysis.

Lemma 2.2 For any vR
h P V

R
h it holds that��h�1

T v
R
h

�� À |||p0,vR
h q|||� (2.9)

Proof Recall that vR
h can be uniquely decomposed into

vR
h � v

RT
0

h � rvR
h P RT 0 ` �RT int

k�1pT q,

where v
RT

0
h is exactly IRT

0
vR
h and �RT int

k�1pT q is a space defined in [6] whose exact form is not of

importance for this note. The triangle inequality implies }h�1
T v

R
h } ¤ }h�1

T v
RT

0
h } � }h�1

T rvR
h }. The

equivalence (2.2) and [6, Lemma 5.2] show���h�1
T v

RT
0

h

��� À aD
h

�
v

RT
0

h ,v
RT

0
h

	1{2

and
���h�1

T rvR
h

��� À ���divprvR
h q
��� .

Then, it follows from (2.5) that

|||p0,vR
h q|||

2
� � aD

h

�
v

RT
0

h ,v
RT

0
h

	
�
���divprvR

h q
���2

Á
��h�1

T v
R
h

��2
.

This completes the proof. l

DOI 10.20347/WIAS.PREPRINT.3097 Berlin 2024



Pressure-robust L2pΩq error analysis for Raviart–Thomas enriched Scott–Vogelius pairs 5

3 Error analysis in the L2pΩq norm

The error analysis in L2pΩq is based on the Aubin–Nitsche trick. To this end, consider, for given r P
L2pΩq, the dual problem to (1.1)

�∆ur �∇pr � r, div purq � 0 in Ω, ur � 0 on BΩ, (3.1)

where the weak solution is denoted by pur, prq P V � Q. As usual, one has to assume regularity of
the velocity solution, i.e., ur PH

2pΩq, together with the stability bound

}ur}H2
pΩq À }r}. (3.2)

This property holds for convex polyhedral domains in two and three dimensions, see, e.g., [3]. The
corresponding finite element problem to (3.1) reads as follows: find ur,h P V h,div such that

ah
�
ur,h,vh

�
�
�
r,vct

h � vR
h

�
for all vh P V h,div. (3.3)

The key argument of the proof is an estimate of the skew-symmetric part of ahp�, �q defined by

askewpuh,vhq :�
ahpuh,vhq � ahpvh,uhq

2
� �

�
∆pwu

ct
h ,v

R
h

�
�
�
∆pwv

ct
h ,u

R
h

�
. (3.4)

Again, in the product space, the velocity solution ur should be identified with pur,0q.

Theorem 3.1 (Pressure-robust velocity error estimate in L2pΩq) Let tThu be a family of shape-
regular triangulations and let the regularity assumption (3.2) hold. The L2pΩq error between the weak
velocity solution u of (1.1) and the discrete solution uh of (2.1) is bounded by

}u� us
h} À h|||pu, 0q � uh|||�. (3.5)

Here, us
h :� uct

h � uR
h denotes the sum of all velocity components (while uh � puct

h ,u
R
h q denotes

the pair in the product space).

Proof By definition it is

}u� us
h} � sup

rPL
2
pΩq

pr,u� us
hq

}r}
. (3.6)

For given r P L2pΩq, let ur and ur,h denote the solutions of (3.1) and (3.3), respectively. Applying
the Galerkin orthogonality (2.4) and (3.4) gives

ah
�
ur,h,u� uh

�
� ah

�
ur,h,u� uh

�
� ah

�
u� uh,ur,h

�
� 2askew

�
ur,h,u� uh

�
.

With this relation and the consistency property (2.3), one obtains for the numerator of (3.6)

pr,u� us
hq � ahpur,u� uhq � ahpur � ur,h,u� uhq � ahpur,h,u� uhq

� ahpur � ur,h,u� uhq � 2askew

�
ur,h,u� uh

�
�: A�B.
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Term A is a standard one. Applying a Cauchy–Schwarz inequality, using the definition (2.5) of the
norm ||| � |||�, the error estimate (2.7) applied to the finite element problem (3.3) with ` � 1, and the
regularity assumption (3.2) yields

A � ahpur � ur,h,u� uhq À |||u� uh|||�|||ur � ur,h|||� À h|||u� uh|||�}r}. (3.7)

The skew-symmetry of the stabilization requires to bound the additional term B. Utilizing (3.4), the
Cauchy–Schwarz inequality, and Lemma 2.9 for vR

h � u
R
h leads to

B � 2askewpur,h,u� uhq �
�
∆pwu

ct
r,h,u

R
h

�
�
�
∆pwpu� u

ct
h q,u

R
r,h

�
À

���hT ∆pwpu� u
ct
h q
��� ��h�1

T u
R
h

��� ���hT ∆pwu
ct
r,h

��� ��h�1
T u

R
r,h

���
À |||pu, 0q � uh|||�

���hT ∆pwu
ct
r,h

��� ��h�1
T u

R
r,h

��� .
Using the triangle inequality, Theorem 2.1 for ur with ` � 1, Lemma 2.9 for vR

h � uR
r,h, and the

regularity assumption (3.2) gives��hT ∆pwu
ct
r,h

��� ��h�1
T u

R
r,h

�� ¤
��hT ∆pwpu

ct
r,h � urq

��� ��hT ∆pwur

��� ��h�1
T u

R
r,h

��
À |||ur � ur,h|||� �

��hT ∆pwur

�� À h}ur}H2
pΩq À h}r}.

Hence, we arrive at

B À h|||u� uh|||�}r} (3.8)

Inserting (3.7) and (3.8) in (3.6) finishes the proof. l

4 Numerical studies

This section revisits the examples from [6] to study the impact of the RT0 stabilization (that is only
needed for k ¤ d). In these studies we use

aD
h

�
u

RT
0

h ,v
RT

0
h

	
:� α

¸
FPF0

dofF

�
u

RT
0

h

	
dofF

�
v

RT
0

h

	�
divψ

RT
0

F , divψ
RT

0
F

	
, (4.1)

which effectively penalizes the RT0 part as it holds the equivalence (2.2) with equivalence constant
scaled by α, see [8, Lemma 3.2] for a proof. Goals of the numerical experiments are to study the
sensitivity of errors with respect to α and to find guidelines for an optimal choice of α.

4.1 Two-dimensional example

The first example is the stationary planar lattice flow on Ω � p0, 1q2 defined by

u �

�
sinp2πxq sinp2πyq
cosp2πxq cosp2πyq



and p �

1

4
pcosp4πxq � cosp4πyqq.

DOI 10.20347/WIAS.PREPRINT.3097 Berlin 2024



Pressure-robust L2pΩq error analysis for Raviart–Thomas enriched Scott–Vogelius pairs 7

Figure 4.1: Dependence of the L2pΩq error (left), H1pΩq error (center) and the L2pΩq norm of the
enrichment part (right) on the stabilization parameter α in the 2D example for order k � 1 on a series
of unstructured meshes.

Table 4.1: Errors and convergence rates for α � 1 and k � 1 in the 2D example on unstructured
meshes.

ndof ||u� us
h|| rate ||∇pu� uct

h q|| rate ||uR
h || rate

145 2.995e-01 — 3.227e+00 — 3.767e-01 —
732 5.068e-02 2.19 1.773e+00 0.74 8.473e-02 1.84

2944 1.117e-02 2.17 8.653e-01 1.03 2.044e-02 2.04
11401 2.779e-03 2.05 4.295e-01 1.03 5.311e-03 1.99
44828 6.990e-04 2.02 2.147e-01 1.01 1.323e-03 2.03

178727 1.763e-04 1.99 1.075e-01 1.00 3.350e-04 1.99

The right-hand side f is chosen such that pu, pq solves the Stokes problem with ν � 10�6.

Figure 4.1 studies the dependence on several errors on the parameter α for the lowest-order scheme
with k � 1. As expected, a larger value of the stabilization parameter α leads to a smaller enrichment
part uR

h , but also to much larger errors. Vice versa, a small stabilization parameter α also leads to
larger errors. Concerning the overall L2pΩq andH1pΩq errors of the velocity, the optimal parameter for
α is in the interval p1, 2q for all tested refinement levels. The convergence rates can be deduced from
the multiplicative factor between the values of the plotted curves. The L2pΩq error plots show a factor
of about 4 which corresponds to optimal quadratic convergence with respect to h for the full range of
α. Table 4.1 shows the precise values for α � 1.

Table 4.2: Errors and convergence rates for α � 1 and k � 1 in the 3D example on unstructured
meshes.

ndof ||u� us
h|| rate ||∇pu� uct

h q|| rate ||uR
h || rate

144 1.911e-01 — 1.715e+00 — 1.728e-01 —
729 1.433e-01 0.53 1.712e+00 0.00 1.016e-01 0.98

5210 4.539e-02 1.75 8.770e-01 1.02 3.146e-02 1.79
34113 1.210e-02 2.11 4.553e-01 1.05 9.292e-03 1.95

242743 2.920e-03 2.17 2.265e-01 1.07 2.331e-03 2.11

DOI 10.20347/WIAS.PREPRINT.3097 Berlin 2024
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Figure 4.2: Dependence of the L2pΩq error (left), H1pΩq error (center) and the L2pΩq norm of the
enrichment part (right) on the stabilization parameter α in the 3D example for order k � 1 on a series
of unstructured meshes.

Figure 4.3: Dependence of the L2pΩq error (left), H1pΩq error (center) and the L2pΩq norm of the
enrichment part (right) on the stabilization parameter α in the 3D example for order k � 2 on a series
of unstructured meshes.

4.2 Three-dimensional example

In three dimensions consider the flow

u �
1

2π
curl

 
rsinpπxq sinpπyqs2 sinpπzqe3

(
and p � sinpxq sinpyq sinpzq � p1 � cos 1q3,

with e3 � p0, 0, 1qJ. Again, f is chosen such that pu, pq solves the Stokes problem with ν � 10�6.

Figure 4.2 and Figure 4.3 study the dependence on several errors on the parameter α for the schemes
with k � 1 and k � 2. The optimal value for α seems to be in the interval α P r0.3, 1.0s. Similar
to the two-dimensional test case, the lowest order scheme (k � 1) with over-stabilization leads to a
smaller enrichment partuR

h , but also to larger errors. For k � 2 (which still includes an RT0 enrichment
part in three dimensions), over-stabilization does not seem to be as harmful as for k � 1. That might
indicate that the RT0 functions in the enrichment spaces are not really needed, at least on the grids
that were used for the simulations. Tables 4.2 and 4.3 show the precise values for the errors and their
convergence rates for α � 1.

DOI 10.20347/WIAS.PREPRINT.3097 Berlin 2024



Pressure-robust L2pΩq error analysis for Raviart–Thomas enriched Scott–Vogelius pairs 9

Table 4.3: Errors and convergence rates for α � 1 and k � 2 in the 3D example on unstructured
meshes.

ndof ||u� us
h|| rate ||∇pu� uct

h q|| rate ||uR
h || rate

453 1.883e-01 — 1.546e+00 — 1.762e-01 —
2463 3.927e-02 2.78 5.883e-01 1.71 3.737e-02 2.75

18557 6.349e-03 2.71 1.833e-01 1.73 5.359e-03 2.88
124179 8.321e-04 3.21 4.753e-02 2.13 6.685e-04 3.29
893527 1.048e-04 3.15 1.181e-02 2.12 8.581e-05 3.12
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