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Abstract

The electromagnetic characteristics of microwave circuits can be

described by the scattering matrix. This results in a three-dimensional

boundary value problem, which can be solved using the Finite Di�er-

ence method in the Frequency Domain (FDFD). A time consuming

part of the FDFD-method is the solution of large systems of linear

algebraic equations. The coe�cient matrix is sparse, symmetric, and

inde�nite. Using multicoloring and independent set orderings essential

numerical improvements are achieved.
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1 Introduction

Maxwell's equations in a general source-free and linear medium in a time-

harmonic and integral form can be expressed as
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~B � d~
 = 0 ; (4)

where ~E(~r; t) = ~E(~r)e|!t and ~H(~r; t) = ~H(~r)e|!t are the electric and mag-

netic �eld intensity vectors, respectively, ~D(~r; t) = ~D(~r)e|!t and ~B(~r; t) =
~B(~r)e|!t are the electric and magnetic 
ux density vectors, respectively,

�(~r) = �r(~r)�0 and �(~r) = �r(~r)�0 are the permeability and permittivity,

respectively, and ! is the angular frequency of the sinusoidal excitation. The

time dependence is e|!t, which is not printed.

Constitutive relations between the �eld quantities are determined by the

macroscopic properties of the medium being considered.

~D = � ~E (5)

~B = � ~H (6)

We wish to solve Maxwell's equations on a regular three-dimensional domain

V that has a closed boundary surface denoted by @V. We assume that the

domain V has been discretized into structured orthogonal hexahedral cells.

Each cell has a closed boundary surface denoted by [
. Each face 
 is

surrounded by a closed contour @
. The linear isotropic material properties

�r and �r are constant in each cell. In this paper, only lossless materials are

taken into consideration. Therefore, the quantities �r and �r are real. The

boundary conditions on @V are as follows: On some parts of the surface the

tangential electric �eld is given by an eigenvalue problem (see [2] and [6]).

These parts of @V are called ports. On the remaining parts of @V either the

tangential electric �eld ~Etan or the tangential magnetic �eld ~Htan vanishes.

In the former case the surface is called electric wall, and it describes a metal

with in�nite conductivity. The case ~Htan = 0 is called magnetic wall. This

concept is useful to describe a symmetry plane of the �eld (which allows

to reduce the domain V to one half of the volume of the structure under

investigation).

The elementary cell of the Yee grid [13] is shown in Figure 1. The locations of

the electric and magnetic �elds do not coincide with the nodes fi,j,kg of the
Cartesian grid. The electric �eld components are located at the centers of

the edges of the cell and the magnetic 
ux density components are normal to

the centers of the faces. The FDFD-method requires the use of a dual grid.
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Figure 1: The elementary cell for the Yee algorithm with sampling locations

of �eld quantities.

The dual grid and its structure are completely derivable from a knowledge of

the primary grid. Figure 2 shows an eight cell hexahedral primary grid and

its one interior dual cell. The primary grid is the grid that is initially created.

The electric �eld components lie on the centers of the edges of the primary

cell. We de�ne the barycenters of all primary cells. Then we construct edges

of the dual grid (dual edges) by connecting barycenters of adjacent cells with

straight lines. The barycenters of two cells will be connected if and only if the

two cells have a common face. Then the magnetic 
ux density components

lie on the dual edges, i.e. on the edges of the dual cell.

2 The System of Algebraic Equations

We use the lowest-order integration formulae

I
@


~f � d~s �
X
i

fi � (�si) ;

Z



~f � d~
 � f
 (7)
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Figure 2: An eight cell primary grid and its one interior dual cell.

in order to approximateMaxwell's equations (see (1 - 4)). The closed path @


of the integration consists of straight lines of length si and is the path around

the periphery of any cell face 
 of the primary and dual grid, respectively.

The algebraic sign of length si in (7) depends on the direction of integration.

fi denotes the function value on the line with the length si. 
 is the area of

any cell face of the primary and dual grid, respectively. The function value

f lies on the cell face 
.

Let be

~e =

0
@ ~ex

~ey
~ez

1
A ;

~ex = (ex1; ex2; : : : ; exnxyz )
T ;

~ey = (ey1; ey2 ; : : : ; eynxyz )
T ;

~ez = (ez1 ; ez2; : : : ; eznxyz )
T ;

exl = Exi;j;k ;

eyl = Eyi;j;k ;

ezl = Ezi;j;k ;

(8)

~b =

0
B@

~bx
~by
~bz

1
CA ;

~bx = (bx1; bx2; : : : ; bxnxyz )
T ;

~by = (by1; by2 ; : : : ; bynxyz )
T ;

~bz = (bz1 ; bz2; : : : ; bznxyz )
T ;

bxl = Bxi;j;k ;

byl = Byi;j;k ;

bzl = Bzi;j;k

(9)

with

l = (k � 1)nxy + (j � 1)nx + i ; nxy = nxny ; nxyz = nxnynz ; (10)
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and

i = 1; : : : ; nx; j = 1; : : : ; ny and k = 1; : : : ; nz (11)

the vectors containing the electric �eld and magnetic 
ux density of the

elementary cells, respectively. The value ns, s 2 fx; y; zg, denotes the number
of elementary cells in the s-direction.

Applying (7) to Equ. (2) yields (see [12])

I
@


~E � d~s =
Z



(�|! ~B) � d~
 ) ADs~e = �|!DA
~b : (12)

The matrix A represents the curl operator in the Maxwellian equation (2)

and consists only of the elements -1, 0 and 1. The diagonal matrices Ds and

DA contain the information on cell dimensions for the speci�ed structure.

Similarly, one has for Equ. (1)

I
@


1

�r�0
~B � d~s =

Z



(|!�r�0 ~E) � d~
 ) ATDs=�
~b = |!�0�0DA�~e : (13)

Here, the matrix AT represents the curl operator in the Maxwellian equation

(1) and is the transposed matrix of A. The diagonal matrices Ds=� and DA�

contain the information on cell dimensions and material for the speci�ed

structure and the mesh.

Note that, strictly speaking, this approach represents a �nite integration

scheme. Nevertheless, since the resulting formulae are identical to the �nite-

di�erence form, in most cases the more common term FDFD is used.

We combine the Equations (12) and (13) to Equation (14) by substituting

the magnetic 
ux density components:

Q1~e = 0 ; Q1 = ATDs=�D
�1

A ADs � k20DA� ; (14)

where

k0 = !
p
�0�0 : (15)

In order to determine the scattering matrix, ports are de�ned on the surface

of the structure. There in- and outgoing wave modes act as sources for the

�eld inside the domain (see [2] and [6]). Thus, a source term has to be

induced by partitioning of the matrix Q1:

Q1 = Q1;A +Q1;r ) Q1;A~e = �Q1;r~e ; (16)
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where Q1;r~e is known. Using ~r = �Q1;r~e the matrix Q1;A is transformed into

a symmetric one, after some mathematical manipulations:

~Q1;A
~~e = D

1

2
s Q1D

�
1

2
s| {z }

~Q1;A

D
1

2
s ~e|{z}
~~e

= �D
1

2
s Q1;r~e = D

1

2
s ~r = ~~r : (17)

The matrix representation of the Maxwellian equation (3) for the dual grid

reads: I
[


(�r�0 ~E) � d~
 = 0 ) BDA�~e = 0 : (18)

The matrix B represents the integral over a closed surface [
 of the corre-

sponding elementary cell and consists only of the elements -1, 0 and 1. We

want to combine the information of Equations (17) and (18). Whereas (17)

describes in the physical three-dimensional space a vectorial �eld, Equ. (18)

represents a scalar one. Therefore, we build instead of (18) without loss of

generality the vector equation

�r�0r( 1

(�r�0)2
r � �r�0 ~E) = 0 ; (19)

which is equivalent to the matrix equation (see [2], [6], [7] and [11])

Q2~e = 0 ; Q2 = D�1
s DA�B

TD�1

V ��BDA� : (20)

The diagonal matrix DV �� contains the information on cell dimensions and

material.

We carry out a similar partitioning like (16) for the Equation (20) and then

transform this equation into a symmetric one.

Using Q2;r~e = 0 we get from (20):

Q2 = Q2;A +Q2;r ) ~Q2;A
~~e = D

1

2
s Q2;AD

�
1

2
s| {z }

~Q2;A

D
1

2
s ~e|{z}
~~e

= �D
1

2
s Q2;r~e| {z }

=0

= 0 : (21)
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3 The Numerical Solution of the System of

Linear Algebraic Equations

Let be:

A(n; n) matrix containing the entries of Maxwell's equations (1)

and (2) (see (17), A = ~Q1;A),

B(n; n) matrix containing the entries of Maxwell's equation (3)

(see (21), B = ~Q2;A),

M(n; n) preconditioner for the coe�cient matrix A,

x(n) vector containing the electric �eld components of all el-

ementary cells (see (17), x � ~~e = D
1

2
s ~e),

b(n) right-hand side (see (17), b � ~~r = D
1

2
s ~r ; ~r = �Q1;r~e),

n number of equations (see (10) and (11), n = 3nxyz).

We consider the solution of the non-singular system of n linear algebraic

equations

Ax = b : (22)

The matrix A is symmetric, inde�nite and sparse with positive diagonal ele-

ments.

The sparse storage scheme used is a row-wise representation of the nonzero

entries in the coe�cient matrix of the linear system (22). For a nonsymmet-

ric coe�cient matrix, all of the nonzero values in each row are stored in a

contiguous block of data. If the matrix is symmetric, computer memory can

be saved by storing only the nonzero entries in each row on and above the

main diagonal (see [9]). The data structure consists of three arrays:

� A real array A containing the real values aij stored row by row, from

row 1 to n and in each row on and above the main diagonal, i.e.,

i = 1; � � � ; n and j � i. The length of A is nnz.

� An integer array JA containing the column indices of the elements aij
as stored in the array A. The length of JA is nnz.

� An integer array IA containing the pointers to the beginning of each

row in the arrays A and JA. The length of IA is n+1 with IA(n+1)

containing the number nnz + 1.
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The complexity of iterative methods for solving linear systems (22) is O(n2),
whilst direct methods like LU and Cholesky decompositions are O(n3). The
convergence rate of iterative methods depends on spectral properties of the

coe�cient matrix A of (22). Hence one may attempt to transform the linear

system (22) into one that is equivalent in the sense that it has the same solu-

tion but more favorable spectral properties. A preconditioner is a matrix that

performs such a transformation. For instance, if a matrix M approximates

the coe�cient matrix A (22) in some way, the transformed system

M�1Ax = M�1b (23)

has the same solution as the original system (22), but the spectral properties

of its coe�cient matrix M�1A may be more favorable. The above trans-

formation of the linear system (22) to (23) is not what is used in practice.

A more correct way of introducing the preconditioner would be to split the

preconditioner as M = M1M2 and to transform the system as

M�1
1 AM�1

2 (M2x) = M�1
1 b : (24)

The matricesM1 and M2 are called the left- and right-hand preconditioners,

respectively (see [1]).

Using the linear system Bx = 0 (B = ~Q2;A, see Eqn. (21)) we construct a

preconditioner M for the original system (22):

M�1 = I +BA�1 ; M = (I +BA�1)�1 : (25)

Equations (23) and (25) can be combined to the system of linear equations

(26) by substituting the matrix M�1:

(I +BA�1)Ax = (I +BA�1)b ) (A+B)x = b ) ~A~x = ~b ; (26)

where ~A = A+B, ~x � x and ~b � b.

Compared with matrix (22), the eigenvalues of the system matrix (26) have

shifted in the direction of the positive half plane [11].

A commonly used approach for solving large sparse linear systems is to resort

to the general multicolor and independent set orderings. The goal of multi-

coloring is to determine a coloring of the nodes of the adjacency graph of a

matrix in such a way that any two adjacency nodes do not have a common

color. A basic algorithm for obtaining a multicoloring of an arbitrary graph

is the following idea (see [10]):

8



1. Initially assign color number zero (uncolored) to every node.

2. Traverse the graph in any fashion.

3. Scan all nodes in the chosen order and at every node assign the smallest

color number allowable, i.e.,

color(i) = minfk > 0 j k 6= color(j);8j 2 adj(i)g ;

where adj(i) represents the set of nodes that are adjacent to node i.

Once the multicolor ordering is applied to the matrix, we obtain a block

diagonal matrix whose diagonal blocks are diagonal matrices, e.g. for three

colors 0
B@

D1 F

D2

E D3

1
CA ;

where the Di's are diagonal and E, F are general sparse matrices.

On the other hand one can dynamically �nd sets of unknowns which are

independent. These unknowns are not coupled by the matrix. A set of

such unknowns is called an independent set. Independent set orderings are

permutations to transform the original matrix (26) in the form

~A )
�

~D ~F
~E ~H

�
; (27)

where ~D is a diagonal matrix, ~E and ~F are general sparse matrices and ~H

is a quadratic sparse matrix. If ~A is a symmetric matrix, then ~F = ~ET .

We reduce the system (26) by eliminating the independent set ~D, and then

obtain a smaller linear system which is again sparse. Then we can �nd

an independent set for this reduced system. The process can be continued

recursively a few times. One of the advantages of this approach is the fact

that the reduced systems are usually much smaller than the original system.

The drawback is that the reduced systems gradually lose their sparsity. Let
~Ai be the matrix obtained at the i-th step of reduction for i = 0; : : : ; nlev� 1

with ~A0 = ~A (see (26)). We apply an independent set ordering (see (27)) to
~Ai to obtain a permuted matrix

~Pi
~Ai
~P T
i =

�
~Di

~ET
i

~Ei
~Hi

�
: (28)
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The unknowns of the independent set ~Di are eliminated to get the next

reduced matrix
~Ai+1 = ~Hi � ~Ei

~D�1
i

~ET
i : (29)

Thus we have a sequence of block LU factorizations

~Pi
~Ai
~P T
i =

�
~Di

~ET
i

~Ei
~Hi

�
=

�
I 0

~Ei
~D�1

i I

�
�
�

~Di
~ET
i

0 ~Ai+1

�
(30)

with ~Ai+1 de�ned by (29).

Using independent set ordering (see (28)) we get a system of linear equations

~Pi
~Ai
~P T
i ~yi = ~ci (31)

with ~yi = ~Pi~xi = (~yi;1; ~yi;2)
T and ~ci = ~Pi

~bi = (~ci;1; ~ci;2)
T . Thus we have to

solve the system of linear equations

( ~Hi � ~Ei
~D�1
i

~ET
i )| {z }

~Ai+1

~yi;2|{z}
~xi+1

= ~ci;2 � ~Ei
~D�1
i ~ci;1| {z }

~bi+1

(32)

for ~yi;2 (� ~xi+1) and

~yi;1 = ~D�1

i (~ci;1 � ~ET
i ~xi+1) (33)

for ~yi;1. Then we have to permute the solution vector ~yi (32, 33) back to the

vector ~xi (26).

We have to solve the last reduced system (see (32), i = nlev � 1)

~Anlev~xnlev =
~bnlev

for ~xnlev. Let
~D ~An

lev

= diag( ~Anlev) the diagonal matrix of ~Anlev, then we set

~M1 = ~M2 = ~D
1

2

~An
lev

and apply the preconditioning (24):

~Anlev~xnlev =
~bnlev ) ~D

�
1

2

~An
lev

~Anlev
~D
�
1

2

~An
lev| {z }

Â

~D
1

2

~An
lev

~xnlev| {z }
x̂

= ~D
�
1

2

~An
lev

~bnlev| {z }
b̂

: (34)

We construct a SSOR preconditioner (see [1]) for the matrix Â. If the matrix

is decomposed as

Â = L + I + LT (35)

10



in its strictly lower triangular, diagonal, and strictly upper triangular part,

the SSOR matrices, parametrized by ! are de�ned as

M̂1 = (I + !L) ; M̂2 = (I + !LT ) (36)

with 0 < ! < 2. The optimal value of the ! parameter will reduce the

number of iterations to a lower order.

The matrix vector products with the coe�cient matrix Â (34, 35) of the

preconditioned system (24, 36) can be computed very e�ciently by using

Eisenstat's trick (see [4]) when a SSOR preconditioner is used. We now

show how the matrix vector product (M̂�1
1 ÂM̂�1

2 )v, for any vector v, can be

computed e�ciently.

M̂�1
1 ÂM̂�1

2 = (I + !L)�1(L + I + LT )(I + !LT )�1

= 1

!
((I + !LT )�1 + (I + !L)�1(I � (2 � !)(I + !LT )�1))

The result r = (M̂�1
1 ÂM̂�1

2 )v of the matrix vector product can be obtained

as follows.

1. Solve (I + !LT )t = v for t.

2. Set ~t = v � (2� !)t.

3. Solve (I + !L)t̂ = ~t for t̂.

4. Set r = 1

!
(t+ t̂).

Note that the above algorithm requires two solves with the triangular matri-

ces (I + !L) and (I + !LT ) plus a few arithmetical operations.

We have solved the preconditioned system (24, 36) with the coe�cient ma-

trix Â (34, 35) with conjugate gradient-like iterative methods described in

[3], [5], [8].

4 Numerical Example

The reduction of the computing time is demonstrated by calculating of the

scattering matrix of a structure consisting of a microstrip line on a dielectric

substrate grounded at one end by a via hole. The structure is divided into

nxyz = 60 984 elementary cells with nx = 33, ny = 28, and nz = 66. The

order of the system of linear algebraic equations is n = 3nxyz = 182 952.

11



The total number of nonzeros of the matrix ~A (= ~A0) (26, 29) amounts to

1 145 738 for this example where only nnz = 664 345 elements are stored. We

apply an independent set ordering to the matrix ~A0 with the level nlev = 1 to

obtain the reduced matrix ~A1 (29). The order of the reduced system of linear

equations (32) is nr = 84 207. The total number of nonzeros of the matrix
~A1 amounts to 1 514 129. The number of stored nonzeros is nnzr = 799 168.

We now consider four possibilities of preconditioning for the given coe�cient

matrix ~A to solve the linear system of equations (26).

1. The Eqn. (34) is to be solved for nlev = 0.

~D
�
1

2

~A
~A ~D

�
1

2

~A
~D
1

2

~A
~x = ~D

�
1

2

~A
~b

This system of linear algebraic equations is used in [2].

2. Using the preconditioner M̂ = M̂1M̂2 (see (36)) the system (34) is to

be solved for nlev = 0.

M̂�1Âx̂ = M̂�1b̂

3. Using the preconditioner M̂ = M̂1M̂2 (see (36)) the system (34) is to

be solved for nlev = 1.

M̂�1Âx̂ = M̂�1b̂

4. The preconditioned system (24, 36) with the coe�cient matrix Â (34,

35) is to be solved for nlev = 1 by using Eisenstat's trick.

M̂�1
1 ÂM̂�1

2 (M̂2x̂) = M̂�1
1 b̂

Figure 3 shows the number of iterations and execution times (in seconds) for

the four methods of preconditioning. The time data refer to a SGI work-

station (Indy). The system of linear algebraic equations were solved by the

algorithm described in [3]. The stopping criterion was in each case a reduc-

tion of the norm of the residual by 10�8. Both the time for the iteration

algorithm and the total time for the subroutine call are given. We observe

that the SSOR preconditioner combined with the independent set ordering is

very e�ective in solving the linear system of equations. Furthermore, Eisen-

stat's trick reduces the execution time.

12



0

200

400

600

N
um

be
r 

of
 it

er
at

io
ns

1.
2.
3.
4.

Iterations Iteration time Total time

100 %

25
,8

2 
%

17
,5

3 
%

16
,5

9 
%

0

200

400

600

800

C
P

U
 t

im
e 

[s
ec

]

100 % 100 %

21
,9

8 
%

22
,7

5 
%

12
,4

6 
%

14
,0

0 
%

8,
96

 %

10
,5

3 
%

Figure 3: Number of iterations and execution times for the calculation of the

scattering matrix.

5 Conclusions

The Finite Di�erence method in Frequency Domain allows the computation

of the scattering matrix of a given structure for a number of simultaneously

excited modes. This is an advantage compared with calculations in the Time

Domain. The price to be paid is the time-consuming solution of large sys-

tems of linear algebraic equations. We have studied various methods to do

this e�ectively and found that the SSOR preconditioning combined with the

independent set ordering is a very e�cient method. The Eisenstat trick can

be used to compute a matrix-vector product with the preconditioned ma-

trix M̂�1
1 ÂM̂�1

2 at a cost only slightly more than the cost of a matrix-vector

product with Â.
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