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Three-state p-SOS models on binary Cayley trees
Benedikt Jahnel, Utkir Rozikov

Abstract

We consider a version of the solid-on-solid model on the Cayley tree of order two in which
vertices carry spins of value 0, 1 or 2 and the pairwise interaction of neighboring vertices is given
by their spin difference to the power p > 0. We exhibit all translation-invariant splitting Gibbs
measures (TISGMs) of the model and demonstrate the existence of up to seven such measures,
depending on the parameters. We further establish general conditions for extremality and non-
extremality of TISGMs in the set of all Gibbs measures and use them to examine selected TISGMs
for a small and a large p. Notably, our analysis reveals that extremality properties are similar for
large p compared to the case p = 1, a case that has been explored already in previous work.
However, for the small p, certain measures that were consistently non-extremal for p = 1 do
exhibit transitions between extremality and non-extremality.

1 Introduction

In this paper we consider spin-configurations σ which are functions from the vertices of a Cayley tree
of order k ≥ 1 (that is an infinite graph without cycles such that exactly k + 1 edges originate from
each vertex) to the local configuration space Φ = {0, 1, . . . ,m}, m ≥ 1. For most of our analysis
we will restrict to the case m = 2 and the Cayley tree with k = 2. By 〈x, y〉 we denote a pair of
nearest-neighbor vertices. A two-parametric solid-on-solid model (called p-SOS) is a spin system with
spins taking values in Φ, and with formal Hamiltonian

H(σ) = −J
∑
〈x,y〉

|σ(x)− σ(y)|p, (1)

where p > 0 and J ∈ R the coupling constant.

Let us note that, if m = 1, i.e., Φ = {0, 1} then, the p-SOS model can be reduced to the classical
Ising (i.e., 2-state Potts) model, since in this case, |σ(x) − σ(y)|p ∈ {0, 1} for any p > 0 and
〈x, y〉. A complete analysis of Gibbs measures for tree-indexed Ising and Potts models can be found
for example in [15, 16]. On the other hand, for m ≥ 2 and p = 1 the model becomes the classical
SOS-model which is considered on the cubic lattice in [2, 9] and on Cayley trees in [6, 13, 14, 15]. The
case p = 2 is known as the discrete Gaussian case, see for example [1, 18] and references therein.

In the recent paper [3] the authors consider p-SOS models with spin values in Z on Cayley trees.
There, a family of extremal tree-automorphism non-invariant Gibbs measures is presented that arises
as low temperature perturbations of ground states. Moreover, the extremality of low-temperature states
in the set of all Gibbs measures is shown. Further, in [13] the SOS model (for p = 1) is treated and a
vector-valued functional equation for possible boundary laws of the model is obtained. It is known that
each solution to this functional equation determines a splitting Gibbs measure (SGM) and in particular,
the vertex-independent boundary laws define translation-invariant (TI) SGMs.
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B. Jahnel, U. Rozikov 2

In this paper, we take a similar approach and present a description of all TISGMs for the three-state
(m = 2) p-SOS model on the Cayley tree of order two via solutions for the fixed-point equations of
the vertex-independent boundary laws. This is a non-trivial extension of the analysis presented in [6]
which deals only with the case p = 1.

The paper is organized as follows. In Section 2 we introduce the general setup and present the defining
functional equations for the p-SOS model. In Section 3 we present the description of all TISGMs and
show that their number can be up to seven, for any given parameters p > 0 and θ = exp(J). Finally,
in Section 4 we study the extremality questions for TISGMs and use the methods of [6, 7] based
on the Kesten–Stigum’s non-extremality condition [5] and the Martinelli–Sinclair–Weitz’s extremality
condition, see [8].

2 Setup and functional equations

We denote by Γk = (V, L) the Cayley tree of order k ≥ 1, where V is the set of vertices and L the
set of edges. A collection of nearest-neighbor pairs of vertices 〈x, x1〉, 〈x1, x2〉, ..., 〈xd−1, y〉 is called
a path from x to y. The distance d(x, y) on the Cayley tree is the number of edges of the shortest
path from x to y. For a fixed x0 ∈ V , called the root, we set

Wn := {x ∈ V | d(x, x0) = n}, Vn :=
n⋃

m=0

Wm

and denote by
S(x) := {y ∈ Wn+1 : d(x, y) = 1}, x ∈ Wn,

the set of direct successors of x. Next, we consider real vector-valued function from V \{x0} to Rm+1

given as
h : x 7→ hx = (h0,x, h1,x, . . . , hm,x),

and the corresponding probability distributions µ(n) on ΦVn , the set of all configuration given on Vn,
n ∈ N, defined as

µ(n)(σn) := Z−1
n exp

(
−H(σn) +

∑
x∈Wn

hσ(x),x

)
. (2)

Here, σn : x ∈ Vn 7→ σ(x) ∈ {0, . . . ,m} and Zn is the corresponding partition function

Zn :=
∑

σ̃n∈ΦVn

exp
(
−H(σ̃n) +

∑
x∈Wn

hσ̃(x),x

)
. (3)

We say that the sequence of probability distributions (µ(n))n≥1 are compatible if for all n ≥ 1 and
σn−1 ∈ ΦVn−1 we have that ∑

ωn∈ΦWn

µ(n)(σn−1 ∨ ωn) = µ(n−1)(σn−1). (4)

Here σn−1∨ωn ∈ ΦVn is the concatenation of σn−1 andωn. If this is the case, then, by the Kolmogorov
extension theorem, there exists a unique measure µ on ΦV such that, for all n and σn ∈ ΦVn ,

µ({σ|Vn = σn}) = µ(n)(σn).
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Gibbs measures for the p-SOS model 3

Such a measure is called a splitting Gibbs measure (SGM) corresponding to the Hamiltonian H and
function x 7→ hx, x 6= x0. Let us note that these measures are also called Markov chains for example
in [12].

Let us now turn our attention to the p-SOS model with Hamiltonian defined in (1). The following state-
ment presents a system of functional equations whose solutions correspond to (infinite-volume) Gibbs
measures of the p-SOS model on Cayley trees. Let us note that every extremal Gibbs measure also
arises in this way, but not necessarily every measure which arises in this way is extremal, see [4, Chap-
ter 12]. In other words, the following statement describes conditions on hx guaranteeing compatibility
of distributions µ(n)(σn).

Proposition 1. Probability distributions µ(n), n = 1, 2, . . ., in (2) are compatible iff, for any x ∈
V \ {x0}, the following equation holds,

h∗x =
∑
y∈S(x)

F (h∗y,m, θ). (5)

Here θ := exp(J) and h∗x stands for the vector (h0,x−hm,x, h1,x−hm,x, . . . , hm−1,x−hm,x) and the
vector-valued function F (·,m, θ) : Rm → Rm is F (h,m, θ) := (F0(h,m, θ), . . . , Fm−1(h,m, θ)),
with

Fi(h,m, θ) := ln

∑m−1
j=0 θ|i−j|

p
exp(hj) + θ(m−i)p∑m−1

j=0 θ(m−j)p exp(hj) + 1
, (6)

where h := (h0, h1, . . . , hm−1), i = 0, . . . ,m− 1.

Proof. The proof is similar to the proof of [13, Proposition 2.1.].

From Proposition 1 it follows that for any h = {hx : x ∈ V } satisfying (5) there exists a unique SGM
µ for the p-SOS model. However, the analysis of solutions to (5) for an arbitrary m is challenging. We
therefore restrict our attention to a smaller class of measures, namely the translation-invariant SGMs.

It is natural to begin with translation-invariant solutions where hx = h ∈ Rm is independent of x. In
this case (5) becomes

zi =

(∑m−1
j=0 θ|i−j|

p
zj + θ(m−i)p∑m−1

j=0 θ(m−j)pzj + 1

)k

, i = 0, . . . ,m− 1, (7)

where zi = exp(hi). The vector (z0, . . . , zm−1) is called a (translation-invariant) law and the non-
translation-invariant quantities lx(i) = exp(hi,x) are the boundary laws, see [4, pp. 242]. In the
present manuscript we present a full analysis of the solutions of the system (7) for the case where
k = 2, p > 0, m = 2 and additionally study extremality properties of the corresponding TISGMs. In
particular, we extend the results in [6] for general p > 0, which were obtained there only for p = 1.

3 The case k = m = 2: complete analysis of solutions

Assuming k = m = 2, the two-dimensional fixed-point equation (7) for the two components of the
boundary law can be written in terms of the variables x =

√
z0 and y =

√
z1 in the form

x =
x2 + θy2 + θ2p

θ2px2 + θy2 + 1
, (8)
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B. Jahnel, U. Rozikov 4

y =
θx2 + y2 + θ

θ2px2 + θy2 + 1
. (9)

From (8) we get x = 1 or
θy2 = (1− θ2p)x− θ2p(x2 + 1). (10)

Remark 1. Since x > 0 we have that (10) can hold iff θ < 1.

3.1 Case: x = 1.

In this case, from (9), we get

θy3 − y2 + (θ2p + 1)y − 2θ = 0. (11)

Using Cardano’s formula, the discriminant of the cubic equation (11) can be written as

∆ := ∆(θ, p) :=
1

27θ2

[
4(1− 3θ − 3θ2p+1)3 − (2− 9θ + 54θ3 − 9θ2p+1)2

]
. (12)

From this we get the following statement.

Lemma 1. The following assertions hold

� If ∆ > 0, then (11) has three solutions 0 < y3 < y2 < y1.

� If ∆ = 0, then (11) has two solutions 0 < y2 < y1.

� If ∆ < 0, then (11) has one solution 0 < y1.

Proof. It is well known that the number of real roots for a cubic equation is determined by the value of
∆. It remains to show that all real roots are positive. Descartes’ rule of signs is very helpful to count the
number of the positive roots of a polynomial. In (11) the sign of the coefficients changes three times,
and hence, there might be one positive root or three positive roots. If ∆ < 0, then the unique real root
is positive. If ∆ ≥ 0, then the rule of signs applied to the cubic equation, with−y as a substitute, tells
us that there are no negative roots, and since we can not have θ = 0, there must be three positive
roots.

3.2 Case: x 6= 1 and (10) satisfied.

By Remark 1, we only consider the case θ < 1 and (9) can be written as

y2 =

(
θx2 + y2 + θ

θ2px2 + θy2 + 1

)2

. (13)

In the case, when (10) is satisfied, from (13) we get that

((1− θ2p)x− θ2p(x2 + 1))θ =

(
(θ2 − θ2p)(x2 + 1) + (1− θ2p)x

(1− θ2p)(x+ 1)

)2

. (14)

Let ξ := x+ 1/x and note that ξ > 2 if x > 0. Then, from (14) we get

aξ2 + bξ + c = 0, (15)
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Gibbs measures for the p-SOS model 5

where
a := a(θ, p) := θ2p+1(1− θ2p)2 + (θ2 − θ2p)2,

b := b(θ, p) := (1− θ2p)[2(θ2 − θ2p)− θ(1− θ2p)(1− 3θ2p)],

c := c(θ, p) := (1− θ2p)2[1− 2θ(1− θ2p)].

This equation has no solution if D = b2 − 4ac < 0, it has a unique solution if D = 0 and two
solutions if D > 0. Thus we have the following statements.

� IfD > 0, then (15) has two solutions ξ1(θ, p) < ξ2(θ, p) (below we denote q = 1− θ2p) given
by

ξ1,2(θ, p) :=
q

2

−3θq2+2(θ+1)q+2(θ2−1)∓θ
√
q(q+2θ−2)[(q−θ−1)2+(θ+1)(3θ−1)]

(q−θ−1)[θq2+(θ2−1)(q+θ−1)]
. (16)

� If D = 0, then (15) has a unique solution

ξ1,2 :=
q

2

−3θq2 + 2(θ + 1)q + 2(θ2 − 1)

(q − θ − 1)[θq2 + (θ2 − 1)(q + θ − 1)]
.

� If D < 0, then (15) has no solution.

For D = 0 we have

D(θ, p) = θ2(θ2p − 1)3(θ2p − 2θ + 1)((θ2p + θ)2 + 3θ2 + 2θ − 1) = 0. (17)

Define

l(θ, p) := θ2p − 2θ + 1 and q(θ, p) := (θ2p + θ)2 + 3θ2 + 2θ − 1.

Since 0 < θ < 1 we see that D > 0 if (see Fig. 1)

l(θ, p)q(θ, p) < 0. (18)

Next, define

m(θ) =
1

ln 2
ln

(
ln(−θ +

√
(θ + 1)(1− 3θ))

ln θ

)
, θ ∈

(
0,

√
5− 1

4

)
, and

M(θ) =
1

ln 2
ln

(
ln(2θ − 1)

ln θ

)
, θ ∈

(
1

2
, 1

)
.

We solve (18) with respect to p and get the following solution,

P := P1 ∪ P2 :=
{

(θ, p) : 0 < θ <
√

5−1
4
, p > m(θ)

}⋃{
(θ, p) : 1

2
< θ < 1, p > M(θ)

}
.

(19)
Introduce

Q− = {(θ, p) : ∆(θ, p) < 0} , Q0 = {(θ, p) : ∆(θ, p) = 0} and Q+ = {(θ, p) : ∆(θ, p) > 0} ,

and note thatQ+ ⊂ P1. Next, for all θ, p with D ≥ 0 and

2 < ξ1(θ, p) ≤ ξ2(θ, p) (20)
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B. Jahnel, U. Rozikov 6

Figure 1: The dash-dot curve defined by ∆ = 0 with (12) and the solid curve is q(θ, p) = 0 and the
dash curve is l(θ, p) = 0 defined by (17).

we find all four positive solutions to (14) explicitly, i.e., we have

x4(θ, p) := 1
2
(ξ2 −

√
ξ2

2 − 4), x5(θ, p) = 1
2
(ξ1 −

√
ξ2

1 − 4),

x6(θ, p) := 1
2
(ξ1 +

√
ξ2

1 − 4), x7(θ, p) = 1
2
(ξ2 +

√
ξ2

2 − 4).
(21)

Fig. 2 presents the graphs of xi, i = 4, 5, 6, 7.

Now, for each xi(θ, p), using the following condition on the parameters θ, p,

(1− θ2p)xi − θ2p(x2
i + 1) ≥ 0, (22)

we define

yi(θ, p) =
√
θ
−1
√

(1− θ2p)xi − θ2p(x2
i + 1), i = 4, 5, 6, 7. (23)

Remark 2. In [6], for p = 1 it is proven that the Conditions (20) and (22) are satisfied for all values of
θ where the solutions exist. But in case p 6= 1 we do not have such a result since the solutions have a
very bulky form. Below, we consider two concrete values p = 0.1 and p = 10 for any θ ∈ (0, 1). We
note that for these values of p, the Conditions (20) and (22) are satisfied too, see Fig. 4 and 5.

Note that (2
√

2− 1)/7 is the unique positive solution of q(θ, 0) = 0. Summarizing, we exhibit the full
characterization of the solutions as follows.

Proposition 2. Assume that the Conditions (20) and (22) are satisfied. Then, the set S(θ, p) of
solutions to the system (8), (9) changes under variations of the parameters θ and p as follows:

DOI 10.20347/WIAS.PREPRINT.3089 Berlin 2024



Gibbs measures for the p-SOS model 7

Figure 2: The graphs of the functions xi = xi(θ, 0.1), i = 4, 5, 6, 7. The coloring represents x4 =
black, x5 = blue, x6 = red and x7 = green.

Figure 3: The graphs of the functions xi = xi(θ, 10), i = 4, 5, 6, 7. The coloring represents x4 =
blue, x5 = black, x6 = red and x7 = green.
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B. Jahnel, U. Rozikov 8

Figure 4: The graphs of the functions yi = yi(θ, 0.1), i = 1, 2, ..., 7. Here, y1 = grey, y2 = azure,
y3 = orange, y4 = black, y5 = blue, y6 = red, and y7 = green.

S(θ, p) =



{v1 = (1, y1)}, if θ ≥ 1, p > 0 or θ ∈
(

2
√

2−1
7

, 1
)
, p < min{m(θ),M(θ)}

{v1, v4 = (x4, y4), v6 = (x6, y6)}, if p = m(θ) or p = M(θ)

{v1, vi = (xi, yi), i = 4, 5, 6, 7}, if (θ, p) ∈ Q− ∩ P
{v1, vi = (xi, yi), i = 3, 4, 5, 6, 7}, if (θ, p) ∈ Q0

{vi = (xi, yi), i = 1, 2, 3, 4, 5, 6, 7}, if (θ, p) ∈ Q+,
(24)

where yi, i = 1, 2, 3 are solutions of (11), which can be given explicitly by Cardano’s formula, x1 =
x2 = x3 = 1, xi and yi for i = 4, 5, 6, 7 are given by (21) and (23).

We present in Fig. 2 and 4 the graphs of the functions mentioned in Proposition 2 for the case p = 0.1
and Fig. 3 for the case p = 10.

Denote by µi the TISGM corresponding to vi, i = 1, . . . , 7. As an immediate corollary to Propositions
1 and 2 we get the following statement.

Theorem 1. Assume that, for the parameters of the p-SOS model, the Conditions (20) and (22) are
satisfied. Then, the number of TISGMsM(θ, p) changes under variations of the parameters θ and p

DOI 10.20347/WIAS.PREPRINT.3089 Berlin 2024



Gibbs measures for the p-SOS model 9

Figure 5: The graphs of the functions yi = yi(θ, 10), i = 1, 2, ..., 7. Here, y1 = grey,y2 = azure,
y3 = orange, y4 = black, y5 = blue, y6 = red, y7 = green.

as follows:

M(θ, p) =



1, if θ ≥ 1, p > 0 or θ ∈
(
(2
√

2− 1)/7), 1
)
, p < min{m(θ),M(θ)}

3, if p = m(θ) or p = M(θ)

5, if (θ, p) ∈ Q− ∩ P
6, if (θ, p) ∈ Q0

7, if (θ, p) ∈ Q+

(25)

Remark 3. Note that the first part of the first line in (25) refers to the antiferromagnetic p-SOS model,
which features only one TISGM for all p > 0.

4 Tree-indexed Markov chains of TISGMs.

First note that a TISGM corresponding to a vector v = (x, y) ∈ R2 (which is a solution to the
system (8), (9)) is a tree-indexed Markov chain with states {0, 1, 2}, see [4, Definition 12.2], and for

DOI 10.20347/WIAS.PREPRINT.3089 Berlin 2024
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the transition matrix

P :=


x2

x2+θy2+θ2
p

θy2

x2+θy2+θ2
p

θ2
p

x2+θy2+θ2
p

θx2

θx2+y2+θ
y2

θx2+y2+θ
θ

θx2+y2+θ

θ2
p
x2

θ2
p
x2+θy2+1

θy2

θ2
p
x2+θy2+1

1
θ2

p
x2+θy2+1

 . (26)

For each given solution (xi, yi), i = 1, . . . , 7 of the system (8), (9), we need to calculate the eigenval-
ues of P. The first eigenvalue is one since we deal with a stochastic matrix, the other two eigenvalues

λj(xi, yi, θ, p), j = 1, 2, (27)

can be found via computer, but they have bulky formulas. For example, in the case x = 1 for y we have
up to three possible values, as mentioned in Lemma 1, and the matrix (26) has three eigenvalues, 1
and

λ1(1, y, θ, p) =
(θ2p − 2θ2 + 1)y2

θy4 + (θ2p + 2θ2 + 1)y2 + 2θ(θ2p + 1)
and λ2(1, y, θ, p) =

1− θ2p

θ2p + θy2 + 1
.

4.1 Conditions for non-extremality

A sufficient condition for non-extremality of a Gibbs measure µ corresponding to the matrix P on a
Cayley tree of order k ≥ 1 is given by the Kesten–Stigum Condition kλ2

2 > 1, where λ2 is the second
largest (in absolute value) eigenvalue of P, see [5]. Using this criterion, in this section, we find the
regions of the parameters θ and p where the TISGMs µi, i = 1, 2, 3, 4, 5, 6, 7 are not extreme in the
set of all Gibbs measures. Let us denote

λmax,i(θ, p) := max{|λ1(xi, yi, θ, p)|, |λ2(xi, yi, θ, p)|}, i = 1, . . . , 7,

ηi(θ, p) := 2λ2
max,i(θ, p)− 1, i = 1, . . . , 7,

and
Ki := {(θ, p) ∈ (0, 1)× (0,+∞) : ηi(θ, p) > 0}, i = 1, . . . , 7.

Then, the Kesten–Stigum Condition provides us with the following criterion.

Proposition 3. If (θ, p) ∈ Ki is such that µi exists then, µi is non-extremal.

Let us illustrate this proposition for the measures µi, i = 1, 2, 3 for two values of p, namely p = 0.1
and p = 10. The precise choice of the values is personal taste.

4.1.1 Case: p = 0.1

We note that y1 exists for any θ > 0 (see Lemma 1). For the case y1, via computer analysis, one can
check that there is θ1 ≈ 0.32 such that

λmax,1(θ, 0.1) =

{
|λ1(1, y1, θ, 0.1)|, if θ ∈ (0, θ1)

|λ2(1, y1, θ, 0.1)|, if θ ≥ θ1.

To see that the function η1(θ, 0.1) is monotone increasing for θ > θ̃1 ≈ 1523.4 we draw the graph of
the function η1(1/θ, 0.1) for θ ∈ (0, 0.001) (see Fig. 6). This leads to the following conclusion.

DOI 10.20347/WIAS.PREPRINT.3089 Berlin 2024



Gibbs measures for the p-SOS model 11

Figure 6: Graph of the function η1(1/θ, 0.1), for θ ∈ (0, 0.001).

Result 1. Considering Fig. 7 and 6 we conclude that the Kesten–Stigum Condition does not hold for
(1, y1(θ, 0.1)), with θ ∈ (0, θ̃1], where θ̃1 ≈ 1523.4. However, the condition holds for θ > θ̃1.

Next, from Fig. 4, for p = 0.1 we know that y2 and y3 exist only for θ < θ2 ≈ 0.206 and thus, using
again computer algebra, one can see that

λmax,i(θ, 0.1) = |λ2(1, yi, θ, 0.1)|, ∀θ ∈ (0, θ2), i = 2, 3.

Result 2. Considering Fig. 8, we see that there are θ̂2, θ̂3 < θ2 (θ̂2 ≈ 0.175, θ̂3 ≈ 0.139) such that
the Kesten–Stigum Condition holds for solutions (1, yi(θ, 0.1)), with θ ∈ (0, θ̂i), i = 2, 3.

4.1.2 Case: p = 10

For p = 10, in the case y1, by computer analysis, one can check that

λmax,1(θ, 10) = |λ2(1, y1, θ, 10)|.

Result 3. Fig. 9 shows that the Kesten–Stigum Condition never holds for the solution (1, y1(θ, 10)),
with θ ∈ (0, 1]. But it holds for θ > 1.

The fact that the threshold for p = 10 is precisely given by θ = 1 is remarkable. We also note that
in the antiferromagnetic case θ > 1, there is a unique TISGM which is however not extremal in case
p = 10. From Fig. 4 we know that y2 and y3 exist only for θ < θ′2 ≈ 0.136 and hence, using computer
algebra, one can see that

λmax,i(θ, 10) = |λ2(1, yi, θ, 10)|, ∀θ ∈ (0, θ′2), i = 2, 3.

Result 4. Considering Fig. 10, we see that the Kesten–Stigum Condition always holds for the solution
(1, yi(θ, 10)), with θ ∈ (0, θ′2), i = 2, 3.
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Figure 7: Graph of the function η1(θ, 0.1), for θ ∈ (0, 1) (left) and for θ > 1 (right).

4.2 Conditions for extremality

In this section we find sufficient conditions for extremality (or non-reconstructability in information-
theoretic language [8, 10, 11, 17]) of TISGMs for the 3-state p-SOS model, depending on parameters
θ, p and the boundary law. We shall consider the TISGMs: µi, i = 1, . . . , 7. In order to check extremal-
ity, we will use a result of [8] to establish a bound for reconstruction impossibility that corresponds to
the matrix (26)) of a solution (xi, yi), i = 1, . . . , 7.

Let us start by recalling some definitions from [8]. Considering finite complete subtrees T that are
initial with respect to the Cayley tree Γk, i.e., share the same root. If T has depth d, i.e., the vertices
of T are within distance≤ d from the root, then it has (kd+1− 1)/(k− 1) vertices, and its boundary
∂T consists the neighbors (in Γk \ T ) of its vertices, i.e., |∂T | = kd+1. We identify subgraphs of T
with their vertex sets and write E(A) for the edges within a subset A and ∂A for the boundary of A,
i.e., the neighbors of A in (T ∪ ∂T ) \ A).

Consider Gibbs measures {µτT }, where the boundary condition τ is fixed and T ranges over all initial
finite complete subtrees of Γk. For a given subtree T of Γk and a vertex x ∈ T , we write Tx for the
(maximal) subtree of T rooted at x. When x is not the root of T , let µsTx denote the (finite-volume)
Gibbs measure in which the parent of x has its spin fixed to s and the configuration on the bottom
boundary of Tx (i.e., on ∂Tx \ {parent of x}) is specified by τ .

For two measures µ1 and µ2 on Ω, ‖µ1 − µ2‖x denotes the variational distance between the projec-
tions of µ1 and µ2 onto the spin at x, i.e.,

‖µ1 − µ2‖x :=
1

2

2∑
i=0

|µ1(σ(x) = i)− µ2(σ(x) = i)|.

Let ηx,s be the configuration η with the spin at x set to s. Following [8], we define

κ := κ(µ) = sup
x∈Γk

max
x,s,s′
‖µsTx − µ

s′

Tx‖x and γ := γ(µ) = sup
A⊂Γk

max ‖µη
y,s

A − µη
y,s′

A ‖x,

where the maximum on the right-hand side is taken over all boundary conditions η, all sites y ∈ ∂A,
all neighbors x ∈ A of y, and all spins s, s′ ∈ {0, 1, 2}. We apply [8, Theorem 9.3] which goes as
follows.
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Figure 8: Graphs of the functions η2(θ, 0.1) (left) and η3(θ, 0.1) (right), θ ∈ (0, θ2).

Theorem 2. For an arbitrary (ergodic1 and permissive2) channel P = (Pij)
q
i,j=1 on a tree, the recon-

struction of the corresponding tree-indexed Markov chain is impossible if kκγ < 1.

Since each TISGM µ corresponds to a solution (x, y) of the system of equations (8) and (9), we can
write γ(µ) = γ(x, y) and κ(µ) = κ(x, y).

It is easy to see that the channel P corresponding to a TISGM of the p-SOS model is ergodic and
permissive. Thus the criterion of extremality of a TISGM is kκγ < 1. Note that κ has the particularly
simple form (see [8])

κ =
1

2
max
i,j

∑
l

|Pil − Pjl| (28)

and γ is a constant that does not have a clean general formula, but it can be estimated.

4.2.1 Estimation of γ.

To estimate the constant γ(xi, yi) depending on the boundary law labeled by i, for our model, we
prove several lemmas.

Lemma 2. Recall the matrix P given by (26) and denote by µ = µ(θ, p) the corresponding Gibbs
measure. Then, for any subset A ⊂ T , (where T is a complete subtree of Γk) any boundary config-
uration η, any pair of spins (s1, s2), any site y ∈ ∂A, and any neighbor x ∈ A of y, we have

‖µη
y,s1

A −µη
y,s2

A ‖x ≤ max{p0(0)−p1(0), p0(0)−p2(0), |pi(1)−pj(1)|, p2(2)−p0(2), p2(2)−p1(2)},

where pt(s) := µη
y,t

A (σ(x) = s).

1Ergodicity here means irreduciblity and aperiodicity. In this case, we have a unique stationary distribution π =
(π1, . . . , πq) with πi > 0 for all i.

2Permissive here means that, for arbitrary finite A and boundary condition outside A being η, the conditioned Gibbs
measure on A, corresponding to the channel, is positive for at least one configuration.
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Figure 9: Graph of the function η1(θ, 10), θ ∈ (0, 1).

Proof. Denote ps = µη
y,free

A (σ(x) = s), s = 0, 1, 2. By definition of the matrix P, we have

p0(0) =
x2p0

x2p0 + θy2p1 + θ2pp2

, p0(1) =
θy2p1

x2p0 + θy2p1 + θ2pp2

, p0(2) =
θ2pp2

x2p0 + θy2p1 + θ2pp2

;

p1(0) =
θx2p0

θx2p0 + y2p1 + θp2

, p1(1) =
y2p1

θx2p0 + y2p1 + θp2

, p1(2) =
θp2

θx2p0 + y2p1 + θp2

;

(29)

p2(0) =
θ2px2p0

θ2px2p0 + θy2p1 + p2

, p2(1) =
θy2p1

θ2px2p0 + θy2p1 + p2

, p2(2) =
p2

θ2px2p0 + θy2p1 + p2

,

and hence, the proposition follows from the following Lemma 3 and Lemma 4.

Lemma 3. If θ < 1 then

a) p0(0) ≥ max{p1(0), p2(0)};

b) If p ≤ 1, then p1(1) ≥ max{p0(1), p2(1)}. If p > 1, then, the values of p0(1), p1(1) and
p2(1) may have any order depending on (p0, p2).

c) p2(2) ≥ max{p0(2), p1(2)}.

Proof. We shall prove some of the inequalities (all others are proved similarly):

a) By the Formula (29), we get

p0(0)− p1(0) = x2p0
(1− θ2)y2p1 + (1− θ2p)θp2

(x2p0 + θy2p1 + θ2pp2)(θx2p0 + y2p1 + θp2)
,

p0(0)− p2(0) = x2p0
θ(1− θ2p)y2p1 + (1− θ2p+1

p2)

(x2p0 + θy2p1 + θ2pp2) (θ2px2p0 + θy2p1 + p2)
,
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Figure 10: The graphs of the functions η2(θ, 10) (left) and η3(θ, 10) (right), θ ∈ (0, θ′2).

and both are positive iff θ < 1.

b) Consider

p1(1)− p0(1) = y2p1
(1− θ2)p0x

2 + (θ2p − θ2)p2

(θx2p0 + y2p1 + θp2) (x2p0 + θy2p1 + θ2pp2)
,

p1(1)− p2(1) = y2p1
(θ2p − θ2)p0x

2 + (1− θ2)p2

(θx2p0 + y2p1 + θp2) (θ2px2p0 + θy2p1 + p2)
,

which are non-negative if θ < 1 and p ≤ 1. Moreover, if p > 1, then, for θ < 1, we have θ2p−θ2 < 0,
then assuming p1(1) − p2(1) < 0, that is (θ2p − θ2)p0x

2 + (1 − θ2)p2 < 0, we get the condition
p0 > (1 − θ2)p2/((θ

2 − θ2p)x2). It is easy to see that there are values p > 1 and θ < 1 such that
all possible inequalities may hold.

c) Similar to the case a).

Next, if θ < 1 then we have that

max
i,j,k

{
|pi(k)− pj(k)|

}
= max

i,j
{p0(0)− p1(0), p0(0)− p2(0), |pi(1)− pj(1)|, p2(2)− p0(2), p2(2)− p1(2)}.

Indeed, the case k = 0 and k = 2 follow from Lemma 3. For k = 1 some differences can be reduced
to the case k = 0 or k = 2, by the following equality

pi(1)− pj(1) = pj(0)− pi(0) + pj(2)− pi(2).

Let us give an upper bound of |pi(k)−pj(k)|, for the maximal ones mentioned above. For (p0, p1, p2)
(i.e., a probability distribution on {0, 1, 2}) denote t = p0, u = p2, 0 ≤ t + u ≤ 1 and define the
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following functions

f(t, u, θ, p) = p0(0)− p2(0)

=
x2t

(x2 − θy2)t+ θ(θ2p−1 − y2)u+ θy2
− x2θ2pt

θ(θ2p−1x2 − y2)t+ (1− θy2)u+ θy2

ϕ(t, u, θ, p) = p0(0)− p1(0)

=
x2t

(x2 − θy2)t+ (θ2p − θy2)u+ θy2
− θx2t

(θx2 − y2)t+ (θ − y2)u+ y2
,

ψ(t, u, θ, p) = p1(1)− p0(1)

=
y2u

θ(x2 − 1)t+ (y2 − θ)u+ θ
− θy2u

(x2 − θ2p)t+ (θy2 − θ2p)u+ θ2p
,

g(t, u, θ, p) = p2(2)− p0(2)

=
u

θ(θ2p−1x2 − y2)t+ (1− θy2)u+ θy2
− θ2pu

(x2 − θy2)t+ θ(θ2p−1 − y2)u+ θy2
.

Lemma 4. If θ < 1 then

max{|f(t, u, θ, p)|, |ϕ(t, u, θ, p)|, |ψ(t, u, θ, p)|, |g(t, u, θ, p)|} ≤ 1− θ2p

1 + θ2p
.

Proof. We present our calculation only for the function f , the other functions are checked similarly. To
find the maximal value of the function f we have to solve the following system

f ′u(t, u, θ, p) =
θx2t(y2 − θ2p−1)

((x2 − θy2)t+ θ(θ2p−1 − y2)u+ θy2)2

+
θ2px2t(1− θy2)

(θ(θ2p−1x2 − y2)t+ (1− θy2)u+ θy2)2
= 0,

(30)

f ′t(t, u, θ, p) =
θx2u(θ2p−1 − y2) + θx2y2

((x2 − θy2)t+ θ(θ2p−1 − y2)u+ θy2)2

− θ2px2u(1− θy2) + θ2p+1x2y2

(θ(θ2p−1x2 − y2)t+ (1− θy2)u+ θy2)2
= 0.

(31)

From (30) one has either t = 0, or if t 6= 0 we note that if y2 = 1/θ then y2 = θ2p−1, i.e., θ = 1. So
we can assume y2 6= 1/θ. Then from (30) (for t 6= 0) and (31) we get

θ2p−1 − y2

1− θy2
=

(θ2p−1 − y2)u+ y2

(1− θy2)u+ θy2
,

which is possible only iff θ = 1. So it remains to check only the case t = 0, which gives a minimum
(= 0) of the function f . Hence the maximal value of f is reached on the boundary of the set {(t, u) ∈
[0, 1]2 : t+ u ≤ 1}. We note that similar results hold for the function ϕ too. We discuss the three line
segments of the boundary separately:

Case: t = 0. In this case it was already mentioned above that the function has a minimum which is
equal to zero.
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Case: u = 0. In this case simple calculations show that

max f(t, 0, θ, p) = f

(
y2

θ2p−1−1x2 + y2
, 0, θ, p

)
=

1− θ2p−1

1 + θ2p−1 and

maxϕ(t, 0, θ, p) = ϕ

(
y2

x2 + y2
, 0, θ, p

)
=

1− θ
1 + θ

.

Case: t+ u = 1. In this case we have

max f(t, 1− t, θ, p) = f

(
1

1 + x2
,

x2

1 + x2
, θ, p

)
=

1− θ2p

1 + θ2p
and

maxϕ(t, 1− t, θ, p) = ϕ

(
θ2p−1

θ2p−1 + x2
,

x2

θ2p−1 + x2
, θ, p

)
=

1− θ2p−1

1 + θ2p−1 .

Similarly for ψ one can show that

|ψ(t, u, θ, p)| ≤ max

 |1− θ|1 + θ
,

∣∣∣1− θ2p−1−1
∣∣∣

1 + θ2p−1−1

 .

Next, for θ < 1 and t > −1 consider the following function

Θ(t) =
1− θt

1 + θt
.

It is easy to check that this function is monotone increasing and therefore we have

max

1− θ
1 + θ

,

∣∣∣1− θ2p−1−1
∣∣∣

1 + θ2p−1−1
,
1− θ2p−1

1 + θ2p−1

 ≤ 1− θ2p

1 + θ2p
.

This completes the proof for f . For g the proof is very similar.

In the following proposition we now present our bound on γ.

Proposition 4. Independent of the possible values of (x, y) (i.e., the solutions to the system (8) and
(9)) for θ < 1, p > 0 we have

γ(x, y) ≤ 1− θ2p

1 + θ2p
. (32)

Proof. This is a corollary of the above-mentioned lemmas.

4.2.2 Computation of κ.

Now we shall compute the constant κ. Since (x, y) is a solution to the system (8), (9), the matrix (26)
can be written in the following form

P =
1

Z

 x θy2/x θ2p/x

θx2/y y θ/y

θ2px2 θy2 1

 , (33)
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where Z = θ2px2 + θy2 + 1. Using (28) and (33), we get

κ(x, y) =
1

2
max
i,j

2∑
l=0

|Pil − Pjl| =
1

2Z

max
{
x2|y−θx|+y2|x−θy|+|θ2py−θx|

xy
, x

2|1−θ2px|+θy2|1−x|+|θ2p−x|
x

, x2|θ−θ2py|+y2|1−θy|+|θ−y|
y

}
,

(34)

where Z = θ2px2 + θy2 + 1. We are interested in computing κ(x, y) for

(x, y) ∈ {(1, y1), (1, y2), (1, y3), (x4, y4), (x5, y5), (x6, y6), (x7, y7)}.

Since we have an explicit formula for the solutions (x, y) (mentioned in Section 3), the value of κ(x, y)
will be a function of the parameters θ, p. Unfortunately, the explicit formulas for the solutions are very
bulky, so we start with x = 1.

Case x = 1. In this case we have

κ(1, y) =
1

2Z1

max

{
|y − θ|+ y2|1− θy|+ |θ2py − θ|

y
, 2|1− θ2p |

}
,

where Z1 = θ2p + θy2 + 1 and y is a solution to (11).

Subcase: p = 0.1 and for solution y1: For the solution y1 of (11) from (34), by computer analysis,
one can see that there exists θ̂1 ≈ 0.335 such that

κ(1, y1) =
1

2Z1


|y1−θ|+y21 |1−θy1|+|θ2

p
y1−θ|

y1
, if θ ∈ (0, θ̂1)

2|1− θ2p |, if θ ≥ θ̂1.
(35)

Denote

U1(θ, p) = 2
1− θ2p

1 + θ2p
κ(1, y1)− 1.

Result 5. Fig. 11 shows that the extremality condition holds for the solution (1, y1(θ, 0.1)), with θ ∈
(0, θ∗1), where θ∗1 ≈ 19.08.

Subcase: p = 0.1 and for solutions yi, i = 2, 3: For solutions y2 and y3 of (11) from (34), by
computer analysis, we get

κ(1, yi) =
|1− θ20.1|

Z1

, i = 2, 3. (36)

Denote

Ui(θ, p) = 2
1− θ2p

1 + θ2p
κ(1, yi)− 1.

Result 6. Fig. 12 shows that the extremality condition for solutions (1, yi(θ, 0.1)), i = 2, 3, where
they exist (i.e., when θ ∈ (0, θ∗2)), holds for:

- y2 if θ ∈ (θ̄2, θ
∗
2), where θ̄2 ≈ 0.1817 and

- y3 if θ ∈ (θ̄3, θ
∗
2), where θ̄3 ≈ 0.1625.

Subcase: p = 10. Consider the case y1(θ, 10), then our computer analysis shows the following:
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Figure 11: Graphs of the functions U1(θ, 0.1) for θ ∈ (0, 20) (left) and U1(1/θ, 0.1) for θ ∈ (0, 0.05)
(right).

Result 7. For the solution y1(θ, 10) the extremality condition is satisfied (see Fig. 13) if θ ∈ (0, 1)
and does not hold if θ > 1.

Remark 4. In [6], it was demonstrated that for p = 1, the measure µ1(θ, 1) associated with y1(θ, 1)
is extreme when θ <≈ 2.655 and non-extreme if θ >≈ 2.87. For p = 0.1, we have established that
µ1(θ, 0.1) is extreme when θ <≈ 19 and non-extreme when θ >≈ 1523. However, the unexpected
finding emerged in the case of p = 10, where the critical value distinguishing between extremality and
non-extremality is exactly 1. This critical value aligns with the boundary between the ferromagnetic
and anti-ferromagnetic cases.

Result 8. For the solutions yi(θ, 10), i = 2, 3 Fig. 14 shows that the extremality condition is never
satisfied.

Recall µi = µi(θ, p) is the SGM corresponding to solution vi. Let us summarize Results 1–8 in the
following theorem.

Theorem 3. The following is a fact.

1. If p = 0.1 then

1.a) There are values θ∗1 (≈ 19.08) and θ̃1 (≈ 1523.4) such that the measure µ1 is extreme
if 0 < θ < θ∗1 and is non-extreme if θ > θ̃1.

1.b) There are values θ̂2 (≈ 0.175) and θ̄2 (≈ 0.1817) such that the measure3 µ2 is non-
extreme if 0 < θ < θ̂2 and is extreme if θ ∈ (θ̄2, θ

∗
2).

1.c) There are values θ̂3 (≈ 0.139) and θ̄3 (≈ 0.1625) such that the measure µ3 is non-
extreme if 0 < θ < θ̂3 and is extreme if θ ∈ (θ̄3, θ

∗
2).

2. If p = 10 then

3Note that µ2 and µ3 exist for θ ∈ (0, θ∗2), where θ∗2 ≈ 0.206.
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Figure 12: Graphs of the functions U2(θ, 0.1) (left) and U3(θ, 0.1) (right) for θ ∈ (0, θ∗2).

Figure 13: Graph of the function U1(θ, 10) for θ ∈ (0, 1) (left) and θ > 1 (right).

2.a) The measure µ1 is extreme if 0 < θ ≤ 1 and is non-extreme if θ > 1.

2.b) The measures µ2 and µ3 are non-extreme (where they exist).

Let us finally also present a criterion for extremality for the remaining solutions.

Case x 6= 1. Now we compute κ for (xi, yi), i = 4, 5, 6, 7. Recall that all of them exist only for θ < 1,
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Figure 14: Graphs of the functions U2(θ, 10) (left) and U3(θ, 10) (right) for θ ∈ (0, θ′2).

therefore, from the system (8), (9) we get the following inequalities

y − θ =
(1− θ2)y2 + θ(1− θ2p)

Z
> 0,

1− θ2px =
(1− θ2p)θy2 + (1− θ2p+1

)

Z
> 0,

x− θ2p =
(1− θ2p)((θ2p + 1)x2 + θy2)

Z
> 0,

y − θ =
(1− θ2p)θx2 + (1− θ2)y2)

Z
> 0.

These inequalities are useful in order to omit the absolute value of the corresponding difference, but
still the form of κ(x, y) remains bulky. Recall that, in order to check the extremality of a given TISGM
µi we need to verify that 2κγ < 1. Using the above mentioned bound of γ and Formula (34), it suffices
to check

2κ(xi, yi)γ(xi, yi) ≤ 2
1− θ2p

1 + θ2p
κ(xi, yi) < 1.

Denote

Ui(θ, p) = 2
1− θ2p

1 + θ2p
κ(xi, yi)− 1 and Ei = {(θ, p) : Ui(θ, p) < 0}.

Thus we obtained the following proposition.

Proposition 5. If (θ, p) ∈ Ei is such that µi exists then µi is extreme.

Remark 5. In Propositions 3 and 5, we were unable to explicitly provide the regions of (θ, p) for (non-
)extremality due to the complex nature of the solutions (xi, yi). However, our results may still provide
the groundwork for future numerical studies of these regions. In this manuscript we prototyped this
analysis for the cases where3 p = 0.1, p = 10 and x = 1.
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