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Abstract

The electromagnetic properties of microwave transmission lines can be

described using Maxwell's equations in the frequency domain. Applying

a �nite-volume scheme this results in an algebraic eigenmode problem.

In this paper, an improved numerical computation of the eigenmodes is

presented.
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1 Introduction

The design of microwave integrated circuits and packages requires e�cient CAD

tools for a three-dimensional electromagnetic simulation because the coupling

e�ects become critical with growing packaging density and increasing frequency.

Usually, a circuit is described in terms of its scattering matrix [1], [2], [3], [4],

[5]. In this approach, the structure under investigation is embedded in a set of

longitudinally homogeneous transmission lines (see Figure 1), which are assumed

to be in�nitely long. As a �rst step one has to calculate the �eld distribution
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Figure 1: Structure under investigation

in these transmission lines. Because the transmission lines are longitudinally

homogeneous, the electromagnetic �eld can be expanded into a sum of wave

modes with each of them varying exponentially in the longitudinal direction.

The corresponding ansatz results in an eigenvalue problem.

In a second step, the eigenfunctions determine the boundary values for the

calculation of the �elds in the three-dimensional structure.

In order to speed up the design process, the calculations have to be performed

as e�ectively as possible. In this paper, we treat the numerical solution of

the eigenmode problem. Applying the �nite-volume method to discretize the

Maxwellian equations results in a standard eigenvalue problem with a large

sparse matrix. We describe a suitable method to calculate the set of interesting

eigenvalues and eigenvectors.

2 Matrix Representation of

Maxwell's Equations

In the frequency domain, we consider �elds that vary with time according to the

complex exponential function e|!t. Thus, the integral form of the Maxwellian

equations reads

I
@


1

~��0
~B � d~s =

Z



(|!~��0 ~E) � d~
; (1a)

I
@


~E � d~s =
Z



(�|! ~B) � d~
; (1b)

I
[


(~��0 ~E) � d~
 = 0; (1c)

I
[


~B � d~
 = 0; (1d)
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taking into account the constitutive relations

~B = � ~H; ~D = � ~E with � = �+
�

|!
; � = ~��0; � = ~��0: (2)

The �eld vectors ~E, ~H, ~D, and ~B (electric and magnetic �eld intensity, electric

and magnetic 
ux density, respectively) are complex functions of the spatial

coordinates only. ! is the circular frequency and |2 = �1. The permeability �,

the permittivity �, and the conductivity � are assumed to be scalar functions of

the spatial coordinates. � is the complex permittivity.

Introducing the �nite-volume scheme, the region is divided into rectangular par-

allelepipeds (see Figure 2) using a three-dimensional nonequidistant Cartesian

grid. The edges of the cells are parallel to the coordinate axes. The grid nodes

(i; j; k), the lower left front corners of the parallelepipeds, are numbered by

` = (k � 1)nxny + (j � 1)nx + i; i = 1(1)nx; j = 1(1)ny; k = 1(1)nz: (3)

nx; ny, and nz denote the numbers of rectangular parallelepipeds in the x-, y-

and z-direction, respectively. The �eld vectors are expressed as

~M = Mx
~ix +My

~iy +Mz
~iz ; ~M 2 f~E; ~D; ~H; ~Bg: (4)

~ix, ~iy, and ~iz are the unit vectors in x�, y� and z�direction of the Cartesian

coordinate grid, respectively. The components Ex, Ey, and Ez of the electric

�eld ~E are located in the centers of the edges of the elementary cells. The

components Bx, By, and Bz , on the other hand, are normal to the face centers

[6], [7]. Thus, the electric �eld components form a primary grid, and the

magnetic 
ux density components a dual grid (see Figure 3). The Maxwellian

equations are now applied to each cell. We use the lowest-order integration

formulae I
@


~f � d~s �
X

(�fisi);
Z



~f � d~
 � f
 (5)

in order to approximate the left-hand and the right-hand sides of the �rst and

the second Maxwellian equation (see (1a), (1b)).

The closed path @
 of the integration in the primary grid consists of 4 straight

lines of length si and is the path around the periphery of an unit cell face in the

grid. fi denotes the function value in the center of the side si. In the dual grid

the closed path @
 of the integration consists of 8 straight lines, and fi denotes

the function value in the center of the corresponding face in the primary grid

(see Figure 3). 
 is the area of any cell face. f denotes the function value in

the center of this face.

Let be

~e =

0
@ ~ex

~ey
~ez

1
A ;

~ex = (ex1 ; ex2 ; : : : ; exnxyz )
T ;

~ey = (ey1 ; ey2 ; : : : ; eynxyz )
T ;

~ez = (ez1 ; ez2 ; : : : ; eznxyz )
T ;

exl = Exi;j;k;

eyl = Eyi;j;k;

ezl = Ezi;j;k;

(6)
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Figure 2: Via hole

~b =

0
B@

~bx
~by
~bz

1
CA ;

~bx = (bx1 ; bx2 ; : : : ; bxnxyz )
T ;

~by = (by1 ; by2; : : : ; bynxyz )
T ;

~bz = (bz1 ; bz2; : : : ; bznxyz )
T ;

bxl = Bxi;j;k;

byl = Byi;j;k;

bzl = Bzi;j;k

(7)

with (see (3))

` = (k � 1)nxy + (j � 1)nx + i; nxy = nxny; nxyz = nxnynz; (8)

the vectors containing the electric and the magnetic �eld of the elementary cells,

respectively.

Let be Ds and DA diagonal matrices and A a matrix which represents the oper-

ator of the line integral in the second Maxwellian equation (see (1b)), using the

primary grid [4] the following matrix representation of the second Maxwellian

4
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Figure 3: Primary and dual grid

Equation (1b) results:I
@


~E � d~s =
Z



(�|! ~B) � d~
 ) ADs~e = �|!DA
~b: (9)

The diagonal matrices Ds and DA contain the information on all dimensions

for the speci�ed structure and the corresponding mesh.

Let be DA~�
and Ds=~� diagonal matrices and AT the transposed matrix of A,

using the dual grid the following matrix representation of the modi�ed �rst

Maxwellian equation (see (1a)) results:

I
@


~B

~�
� d~s =

Z



(|!~��0�0 ~E) � d~
 ) ATDs=~�
~b = |!�0�0DA~�~e: (10)

The diagonal matrices Ds=~� and DA~�
contain the information on dimension and

material for the structure and the corresponding mesh.
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Let be B the matrix which represents the operator of the surface integral in

Equation (1c) we get the matrix representation of the electric-�eld divergence

equation:

I
[


~��0 ~E � d~
 = 0 ) BDA~�~e = 0: (11)

The matrices A and B are sparse and consist only of the elements �1, 0 and 1.

Combining (9) and (10) we get the matrix representation of the system of linear

algebraic equations:

(ATDs=~�D
�1
A

ADs � k20DA~�)~e = 0; k0 = !
p
�0�0: (12)

k0 is the wave number in vacuo.

The Maxwellian grid equations are a consistent discrete representation of the

analytical equations in the sense that basic properties of the analytical �elds

are maintained [8].

3 The Eigenvalue Problem

In the following, we consider a longitudinally homogeneous transmission line,

which means that ~� and ~� are functions of transverse position but are indepen-

dent of the longitudinal direction z. With these assumptions, any �eld can be

expanded into a sum of so-called modal �elds

~Ekz
(x; y; z) = ~Ekz

(x; y)e�|kzz (13)

which vary exponentially in the longitudinal direction.

The ~Ekz(x; y) are eigenfunctions of a partial di�erential equation of second order

and the propagation constants kz are related to the eigenvalues (see (14)).

To �nd the corresponding solutions of the discretized Maxwellian equations we

consider the �eld components in three consecutive elementary cells (see Figure

4). Each cell is of lenght 2h in the z-direction where h must be chosen small

enough so that 2hjkzj << 1. The electric �eld components Exi;j;k+1, Exi;j;k�1 ,

Eyi;j;k+1
, Eyi;j;k�1

, Ezi;j;k�1
, Ezi+1;j;k�1

, and Ezi;j+1;k�1
in Equation (12) are

expressed by the values of cell k using ansatz (13). The longitudinal electric

�eld components Ez can be eliminated by means of the Equation (11). So we get

an eigenvalue problem for the transverse electric �eld on the transmission line

region. Exi;j;k, Eyi;j;k, k = const, are the 2nxy components of the eigenfunctions

with the eigenvalues


(h) = e�|kz2h + e+|kz2h � 2 = �4 sin2(kzh): (14)

Let be

~e =

�
~ex
~ey

�
;

~ex = (ex1 ; ex2 ; : : : ; exnxy )
T ;

~e
y
= (e

y1
; e

y2
; : : : ; e

ynxy
)T ;

ex` = Exi;j;k;

ey` = Eyi;j;k

(15)
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Figure 4: Reduction of the dimension

with

` = (j � 1)nx + i; i = 1(1)nx; j = 1(1)ny;

nxy = nxny; and k = 1 or k = nz:
(16)

The assumption k = 1 corresponds to the case, in which the cross-sectional plane

(see Figure 1) is located on the left-handed (x; y)-plane of the enclosure. Let be
�A, dim( �A) = 2nxy, the matrix of the eigenvalue problem. Because of boundary

conditions on the left-hand side and the bottom of the port, the dimension of the

eigenvalue problem is reduced to n = 2nxy�nb, nb = nx+ny. In most cases we

have to take into account also boundary conditions at interior boundaries, which

further reduce the dimension. We denote the matrix of the reduced eigenvalue

problem by A and the corresponding vector of the eigenfunction components by

7



~~e. Thus, we have to solve the eigenvalue problem

A~~e = 
~~e ; type(A) = (n; n); n = 2nxy � nb: (17)

The size of nb depends on the boundary conditions.

The sparse matrix A is nonsymmetric. There are n eigenvalues 
 = u+ |v and

corresponding propagation constants kz = � � |�:


� = �4 sin2(hkz�) = u� + |v�; kz� = �� � |��; � = 1(1)n : (18)

4 The Propagation Constants

The propagation constants kz can be computed from 
 after the solution of the

eigenvalue problem (17). We get from (14)

kz� =
1

h
arcsin (

|

2

p

�) =

|

2h
ln

�

�

2
+ 1 +

r

�

2

�
�
2
+ 2
��

; � = 1(1)n: (19)

Using the principal values of the functions, we have always � > 0 and � � 0.

A propagation constant kz and its corresponding eigenfunction are called a

mode.

In technical applications only a small number m of modes are of interest. For

real values of kz, =(kz) = 0, the modal �eld of Equation (13) describes a non-

attenuated wave, which can be used to transmit signals. On the other hand,

the amplitude of waves with � = �=(kz) > 0 decreases with increasing z. The

larger the magnitude of =(kz) the stronger is the decay. Such waves are called

evanescent waves, and can be neglected after a given length d of the transmis-

sion line. Therefore, we use to select the interesting modes the

Criterion 1: The propagation constants kz� , � = 1(1)n, are sorted in ascending

order of j��j. In the case if some j��j have the same value the constants kz� are

sorted in descending order of j��j.
In the discussion to follow we distinguish between sets A of all eigenvalues and
�A of all corresponding propagation constants, and sets E and �E of computed

eigenvalues and propagation constants, respectively. The number of elements of

a set B is denoted by jBj.
Let be �A; j �Aj = n, the set of propagation constants. �A is split into the sub-

set �A(r) of real, the subset �A(i) of imaginary, and the subset �A(c) of complex

propagation constants:

�A(r) [ �A(i) [ �A(c) = �A;
�A(r) \ �A(i) = ;; �A(r) \ �A(c) = ;; �A(i) \ �A(c) = ;:

(20)

The set A of the corresponding eigenvalues 
�, � = 1(1)n, is split into the subset

A(rp) of positive, the subset A(rn) of negative, the subset A(i) of imaginary, and

the subset A(c) of complex eigenvalues:

A(rp) [A(rn) [A(i) [A(c) = A; A(r) = A(rp) [A(rn);

A(rp) \A(rn) = ;; A(r) \A(i) = ;; A(r) \A(c) = ;; A(i) \A(c) = ;: (21)

8



The real propagation constants of the set �A(r) are the propagation constants

with the smallest magnitude of imaginary part. In most applications with loss-

less materials (that means with real ~� and ~�) one has at least one real prop-

agation constant. These propagation constants have to be taken into account

anyway. It is important, however, to know also at least one propagation constant

with the smallest nonvanishing j�j, in order to decide whether the eigenfunctions
decrease strongly enough in a given distance d.

5 The Numerical Problem

In an earlier version of the program [2] the complete set of propagation con-

stants was computed and sorted in order to select the set �A(f) of the m �rst

propagation constants of �A. This way is very time-consuming. The sparse ma-

trix was stored as a dense matrix.

In the following we show that one can avoid the computation of all eigenvalues

to �nd the few required propagation constants using an iterative method which

has to be carried out twice.

We use the nonsymmetric version of the implicitly restarted Arnoldi iteration

[9], [10], [11], [12]. The standard eigenvalue problem Ax = �x can be solved

using the regular mode Ax = �x or the inverse mode A�1x = 1
�
x. The Arnoldi

algorithm is applied iteratively to solve one of these problems generating Arnoldi

vectors. Using the regular mode most of the cost in generating each Arnoldi

vector is in the matrix-vector product. Using the inverse mode we have to solve

a system of linear algebraic equations on each iteration step.

In general the method does not converge in the regular mode for our eigenvalue

problem. Thus, the Arnoldi algorithm is called iteratively to solve the standard

eigenvalue problem using the inverse mode A�1x = 1
�
x with the more time-

consuming solution of linear algebraic equations.

We use a direct method, a Gaussian elimination for sparse matrices, to solve the

ill-conditioned system of linear equations. The process of solving the systems of

linear algebraic equations consists of the factorization of the coe�cient matrix

and the subsequent forward and backward substitution. Because the matrix A

does not change using the Arnoldi iteration, we have to factorize A only once at

the beginning of the method. The forward and backward substitution is done

on each iteration step. The coe�cient matrix of the system of linear algebraic

equations is sparse. The Gaussian elimination is carried out with a special piv-

oting which permits a compromise between a minimum �ll-in (increase of the

number of non-zero elements during elimination) and numerical stability (con-

nection of topological and numerical pivoting). We use the maximumnumerical

stability in this criterion.

9



6 Selection of the Interesting Eigenvalues

By means of the Arnoldi iteration we can compute a set of eigenvalues of largest

or smallest magnitude, real part or imaginary part, provided that the method

converges, but we can not �nd in one step the set of eigenvalues according to

criterion 1. Therefore, we must proceed in two steps. We estimate a number

m1 � m of interesting modes. The we compute in a �rst run a subset E of m1

eigenvalues 
 of smallest magnitude using the Arnoldi method in inverse mode

looking for eigenvalues of largest magnitude, and compute the corresponding

set �E , j�Ej = m1, of propagation constants. However, we want to �nd all modes

which are able to transmit signals. That means, we have to �nd a set �A(f) of

propagation constants with the smallest magnitude of the imaginary part, but

possible with large real part. In general, we have �A(f) \ �E 6= ; but �A(f) 6� �E .
To search for these additional eigenvalues, we need a second run of the Arnoldi

method with a modi�ed matrix.

7 Estimation of the Maximum

Propagation Constant

We can give an upper bound k(max) for the real part of the interesting propa-

gation constants in the following way:

In a homogeneous lossless material (with real ~� and ~�) the wave number kf of

an electromagnetic wave equals

kf = !
p
�� = k0

p
~�~�: (22)

This value is also an upper bound for the (real) propagation constants of un-

damped modes in a waveguide that is completely �lled with the same material.

In case of an inhomogeneously �lled waveguide the quantities ~� and ~� can be

di�erent from cell to cell. We select the maxima of these quantities

~�(max) = max
i;j;k

f~�i;j;kg; ~�(max) = max
i;j;k

f~�i;j;kg (23)

and set

k(max) = k0
p
~�(max)~�(max) (24)

as an upper bound for the propagation constants of propagating modes.

If we change to materials with small losses (that means with small imaginary

parts of ~� and ~�), we expect that the former real propagation constants become

complex with nearly the same real part as in the lossless case and with small

imaginary part. Hence in this case

k(max) = k0

q
j~�(max)jj~�(max)j (25)

approximates the maximum possible real part of the interesting propagation

constants.

10



8 Distribution of Eigenvalues

in the Complex Plane

The relation between 
 and kz is nonlinear. If we choose h small enough (which is

necessary anyway to get small discretization errors), we can set sin (hkz) � hkz
and have


 = �4 sin2 (hkz) � �4(hkz)2 = �4[(h�)2 � (h�)2] + 8|h2��: (26)

j
j = 4h2(�2 + �2) and jkzj =
p
�2 + �2 (27)

are monotonically increasing functions of the argument �2+�2 in the intervalls

considered. Thus, the set �E found in the �rst run is a set of propagation con-

stants of smallest magnitude.

We consider special values of 
 = u+ |v and kz = � � |�:

� = 0 : 
 = �4(h�)2; u � 0; v = 0; (28a)

� 6= 0; � = 0 : 
 = 4(h�)2 u > 0; v = 0; (28b)

� 6= 0; u = 0 : j�j = j�j; 
 = �8|h2�2: (28c)

We split the set E into the subset E (r) of real, the subset E (i) of imaginary, and

the subset E (c) of complex eigenvalues. Similarly the set of the corresponding

propagation constants �E is split into �E (r), �E (i), and �E (c). The set E (r) of real
eigenvalues is divided into the subset E (rp) of positive and the subset E (rn) of
negative eigenvalues:

E (rp) [ E (rn) [ E (i) [ E (c) = E ; �E (r) [ �E (i) [ �E (c) = �E: (29)

The subsets are pairwise disjoint in analogy to (20) and (21). Because of (26),

(28a), (28b) and (28c) we have for B = E and B = A generally the mappings

�B(r) ! B(rn); �B(i) ! B(rp); �B�(c) ! B(i); �B��(c) ! B(c) (30)

with
�B(c) = �B�(c) [ �B��(c); �B�(c) \ �B��(c) = ;: (31)

We consider the real, the imaginary, and the complex propagation constants in

the discussion to follow.

Real propagation constants (� = 0)

The subset of eigenvalues E (rn) (see (28a) and (30)) which corresponds with �E (r)
consists of jE (rn)j = j�E (r)j = mr negative numbers. Let be kz� = �� the real

propagation constant of smallest magnitude of �E (r). The question is according

to criterion 1: Are there other real propagation constants

kz� = �� 2 �A�(r) � �A(r) with �A�(r) \ �E (r) = ;; j�� j > j��j? (32)

11



To decide this question, we extend the matrix A by some, for example a set

E (a), jE (a)j = ma, of negative elements 

(a)
� , � = 1(1)ma, adding ma rows and

ma columns such that the elements 

(a)
� are diagonal elements of the extended

matrix A�. The other elements of the new rows and columns are chosen to be

zero:

A� =

0
BBBBBBB@



(a)
1

. . .



(a)
ma0
@ A

1
A

1
CCCCCCCA

(33)

The spectrum of A� consists of the spectrum of A extended by the added ma

eigenvalues 

(a)
� .

How should one choose the ma additional eigenvalues?

We can give a value


(max) = �4(hk(max))2 (34)

(with k(max) from Equation (24) or Equation (25)) for the greatest element of

the set E (a) such that all interesting negative eigenvalues of A� are greater than

this bound. We use the following set E (a) of additional eigenvalues


(a)� = 
(max)(1 +
�

10
); � = 1(1)ma; (35)

to build A� and compute a set E (l) of jE (l)j = ma + mr eigenvalues of small-

est real part of A� using the Arnoldi method in inverse mode. Eigenvalues of

A which ful�ll the condition (32) belong to E (l) rather than the eigenvalues of

E (a), and we can separate the mn new eigenvalues from the set E (l). If we �nd
mn < ma new eigenvalues, we need not change ma. Otherwise we have to in-

crease ma for a new computation because we do not know whether more than

ma new negative eigenvalues of A exist.

We note it is essentially not to demand more eigenvalues of smallest real part

of A� than eigenvalues with negative real parts of A� exist, because the Arnoldi

method does not converge for our problem in this case.

The mr +mn negative eigenvalues of A ful�ll the criterion 1.

We note the factorization of the sparse matrixA� (see (33)) is obviously a modi-

�cation of the factorization ofA, i.e., we can avoid a second matrix factorization.

Imaginary propagation constants (� = 0)

The subset of eigenvalues E (rp) which corresponds with �E (i) consists of positive
numbers (see (28b), (30)). Because of j
j = 4(h�)2 and jkzj = j�j there cannot
exist another imaginary propagation constant in �A(i) with a smaller magnitude

than we �nd in the set �E (i).
If we do not �nd an imaginary propagation constant in the set �E (i), we know the

12



magnitude of any imaginary propagation constant in �A(i) can not be smaller

than the magnitudes of the propagation constants of �E (r).
Complex propagation constants

Because of (30), (31) we have to consider the two subsets of complex propaga-

tion constants �E�(c) and �E��(c).
�E�(c): Let be k�z = ��(�1 � |) (see (28c)) the propagation constant with the

smallest magnitude in �E�(c). We have j
�j = 8(h��)2 in this case. That means,

complex propagation constants kz� 2 �A�(c) with the property j��j < j��j belong
to �E�(c) rather than k�z .
�E��(c): Let be 
1 2 E��(c) the complex eigenvalue with the largest magnitude and

kz1 = �1 + |�1 the corresponding propagation constant, and let be 
2 2 A��(c)
an eigenvalue with the property

j�2j < j�1j and j
2j > j
1j: (36)

If <(
2) = �4[(h�2)2 � (h�2)
2] < 0, we �nd the eigenvalue 
2 because of

j�2j > j�1j (see (36)) in this case computing the set E l of A�.
If <(
2) > 0, we have

(�1)
2 < (�2)

2 < (�2)
2: (37)

That means, the computed value j�1j is a lower bound of j�2j.
Numerical Results

Comparisons between the formerly used computation of all propagation con-

stants and storage of the full matrix with our present method are given. The

reduction of the computing times is demonstrated for the microstrip transmis-

sion line connecting the via hole shown in Figure 2. Because the structure has a

symmetry plane, using appropriate boundary conditions it su�ces to discretize

its right-hand side only. This right-hand side is subdivided into nxy = nxny
elementary cells, nx = 33, ny = 28. The dimension of the eigenvalue problem

is 2nxny � nb = 1668. nb is related by the boundary conditions. The total

storage requirement is reduced by a factor of 20 in the new version for this

example, since the sparse storage technique is applied. The reduction of the

computing time essentially depends on the number of required eigenvalues and

eigenvectors. The reduction of the computing time is represented in Figure 5 for

the calculation of 4, 6, and 9 eigenvectors. The measured times involve matrix

generation, solving the eigenvalue problem and computation of the mode �elds.

The examples were computed on a SUN SPARC Server 630.

9 Conclusions

The application of the �nite-volume scheme to the boundary value problem

of the Maxwellian equations which describes the electromagnetic properties of

microwave transmission lines results in an eigenmode problem of high dimension.

We avoid the time-consuming computation of all eigenvalues in order to calculate

a selected set of propagation constants using an iterative method which is carried

13
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out twice. The numerical e�ort and the storage requirements can be reduced

considerably.
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