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Generative modelling with tensor train approximations of
Hamilton–Jacobi–Bellman equations

David Sommer, Robert Gruhlke, Max Kirstein, Martin Eigel , Claudia Schillings

Abstract

Sampling from probability densities is a common challenge in fields such as Uncertainty Quan-
tification (UQ) and Generative Modelling (GM). In GM in particular, the use of reverse-time diffu-
sion processes depending on the log-densities of Ornstein-Uhlenbeck forward processes are a
popular sampling tool. In [5] the authors point out that these log-densities can be obtained by so-
lution of a Hamilton-Jacobi-Bellman (HJB) equation known from stochastic optimal control. While
this HJB equation is usually treated with indirect methods such as policy iteration and unsuper-
vised training of black-box architectures like Neural Networks, we propose instead to solve the
HJB equation by direct time integration, using compressed polynomials represented in the Ten-
sor Train (TT) format for spatial discretization. Crucially, this method is sample-free, agnostic to
normalization constants and can avoid the curse of dimensionality due to the TT compression.
We provide a complete derivation of the HJB equation’s action on Tensor Train polynomials and
demonstrate the performance of the proposed time-step-, rank- and degree-adaptive integration
method on a nonlinear sampling task in 20 dimensions.

1 Introduction and related work

Consider the problem of sampling from a probability measure �� onRd, d 2 N, with Lebesgue-density

��(y) =
1

Z
exp(��(y)); (1.1)

where �: Rd ! R is a sufficiently regular function called the potential and Z 2 (0;1) is a normal-
ization constant such that

R
Rd ��(y)dy = 1. Throughout this manuscript, we assume that � is known

and can be evaluated, while the normalization constant Z is unknown and difficult or even impossible
to compute. Over time, a myriad of different sampling methods have been devised, including Markov
Chain Monte Carlo (MCMC) methods [35, 6, 34], methods based on Stein variational gradient descent
[24], Langevin dynamics [36, 14, 15, 32, 7, 12], or Langevin dynamics preconditioned with measure
transport [41] to name just a few. In the last few years, interacting particle systems have received a lot
of attention [16, 14, 15, 32, 7, 12]. An important application where one aims to sample from densities
of the form (1.1) stems from solutions of inverse problems via Bayesian inference [40].

Since our approach is linked to (interacting particle-) Langevin samplers, we take a moment to review
these methods in more detail. All methods proposed in [14, 15, 32, 7] work with an Itô diffusion process
of the form

dXt = f(Xt)dt+ g(Xt)dWt; (1.2)

where W is a standard Brownian motion with appropriate dimension, f is the drift and g is the diffu-
sion. Under certain assumptions on the potential, e.g. (strong) convexity, convexity at infinity, regularity
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and growth conditions, this process is ergodic [42, 15] and admits either � � (in the case of a single
particle process) or 
 B

i =1 � � (in the case of a system of B 2 N interacting particles) as an invariant
measure.

Samples from � � are obtained by propagating an initial batch of arbitrarily distributed samples through
the process (1.2) for in�nite time. In the classical overdamped Langevin dynamics, the drift term f is
given by the negative gradient �r � of the potential. In state-of-the-art interacting particle methods
like the Af�ne Invariant Langevin Dynamics (ALDI) [14], this drift is modi�ed by a reversible pertur-
bation of the underlying process (see e.g. [41, Equation 2.4] for a general de�nition of reversible
perturbations and [15, De�nition 3.1] for the speci�c perturbation of ALDI). Reversible perturbations
can increase convergence speed [33], while ensuring that the perturbed SDE maintains the same in-
variant measure as the unperturbed system and is still time-reversible. Even if the resulting system is
time-reversible, the reverse-time process is not considered in those works, since the forward process
(1.2) admits � � as invariant measure.

While the time-homogeneous drift term of (1.2) makes these methods conceptually simple, it comes
with a potential downside with regard to the class of measures � � that can be approximated. ALDI
comes with theoretical convergence guarantees only in the case of a potential with Gaussian tails
outside of a compact set [14]. In [12], the authors propose using a time-inhomogeneous process

dX t = f (t; X t )dt + g(X t )dWt ; (1.3)

where f (t; �) is de�ned by gradients of log-densities of intermediate measures de�ned upon time
dependent interpolation, e.g. a convex combination of the target potential � and a simpler auxiliary
potential. By the choice of the auxiliary measure, the �ow towards the target distribution is �xed. While
this so called homotopy-approach can substantially increase convergence speed in practice, e.g. to
sample from multimodal target distributions, the choice of auxiliary measures allowing for optimal �ows
remains an open question.

Contrary, reverse-time diffusion processes offer a principled way of de�ning a process of the form
(1.3), which can be used to sample from � � . The key observation, dating back to [1], is that the
reverse-time process corresponding to (1.3) de�nes again a diffusion process of the form (1.3). For
some years, this property has been used in what is now called Diffusion Generative Modelling [37,
18, 39]. In contrast to Bayesian inference, where � � is known but dif�cult to sample from, the goal
here is to generate new samples from some completely unknown data distribution of which a �nite
number of samples f x i gD

i =1 , D 2 N, are available. The central idea is to use an Ornstein-Uhlenbeck
process mapping any distribution to a standard-normal distribution N (0; I d) for t ! 1 and then, by
using the available samples f x i gD

i =1 , learning the drift of the reverse-time process, mapping N (0; I d)
back to the data distribution [39]. More speci�cally, the gradient-log-density or score of the Ornstein-
Uhlenbeck process is learned by minimizing a score-matching objective function [22, 38], which is
essentially a weighted time-average of mean-squared errors (see e.g. [39, Equation 7]). The score
determines the reverse process. Once the score is known, new samples from the data distribution can
be obtained by sampling from the standard-normal distribution and propagating the samples through
the reverse process. However, classical score-matching relies on the samples f x i gD

i =1 of the data
distribution, which are usually not available in a Bayesian setting. Hence, we consider an alternative
approach.

The authors of [5] point out that the negative log-density of a reverse-time diffusion process satis�es a
Hamilton-Jacobi-Bellman (HJB) equation. Since the score is invariant under additive constants to the
log-density, it suf�ces to solve this HJB equation up to an additive constant to obtain the correct score.
In particular, the normalization constant of the target density need not be known. Hence, solving the
corresponding HJB equation is a viable method of obtaining the score in a Bayesian setting.
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Tensor Trains [29] have been used successfully in several works on approximations of HJB equations
for nonlinear optimal control, see e.g. [31, 11] and references therein. In [31] the solution of the de-
terministic �nite horizon HJB equation is obtained by a combination of Monte-Carlo (MC) sampling
and policy iteration. While this approach is appealing due to its model-free nature, the policy iteration
requires the solution of multiple nonlinear optimization problems at each time step. Furthermore, MC
sampling may lead to slow convergence. In [11] a spectral discretization is used, circumventing the
slow convergence rate of MC sampling and achieving algebraic convergence for a class of determin-
istic in�nite horizon optimal control problems. In contrast to these works, we propose a method not
reliant on policy iteration. Furthermore, no nonlinear optimization has to be performed except at the
initial time point. Instead, the HJB right-hand side is discretized by orthogonal projection onto polyno-
mial space, resulting in an ODE in tensor space. Subsequently, this ODE is integrated using methods
for time-integration of Tensor Trains.

1.1 Contribution and Outline

The main contribution of this work lies in providing an interpretable solver based on compressed
polynomials for the reverse-time HJB equation as it appears in the context of Generative Modelling
and Bayesian Inference. Speci�cally, we integrate the HJB equation using orthogonal projections of
the right-hand side and rank-retractions onto a smooth manifold within polynomial space de�ned by
Tensor Trains of a �xed rank. The solver adaptively chooses its stepsize based on current projection-
and retraction-errors as well as the local stiffness, which is estimated by local linearizations of the HJB.
This approach is sample-free and agnostic to normalization constants and can therefore be used in a
Bayesian setting. We demonstrate the performance of the solver on a nonlinear test case in d = 20
dimensions.

The outline of the rest of the paper is as follows.

� Section 2 covers the relevant theory of diffusion processes necessary to construct a process
of the form (1.3), which can be used to sample from � � . In particular, Remark 2.1 offers one
such form as a reverse-time Ornstein-Uhlenbek process. The corresponding reverse-time HJB
equation determining the score of this process is given in (2.5).

� In Section 3 we introduce our approximation class for the log-densities, namely functional Tensor
Trains with orthogonal polynomial ansatz functions. A motivation for this ansatz class can be
found in Appendix C. This section further introduces all algebraic operations on tensor space
necessary to solve a projected version of the HJB equation.

� Section 4 is the main part of the paper, where we are concerned with the solution of the HJB.
We state the equivalence of the HJB projected onto polynomial space of �xed degree with an
ODE in tensor space (Theorem 4.1). Furthermore, we give a precise version of the proposed
solution algorithm (Algorithm 2).

� Finally, the performance of the solver is demonstrated on a Gaussian test case as well as a
20-dimensional nonlinear potential in Section 5.
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2 Reverse-time diffusion processes and HJB equation

Let the terminal time T > 0 and a d-dimensional Ornstein-Uhlenbeck process (X t )t2 [0;T ] be de�ned
by

dX t = � X tdt +
p

2dWt ; X 0 � � � ; (2.1)

where Wt denotes standard d-dimensional Brownian motion. The probability density function � t of
this process satis�es the Fokker-Planck equation

@t � t = � � t + x � r � t + d� t ; � 0 = � � ; (2.2)

for t 2 [0; T]. Since the (standard normal) invariant measure of (2.1) satis�es a log-Soboloev inequal-
ity, the corresponding law � X t of (2.1) converges exponentially in Kullback-Leibler divergence (KL) to
the standard normal distribution N (0; I d) on Rd [27], i.e.

KL( � X t jjN (0; I d)) � e� 2tKL( � � jjN (0; I d)) : (2.3)

Hence, for suf�ciently large T , the measure � X T will be close to a standard normal distribution in
KL divergence. The following remark provides a reverse-time process (Yt )t2 [0;T ] with Y0 � � X T and
YT � � � .

Remark 2.1 (Reverse-time Ornstein-Uhlenbeck process). Let (X t )t2 [0;T ] be de�ned by (2.1). Then,
for any � 2 [0; 1] the process (Yt )t2 [0;T ] de�ned by

dYt = [ Yt + (2 � � )r log� T � t (Yt )] dt +
È

2(1 � � )dWt ; Y0 � � X T (2.4)

satis�es � Yt = � X T � t and in particular � YT = � � . This result is an immediate consequence of [21,
Appendix G], which covers a much wider range of diffusion processes. The most common choices for
� are � = 0 , used for the reverse process e.g. in [39], and � = 1 , which leads to a reverse ODE
known as probability �ow ODE [39].

To formulate the reverse process (Yt )t2 [0;T ] we need the score r log� t . If a suf�cient number of
samples of � � are available, we can apply score matching techniques (see [37, 39] and references
therein). Lacking these samples, we could try to obtain � t by solving (2.2), but the fact that � t needs
to be a density for every t makes this approach cumbersome for approximation methods. Instead, we
apply a Hopf-Cole transformation vt := � log� t to (2.2). A short calculation by product and chain
rule (see Appendix A) yields that vt satis�es the PDE

@tvt = � vt + x � r vt � kr vtk2
2 � d; v0 = � log� � ; (2.5)

for t 2 [0; T]. This nonlinear PDE is the time-reverse of a HJB equation appearing in �nite-horizon
stochastic optimal control. As [5] pointed out, we can now apply techniques from optimal control to ap-
proximate the score. A straightforward way is to approximately solve the HJB equation (2.5) with some
suitable class of functions such as Neural Networks [44, 4, 28]. Instead of this black-box approach, we
propose solving (2.5) by means of compressed polynomials represented by a low-rank tensor format,
the details of which are provided in the next section. In contrast to Neural Networks, this approach is
highly interpretable and utilizes the structure of the HJB equation. In particular, we make frequent use

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023



GM with TT approximations of HJB equations 5

of the fact that the right-hand side F (v) := � v + x � r v � kr vk2
2 � d of (2.5) can be split into a

constant, linear and nonlinear contribution, given by

Const(v) = d; (2.6)

Lin( v) = � v + x � r v; (2.7)

NonLin(v) = �kr vk2: (2.8)

Before going into the detail about the polynomial approximation in the following section, we brie�y
sketch some of the core ideas.

First, we note the constant term (2.6) can be dropped from (2.5) since the score is agnostic to constant
shifts of the log-density. More precisely, vt is a solution to (2.5) if and only if vt := vt + td is a solution
to @tvt = � vt + x � r vt � kr vtk2

2; v0 = � log� � , t 2 [0; T]. The two solutions vt and vt differ only
by a constant shift for every t 2 [0; t], hence the score satis�es r log� t = �r vt = �r vt . By the
same reasoning, an arbitrary constant can be added to the initial condition of (2.5) without affecting
the score. By choosing this constant equal to � log(Z ), we achieve � log� � � log(Z ) = � . Thus,
from now on we consider the equation

@tvt = Lin( vt ) + NonLin( vt ); v0 = � : (2.9)

Morevover, if vt is a polynomial of �xed degree N 2 N for any t , then Lin( vt ) is also a polynomial of
degree N . This means that if v0 is a polynomial of a �xed degree, integrating only the linear part of
(2.9) would yield a polynomial of same degree for all t 2 [0; T]. For the nonlinear part NonLin(vt ) this
is only true for N = 2 . In this quadratic case, (2.9) can be solved to arbitrary accuracy. In particular, if
� � is a zero mean Gaussian with density

� � (x) =
1

p
(2� )dj� j

ex | � � 1x (2.10)

for positive de�nite � 2 Rd;d, then (2.9) corresponds to the HJB equation of a linear-quadratic optimal
control problem with solution given by vt (x) = x | Ptx, where Pt 2 Rd;d, t 2 [0; T], solves a Ricatti
matrix differential equation (see Appendix B).

Solving (2.9) e.g. with an explicit Euler method for time discretization leads to a steady increase of
the degree over time for all initial degrees larger than N = 2 . This is due to the nonlinear term: if vt

for some t 2 [0; T] is a polynomial of degree N , then NonLin(vt ) is (in general) a polynomial of
degree � 2N . To prevent this degree increase, we project the nonlinear part of the right-hand side
back onto the space spanned by polynomials of degree N before performing the time integration step.
Furthermore, since the linear space of polynomials suffers from the curse of dimensionality, we use a
compression or retraction after every time step, �nding a best approximation of the new iterate in a low
dimensional manifold. In the case of an explicit Euler method, the resulting integration scheme can be
written as

vt+ � t = Compression [vt + � t (Lin( vt ) + Projection [NonLin( vt )])] ; (2.11)

where � t > 0 is the current adaptively chosen stepsize. The precise de�nition of all terms involved is
the subject of the next section.

3 Functional Tensor Trains (FTT) and Tensor Trains (TT)

In this section we introduce the approximation class used as a spatial discretization for the HJB equa-
tion. Let K � Rd be a compact hypercube de�ned by ai ; bi 2 R with ai < bi for i = 1; : : : ; d

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023
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n 2 Nd
0 dimension array n = ( n1; : : : ; nd)

kn + l (kn1 + l; : : : ; knd + l) for k; l 2 N0

[n ] indexing [n ] = � d
i =1 f 0; : : : ; ni g

n 1 � n 2, n � k component wise comparison n ; n 1; n 2 2 Nd, k 2 N

� , � , 
 multiindex in Nd
0, note that we always index starting from 0

Rn tensor space Rn1 ;:::;n d

A ; B ; C tensor elements in Rn

r rank r = ( r1; : : : ; rd� 1) in Nd� 1

r 1r 2 multiplication r 1r 2 = ( r 1
1r 2

1; : : : ; r1
d� 1r 2

d� 1) in Nd� 1

ki ; l i rank enumeration indices in f 1; : : : ; r i g

A i ; B i ; Ci component order 3 tensor in Rr i � 1 ;n i +1 ;r i with entries indexed by [ki � 1; � i ; ki ]

A i [� i ] matrix extraction A i [� i ] = A i [ : ; � i ; : ] 2 Rr i � 1 ;r i of component tensor A i

A i [ki � 1; : ; ki ] vector extraction in Rn i +1 for each rank enumeration ki � 1; ki

A [� ] tensor indexing A [� 1; : : : ; � d] for A 2 Rn , � 2 [n ], n 2 Nd
0

Table 1: List of compact notations used in this work.
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and K = � d
i =1 [ai ; bi ]. A function f : K ! R is said to have functional Tensor Train (FTT) [30] rank

r = ( r 1; : : : ; r d� 1) 2 Nd� 1 with the convention r 0 = r d = 1 , if it can be written as

f (x1; : : : ; xd) = F1(x1)F2(x2) � � � Fd(xd) (3.1)

with matrix valued functions Fi (x i ) 2 Rr i � 1 ;r i , x i 2 [ai ; bi ] for i = 1; : : : ; d. For discussions
regarding the approximation of functions of mixed regularity or compositional structures we refer to
[3, 17, 2].

In order to obtain a discrete approximation class, for each i = 1; : : : ; d and � 2 N0 let pi
� denote the

� -th orthonormal Legendre polynomial with respect to the standard L2 inner product on [ai ; bi ]. For
n 2 Nd

0, we de�ne the discrete set of orthonormal polynomials of degree n by

� n := f p� :=
dO

i =1

pi
� i

j � 2 [n ]g; (3.2)

where [n ] is de�ned as in Table 1. For f with FTT rank r , we then may approximate

f (x1; : : : ; xd) �
X

� 2 [n ]

C [� ]p� (x1; : : : ; xd); (3.3)

with a tensor array C 2 Rn +1 with Tensor Train (TT) rank r = ( r1; : : : ; rd� 1)| 2 Nd� 1 bounded by
the FTT rank r . In particular we have the decomposition into a Tensor Train (or Matrix Product State)
format

C [� ] = C1[� 1]C2[� 2] � � � Cd[� d]; (3.4)

with matrices Ci [� i ] 2 Rr i � 1 ;r i and the convention that r0 = rd = 1 . Note that the relation of r and
r depends on the relation of Fi and the polynomials in i -th direction. In particular it holds r = r if for
all i = 1; : : : ; d and � = 0; : : : ; ni it holds

biZ

ai

Fi (x i )pi
� (x i )dx i 6= 0 2 Rr i � 1 ;r i :

Provided that the ranks can be bounded, the TT format exhibits a storage complexity of
O(max(n1; : : : ; nd)dmax(r1; : : : ; rd� 1)2), which scales only linearly in the dimension d, hence
avoiding the curse of dimensionality. The set of such Tensor Trains of �xed rank r de�nes a manifold
M r � Rn +1 , see e.g. [20].

As a �rst step of our HJB solver, we propose to approximate V0 = � log� � in a functional Tensor Train
format based on orthogonal polynomial space discretization as in (3.3) for some TT rank r 2 Nd� 1.
A motivation for this type of approximation for Bayesian posteriors can be found in Appendix C. In
what follows we discuss the actions of the linear and nonlinear operators de�ned in (2.7) and (2.8)
on functions given in that format. To that end, we de�ne for any tensor A 2 Rn +1 the associated
polynomial vA 2 span � n by

vA =
X

� 2 [n ]

A [� ]p� : (3.5)

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023
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3.1 The linear part

This section is concerned with the operator Lin from (2.7), appearing in the right-hand side of the HJB
in (2.9).

Let the differential operator D : C2(R) ! C (R) be de�ned as Dv = @2
x v + x@xv for v 2 C2(R) and

let I : C2(R) ! C 2(R) denote the identity operator. Then, it holds

Lin = D 
 I 
 : : : 
 I + I 
 D 
 I 
 : : : 
 I + : : : + I 
 : : : 
 I 
 D : (3.6)

As a �rst result we discuss the effect of the operator on functions v given in FTT format.

Lemma 3.1. Let f 2 C2(K ) have FTT-rank r 2 Nd� 1. Then, Lin( f ) has FTT-rank at most 2r .

Proof. The assertion follows immediately since Lin( f ) de�nes a Laplace-like sum of FTTs, meaning
that each summand only modi�es a single component of the FTT. More precisely, we have

Lin( f )(x) =
�
DF1(x1) F1(x1)

� •
F2(x2) 0

DF2(x2) F2(x2)

˜
� � �

� � �
•

Fd� 1(xd� 1) 0
DFd� 1(xd� 1) Fd� 1(xd� 1)

˜ •
Fd(xd)

DFd(xd)

˜
;

(3.7)

which de�nes a product of matrix valued functions as in (3.1). The rank bound follows immediately
from the block structure of (3.7) and the dimensions of Fi ; DFi for i = 1; : : : ; d.

When applied to polynomials, the linear operator can be expressed in terms of its action on the
polynomial's coef�cients. More precisely, the discretization of Lin on the �nite set � n for some
n = ( n1; : : : ; nd)| 2 Nd

0 implies a linear operator L : Rn +1 ! Rn +1 given as

L :=
dX

i =1

L i ; L i :=

 
i � 1O

j =1

I n j +1

!


 D i 


 
dO

j = i +1

I n j +1

!

; (3.8)

with identity matrix I n 2 Rn;n . For the structure of the matrix D i 2 Rn i +1 ;n i +1 we refer to Appendix
E.1, speci�cally equation (E.5). For the moment it suf�ces to note that D i governs the action of the
differential operator D on the coef�cients of the polynomials in dimension i . It can be shown that the
action of Lin on a polynomial corresponds to algebraic manipulation of the coef�cient tensor with
respect to L , which is the result of the following lemma.

Lemma 3.2. Let n 2 Nd
0, Lin and L from (3.6) and (3.8). Then, for A 2 Rn +1 we have

Lin vA = vLA : (3.9)

Proof. Let L i [� ; � ] :=
€N i � 1

j =1 I n j +1 [� j ; � j ]
Š


 Dn i [� i ; � i ] 

€N d

j = i +1 I n j +1 [� j ; � j ]
Š

. Then,

the action of L i on A de�nes a tensor B i given as B i [� ] =
P

� 2 [n ] L i [� ; � ]A [� ]: Moreover,

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023



GM with TT approximations of HJB equations 9

LA =
dP

i =1
B i . Hence,

Lin vA =
dX

i =1

X

� 2 [n ]

 
i � 1O

j =1

I

!


 D 


 
dO

j = i +1

I

!

A [� ]p1
� 1


 � � � 
 pd
� d

=
dX

i =1

X

� 2 [n ]

X

� 2 [n ]

L i [� ; � ]A [� ]p1
� 1


 � � � 
 pd
� d

=
dX

i =1

X

� 2 [n ]

B i [� ]p1
� 1


 � � � 
 pd
� d

= v dP

i =1
B i

The contraction LA is cumbersome for full tensors A . However, it is easy to implement if A 2 M r

is a Tensor Train of �xed rank r 2 Nd� 1, such that A [� ] = A1[� 1]A2[� 2] � � � Ad[� d] with A i [� i ] 2

Rr i � 1 ;r i for i = 1; : : : ; d. In this case, let D i;A i [� i ] :=
n iP

� i =0
D i [� i ; � i ]A i [� i ] for i = 1; : : : ; d. Then,

(LA ) [� ] =
dX

i =1

X

� 2 [n ]

L i [�; � ]A[� ]

=
dX

i =1

 
i � 1O

j =1

A j [� j ]

!


 D i;A i [� i ] 


 
dO

j = i +1

A j [� j ]

!

=
�
D1;A 1 [� 1]| A1[� 1]|

� •
A2[� 2]| 0

D2;A 2 [� 2]| A2[� 2]|

˜
� � �

� � �
•

Ad� 1[� d� 1]| 0
Dd� 1;A d� 1 [� d� 1]| Ad� 1[� d� 1]|

˜ •
Ad[� d]

Dd;A d [� d]

˜
:

Hence, LA is given in TT format through a Laplace-like sum with TT rank bounded by 2r , which
is consistent with Lemma 3.1. In particular, this formula involves only contractions of the matrices
D i 2 Rn i +1 ;n i +1 with the order three tensors A i 2 Rr i � 1 ;n i +1 ;r i for i = 1; : : : ; d. No contraction with
the full tensor A is required.

3.2 The nonlinear part

This section is concerned with the operator NonLin( � ) = kr � k 2 from (2.8), appearing in the
right-hand side of the HJB equation in (2.9), in case the arguments are functions given in FTT format.
This operator is a combination of partial derivatives, squares and a summation. We split the results
into two Lemmas. First, we derive a more general bound on the FTT-rank of a product of functions with
bounded FTT-rank.

Lemma 3.3. Let g, f have FTT-rank r f and r g, respectively. Then g � f has FTT-rank at most r gr f .
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Proof. We write f (x) = F1(x1)�: : :�Fd(xd) and g(x) = G1(x1)�: : :�Gd(xd) with Fi (x i ) 2 Rr f
i � 1 ;r f

i ,
Gi (x i ) 2 Rr g

i � 1 ;r g
i for i = 1; : : : ; d. Let 
 k denote the standard matrix-Kronecker product with the

convention that for two scalar values a; b2 R we set a 
 k b= a � b. Then, we have

f (x)g(x) = F1(x1) �: : :�Fd(xd) �G1(x1) �: : :�Gd(xd) = F1(x1) 
 k G1(x1) �: : :�Fd(xd) 
 k Gd(xd);

where Fi (x i ) 
 k Gi (x i ) 2 Rr f
i � 1 r g

i � 1 ;r f
i r g

i .

Second, the rank bound of the nonlinear right hand side is provided.

Lemma 3.4. Let f have FTT-rank r , then NonLin(f ) = kr f k2 =
dP

i =1

€
@f
@xi

Š2
has FTT-rank at most

2r 2.

Proof. Note that @f
@xi

= F1(x1) : : : @x i Fi (x i ) : : : Fd(xd) has FTT-rank � r for all i . By Lemma

3.3, ( @f
@xi

)2 has FTT-rank at most r 2. To bound the FTT-rank of
P d

i =1

€
@f
@xi

Š2
, the derivation is the

same as in the proof of Lemma 3.1, only that the operator D is replaced by an operator mapping
C1(R) ! C (R) and v 7! (@xv)2.

We now turn our view on the discretization of the corresponding operator with respect to � n .

3.2.1 The operator in Tensor Train format

For a practical algorithm, we need a discretization of NonLin on the �nite set � n such as (3.8) for the
linear part. Here, we refrain from deriving a formula in the general setting of a full coef�cient tensor and
directly examine the case of a TT with �xed rank. We consider the square operation �rst. Let n 2 Nd

and the multiplication operation M g : f 7! g � f , where g; f are given by

f (x) = vA (x) =
X

�

A [� ]
dY

i =1

pi
� i

(x i ); g(x) = vB (x) =
X

� 2 [n ]

B [� ]
dY

j =1

pj
� j

(x j ) (3.10)

with tensors A ; B 2 Rn +1 both given in Tensor Train format with TT-rank r = ( r1; : : : ; rd� 1) 2
Nd� 1 and

A [� ] = A1[� 1] � � � Ad[� d]; B [� ] = B1[� 1] � � � Bd[� d]: (3.11)

We aim to de�ne a Tensor Train operator M B : Rn +1 ! R2n +1 such that

M g(f ) = vM B (A ) =
X


 2 [2n ]

M B (A )[
 ]
dY

i =1

pi

 i

(x i ): (3.12)

For n 2 N0 let Ti;n 2 Rn+1 ;n+1 denote the transformation matrix mapping the coef�cients of Leg-
endre polynomials up to degree n on [ai ; bi ] to the corresponding coef�cients of standard monomials
1; x; x2; : : : up to degree n. Let

Â [� ] := Â1[� 1] � � � Âd[� d]; Â i [� i ] =
n iX

� 0
i =0

Ti;n i [� i ; � 0
i ]A i [� 0

i ]; (3.13)

B̂ [j ] := B̂1[� 1] � � � B̂d[� d]; B̂ i [� i ] :=
n iX

� 0
i =0

Ti;n i [� i ; � 0
i ]B i [� 0

i ]; (3.14)
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de�ne the coef�cient tensors of f and g with respect to monomials. Now, for i = 1 : : : ; d and � i =
0; : : : ; ni de�ne the matrix D i;� i by

D i;� i :=

2

6
6
6
6
6
6
4

0� i ;n i +1

I n i +1 ;n i +1

0n i +1 � � i ;n i +1

3

7
7
7
7
7
7
5

2 R2n i +1 ;n i +1 ; (3.15)

where 0m;n 2 Rm;n is a matrix with all entries equal to 0, which we de�ne to be empty if m or n equal
zero. Furthermore, for i = 1; : : : ; d, ki � 1; ` i � 1 2 f 1; : : : ; r i � 1g, ki ; ` i 2 f 1; : : : ; r i g we de�ne the
vector Ĉi [ki � 1; ` i � 1; ki ; ` i ] 2 R2n i +1 as

Ĉi [ki � 1; ` i � 1; ki ; ` i ] =
n iX

� i =0

D i;� i B̂ i [ki � 1; : ; ki ]Â i [` i � 1; � i ; ` i ]: (3.16)

Note that D i;� i B̂ i [ki � 1; : ; ki ] denotes a matrix-vector multiplication, whereas Â i [` i � 1; � i ; ` i ] is scalar
valued.

With slight abuse of notation, we denote the 
 i -th entry of the vector Ĉi [ki � 1; ` i � 1; ki ; ` i ]
by Ĉi [ki � 1; ` i � 1; 
 i ; ki ; ` i ] 2 R, which de�nes an order 5 tensor Ĉi 2 Rr i � 1 ;r i � 1 ;2n i +1 ;r i ;r i . For
convenience, we reshape Ĉi to an order 3 tensor by �attening together the �rst two and last two
dimensions, again overloading notation with Ĉi 2 Rr 2

i � 1 ;2n i +1 ;r 2
i . Now we revert to the Legendre

polynomial system and de�ne the coef�cient tensor C 2 R2n +1 given in TT format by

C [
 ] := C1[
 1] � � � Cd[
 d]; Ci [
 i ] =
2n iX


 0
i =0

T � 1
i; 2n i

[
 i ; 
 0
i ]Ĉi [
 0

i ]: (3.17)

This construction yields the following result.

Lemma 3.5. Let f and g have FTT-rank r and given as in (3.10). Then, fg has FTT-rank at most r 2,
in particular

g(x)f (x) =
X


 2 [2n ]

C[
 ]
dY

i =1

pi

 i

(x i ); (3.18)

with coef�cient tensor C with TT-rank at most r 2 given by (3.17).

By this Lemma, we have

M B (A ) = C (3.19)

with C from (3.17). For ease of notation, we further de�ne the square operation S : Rn +1 !
R2n +1 ; A 7! M A (A ).

Finally, note that the partial derivative @x i de�nes a linear operator that, analogous to Section 3.1,
implies a linear operator L x i : Rn +1 ! Rn +1 based on the polynomial discretization such that
@x i vA = vL x i A . This operator has the form L x i = I 
 : : : 
 I 
 Dx i 
 I 
 : : : 
 I with
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Dx i 2 Rn i +1 ;n i +1 given in Appendix E.2. Putting all of the above together, we see that

hr vB ; r vA i =
dX

i =1

(@x i vA )(@x i vB ) =
dX

i =1

vL x i A vL x i B

=
dX

i =1

vM L x i B (L x i A ) = v dP

i =1
M L x i B (L x i A )

(3.20)

This leads to a Tensor Train operator representing the nonlinear part (2.8). In particular, for A ; B 2
Rn +1 let

NL (A ) := �
dX

i =1

S(L x i A ); (3.21)

NL B (A ) := �
dX

i =1

M L x i B (L x i A ): (3.22)

Then, by (3.20), we have NonLin(vA ) = vNL (A ) and �hr vB ; r vA i = vNL B (A ) . This concludes
the derivation of the nonlinear part.

3.3 Projection and retraction

The discussion so far shows that linear and nonlinear operations on the polynomial discretization with
Tensor Trains may increase the rank as well as the underlying polynomial degree. Therefore, we shall
discuss operations that keep a �xed polynomial degree and a �xed TT-rank with possible error control,
namely projection and retraction. Regarding the projection, let n ; m 2 N0, n � m and de�ne
Pm ;n : span � m ! span � n by

Pm ;n (�) :=
n1 ;:::;n dX

� 1 ;:::;� d =0

dO

i =1

pi
� i

*
dO

i =1

pi
� i

; �

+

(3.23)

Due to the orthonormality of the pi
� i

, the projection is simply obtained by truncating the coef�cients,
as the following result states.

Lemma 3.6. For n � m and A 2 Rm +1 we have Pm ;n VA = VPm ;n A , where Pm ;n : Rm +1 !
Rn +1 is de�ned by

(Pm ;n A )[� 1; : : : ; � d] = A [� 1; : : : ; � d] (3.24)

for all A 2 Rm +1 and � 2 Nn
0 .

Note that by Parseval's identity, the projection error in L2-norm can be computed by simply adding the
squares of the elements that are eliminated by the projection, i.e. with assumptions of Lemma 3.6, we
have

kPm ;n vA � vA k2
L 2 (K ) =

m1 ;:::;m dX

� 1= n1+1 ;:::;� d = nd +1

A [� 1; : : : ; � d]2: (3.25)
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A possible realization of a retraction operator

R r :
[

r̂ � r

M r̂ ! M r ; (3.26)

for given �xed rank r 2 Nd� 1, is obtained by using the TT rounding scheme �rst presented in [29,
Algorithm 2], which is based on ef�cient high-order singular value decomposition exploiting the struc-
ture of TTs. The operators in (3.24) and (3.26) provide us with the necessary tensor operations to �x
the degree as well as the rank of the HJB solution, concluding this section.

4 A direct low-rank HJB solver

In this section, we consider polynomial potentials � 2 span � n for some n 2 Nd
0. If the poten-

tial is not available in polynomial form, we can obtain a suitable polynomial approximation e.g. by the
Alternating Linear Scheme (ALS) [19] as was done in [31] for the purpose of approximating value func-
tions. Crucially, the ALS yields an approximation in a chosen low rank TT format. For � 2 span � n ,
we consider a projected version of the modi�ed HJB equation (2.9) restricted to the hypercube K
de�ned by

§
@tvt = P2n ;n [Lin( vt ) + NonLin( vt )] ;

v0 = � ;
in K; (4.1)

for t 2 [0; T] and some T > 0 large enough. Note, that the projection only acts on the nonlinear part,
as the linear part does not increase the polynomial degree.

With the work from the previous section, we can show that this PDE is equivalent to an ODE on a
tensor space. Let L , NL , NL B for any B 2 Rn +1 and P � P2n +1 ;n +1 be given by (3.8), (3.21),
(3.22) and (3.24), respectively. Then the following theorem holds true.

Theorem 4.1 (Projected HJB equation is equivalent to tensor-valued ODE). Let A (t) 2 Rn+1 be a
solution of the tensor-valued ODE

_A (t) = LA (t) + P NL (A (t)) ; A (0) = A 0; (4.2)

for t 2 [0; T]. Then vt := vA (t) solves (4.1). Conversely, if vt 2 span � n solves (4.1), then there
exists a unique A (t) 2 Rn+1 such that vt = vA (t) and A (t) solves (4.2).

Proof. Let A (t) 2 Rn+1 solve (4.2). Then, _vA (t) = v _A (t) = vLA (t)+ P NL (A(t )) = vLA (t) +
vP NL (A (t )) = Lin( vA (t)) + P2n +1 ;n +1

�
NonLin(vA (t))

�
and vA (0) = vA 0 = � , showing the

�rst part of the claim. Conversely, if vt 2 span � n solves (4.1), then there exists a unique A (t) with
vt = vA (t) and v _A (t) = @tvt = vLA (t)+ P NL (A (t )) . Since the mapping A 7! vA is injective, this
yields the second part of the claim.

The solution algorithm for (4.2) which will be presented in the following relies on local linearizations of
the HJB for stiffnes based stepsize control. Hence, we state the following result on the form of such
local linearizations.

Lemma 4.1 (Local linearization). Let B 2 Rn+1 . Then, the linearization of (4.2) at B is given by

_A (t) = ( L + 2P NL B )A (t) � P NL (B ): (4.3)
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Proof. Note that the linearization of NonLin(v) = �kr vk2 around a �xed v0 2 span � n is given
by

NonLinv0 (v) = � 2hr v0; r vi + kr v0k2 = � 2hr v0; r vi � NonLin(v0): (4.4)

Now, for A ; B 2 Rn+1 we have

NonLinvB (vA ) = � 2hr vB ; r vA i � NonLin(vB ) (4.5)

= 2vNL B A � vNL (B ) (4.6)

= v2NL B A � NL (B ) : (4.7)

Since the other operators appearing on the right hand side of (4.1) are linear, (4.3) follows.

By Theorem 4.1, it suf�ces to solve (4.2) for A (t) since this solution de�nes the solution of (4.1) via
vt = vA (t) . In the rest of this section, we present principled ways of computing approximate solutions
to (4.2) on the low rank manifold M r . Two methods are investigated:

1 A simple explicit Euler scheme with adaptive step sizes and retraction after every step, see
Section 4.1.

2 A dynamical low rank integrator designed for time integration of Tensor Trains [26], see Section
4.2.

4.1 Time adaptive explicit Euler scheme

Preliminaries. In the following, we de�ne a number of time points N 2 N, a sequence of times
0 = t0 < t 1 < : : : < t N = T , a TT-rank function t 7! r t 2 Nd� 1 assigning to every time a Tensor
Train rank and discrete approximations M r t n

3 Ytn � A (tn ), n = 0; : : : ; N , to the solution A (t) of
(4.2). Throughout this section, let � max ; � proj ; � rank ; � contr > 0 and a reduction parameter � 2 (0; 1).
Denote the potential of the standard normal distribution by v1 (x) = kxk2=2 and note that by Lemma
D.2 this function has FTT rank (2; : : : ; 2). In practice we choose r t to be bounded by TT-rank( v0)
and TT-rank( v1 ) with adaptive rank reduction based on TT-rounding error induced by the retraction
from (3.26).

Time adaptive explicit Euler step. Starting with n = 0 , we have Ytn 2 M r t n
. By Section 3,

the right-hand side of (4.2) applied to Ytn , i.e. the tensor LY tn + P NL (Ytn ) has TT-rank at most
2r + 2r 2 and so the addition

Y tn + � n = Ytn + � n (LY tn + P NL (Ytn )) (4.8)

has TT-rank at most 3r + 2r 2 for any � n > 0.

Since we require the next iterate to be a Tensor Train of rank r tn + � n , we retract to the appropriate
manifold, setting

Ytn + � n = R r t n + � n
(Y tn + � n ); (4.9)

where R r denotes the TT rounding procedure based on higher order singular value decomposition
and mapping to M r , which was presented in [29, Algorithm 2]. Note that (4.9) corresponds to (2.11)
with the Compressiongiven by the retraction operator, i.e. by the higher order singular value decom-
position. Up to now the choice of the step size � n was arbitrary. In what follows we set constraints on
the step size � n based on three stability criteria.
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Criterion 1: local stiffness. At each iteration, we restrict the stepsize dependent on the local stiff-
ness of the ODE. We use a heuristic based on local linearizations of (4.2) to determine suitable upper
bounds for the stepsize. By Lemma 4.1, the local stiffness at the current iterate Ytn is governed by the
linear operator

H Yt n
:= L + 2P NL Yt n

: (4.10)

If the current iterate Ytn de�nes a zero mean Gaussian with diagonal covariance diag(aii ; i =
1; : : : ; d), the eigenvalues of H Yt n

can be bounded by 2
P d

i =1 j1 � 2aii j (the details of the cal-
culation can be found in Appendix E.3). In general, H Yt n

de�nes a non-symmetric TT operator. To
the knowledge of the authors, estimation of the largest absolute eigenvalue of general non-symmetric
TT operators is an open question. Here, we rely on a simpler idea. In particular as we are dealing with
real valued tensors Ytn , we avoid analyzing the operator action on complex space. In contrast, we are
interested in the effect of the current operator in the neighborhood of the current iterate. This is real-
ized by estimating the largest absolute real eigenvalue of H Yt n

denoted by � tn with corresponding
eigenspace that is not orthogonal to the current iterate Ytn , by a power iteration. The resulting scheme
is detailed in Algorithm 1. The current Tensor Train iterate Ytn serves as an initial guess for the eigen-
tensor. The procedure then resembles a standard power iteration with an additional retraction step in
line 6, which reduces computational burden. In practice we are only interested in the absolute value of
the eigenvalue or a meaningful upper bound � tn and not in the corresponding eigentensor. Note that
the eigenvalue usually converges at much higher order than the eigentensor. The aforementioned up-
per bound then is obtained through a simple rounding up strategy with a speci�ed number of accurate
non-zero digits, see Algorithm 1. Based on the return � tn of the power iteration, we de�ne a maximal
stable stepsize � � by

� � :=
2�

j� tn j
: (4.11)

In experiments, this stiffness estimation proves essential for the solver to converge.

Algorithm 1 Upper bound estimating the principal real eigenvalue � tn of H Yt n
from (4.10) based on

power iteration.

Input:

§
• current iterate X 0 = Ytn • maximum allowed TT rank r 2 Nd� 1

• application of H Yt n
• number of correct non-zero digits p 2 N

Output: upper bound � tn

1: Let � k
tn

denote the k-th iterate.
2: Set k = 0 .
3: while p-th non-zero digit of � k

tn
is changing do

4: Let K 2 N, X 0 2 M r .
5: X̂ k = X k=kX kkF

6: X k+1 = R r (H Yt n
X̂ k)

7: � k
tn

= hX̂ k ; X k+1 i
8: k = k + 1
9: end while

10: De�ne position P of �rst non zero digit with P = d� log10(�
k
tn

)e.
11: De�ne upper bound treshold � p = 10� (P + p) .

12: De�ne �
k
tn

= � k
tn

+ � p.
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Criterion 2: local relative projection error. For stepsize � > 0 consider the iterate Y tn + � de�ned

by (4.8) for � n = � and let Y tn + � = Ytn + � (LY tn + NL (Ytn )) be an Euler step with the non-
projected equation. Let

� proj :=

¨
� max ; if kP NL (Ytn ) � NL (Ytn )kF = 0;

� proj

kP NL (Yt n )� NL (Yt n )kF =kNL (Yt n )kF
; else:

(4.12)

Then, for any � � � proj we get

kY tn + � � Y tn + � kF � � kP NL (Ytn ) � NL (Ytn )kF � � proj kNL (Ytn )kF : (4.13)

Hence, the projection error of the Euler step, normalized with respect to the magnitude of the degree
increasing nonlinear part NL (Ytn ), is bounded from above by � proj .

Criterion 3: local relative retraction error. Determine maximum � rank such that

kY tn + � rank � Ytn + � rank kF

kY tn + � rank kF
� � rank : (4.14)

Here, we initially choose � 0
rank = � n� 1 and proceed with � k

rank = 1
2 � k� 1

rank until � k
rank ful�ls condition

(4.14). Then, we use bisection iteration to determine the maximum � rank 2 ( 1
2 � k

rank ; � k
rank ] satisfying

(4.14).

Final stepsize choice. After these three criteria, the next step size � n in (4.9) and the next time
tn+1 are de�ned as

� n := min f � max ; � � ; � proj ; � rank ; T � tng; (4.15)

tn+1 := tn + � n ; (4.16)

where the term T � tn ensures that we end exactly at terminal time T . The single time step (4.9) is
repeated for n = 0; 1; : : : with stepsize (4.15) until tn+1 = T , in which case we de�ne N = n + 1 .

In addition to the adaptivity in the stepsize, the solver also incorporates adaptivity in the polynomial
degree as well as the TT rank, which is detailed in the following.

Adaptive decrease of polynomial degree Motivated by the fact that vt ! v1 2 � (2;:::;2) as
t ! 1 at exponential rate, we introduce a simple adaptive choice for the polynomial degree. Assume
that the degrees of Ytn at time tn are given by n tn 2 Nd

0. Let Y k
tn

denote the order d � 1 tensor,
which for k = 1; : : : ; d is given as

Y k
tn

= ( Ytn [� ])� 2 [n t n ];� k =( n t n )k
:

This is a slice of the full coef�cient tensor Ytn �xing � k = ( n tn )k which is the highest polynomial
degree in the k-th dimension at time tn . Now, in case of

kY k
tn

kF � � contr; (4.17)

we truncate the highest polynomial degree in the k-th direction. Since Ytn is given in TT format with

Ytn [� ] = Yt;1[� 1] � : : : � Yt;d [� d];

this operation is realized by truncation of the component tensor Yk and possibly adapting the TT-ranks.
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Adaptive choice of TT rank Motivated by the conjecture, that the FTT rank of vt is bounded by the
FTT rank of v0 and v1 , i.e. r 1 = (2 ; : : : ; 2), we perform two retraction steps with respect to these
bounds after the time step at time tn . First a retraction with respect to the rank

r̂ tn + � n = maxf r tn ; r 1 g (4.18)

is performed where the maximum is understood component wise. This serves to ensure that the rank
of the solution remains bounded by the maximum of the initial rank and the rank of the standard normal
potential. Furthermore, a rounding procedure [29, Algorithm 2] with respect to � contr is performed to
potentially further decrease the rank and thus de�ne r tn + � n . In practice both retraction steps can be
performed ef�ciently in a single operation, which leads to (4.9).

The proposed time adaptive explicit Euler scheme is summarized in Algorithm 2.

Algorithm 2 Time adaptive explicit Euler Scheme to solve HJB equation based on Tensor Trains

Input:

8
>>>>>>><

>>>>>>>:

• v0 given in TT format;
• T > 0 maximum �nite time horizon ;
• � max > 0, bound for the stepsize

• reduction stiffness parameter � 2 (0; 1);
• step size proposal hyperparameter � proj ; � rank ;
• degree of freedom contribution tolerance � contr > 0:

Output: Discrete sequence (vtn )n de�ned on subsequently determined adaptive time points tn 2
[0; T]:

1: Set t = 0 .
2: while t � T do
3: Determine next time step :
4: Compute maximal stable stepsize � � . . see (4.11)
5: Compute step size proposal � proj based on projection error. . see (4.12)
6: Compute step size proposal � rank based on relative retraction error. . see (4.14)
7: Determine �nal step size � = min f � max ; � � ; � proj ; � rank ; T � tg.
8: Perform a single Euler step
9: Set t = t + � .

10: Approximate vt via algebraic manipulation of the underlying TT format. . see (4.8)
11: Perform a retraction step of the resulting coef�cient in TT format. . see (4.9)
12: (Re-)compression
13: Check for potential polynomial degree decrease using � contr . . see (4.17)
14: Check for potential rank reduction using � contr . . see (4.18)
15: end while

4.2 Dynamical low rank approximation

While the time adaptive explicit Euler scheme presented in the previous section offers a conceptu-
ally simple integration method, Dynamical low rank appromxation (DLRA) [23, 25, 26] methods offer
another principled way of approximately integrating tensor valued ODEs of the form (4.2).

Here, the idea is to formulate an approximation of a tensor valued ODE

_A (t) = F (t; A (t)) ; A (0) = A 0;
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where n 2 Nd, A (t) 2 Rn and F : [0; 1 ] � Rn ! Rn on a �xed rank manifold M r . This is
done via projection of the right-hand side onto the tangent space of M r . More precisely, for a �xed
r 2 Nd� 1, the approximation is de�ned as

_Y (t) = PTY ( t )
F (t; Y (t)) ; Y (0) = Y0 � A 0; (4.19)

where Y0 2 M r and PTY ( t )
denotes the orthogonal projection (in Frobenius norm) onto the tangent

space of M r in Y (t). Note that due to this projection, a solution of (4.19) satis�es Y (t) 2 M r for
all t . In [13] the authors use an explicit Euler discretization of (4.19) for the solution of HJB equations
appearing in deterministic optimal control based on spatially discretized parabolic PDEs. However,
leveraging the form of the tangent space, the projector on the right hand side can be decomposed
into a sum of projectors corresponding to orthogonal subspaces. In [25], the authors propose to use
this sum structure for a Lie-Trotter type splitting scheme in the case of a matrix valued ODE, which is
termed the projector-splitting integrator. Consequently, [26] extends the projector splitting integrator to
the tensor setting. One of the key properties of this integrator is that each discrete step preserves the
rank r .

In our scheme, using a step with the integrator from [26] instead of the explicit Euler step (4.8) leads to
a new iterate Y tn + � n with the same rank as Ytn . Hence, the retraction (4.9) becomes a mere rounding
procedure and the rank of two consecutive iterates is monotonically decreasing. This is a desirable
property if the initial rank satis�es r t0 � (2; : : : ; 2). For r t0 � (2; : : : ; 2), the projector-splitting is
unsuited because it restricts the rank from above to r tn � r t0 and so r tn can not converge to the
correct rank (2; : : : ; 2).

Incorporating more recent state-of-the-art dynamical low rank integrators for matrix valued ODEs such
as [8, 9] to the Tensor Train setting could lead to signi�cant improvements of the proposed method. In
particular, the Basis Update & Galerkin (BUG) integrator [8] introduces rank adaptivity, while the fully
parallel integrator [9] could additionally greatly speed up computations in high dimensions. However, to
the knowledge of the authors neither of these integrators have been formulated for the setting of high
dimensional Tensor Trains at the time of writing. Therefore, their application in our method remains a
topic of future research.

4.3 Evaluation of the low-rank model

As the result of section 4.1 or 4.2 we have a representation of the value function in the spirit of (3.5) at
discrete set of time points the form t 2 f t0; t1; : : : ; Tg of the form

vt (x) =
X

� 2 [n t ]

Yt [� ]p� (x); (4.20)

for some n t 2 Nd
0 and Yt given in tensor train format resulting as the discrete solution of (4.2).

We now want to discuss the evaluation of vt (x) at arbitrary time t 2 [0; T] and x 2 Rd. This is
motivated by the reverse-time sampling process, which is permitted to be time adaptive and may
require evaluation in time points not included in the set f t0; : : : ; tN g .

For this we propose a very simple solution. Let t � 2 [0; T]. Let

t = maxf t 2 f t0; : : : ; tN g: t � t � g (4.21)

Let � = t � � t . Then, we compute the coef�cient representation in Tensor train format of vt � through
a single Euler- or DLRA step with step size � . Note that this step size is within the step size bounds
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implied by the adaptive scheme proposed earlier. In particular, � is smaller than the step size implied
by local stiffness.

Lastly, we discuss how the evaluation of the model class is performed in practice. Aside from the
evaluation of the polynomial basis functions, only matrix- and vector products have to be computed
to evaluate vt . This ef�cient evaluation is one of the strengths of the Tensor Train format. For x =
(xs; : : : ; xd) 2 Rd and t 2 [0; T], the approximation is de�ned by a TT Y t with dimensions n t =
(nt;1; : : : ; nt;d ) and ranks r t = ( r t;1; : : : ; r t;d ). To evaluate (4.20), one �rst computes pi

j (x i ) for
all i = 1; : : : ; d and j = 0; : : : ; nt;i . Now the TT format provides a decomposition of the form
Y t [� ] = Yt;1[� 1]Yt;2[� 2] � � � Yt;d [� d], where Yt;i 2 Rr t;i � 1 ;n t;i ;r t;i , � 2 [n t ] and hence � i runs from
0 to nt;i . In particular, (4.20) implies

vt (x) =
n t; 1X

� 1=0

: : :
n t;dX

� d =0

Yt;1[� 1]Yt;2[� 2] � � � Yt;d [� d]p1
� 1

(x1)p2
� 2

(x2) : : : pd
� d

(xd)

=: Y x1
t;1 � Y x2

t;2 � � � Y xd
t;d ;

(4.22)

where Y x i
t;i 2 Rr t;i � 1 ;r t;i results from a simple contraction of Yt;i with the vector (pi

1(x i ); : : : ; pi
n t;i

(x i ))
over the nt;i -dimension. Y x1

t;1 �Y x2
t;2 � � � Y xd

t;d is now a simple matrix product. Note since r t;0 = r t;d = 1 ,
this product boils down to a matrix-vector product, when performed from left to right or vice-versa,
yielding a scalar value.

5 Numerical results

Based on Remark 2.1, we generate approximate samples from � � by means of the discrete process
described in Algorithm 3. The algorithm utilizes the reverse-time process from Remark 2.1 with � = 0
discretized at the time-points tn at which approximate solutions Ytn of the projected HJB (4.1) are
available. These approximations de�ne our surrogate for the score r log� t based on

vtn � � log� tn ; n = 0; : : : ; N; (5.1)

where vtn := vYt n
is understood in the sense of (3.5). The inner loop over k in Algorithm 3 consists

of additional Langevin-postprocessing steps [39] after every step with the reverse process.

As a necessary condition for convergence of the computed solutions vtn to the potential v1 (x) =
1
2x | I dx of the standard normal distribution, we consider convergence of the coef�cients of the quadratic
part. More precisely, since vtn is a polynomial, we can always write

vtn (x) = atn + b|
tn

x + x | � � 1
tn

x + higher order terms; (5.2)

with atn 2 R; btn 2 Rd and a symmetric � tn 2 Rd� d. In this section, we call covariance error at time
tn the term

CovErr(tn ) =



 � � 1

tn
� I d=2






F
=kI d=2kF ; (5.3)

i.e. the relative error in Frobenius norm between the current precision matrix and the precision matrix
of the standard normal distribution.

We remark that, in the test cases we considered, the results produced by the dynamical low rank
integrator [26] (using the same heuristics for adaptive stepsize determination) are similar to the results
produced by an explicit Euler stepping with subsequent retraction. Hence, we only present the results
of the latter.
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Algorithm 3 Sampling from � �

Input:

8
>>><

>>>:

• Initial samples f zi
0gI

i =1 � N (0; I d) ;
• Times f tngN

n=1 and discrete HJB solution f vYt n
gN

n=1 de�ned by Algorithm 2 ;
• Stepsize � and number of steps K 2 N for Langevin postprocessing,

• Parameter � 2 [0; 1] for reverse-time process

Output: Samples f zi
N gI

i =1 � � � .

1: for i = 1; : : : ; I in parallel do
2: Generate time points f t i

ngN
n=1 .

3: for n = 0; 1; : : : ; N � 1 do
4: Set � i

n = t i
n+1 � t i

n
5: Sample � n � N (0; I d) if � 6= 1 .
6: Set zi

n+1 = zi
n +

�
zi

n + (2 � � )r vYT � t n
(zi

n )
�

� i
n +

p
2(1 � � )� n � n . . Reverse-time

process step
7: for ` = 0; 1; : : : ; L do
8: Sample � k � N (0; I d)
9: zi

n+1  � zi
n+1 � � r vYT � t n

(zi
n+1 ) +

p
2� � k . . Langevin post-processing step

10: end for
11: end for
12: end for

5.1 Veri�cation result: Gaussian setting

Problem de�nition Let d = 10, K = [ � 5; 5]10 and �( x) = x | � � 1x, where � is a randomly
generated symmetric positive de�nite matrix (we sample entries of a matrix A uniformly on [0; 1] and
then de�ne � � 1 = A | A + 0:1I d). Note that in this setting the polynomial degree of the HJB solution
is bounded by n = (2 ; : : : ; 2) as � t remains a Gaussian density if � 0 and � 1 are Gaussian.

Parameters For Algorithm 2, we choose T = 12, � max = 0:1, � = 0:2, � proj = � rank = 0:01,
� contr = 10� 8.

Evaluation By Lemma D.1, � has FTT- r = (3 ; 4; 5; 6; 7; 6; 5; 4; 3). Since the solution of the HJB
is a strictly quadratic polynomial for all times (meaning that no higher or lower degrees than 2 appear),
Lemma D.1 also yields that the FTT rank of the solution is bounded from above by r for all tn . In Figure
5.1 the ranks of the solution during integration are displayed. Once the solution reaches a covariance
error of � 10� 7, the solver starts to truncate the ranks, meaning that at this point higher ranks give
a contribution to the solution which is less than � contr = 10� 8 in relative Frobenius norm. Finally, all
ranks higher than 2 are truncated, which is to be expected since the standard normal potential has
FTT rank r � 2. At t = 12, the covariance error has decreased to � 10� 11.
Figure 5.2 displays the stepsizes chosen by the solution algorithm. Since the polynomial degree does
not increase and the ranks are bounded from above by the initial rank, the stiffness estimate (4.11)
determines the stepsize.
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Figure 5.1: Development of the solution ranks and the covariance error (5.3) over time in the Gaus-
sian setting. Once the solution is close to convergence (in terms of the covariance error), the ranks
decrease to the rank (2; : : : ; 2) of the potential of the standard normal distribution.

Figure 5.2: Approximations of the maximal absolute eigenvalues of the linearized right-hand side j� t j
determined by the power method (left) and accordingly chosen stepsize 2�= j� t j (right) over time in
the Gaussian setting. Note that the eigenvalues decrease monotonically, permitting a monotonous
increase of the stepsize until the maximal permitted stepsize � max = 0:1 is reached.
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5.2 Mixed nonlinear density

Problem de�nition Let d = 20, K = [ � 5; 5]2 � [� 2; 2]2 � [� 5; 5]2 � [� 2; 2]14. Consider the
transport map T : R2 ! R2 and matrix � with

T (x; y) = ( x; y + x2 + 1) ; � =
•

1 0:9
0:9 1

‹
: (5.4)

Let � 1(x; y) = v1 (� � 1T (x; y)) , � 2(x; y) = x4 + y4 � 4x2 � 4y2 � 0:4x + 0:1y + 8 and
� 3(x; y) = x6 + y6 + 3xy. De�ne �( x) = � 1(x1; x2) + � 2(x3; x4) + � 3(x5; x6) +

P 20
i =7 x2

i .
The �rst six dimensions of this potential de�ne a banana-shaped marginal density in the �rst two
dimensions, a nonsymmetric multimodal marginal density in the third and forth dimensions, and a
bimodal marginal density in the �fth and sixth dimensions (see the right most column in Figure 5.3).
By construction, this potential has rank r = (3 ; 2; 2; 2; 3; 2; : : : ; 2).

Parameters We choose n = (4 ; 2; 4; 4; 6; 6; 2; : : : ; 2) 2 N20 according to the degrees appearing
in the potential. For Algorithm 2 we set T = 10, � max = 0:05, � proj = � rank = 0:01, � contr = 10� 8.
To account for the high stiffness of the equation at small time t � 1, we set the stiffness parameter �
in Algorithm 2 to � = 0:001as long as t < 10� 6 and � = 0:5 for t � 10� 6. Langevin postprocessing
(see Algorithm 3) is performed with L = 100 steps and stepsize � = 0:005.

Evaluation While the rank between independent parts of the density does not increase under the
HJB �ow, the initial ranks r1 = r5 = 3 may increase due to the time stepping scheme and hence
incur a truncation error. However, with the speci�ed values for � we discover that the stepsize result-
ing from the stiffness criterion (4.11) satis�es both the projection and the truncation criterion (4.13),
(4.14) with the requested tolerance, suggesting that the solver keeps these errors suf�ciently small.
Figure 5.4 shows these stepsizes with a jump around t = 10� 6 due to the increase in the stiffness
control parameter � . Figure 5.5 shows the exponential decay in the covariance error (5.3) between
the HJB solution and the standard normal distribution. Note that there is an initial spike in the error for
small times t . In experimentation, this spike seems to decrease in magnitude when permitting higher
polynomial degrees. Hence, we can attribute it to a discretization error. The optimal choice of permit-
ted degrees to balance accuracy and computational feasibility is an open question at this point. We
conjecture that it is at this point that future research will prove most fruitful: the dif�cult region close to
t = 0 , where the true solution of the HJB is far away from the standard normal potential. Finally, Figure
5.3 shows the densities corresponding to the HJB solution obtained by Algorithm 2 and the samples
at the corresponding time points in the reverse process. We note that the curvature of the banana
potential in the �rst two dimensions as well as the multimodalities in higher dimensions are recovered
by the method. Finally, we note the large number of postprocessing steps used in this example. We
observed a drastic decrease in sample quality for less postprocessing steps.

6 Conclusion and Outlook

We presented an interpretable solver for the HJB equation arising from Hopf-Cole transformation of
the Fokker-Planck equation in the setting of Bayesian inference and Generative Modelling. The ap-
proach uses functional Tensor Trains and spatial discretization with Legendre polynomials. A surro-
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