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On the structure of genealogical trees associated with
explosive Crump—Mode-Jagers branching processes
Tejas lyer, Bas Lodewijks

Abstract

We study the structure of genealogical trees associated with explosive Crump—Mode—
Jagers branching processes (stopped at the explosion time), proving criteria for the
associated tree to contain a node of infinite degree (a star) or an infinite path. Next, we
provide uniqueness criteria under which with probability 1 there exists exactly one of a
unique star or a unique infinite path. Under the latter uniqueness criteria we also provide
an example where, with strictly positive probability less than 1, there exists a unique
star in the model. We thus illustrate that this probability is not restricted to being 0 or
1. Moreover, we provide structure theorems when there is a star, where we prove that
certain trees appear as sub-trees in the tree infinitely often. We apply our results to a
general discrete evolving tree model, named explosive recursive trees with fitness. As a
particular case, we study a family of super-linear preferential attachment models with
fitness. For these models, we derive phase transitions in the model parameters in three
different examples, leading to either exactly one star with probability 1 or one infinite
path with probability 1, with every node having finite degree. Furthermore, we highlight
examples where sub-trees T' of arbitrary size can appear infinitely often; behaviour that
is markedly distinct from super-linear preferential attachment models studied in the
literature so far.
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1 Introduction

Given a population of an entity moving towards explosion, that is, the emergence of infinitely
many individuals in finite time, what can be said about the genealogical tree associated with
the population at the time of explosion? On the one hand, an infinite path in the tree may
be interpreted as an infinite line of evolution, with infinitely many ‘variants’ contributing to
the explosion; on the other, a node of infinite degree (which we often call a star) may be
interpreted, informally, as the emergence of a ‘dominant variant. This is the goal of the
present investigation, where as a simplified model of an evolving population, we use Crump-
Mode—Jagers branching processes.

In a CMJ branching process (named after [17, 35]), an ancestral root individual produces
offspring according to a collection of points on the non-negative real line. Each individual
‘born’ produces offspring according to an identically distributed collection of points, translated
by their birth time (see Section 1.3 for a more formal description). One is generally interested
in properties of the population as a function of time. Classical work from the 1970s and '80s
related to this model generally deals with the Malthusian case, which, informally, refers to
the fact that the population grows exponentially in time. These include strong laws of large
numbers for characteristics associated with the process [56], properties of birth times in the kth
generation [43], an x log x theorem [59], and numerous other results, for example [10, 57, 39,
37, 38]; see also the classical books [5, 36]. A number of more recent results are concerned with
asymptotic fluctuations associated with the process in the Malthusian case, see, for example,
[31, 41, 32, 44]. Other results are motivated by applications of these processes, including
M/G/1 queues [28], vaccination and epidemic modelling [6, 7, 49], and numerous applications
to random graphs, see Section 1.1 below.

Far fewer results exist for CMJ branching processes when a Malthusian parameter does not
exist. In a particular case of reinforced branching process, a condensation phase transition
can occur, where non-exponential growth occurs due to individuals having random weights
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that influence their offspring distribution. In this case, a ‘small’ numbers of individuals with
large weight produce larger and larger families, which in turn lead a rate of growth faster
than exponential [19]. In more extreme circumstances, individuals produce larger and larger
families so quickly that the process explodes in finite time. General criteria for explosion have
been provided in terms of the solution of a functional fixed point equation by Komjathy [45],
who also extended the necessary and sufficient criteria for explosion in branching random
walks in [1]. We refer the reader to [45] for a more comprehensive overview of the literature
related to explosion in branching processes. In [11], the authors provide sufficient criteria for
local explosion in closely related growth-fragmentation processes. Meanwhile, more, sufficient
criteria for explosion in CMJ processes are in preparation in [33].

1.1 Random recursive trees with fitness

Aside from the applications outlined above, CMJ branching processes are often involved in the
analysis of random graph models, more often, random trees. As far as the authors are aware,
direct applications date back to Pittel [61], in providing a new proof for the limiting behaviour
of the heights of random recursive trees and affine preferential attachment trees, but the
technique of using continuous-time embeddings to analyse discrete combinatorial processes is
more classical, going back to works of Arthreya and Karlin [3, 4].

Later, works by, for example [62, 12, 30, 58, 25] showed that CMJ branching processes can be
applied to a large number of growing tree models. A natural framework of evolving trees, which
corresponds to genealogical trees of CMJ branching processes and encompasses many existing
models of recursive trees (which we refer to as random recursive trees with fitness [34]), posits
that nodes v arrive one at a time, and are assigned a random i.i.d. weight W, sampled from a
measure £ on an arbitrary measure space (5, S) (see Definition 3.1). Newly arriving nodes then
connect, with edges directed outwards from the target nodes, with probability proportional to
a general, measurable fitness function f : Ny x S — [0,00) that incorporates information
about the current out-degree of the target, and its weight. A natural quantity of interest in
this model is the proportion of nodes Ny (at the nth time-step) having out-degree k. This
model may be roughly classified according to the following conjectured phases [34]:

1 The non-condensation phase: There exists A > 0 such that Z;O:l E [Hf:_é %] =1

In this case, if p; denotes the limit of Nk we have Z?:Opkf = 1. In other words, all of
the mass of edges is distributed around nodes of microscopic degrees.

2 The condensation phase (see [15, 19, 21, 18]): We have Z;’;IE[ I fé(;v";’l/\] <1,

for any A > 0 such that the sum converges. In this case, 0 < Z;?:opk < 1, so that a
positive fraction of ‘mass’ is lost from the empirical measure to a sub-linear number of
nodes of ‘large degrees’.

3 The extreme-condensation phase: For any A > 0 we have Zjozl E [ Z;& f(]:(;VVQ/\] = 0.

In this case, ZZO:O pr = 0, so that all of the ‘mass’ of edges is concentrated in nodes of
‘large’ degrees.

Part of the goal of this article is to investigate the behaviour of the third phase above, in the
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explosive case that

=1
Z : < oo, for p-almost all w € S.

Note that this implies that [ ]2, f(fi( W)

: W > 0 almost surely, so that the condition in Phase 3
is satisfied.

In [58], Oliveira and Spencer showed that, in the case f(i,w) = @, with 1+4 < p < 1415 for
some k € N (equality only for & > 2), the infinite tree associated with this process is somehow
extreme: it contains a single node of infinite degree, connected to infinitely many children with
an associated sub-tree of size at most £, and only finitely many with an associated sub-tree
of size k + 1 or larger. This paper uses the fact that the associated CMJ branching process is
explosive, a technique also exploited in similar works related to ‘balls-in-bins’ processes [55].
Related work by Arthreya [2, Theorem 2.1] attempts to prove that, according to a certain
summability condition, either every node in the infinite tree has finite degree, or with positive
probability there exists a single node such that all but finitely many new nodes connect to
this node. However, there is a mistake here, in that [2, Theorem 2.1b] should really state: the
probability that there exists a single node such that all but finitely many new-coming nodes
connect to this node is zero (indeed, note that [2, Corollary 2.2] directly contradicts [58]).
Nevertheless, the associated summability condition and result in this paper is interesting, and
motivates the question of whether there is a critical condition that guarantees the existence of
a node of infinite degree in the infinite tree, or every node having finite degree, cf. Theorem 3.4,
below.

A related question is whether or not, in the associated recursive tree with fitness model, the
index associated with the node of maximal degree is fixed after some finite time, or changes
infinitely often, that is, whether or not there is a persistent hub. A unique node of infinite
degree in the infinite tree associated with the model thus implies the existence of such a hub.
In a slightly different model of evolving graphs, when f(i,w) = g(i) with g being a concave
sub-linear function, one of the results of Dereich and Morters [20] shows that a persistent
hub emerges if and only if 3.° g(i)™? < 0. In the recursive tree model described above,
Galashin [23] proved that, if f(i,w) = ¢(i), with g convex and unbounded, a persistent hub
always appears. This has been extended to a much wider range of functions g, independent of
the weight w, by Banerjee and Bhamidi in [8].

When weights are added, however, in the sense that f(i,w) may depend on w, a different
picture emerges. Suppose that w takes values in [0, 00). In the case f(i,w) = w(i+ 1), under
a particular set of conditions leading to the condensation phase (Item 2 above), in [19] the
authors show that there is no persistent hub, and the size of the node of maximal degree grows
sub-linearly in the size of the tree. In the case f(i,w) = i+w or f(i,w) = w, when the weights
w are sampled according to certain classes of distributions, in [53, 63] and [52, 51], respectively,
the authors provide critical criteria depending on the parameters of the weight distribution, for
the existence, or non-existence, of a persistent hub. A number of other particular models of so
called preferential attachment with fitness have been studied, see, for example, [26, 42, 22,
and related works regarding local weak limits of preferential attachment type models [9, 50, 24].
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1.2 Overview of our contribution and structure

In this paper we provide general sufficient conditions for the genealogical tree associated with
an explosive CMJ branching process to contain a node of infinite degree or an infinite path at
the explosion time (in Theorems 2.5 and 2.8, respectively). When there is a node of infinite
degree, we provide criteria for one to see a fixed tree as a sub-tree of a child of that node
either infinitely often, or finitely often, in Theorem 2.10. We also prove uniqueness criteria in
Theorem 2.12, under which there almost surely exists a unique node of infinite degree or a
unique infinite path. Under the conditions of the uniqueness theorem, we provide a counter-
example in Theorem 2.15, where the events that there is a node of infinite degree, or an
infinite path, both have positive probability, less than 1. Finally, in Theorems 3.4, 3.7, and
Corollary 3.8 we apply our results to the recursive tree with fitness model and prove phase
transitions in three particular models in Theorems 3.16 and 3.21. We encourage the reader
more interested in this discrete model to refer to these results first.

The question of whether the genealogical tree of an explosive CMJ branching process contains
an infinite path or a node of infinite degree has not been investigated in this level of gen-
erality previously. Our techniques involve significant improvements of those of [58] (see also
Sections 2.5 and 3.3), and thus allow us to greatly extend the picture associated with the
general recursive tree with fitness model. Intriguingly, our results show that when there is a
unique node of infinite degree in the infinite tree associated with the model, in many particular
cases there exist children of the node of infinite degree that have arbitrarily large, but finite,
degree (or even an arbitrarily large, but finite, number of descendants). Previous comments
in the literature seem to indicate that it was believed that when there is an infinite degree
node, the degrees of all other nodes are bounded, see [8, Section 3]. Finally, we remark that
the phase transitions related to the emergence of a node of infinite degree are reminiscent of
a different notion of condensation in conditioned Bienaymé-Galton-Watson trees [40].

1.2.1 Structure of the paper

The paper is structured in the following way. Below, in Section 1.3, we introduce a formal
description of the model and the notation we use in this paper. Section 2 states the main results,
which are most general and require certain assumptions on the inter-birth time distribution.
Section 3 then discusses the particular example of exponentially distributed inter-birth times
and how this relates to a family of discrete tree models coined recursive trees with fitness. Here,
we derive sufficient conditions such that the assumptions used for the main results are satisfied.
Moreover, when considering certain sub-families of recursive trees with fitness, we prove more
precise results in terms of phase diagrams for the existence of either unique infinite-degree
nodes or unique infinite paths. As mentioned above, we encourage the reader more interested
in results related to the discrete recursive tree model (which is also less abstract), to refer to
the results of Section 3.1 first, before reading the section below.

Aside for a few exceptions, Section 4 proves the main results of Section 2, Section 5 proves
the most general results of Section 3, and Section 6 proves the particular examples of Sec-
tion 3. Finally, we consider a number of other models in Appendix A and B, showing that the
assumptions subject to which the main results hold are valid more broadly.
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1.3 Notation and preliminaries

In this paper, we consider properties of the genealogical trees associated with Crump-Mode-
Jagers branching processes; a tree-valued stochastic process (.7;);>0 which one may regard
as the genealogical tree representing a population evolving over time. The goal then, is to
define a state space of individuals, in this setting, the infinite Ulam-Harris tree of potential
individuals associated with a common ancestor, birth times B(u) associated with individuals,
which themselves are encoded by a random function (X, W), and then define .Z; as the set of
individuals born up to time ¢. Note that the notation we use is slightly different to the common
notation regarding CMJ branching processes, see Remark 1.1 further below.

First, we generally use N := {1,2,...}, Ny := NuU {0} and for n € N we let [n] := {1,...,n}.
We consider individuals in the process as being labelled by elements of the infinite Ulam-
Harris tree Uy, := | >, N"; where N” := {@} contains a single element & which we call the
root. We denote elements u € U, as a tuple, so that, if u = (uy,...,ux) € N¥ k> 1, we
write © = uq - - - ug. An individual v = ujus - - - uy is to be interpreted recursively as the u,th
child of the individual wuy - - - ug_1; for example, 1,2, ... represent the offspring of @. Suppose
that (2, X, P) is a complete probability space and (.S, S) is a measure space. We also equip
U, with the sigma algebra generated by singleton sets. Then, we fix a random mappings
X QxUy — [0,0], W:QxUy, — S, and define (X, W) : Q@ xU,, — [0,0] x S, so that
u— (X (u), W,). In general, for u € U, and j € N, one interprets W, as a ‘weight’ associated
with u, and X (uj) the waiting time between the birth of the (j — 1)th and jth child of w.

We introduce some notation related to elements u € U,,: we use | - | to measure the length
of a tuple u, so that, if u = & we set |u| = 0, whilst if u = wuy---uy then |u| = k. If, for
some x € U,,, we have x = uv, we say u is a ancestor of x. We introduce a notation to refer
to ancestors: given ¢ < |u|, we set ), := u;---ug. It will be helpful to equip U, with the
lexicographic total order <;: given elements u, v we say u <, v if either u is a ancestor of v,
or uy < vy where ¢ = min {i € N : u; # v;}. We say a subset T' < Uy, is a tree if, given that
u € T, we also have u|, € T, for each { < |u|. Note that any such trees can be viewed as
graphs in the natural way, connecting nodes to their children.

Now, we use the values of X to associate birth times B(u) to individuals u € Uy, In particular,
we define B : Q x Uy, — [0, o0] recursively as follows:
B(2):=0 andforuely,icN, B(ui):=B(u)+ Z X (uj).

J=1

Consequentially, a value of X (ui) = oo indicates that the individual u has stopped producing
offspring, and does not produce i children or more.

Finally, we set .7 = {x € U, : B(z) < t} and identify for each ¢ > 0, .7; as the genealogical
tree of individuals with birth time at most ¢. Again we emphasise that one may think of this,
intuitively, as the set of all individuals, originating from a common ancestor, that have been
born by time t. More formally, we identify the process with (%t>0; a measurable mapping
Q x [0,00) x Uy, — [0,0]. Then, if u € 7, we set ﬁ(u) = B(u), and otherwise, set
,%/(u) = . In addition, we set W, = {(z,B(z),W,) : © € Z}, so that (W,);>¢ also
incorporates information about the random ‘weights’ of individuals in the tree .7;. We let
(F)i=0 and (#;)i>o denote the filtrations generated by (9;)90 and (W,);=o, respectively;
and by taking their completions if necessary, assume that both F; and %#; are complete. By

DOI 10.20347/WIAS.PREPRINT.3060 Berlin 2023



T. lyer, B. Lodewijks 8

abuse of notation, we use the symbol .7; to refer to § the set .7, and the graph associated
with .7, where the vertex set is .7; and edges connect elements to their children. For a given
choice of X, W, we say (7)o is the genealogical tree process associated with an (X, W)-
Crump-Mode-Jagers branching process; often, we refer to (7;);>¢ directly as an (X, W)-
Crump-Mode-Jagers branching process, viewed as a stochastic process in ¢, adapted to its
natural filtration (%;);>0."

For u € Uy, we let P;(u) denote the time, after the birth of u, required for u to produce i
offspring. That is,

7

Pi(u):i= Y X(uj) and P(u) =2, X(

Jj=1 Jj=1

Note that, as a result of this definition, for any u, v € U, with u = uy - - - up and v = vy - - - vy,
if we set uvy := u we have

Bluw 2 () (1.1)

It will also be beneficial to extend the notation P to arbitrary trees T": for T' < U, we define
Pr(u) :=inf {t > 0: B(uv) — B(u) <t forallveT}. (1.2)

Thus, with the above notation P;(u) = Pp;(u). We also set Pr := Pr(@), P; = Pi(@), and
P = P(2).

We generally assume a dependence between the values (P;(u))ieno(o0} and W,. However, for
brevity of notation, we often do not explicitly indicate this dependence. We use the notation
P; and P to denote generic copies of random variables distributed like P;(u), and P(u)
respectively.

For each u € Uy, it will be helpful to a have a map £™ : Q x [0,00] — N indicating the
number of children u has produced, more precisely, we define £ “)( ) such that

g0y = | Zimi Lpwsey i 1= Blu) + 5,5 € [0, 0]
0 otherwise.

With regards to the process (.7} );>0, we define the stopping times (7 )ken, such that
=inf{t > 0:|Z| = k},

where we adopt the convention that the infimum of the empty set is 0. One readily verifies
that (|.7])i=0 is right-continuous, and thus |.7;,| > k. For each k € N we define the tree
Tk as the tree consisting of the first £ individuals in .7, ordered by birth time, breaking ties
lexicographically. We call 7, := lim;,_,, 7 the explosion time of the process. We also define
the tree 7o, := | J,—, Tx. Note that it may be the case that |7,,| < o0; in this case 7., =
and

Too = {r €Uy : B(x) < 0},

INote that distinct functions (X, W), (X’,W’) may lead to the same tree, if, for example X (ui) =
X'(ui) = oo, but X (u(i + 1)) # X'(u(i + 1)), but this is only a formal technicality, which we can overcome
by viewing (X, W) as an appropriate equivalence class of functions.

DOI 10.20347/WIAS.PREPRINT.3060 Berlin 2023



The structure of genealogical trees associated with explosive branching processes 9

and the set on the right-hand side is finite. If |7,| < o0, we say extinction occurs, other-
wise survival occurs. For a non-negative real-valued random variable X and A > 0 we let
M (Z),Lx(Z) denote the associated moment generating function and Laplace transform,

respectively, i.e.
My(Z):=E[e*] and Ly\(Z):=E[e].

Moreover, if the random variable Z has, additionally, some dependence on a random variable
W e S, we write

MA(Z:W) = E[|W ] and £0(Z:W) = E [ W],
In addition, for real valued random variables Z; and Z,, we say Z; <g %>, if, for each a € R
P(Zy>a) <P(Zy>a).
Finally, for 7 > 0 we use Exp (r) to denote the exponential distribution with parameter r.

Remark 1.1. With the more commonly used notation for CMJ branching processes, one
assigns a point process (denoted £(")) to each u € U, and refers to the points U%u) < aé“), e
associated with this point process (in the notation used here B(ul), B(u2),...). We do not use
this framework here, because, this requires one to be able to write the measure 5(“) = Z;’il 00y
which requires one to impose o-finiteness assumptions on the point process (see, for example,
[48, Corollary 6.5]). This o-finiteness is implied by the classical Malthusian condition, but, in
this general setting, we believe it is easier to have a framework where one can directly refer to

the points B(ul), B(u2),. ..

2 Statements of main results

In this paper, we are interested in properties of the infinite tree 7, in particular the question of
whether or not this tree contains an infinite path or a node of infinite degree. This section deals
with results in their most general form: Section 2.1 states some global assumptions imposed
throughout the paper, Section 2.2 deals with criteria for a node of infinite degree (or star),
Section 2.3 deals with criteria for an infinite path, and structural properties of the tree 7,
when there is a star, and Section 2.4 deals with uniqueness properties, providing criteria for a
the appearance of a unique star or unique infinite path (but not both) to appear almost surely.
In Theorem 2.15 we also show that in the regime where there is, almost surely, exactly one of
a unique star or infinite path, either may appear with positive probability. Finally, we provide
an overview of the proof techniques used, and the relation to existing literature in Section 2.5.

2.1 Global assumptions

In general in this paper, we assume that the values of (X (uj));en depend on W,. We also
assume that the sequences of random variables

((X(uj))jen, Wy,) are i.i.d. for different u € Uy; (2.1)

although we expect that some of our techniques may carry over to a more general setting.
For a given w € S, we let (X, (uj));jen denote a sequence (X (uj)),en, conditionally on the
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weight W, = w. Another common assumption we use throughout is the following: for any
given w € S and any u € Uy, the sequence of random variables

(Xw(ui))ien is mutually independent. (2.2)

The existence of an explosive (X, W)-CMJ process satisfying (2.1) is a straightforward applica-
tion of (for example) the Kolmogorov extension theorem (indeed, this is the classical definition
of a CMJ process).

We also generally assume that the event {|75,| = o0} has positive probability, and
P (7 < 0| |To| = 0) = 1. (2.3)

That is, the process is almost surely explosive, when conditioned on survival. In general, we say
an event A occurs almost surely on survival if P (A} 72| = o) = 1. In all statements in this
paper referring to an “explosive (X, W)-CMJ process”, we assume it satisfies (2.1) and (2.3).

In this paper, we also rely on the following well-known fact in graph theory.

Lemma 2.1 (K&nig's Lemma). Any infinite tree contains a node of infinite degree or an
infinite path.

2.2 Sufficient criteria for a star

In this subsection, we provide sufficient criteria for the infinite tree 7, to contain an infinite
star. Our main assumptions are as follows.

Assumption 2.2. We have the following conditions.

1 There exist non-negative real-valued random variables (Y},)nen, With finite mean such
that, for any w € S,

Z X, (1) <5 Yy (2.4)

2 If we let p, :=E[Y,], then we also have, for some ¢ € (0, ),

limsup M1 (Y;,) < 0. (2.5)

n—0o0
Moreover, we assume that (i, )nen, iS non-increasing in n, with lim, ., 1, = 0.

3 For each n € N and any given w € S, the random variables (X, (i));cy are mutually
independent.

4 For each n e N,

Z X(i) >0 almost surely, (2.6)
i=n-+1
and additionally, we have
E[£(0)] = E [sup{k : X(k) =0}] < 1. (2.7)

DOI 10.20347/WIAS.PREPRINT.3060 Berlin 2023



The structure of genealogical trees associated with explosive branching processes 11

5 With ¢ as appearing in Equation (2.5),

> E [cwfm(@); W)] <. (2.8)

0
=1
Remark 2.3. Note that under Condition 1 of Assumption 2.2, we have P (|7 = ) = 1. <

Remark 2.4. In Assumption 2.2 we can consider Conditions 1 and 3 as a uniform explosivity
condition: it implies that, for any v € U,, and any € > 0,

limIP’< i Xi(u) =€

L—o0 .
j=L+1

Xi(u),... ,XL(u)> =0,

with the convergence uniform in X (u),..., X (u); a fact that is crucial for Lemma 4.6, and
hence the proof of Theorem 2.5, to hold. Condition 4 is there as a technical assumption, used,
for example, in Proposition 4.4 and Lemma 4.5. It ensures that 7, < 7, for each k € N. Indeed,
if, for example, E [£(0)] > 1, the tree consisting of all the individuals born instantaneously at
time 0 is the genealogical tree of a supercritical Bienaymé-Galton-Watson branching process.
Hence, with positive probability this tree is infinitely large, and thus there may be no node of
infinite degree in this infinite tree. Condition 2 is used to prove the Chernoff type concentration
bound in Lemma 4.1 which, when combined with the summability condition in Condition 5,
leads to the proof of the crucial Proposition 4.3. <

The conditions of Assumption 2.2 allow us to formulate the following theorem.

Theorem 2.5 (Infinite star). Under Assumption 2.2, almost surely the infinite tree T, contains
a node of infinite degree (i.e. an infinite star).

The proof of Theorem 2.5 appears in Section 4.1.

2.3 Sufficient criteria for an infinite path and structural results in the
star regime

In this subsection, we provide sufficient criteria for 7, to contain an infinite path and whether
or not 7 contains infinitely many copies of a fixed tree 7. We first state the following
assumption.

Assumption 2.6. There exists a collection of numbers {v € [0,0) : w e S,n € N}, such
that for any w € S,

P (P <v?) = o, (2.9)
i=1
and

lim inf P ( > Xu(j) = u;ﬂ) > 0. (2.10)

1—00 |
Jj=i+1
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Remark 2.7. Assumption 2.6 intuitively states that, conditionally on the weight w of the root
&, infinitely many children 7 of @ produce an infinite offspring within time /°. On the other
hand, the root takes at least v/* amount of time after the birth of its ith child to produce
an infinite offspring, with a probability that is bounded from below, uniformly in 7. Hence,
infinitely many children ¢ explode before their parent &. <

We can then formulate the following theorem.

Theorem 2.8 (Infinite path). Under Assumption 2.6, the tree T, contains an infinite path
almost surely on survival.

The proof of Theorem 2.8 appears in Section 4.2.

Similar criteria to those related to the criteria for an infinite path allow us to also determine
results related to the structure of T, in the sense that, when we know that 7, contains an
infinite star, certain sub-structures appear infinitely often; others only finitely often. We define
To(l u) :={veTp:v=uw, wely} as the sub-tree in T, rooted at u. For a fixed tree T’
containing @ and u € Uy, we define uT := {uv : v € T'}. We say such a tree T' is a sub-tree
rooted at u € 7o, if, uT < T (| u). Recalling Equation (1.2) we then have the following set
of assumptions.

Assumption 2.9. Let (.7;);>¢ be an explosive (X, W)-CMJ process. For a given finite tree
T < Uy containing & we have the following conditions.

1 There exists a collection of numbers {v € [0,0) : w € S,n € Ny}, such that for any
we S,

0

DP(Pr<vf) =, (2.11)
i=1
and

i—00

0
lim inf P ( > Xu(j) = y;r”> > 0. (2.12)

2 For any w € S and with (X,(i),i € N) ~ (X,(i),i € N), independent of the process

(f%)tZOr |
P (PT < )?w(j)> < . (2.13)

j=i+1
We can then formulate the following theorem.

Theorem 2.10 (Sub-tree count). Let (:7;)i=0 be an explosive (X, W)-CMJ process. Then,
for any finite tree T' C U, containing & :

1 If Condition 1 of Assumption 2.9 is satisfied, almost surely, if u € T, has infinite degree,
T appears infinitely often as a sub-tree rooted at a child of u.

2 If Condition 2 of Assumption 2.9 is satisfied, almost surely, if u € T, has infinite degree,
T appears only finitely often as a sub-tree of a child of u. In particular, if Assumption 2.2
is satisfied, almost surely, the tree T appears only finitely often as a sub-tree of T.

The proof of Theorem 2.10 appears in Section 4.2.
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2.4 Uniqueness conditions related to the existence of a star or an
infinite path

In many cases, we expect T, to contain exactly one node of infinite degree or exactly one
infinite path and also, often expect co-existence of an infinite path and node of infinite degree
to be impossible. This leads us to the following assumption.

Assumption 2.11. We have the following conditions.

1 Condition 4 of Assumption 2.2 is satisfied.
2 The distribution of P(&) contains no atom on [0, ).

3 For some ¢ > 0 and for each i € N, the distribution of 3(7) contains no atom on [0, ¢).

We then have the following result.

Theorem 2.12 (Unique infinite star or path). Let (7)o be an explosive (X, W)-CMJ
process. Then:

1 If Conditions 1 and 2 of Assumption 2.11 are satisfied, T, contains at most 1 node of
infinite degree, almost surely.

2 If Conditions 1 and 3 of Assumption 2.11 are satisfied, T, contains at most 1 infinite
path, almost surely.

3 If all the conditions of Assumption 2.11 are satisfied, almost surely, on survival, T,
contains exactly one of the following: a node of infinite degree, an infinite path.

The proof of Theorem 2.12 appears in Section 4.3.

Remark 2.13. Though assumed to hold throughout, Theorem 2.12 can be proved without
assuming (2.2). <

Remark 2.14. A case when the tree 7, has more than one infinite path with positive proba-
bility is when time 0 explosion can occur, i.e. when E [£(0)] > 1, so that 7, = 0 with positive
probability, and 7, is the genealogical tree of a supercritical Bienaymé-Galton-Watson branch-
ing process. This case is ruled out by Item 2 of Assumption 2.11, which, in particular, implies
that £(0) = 0 almost surely. <

Given Item 3 of Theorem 2.12, one might expect the event that 7, contains a node of infinite
degree to occur with probability 0 or 1: for example, perhaps one might expect this to event
to ‘look like" a tail event, measurable with respect to the tail sigma algebra of an appropriate
filtration. The following theorem shows that this is not actually the case in full generality.

Theorem 2.15. There exists an explosive (X, W)-CM.J process satisfying the conditions of
Assumption 2.11 such that

P (75 contains a node of infinite degree ) € (0, 1). (2.14)
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Note that, applying Item 3 of Theorem 2.12, Equation (2.14) also implies that for such an
explosive (X, W)-CMJ process,

IP (75 contains an infinite path) € (0, 1).

We note that, unlike the other theorems stated in this section, the proof of Theorem 2.15
appears in Section 5, in particular in Section 5.3.

2.5 Proof techniques and relation to existing literature

As mentioned in the introduction, Theorem 2.5 was proved in the case that the (X (i),i € N)
are independent, with X (i) ~ Exp (:?),p > 1 in [58]. The technique used in that paper was
to show that the number of nodes u € Uy, that are k-fertile in the tree 7o, (that is, contain a
sub-tree of size at least k + 1), is almost surely finite for all £ > 1/(p — 1) [58, Lemma 5.1],
and then deduce an infinite path cannot exist, almost surely. Applying Lemma 2.1 then yields
the desired conclusion. An immediate generalisation of these techniques to the more general
setting considered here does not allow one to to prove Theorem 2.5. Indeed, as we will see in
Theorem 3.21, Theorem 2.5 applies to cases where the number of k-fertile nodes is almost
surely infinite for any k € N. Instead, we use a different approach to prove Theorem 2.5. By
a first moment method and appropriate concentration bounds (Lemma 4.1), we show that
the expected number of nodes a € Uy, with a high enough initial index a;, that explodes
before all of its ancestors (that is, produces infinitely many offspring before any of its direct
ancestors does), is finite (see Proposition 4.3). Combining this with a coupling argument in
Proposition 4.4 (a significant generalisation of [58, Lemma 5.3]), we show that the expected
number of nodes that explodes before all of their ancestors is finite. Finally, the uniform
explosivity assumption (see Remark 2.4) allows one to deduce that the explosion time of the
process T is the infimum of the explosion times B(u) + P(u) of individuals u € Uy,. Using
the aforementioned first moment arguments, we can show that this infimum coincides with an
infimum over a finite set. Hence, at 7., there exists at least one node of infinite degree.

The proofs of Theorems 2.8 and 2.10 use a different approach: by Borel-Cantelli arguments,
we can show that before the explosion time associated with an individual, either infinitely
many children explode themselves (leading to an infinite path, cf. Theorem 2.8), or otherwise
certain finite sub-trees appear infinitely often when there is a star (cf. Theorem 2.10). The
uniqueness conditions appearing in Theorem 2.12 are reminiscent of similar uniqueness condi-
tions appearing, for example, previously in [58] (using the fact that the associated distribution
of P(2) is smooth). However, this requires novelty when proving the existence of a unique
infinite path in the level of generality we consider (see Lemma 4.8).

3 Examples of applications and an open problem

In this section, we provide applications of our main results, Theorem 2.5, Theorem 2.8, and
Theorem 2.12 in the case that the inter-birth times (X, (7));n are exponentially distributed.
If X, (7) has an exponential distribution with parameter f(i,w), say, the memory-less property
and the property of minima of exponential distributions show that 75, may be interpreted
as the limiting infinite tree in a model of (W, f)-recursive trees with fitness. In this model,
evolving in discrete time, nodes arrive one at a time, are assigned i.i.d. weights, and connect to
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an existing node sampled with probability proportional to its ‘fitness function’. In this model,
we are not only able to provide phase transitions related to the emergence of an infinite path,
but also apply Theorem 2.10 to provide criteria for the emergence of a particular sub-tree
infinitely often. This is the content of Section 3.1.

In Section 3.2 we consider more concrete cases, when the weights W are real-valued, closely
connected to super-linear preferential attachment models. In Section 3.2.1 we provide some
background for the analysis of such models, in the context of existing literature. Then, Theo-
rem 3.16 in Section 3.2 provides a classification of the phases where one sees a unique node of
infinite degree or a unique infinite path, proving phase transitions for three different examples.
These results apply not only to the case that the values (X, (7));en have exponential distri-
butions, but other distribution types (see Remarks 3.6 and 3.17); which may be of interest
in applications. In Theorem 3.21 we are able to characterise the sub-trees of children of the
star that can emerge in this model. We discuss implications of these results in the particular
‘super-linear degree’ example in Section 3.2.4, which, in particular, allows us to produce phase
diagrams in Figures 1 and 2.

Finally, we discuss the proof techniques involved in Section 3.3 and state an open problem in
Section 3.4.

3.1 The structure of explosive recursive trees with fitness

Suppose the values of (X,(i),i € N) are exponentially distributed and independent. The
properties related to the exponential distribution yield that the sequence of trees (7;)en as-
sociated with an explosive (X, W)-CMJ branching process are identical in law to a sequence
of recursive trees with fitness which we define below. First, we define the fitness function
f:Ng xS — [0,00) to be a measurable function such that f(i,w) is the rate of the expo-
nential random variable X, (7 + 1).

In this section, we generally consider trees as being rooted with edges directed away from
the root, and hence the number of ‘children’ of a node corresponds to its out-degree. More
precisely, given a vertex labelled v in a directed tree T we let deg™ (v, T') denote its out-degree
in T'. We now define the recursive tree with fitness model.

Definition 3.1 (Recursive tree with fitness). Suppose that (W, );cn are i.i.d. copies of a random
variable 1 that takes values in S, and let f : Ny x S — [0,0) denote a fitness function.
A (W, f)-recursive tree with fitness is the sequence of random trees (7;);n such that: 7
consists of a single node 0 with weight W, and for n > 1, 7, is updated recursively from 7,
as follows:

1 Sample a vertex j € T,,_; with probability proportional to its fitness, i.e., with probability

f(deg* (7. Tos). W)
S0 f(deg™ (4, Taa), W)

2 Connect j with an edge directed outwards to a new vertex n with weight W,,.

Remark 3.2. Due to the equivalence in law with trees associated with an (X, W)-CMJ
branching process, by abuse of notation we refer to a sequence of recursive tree with fitness
by (7:)ien, despite the fact that the vertex set of these trees is Ny rather than U,. <
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Remark 3.3. The correspondence between recursive trees with fitness and the trees (7;)ien
associated with an (X, W)-CMJ process, when X, (i) ~ Exp (f(i + 1,w)) holds for all i €
N,w € S, is a consequence of the memory-less property and the fact that the minimum of
exponential random variable is also exponentially distributed, with a rate given by the sum of
the rates of the corresponding variables; see for example [34, Section 2.1]. The use of such
continuous-time embeddings to analyse combinatorial processes was pioneered by Arthreya and
Karlin [4]. This correspondence allows us to translate our main results to the infinite recursive
tree, which we also denote by 7. <

3.1.1 The star/path transition in explosive recursive trees with fitness

Our first result pertains to the existence of a node of infinite degree or an infinite path in
recursive trees with fitness. To this end, we make the following assumption:

- 1
Jw*eS:YweS,jeN: f(j,w) = f(j,w*") and — < 0. w*
j [, w) = f(j,w*) ]Zf(j’w*) (w*)

That is, there exists a minimiser w* € S that, uniformly in j € N, minimises f(7,-), and the
reciprocals of f(j,w*) are summable. Moreover, we define

(3.1)

n

0
1 .
= . , we S,neN, andset u, = pu
2 7o)

Note that p¥ < u, < o for all we S by (w*).

Theorem 3.4 (Star/path in explosive recursive trees). Let (7;)en be a (W, f)-recursive tree
with fitness and assume f satisfies (w*). Then,

1 If, for some ¢ < 1, we have

& v, W
Z_: [H VI(/) +)CM ] < 0, (3.2)

the tree T, contains a unique node of infinite degree, and no infinite path.

2 If either for some ¢ > 1 and all w e S , we have

= (1, W)
Z [Hf (1, W) + ()~ 1logn] = (3:3)

or, as a weaker condition, Equation (2.9) is satisfied with v} := du? for d < 1, the tree
T contains a unique infinite path, and no node of infinite degree.

The proof of Theorem 3.4 appears in Section 5, in particular Section 5.2.1.

Remark 3.5. It turns out that Equation (3.3) is a sufficient condition for Equation (2.9) to
be satisfied with v¥ := du;’ for d < 1. However, we include it as a general comparison to
Equation (3.2). <
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Remark 3.6. Analogues of Theorem 3.4 extend to more general distributions of X, (i),
other than exponential distributions. In particular, we can apply the same techniques used
to prove Item 2 of Theorem 3.4 whenever (X, (i), € N) are independent and Var (X, (7)) <
KE[X,(i)]* for some K > 0, possibly depending on w. In this case the expected value
in (3.3) is replaced by the Laplace transform E [Le(,u)-110gn(P(2); W)]. See the proof in
Section 5.2.1 for more details. <

3.1.2 Sub-trees in explosive recursive trees with fitness when there is a star

In Section 2.3, we described a tree T as a finite subset of the Ulam-Harris tree containing the
root, with a natural directed edge structure induced by parents being connected to children.
We apply the same notion here, upon identifying labels of elements of 7, with the Ulam-
Harris labelling. For a tree T' < U,, and u € T, (when we label the elements of T, with the
Ulam-Harris labelling), we say that 7" appears as a sub-tree, rooted at u, in 7o, if uT < 7.
Because the presence of ‘earlier siblings’ in a copy of a tree T" can influence the probability of
a tree emerging 2 it is convenient to also assume that 7T is sibling closed, where we define as
follows. If w =y - uy, € T then u = uy - - Uy € T for each £ € [uy,].

The occurrence of a sibling-closed tree T" in 7, may also depend on the order in which
the vertices in T' appear, which can vary in such a way that they preserve the lexicographic
ordering. An ordering of a tree T with |T'| = k + 1 vertices, for some k € N, is a permutation
O:T — {0,1,...,k}, such that O(u) < O(v) if and only if u <z v. Given an ordering
O, we generally refer to the vertices of a tree T with k& + 1 vertices as {vy, ..., v}, where
v; := O71(i) for each i. Given a sibling-closed tree T, we let O(T) denote the set of all
orderings of T". For a given ordering O and j < k, we let O, denote the (also sibling-closed)
tree on the vertex set {vy, ..., v;}; note that this is well defined because O preserves the order
<. Also note that each O|j inherits the natural directed edge structure from 7'. For a given
vertex v;, with i < 7, deg™ (v, O),) denotes its out-degree in O,

We then have the following theorem.
Theorem 3.7 (Sub-tree counts). Fix k € N, and let (7;)ien be a (W, f)-recursive tree with
fitness such that f satisfies (w*) and so that T, contains a unique star. Moreover, assume

that for each w € S we have u® > ci(w)u,, where 0 < c;(w) < 1. Let T be a sibling-closed
tree, with |T'| = k + 1. The tree Ty, contains T' as a sub-tree infinitely often if and only if

deg™ (v;,T)—
=0 ’ f(ga WU‘j) .
Z Z H 1o f(deg™ (v;,0p,), Wy,) =

n=10eO(T i 1deg+(vi70|j)<deg+(vi,T) + Uy

Corollary 3.8. Fix k € N and assume that, for each i € [k] we have E [ f(i, W)¥] < o0. Let
T be a sibling-closed tree with k + 1 vertices. Then, under the assumptions of Theorem 3.7
the tree T, contains T as a sub-tree infinitely often if and only if >, uF = 0.

The proof of Theorem 3.7 appears in Section 5.2.2. On the other hand, the proof of Corol-
lary 3.8 appears separately, in Section 6.2.1.

2For example, if the tree T' corresponds to a path, it is intuitively less likely to have a path emerge where
every node of the path is the first child of its parent rather than a path where some nodes are born later but,
by random chance, produce children faster.
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3.2 Phase transitions in specific models of explosive recursive trees
with fitness

In this section we investigate three particular cases of the results presented in Section 3.1,
where we are able to prove phase transitions for the structure of the infinite limiting tree
To in terms of the fitness function and the vertex-weight distribution. We assume that the
vertex-weights are non-negative and real-valued, i.e. they take values in S = [0, 20). We also
assume that the fitness function f(i, W) grows faster than linear in the degree (i.e. its first
argument). These cases are thus examples of super-linear preferential attachment with fitness.

3.2.1 Connection to existing literature: super-linear preferential attachment

As alluded to in the introduction, Section 1.1, a model of recursive trees (with fitness) that
has received substantial attention the last two decades are preferential attachment models.
Such models are thought to serve as a good explanation of the formation real-world networks
due the preferential attachment paradigm, which suggests that networks are constructed by
adding vertices and edges successively, in such a way that new vertices prefer to be connected
to existing vertices with large degree. In particular, many of such models intrinsically give
rise to properties also found in many real-world networks (i.e. the scale-free property and
(ultra)small-world property), rather than such properties being imposed on the model. We
refer to [29] and the references therein for an extensive overview of the literature on such
models and their applications.

Super-linear preferential attachment is a particular type of preferential attachment where new
vertices connect to existing vertices with out-degree 7 with a probability proportional to f(7),
for some fitness function f : Ny — (0,00) such that >, f(i)™' < o0. Most often, as in
e.g. [16, 58, 64], the case f(i) = (i + 1)P for some p > 1 is studied, though there are also
choices for f that satisfy the summability condition such that f(i)i™” — 0 as i — < for
any p > 1. We coin these functions barely super-linear. Though Pdlya urn models with barely
super-linear fitness functions have been studied previously [27], as far as the authors are aware

this is the first case such fitness functions are treated for preferential attachment models.

Super-linear preferential attachment models are suggested to possibly explain the formation of
real-world networks such as the Internet, where these networks are in a ‘preasymptotic regime’
(are of relatively small size) where the explosive nature of the model cannot be observed yet,
based on statistical parameter estimation, simulations, and non-rigorous analysis [46, 47, 60].

The inclusion of vertex-weights allows for a more heterogeneous and hence more realistic
model, where different vertices may behave differently (in distribution), even when their out-
degree is the same, as also discussed in the introduction. The presence of vertex-weights often
leads to rich behaviour where phase transitions based on the vertex-weight distribution can be
observed (see the introduction for examples), which we show in this section to be case for the
examples we consider here, too.

We study a number of examples for which we can apply the results in Section 3.2. We state
the assumptions for the fitness function f and the vertex-weight distribution, after which we
present the results related to Theorems 3.4 and 3.7. We conclude the section with a discussion
of these results in Section 3.2.4, where we also provide some interesting phase diagrams in
Figures 1 and 2, and with some open problems in Section 3.4.
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3.2.2 Assumptions for the fitness function and vertex-weight distribution

When stating the particular assumptions for the fitness function f and the vertex-weight
distribution, it is helpful to use the notions of slowly-varying and regularly-varying functions,
which we recall in the following definition.

Definition 3.9. A measurable function L : [0,0) — [0, c0) is said to be slowly varying if for
any a > 0 we have
. L(ax)
lim

=1.
= L)

We say a measurable function g : [0,00) — [0,0) is regularly varying with exponent 3 € R
if g(x) = 2°L(x), where L : [0,00) — [0, o0) is slowly varying. Finally, we say that a random
variable W is regularly varying with exponent z < 0 if the tail distribution P (W > x) is a
regularly-varying function (in z) with exponent z < 0.

We then assume that the fitness function satisfies the following assumption.

Assumption 3.10 (Fitness function). The fitness function f is such that Equation (w™) is
satisfied with w* = 0. Furthermore, there exists s : Ny — (0, 0), which we call the degree
function, and continuous functions ¢ : [0,00) — (0,00) and h : [0,00) — [0,90), which we
call the weight functions, such that f satisfies

fl,w) = g(w)s(i) + h(w), i € No,w = 0.

We then distinguish the following two cases, based on the weight functions.

B Additive weights. g = 1 and h is regularly varying with exponent 1.
B Mixed weights. g and h are regularly varying with exponents 1 and v > 0, respectively.

Remark 3.11. The assumption that w* = 0 is not necessary, but used to simplify notation
and computations. The results presented here follow equivalently for w* > 0 as well. <

Remark 3.12. The function g and h are regularly varying with exponents 1 and v = 0 in the
mixed case; g = 1 and h is regularly varying with exponent 1 in the additive case. The choice
of the exponents is due to the fact that, when the vertex-weights are regularly varying with
exponent —(a—1) < 0, then g(W) and h(W) are random variables that are regularly varying
with exponents — (v — 1) and —(a — 1)/, respectively (see Lemma 6.6 for details). Hence,
changing the exponent of, for example, the regularly-varying function g to ¢ # 1 in the mixed
case, is equivalent to changing the exponent of the regularly-varying random variable W from
—(a—1) to —(a—1)/¢ and changing the exponent of the regularly-varying function i from ~
to v/C. As such, we take ( = 1 without loss of generality. The function h is regularly varying
with exponent 1 in the additive case without loss of generality for the same reason. <

Depending on the precise form of the degree function, the model behaviour markedly differs.
We assume the degree function s satisfies the following assumption.

Assumption 3.13 (Degree function). The degree function s : Ny — (0, 0) satisfies one of
the following cases.
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B Super-linear preferential attachment. s is regularly varying with exponent p > 1.

B Barely super-linear preferential attachment. s is regularly varying with exponent 1,
such that >..7  s(i) ™! < o0,

As a particular example of the barely super-linear case, we consider

B Barely super-linear log-stretched preferential attachment. For some § € (0, 1),
s(i) = (i + 1) exp((log(i + 1))?), i € No. (3.5)
Remark 3.14. We note that these choices for the fitness function f are not exhaustive, but
do cover a wide range of examples. In particular, the weight types considered, i.e. additive
or mixed weights, are common in the literature of linear preferential attachment with fitness
(see e.g. [21, 26, 53, 19, 34, 22]). When the vertex-weights are constant almost surely, the
additive and mixed cases all fall into the same classes of super-linear preferential attachment.

The barely super-linear class has not been studied previously, as far as the authors are aware.
<

Finally, we require several assumptions on the distribution of the vertex-weights. For different
choices of the fitness function f, different assumptions are required, which are summarised in
the following overview.

Assumption 3.15 (Vertex-weight distribution). The vertex-weights (W;);en are i.i.d. and their
tail distribution satisfies one (or more) of the following conditions.

B Power law. Let a > 1. We have the following two conditions.
1 There exist T > 0 and a slowly-varying function ¢ : [0, 0) — [0, c0) such that

P(W =) < f(z)z” @, x =T. (3.6)
2 There exist > 0 and a slowly-varying function £ : [0,00) — [0, 0) such that
P(W =) = (z)z @Y, r = (3.7)
B Log-stretched exponential. Let v > 1. We have the following two conditions.

1 There exist ¢, > 0 such that

P (W > z) < e clos®)”, r>T. (3.8)

2 There exist ¢, x > 0 such that

P(W > z) = e <losa)” T =z (3.9)
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3.2.3 Phase transitions for super-linear preferential attachment models with fitness

Based on these assumptions for the fitness function, degree function, and vertex-weight dis-
tribution, we can formulate the following theorem that treats the appearance of a unique
infinite-degree vertex or a unique infinite path in 7.

Theorem 3.16. Let (7;)icn be a (W, f)-recursive tree with fitness, where the fitness function
f and degree function s satisfy one of the cases in Assumptions 3.10 and 3.13, respectively,
and the vertex-weight distribution satisfies one of the cases in Assumption 3.15. The tree
Ty either contains a unique vertex with infinite degree and no infinite path almost surely,
or contains a unique infinite path and no vertex with infinite degree almost surely, when the
following conditions are met, based on the fitness function, degree function, and vertex-weight
assumptions:

Fitness Degree Star Path

Mixed Super-linear | (3.6) & (p—1)(a—1) > (v — 7771) v BN & (p—1)(a-1) < (y— Vle) v
Additive | Super-linear | (3.6) & p(a—1)>1 3.7) & pla—1)<1

Mixed | Log-stretched | (3.8) & v > 1 (39) & pBr<1

Table 1: The first column represents the form of the fitness function, as in Assumption 3.10;
the second represents the form of the degree function, as in Assumption 3.13. The third and
fourth column, respectively, list the required assumptions on the vertex-weight distribution, as in
Assumption 3.15, together with the choices of the parameters that lead to either a unique node
of infinite degree or a unique infinite path.

The proof of Theorem 3.16 appears in Section 6.1.

Remark 3.17. Though Theorem 3.16 is presented for exponentially distributed inter-birth
times, we expect the same results to hold for a large family of distributions, such that X, (uj)
has mean 1/f(j — 1,w) for each u € Uy, j € N, and w € [0, 00). In particular, we discuss the
extension of Theorem 3.16 to the following examples Appendix B:

1 Gamma distribution: For each v € Uy,j € N, and w € [0,0), the inter-birth time
Xw(uj) follows a Gamma(k, kf(j — 1,w)) distribution, for some k > 0.

2 Beta distribution: For each u € U,,j € N, and w € [0,90), the inter-birth time
Xy (uj) equals o%ﬁf(j_ll w)B(uj), where (B(u]))ueus,,,jen is a sequence of i.i.d. copies

of a Beta(a, ) random variable, for some ae > 1 and 3 < (0, 1].

3 Rayleigh distribution: For each u € Uy, j € N, and w € [0, 0), the inter-birth time
Xy (uj) follows a Rayleigh(1/2/7/f(j — 1,w)) distribution. <

Remark 3.18. In Section A we discuss three more examples of barely super-linear preferential
attachment with fitness: the log-stretched case with additive fitness, as well as a poly-log case
with either additive or mixed fitness. Again, the extension of the results to the other inter-birth
time distributions as in Remark 3.17 apply here, too.

We do not include these results here, as we cannot prove a complete phase diagram, i.e. for
certain parameter choices we cannot prove the appearance of a unique infinite-degree vertex
nor a unique infinite path. <

Remark 3.19. When the vertex-weights are almost surely bounded (or, in particular, a de-
terministic constant), it follows from the above theorem that in all cases, a unique vertex
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with infinite degree emerges in 7T, almost surely. Indeed, in such a case the vertex-weight
distribution would satisfy, the upper bounds in (3.6) or (3.8) for any @ > 1,v > 1. As such,
we can take o« — 00, v — o0 to conclude the claim. In the case s(i) = (i + 1)? with p > 1,
this recovers the results of Oliveira and Spencer [58, Theorem 1.1]. <

Remark 3.20. It is interesting to note that, though two different techniques with distinct
assumptions are used to prove Theorems 2.5 and 2.8 (for the existence of an infinite star or
path in 75), the application of these two general results in Theorem 3.16 allows us to obtain
a complete phase diagram for the three examples discussed here. <

When the infinite tree 7, contains a unique vertex with infinite degree almost surely, we
can also quantify Theorem 3.21, in the sense that, depending on assumptions on the fitness
function f and vertex-weight distribution, we can determine almost surely whether or not 7,
contains an infinite number of copies of which kinds of sub-trees. We remark that we can do
this in a relatively general manner, subject to the assumption that 7, contains a unique vertex
with infinite degree. That is, for any degree function s that satisfies the (barely) super-linear
cases in Assumption 3.13 the results below apply.

To this end, we define for a finite tree T" and constant z > 0,
Gl = G1<T7 Z) = Z dngr <U7T>1deg+(v,T)>z7 G2 = GQ(TJ Z) = Z 1deg+(v,T)>z'

veT vel
(3.10)
We can then have the following result.

Theorem 3.21. Let (7;)ien be a (W, f)-recursive tree with fitness, where we assume that
f satisfies Assumption 3.10, that the degree function s satisfies Assumption 3.13, and that
the vertex-weight distribution satisfies (3.6) and (3.7) for some slowly-varying functions (, ¢,
respectively, and some o« > 1. Furthermore, we assume that T, contains a unique vertex with
infinite degree, almost surely. Fix k € N and let T' be a sibling-closed tree of size k + 1. Then,
we have the following.

B Super-linear case: We take v = 1 for additive weights, v = 0 for mixed weights, and
set z = (o« —1)/(y v 1). The tree T almost surely appears infinitely often as a sub-tree

of Ty, when .
1 . 3.11
P T Gh(T, 2) = 2Ga(T, 2)) (311)
The tree T almost surely appears finitely often as a sub-tree of T, when
1
p>1+ (3.12)

k= (Gi(T, 2) = 2G,(T, 2))

B Barely super-linear case: The tree T appears as a sub-tree of T, infinitely often,
almost surely.

The proof of Theorem 3.21 appears in Section 6.2, in particular, Section 6.2.2.

Remark 3.22. In fact, we have a strengthening of Theorem 3.21 which applies to any (W, f)-
recursive tree with fitness (in particular without the assumption that W is real-valued), as long
as, for any j € Ny, f(j, W) satisfies (3.6) and (3.7) for some slowly-varying functions ¢, ¢

VERSE
respectively, and an exponent z > 0, and for each k& € N there exists iy € {0, ..., k} such
that inf,<x f(i,w) = f(ix,w) for all w € S. See Proposition 6.5 for more details. <

DOI 10.20347/WIAS.PREPRINT.3060 Berlin 2023



The structure of genealogical trees associated with explosive branching processes 23

Remark 3.23. When the vertex-weight distribution satisfies E [W*] < oo for all a > 0,
it directly follows from the assumptions on the fitness function f in Assumption 3.10 and

Corollary 3.8 that the results in Theorem 3.21 extend to this case, where we set G1(T, z) =
GQ(T7 Z) = 0.

Furthermore, we stress that for all barely super-linear cases and for certain super-linear cases
(see the upcoming discussion), sub-trees 1" of arbitrary size appear infinitely often as a sub-tree
of T4, almost surely. This is markedly different when compared to the super-linear preferential
attachment model f(i,w) = (i + 1)? (p > 1) studied by Oliveira and Spencer in [58], where
only sub-trees T' with size at most [(p — 1)7!] can appear infinitely often almost surely. <

3.2.4 Discussion related to Theorem 3.21: the super-linear case

Let us provide some intuition for Theorem 3.21 by discussing two particular examples.

Super-linear degree, mixed weights. We let f(i,w) = (w + 1)(z + 1)? for some p > 1. That
is, we consider the mixed weights case for the fitness function f, with g(z) := 2+ 1,h =0,
and v = 0, as in Assumption 3.10, and the super-linear case for the degree function s, i.e.
s(i) := (i + 1)?, p > 1, as in Assumption 3.13. We require that 7, contains a unique vertex
with infinite degree almost surely, so that, by Theorem 3.16, we assume that the vertex-weight
distribution satisfies (3.6) and that (p — 1)(aw — 1) > 1. Then, additionally assume that the
vertex-weight distribution satisfies (3.7) with the same o > 1 but potentially with a different
slowly-varying function. Now, Theorem 3.21 states that a tree T of size k+ 1, for some k£ € N,
appears infinitely often as a sub-tree of 7., almost surely when

1
k—(Gi(T,a—1) — (a — 1)Go(T, e — 1))

p<l1l+

First, noting that the sum of all degrees equals |T'| — 1 = k, we observe that
Gi(T,a—1)— (a—1)Gy(T,a — 1) € [0, k), (3.13)

for any choice of T and «, so that the upper bound yields a restriction on p. We omit the
arguments of G; and (G5 from here on out for ease of writing. Combining our two assumptions
we then require that

1 1
— <p-1
a1 P TG —(a— DGy

and we can only find p > 1 that satisfy both inequality when
k— (G1 — (Oé — 1)G2) <a-—1. (314)

Now, if & < a — 1, there is no vertex in T" with an out-degree larger than a — 1, so that
G1 = G2 = 0 and the inequality is satisfied. For k£ > o — 1 we distinguish two cases. (i) There
is no vertex in T" with a degree larger than o — 1. It again follows that G; = G5 = 0, so that
the inequality in (3.14) is not satisfied; (ii) There exists at least one vertex with degree larger
than a—1. Then, k—G; > 0 since k equals the sum of all degrees, whilst («—1)(1—G3) <0
(since G = 1), so that (3.14) is not satisfied.

We thus conclude that, when (p—1)(a—1) > 1, only trees T" with size k+ 1, where k < a—1,
appear infinitely often. In particular, we do not require any assumptions on the structure of
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such trees T'; only their size is relevant. The reversed inequality in Theorem 3.21 can be anal-
ysed in a similar manner to derive the phase diagram in Figure 1.

Super-linear degree, additive weights. We let f(i,w) = (i + 1)? + w for some p > 1. That
is, we consider the additive weight case for the fitness function f, with h(z) = x, as in
Assumption 3.10, and the super-linear case for the degree function s, i.e. s(i) = (i+1)?,p > 1,
as in Assumption 3.13. We make the same assumptions as in the first example, except that
we now require p(a— 1) > 1. First, when p is so large that (p — 1)(aw— 1) > 1, we can derive
the same conclusions as in the first example. When p is such that

1 1
1 1+ — 1
04—1\/ <p< +a—1’ (3.15)

different behaviour can be observed. Here, as we illustrate with the following particular family
of trees, we observe the peculiar behaviour that the structure of a tree T" plays a role in terms
of whether it appears infinitely or finitely often as a sub-tree in 7.

Let T" be an m-ary tree of size k + 1 for some m, k € N such that k = ¢m for some ¢ € N,
i.e. a tree where the ¢ internal vertices (non-leaf vertices) have out-degree m (note that stars
are the particular case ¢ = 1). We observe that, by distinguishing the two cases m > o — 1
and m < a — 1 (where in the latter case G; = G2 = 0),

Gi(T,a—1)— (a—1)Go(T, o — 1) = max{k — (v — 1)¢,0}.

As a result, recalling k = ¢m, an m-ary tree T appears infinitely often as a sub-tree of 7,
almost surely, when

1
l<p<l+ .
a—1" b (min{a — 1, m}

Observe that for ¢ = 1, i.e. stars of size k + 1 = m + 1, these inequalities are satisfied by any
p that satisfies (3.15), so that a star of any size appears infinitely often as a sub-tree of 7,
almost surely, when p satisfies (3.15). For ¢ > 2, these inequalities can be satisfied only when
a<2and ¢/ <1/(2— «) or when a > 2.

Again, the reversed inequality in Theorem 3.21 can be analysed in a similar manner to derive
the phase diagram in Figure 2, where some of the phases for ternary trees (m = 3) are shown.

We thus observe that it is possible for two trees 17,75, of sizes ky + 1 < ky + 1, respectively,
to appear finitely and infinitely often as a sub-tree of 7T, almost surely. This behaviour is
completely opposite to the behaviour of the first example (or when (p — 1)(av— 1) > 1 in this
example).

As a final remark, any tree of any size appears infinitely often as a sub-tree of 7, in the barely
sub-linear case discussed in Theorem 3.21. As discussed in Section 2.5, this behaviour has not
been observed in explosive tree models studied so far.
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Phase diagram for p and a, super-linear degree, mixed weights

1.0 15 20 25 3.0 35 4.0

Figure 1: The phase diagram for the case f(i,w) = (w+1)(i+1)?. Below the curve (p—1)(a—
1) = 1 (the dark shaded region), the tree 75, contains a unique infinite path, whereas above the
curve (the light shaded region) the tree contains a unique vertex of infinite degree. Moreover, in
the light shaded region, below the kth horizontal dotted line, corresponding to 1 + 1/k, (with
k =1,2,3,4 visible here), any tree of size k + 1 appears as a sub-tree of a child of the node of
infinite degree infinitely often, whereas above the kth horizontal line, in the light shaded region,
trees of size k + 1 appear only finitely often as a sub-tree of a child of the node of infinite degree.

Phase diagram for p and a, super-linear degree, additive weights

1.0 15 20 25 3.0 35 4.0

Figure 2: The phase diagram for the case f(i,w) = (i + 1)P + w. Below the curve p(a —1) =1
(the dark shaded region), the tree T4, contains a unique infinite path, whereas above the curve
(the lighter shaded regions) the tree contains a unique vertex of infinite degree. In the area
above the line (p — 1)(aw — 1) = 1 (lightest shaded region), below the kth horizontal dotted line,
corresponding to 1 + 1/k, (with k = 1,2, 3,4 visible here), any tree of size k + 1 appears as a
sub-tree of a child of the node of infinite degree infinitely often, whereas above the kth horizontal
line, in the lightest shaded region, trees of size k + 1 appear only finitely often as a sub-tree
of a child of the node of infinite degree. In the area in between the curves p(a — 1) = 1 and
(p — 1)(aw — 1) = 1 (the semi-dark region) a star of any size appears as a sub-tree of a child
of the node of infinite degree infinitely often. Additionally, below the fth curve in this region,
corresponding to (p — 1)¢min{a — 1,3} = 1, (with ¢ = 2, 3,4 visible here) ternary trees of size
30 4+ 1 appear as a sub-tree of the node of infinite degree infinitely often, whereas above the /th
curve, such trees only appear finitely often.
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3.3 Proof techniques

The proofs of the results in Section 3 generally apply the results of Section 2. However, we are
unaware of previous proofs of Lemma 5.1, used to prove Theorem 3.4. Moreover, exploiting
the memory-less property of the exponential distribution allows the derivation of a necessary
and sufficient condition for the emergence of a structure infinitely often when 7, contains an
infinite star, as in Theorem 3.7. The proof of this theorem, we believe, is more elegant than the
approach used to prove [58, Theorem 1.2] for the particular case f(i,w) = (i+1)?,p > 1. The
assumptions made in Section 3.2 allow us to deduce a variety of phase-transitions in applied
models (cf. Theorem 3.16), which we believe extend to a fairly general family of distributions
(see Remark 3.17).

We prove the most general results, as presented in Section 3.1, in Section 5, and prove the
results for the examples presented in Section 3.2 in Section 6.

3.4 Open problem

It is unclear whether or not any explosive (X, W)-CMJ process for which the vertex-weights
are almost surely constant always yields an infinite star almost surely. In other words, when
assuming that the (X (i));ey are mutually independent and positive, we have the following
open problem.

Open problem 3.24. Consider an explosive (X, W )-CMJ process (Z;)i=o, such that the
sequence (X (1))iey are mutually independent and positive. Is it the case that almost surely
T contains a unique vertex with infinite degree?

Remark 3.25. In the case of the recursive tree with fitness, if X (i) ~ Exp (g(7)), with g
unbounded, and convex, we believe that the affirmative of Open problem 3.24 holds, by an

argument using a combination of the result of Galashin [23, Theorem 1] and Proposition 4.4.
<

Remark 3.26. Note that the counter-example in Theorem 2.15 relies on the dependence of
the (X (4))sen on the weights. Thus, if 7o, does almost surely contain a unique node of infinite
degree in Open problem 3.24, one may interpret this, informally, as saying that ‘new nodes are
unable to out-compete older nodes, without the influence of a random weight'. <

4 Proofs of main results

This section is dedicated to proving the most general results, as presented in Section 2. We
prove the existence of an infinite star (cf. Theorem 2.5) in Section 4.1, prove the existence of of
an infinite path (cf. Theorem 2.8) and the structural result of sub-trees in the star regime (cf.
Theorem 2.10) in Section 4.2, and finally prove the uniqueness properties (cf. Theorem 2.12)
in Section 4.3.

4.1 Sufficient criteria for a star

This section is dedicated to the proof of Theorem 2.5. We first have the following lemma:
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Lemma 4.1. Fix k,n € N, let (ai,...,a;) € N*. Let (Z;)ic[i) be independent random vari-
ables, and let (X ({))y=n+1 be as in (2.1), satisfying Conditions 1 and 2 of Assumption 2.2.
Then, there exists nog > 0 and C' = C(ng) > 0 such that, for all n = ny,

(ZZ i ) (ZZ ) cﬁc% (4.1)

l=n+1

where Y, is as in (2.4) and independent of the (Z;);c[x).

Proof. First note that the first inequality in (4.1) is an immediate consequence of (2.4). Then,
for any A > 0,

P <Zk: Z; < Yn) =P (exp (AYn — )\Zk: Zi> > 1) < My, (N) ﬁﬁA(Zi),

i=1 i=1
where the last inequality uses Markov's inequality and the independence of the random vari-
ables. Next, setting A := cu;' and recalling that, by (2.5), we can set

C := limsup My, (cu;,') < oo,

n—a0

we deduce the result. O

We now introduce the following terminology, used in the remainder of the section, which,
although not strictly needed, we believe makes the proofs conceptually easier to understand.
For a,b € U,, we say that

“a has at least k children before b explodes”
if B(a) + Pr(a) < B(b) + P(b). We say that
“a explodes before all of its ancestors”
if, for each ¢ < |a|, we have B(a) + P(a) < B(a),) + P(a),). Finally, for a € Uy, with |a| > 1

we say that @ = a1 - - a,, is aj-conservative if, for each j € {2,...,m}, we have a; < a;.
(Note that this implies that any a such that |a| = 1 is a;-conservative.)

Lemma 4.2. Under Assumption 2.2, there exist n < 1 and K = K (n) > 0 such that for all
a; > K(n), all integers m € N, and some constant C' > 0,

Z P (a has at least a, children before & explodes ) < Cn™ 'E [Ewgf (Pays W)] .

a:lal=m
a is ay-conservative

Proof. Suppose that a = a;---a,, € Uy,. For a to have at least a; children before the
explosion of &, in particular, each of the births corresponding to the ancestors of a need to
occur (leading to a term as in Equation (1.1) with u = @ and v = a). Thus, for a; sufficiently
large, by (1.1) and Lemma 4.1, we have

P (a has at least a; children before & explodes ) = P (B(a) + P, (a) < P(2)) (4.2)

:P< nipajH(aj)) +Pa1< )\ Z X(k>>

(41 m=l

< C||E [c%l(PWI;W)] xE [LCM;(PM;W)],

j=1
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where the last line follows from the fact that, by (2.1), for each u € Uy, the sequence (P;(u))jen
is independent and distributed like (P;(2));en. When we sum over the possible conservative
sequences a that are a;-conservative, each a; takes values between 1 and a;, for j = 2,... ,m.
Thus,

Z P (a has at least a; children before & explodes )

a:lal=m
a ai-conservative

< 55 S ellrfenm ] <B[anEam] e

az=1a3z=1 am=1 j=

_C (ZE[ (P )])m_ E [/Jw;ll(Pal;W)].

We now need only show that for a; sufficiently large,

ZE[C_lﬂ, w)| <n.

Indeed, since Y., E [Ecuzl(Pg;W)] < o by (2.8) in Assumption 2.2, there exists L =
L(n) > 0 such that, for all a; > L,

al o0

DE L, Paw)| < Z |0 (P )]<g, (4.4)

/=L /=L

where the inequality uses the fact that cu ! is non-decreasing in n. On the other hand, since
lim,, .o cpt, ! = o0, by bounded convergence (bounding the integrand by 1) we have

L-1

lim » E[L, 1+(Ps;W)]=0.

n—ao0
(=1

As a result, for some K > L sufficiently large and for all a; > K, we arrive at

L-1
n
M E [5%_1(79@; W)] <7 (4.5)
=1
Combining Equations (4.4) and (4.5) in (4.3), we conclude the proof. O

The above lemma provides an upper bound for the probability of the event that a vertex a
explodes before the root of the tree, in the case that a is ai-conservative. However, when a
does not satisfy this condition, we can view a as a concatenation of a number of conservative
sequences. That is, we write a = by - - - by, where b; = by . .. by, for each i € [¢] and for some
0 e N, (m;)icpg € N¢, and (bi,j )iefe],je[ms]» such that b; is b -conservative for each i € [¢]. By
the independence of birth processes of distinct individuals (or in fact, the independence of
disjoint sub-trees) by Equation (2.2), we are able to apply Lemma 4.2 to each conservative
sequence in the concatenation to arrive at a bound for the expected number of individuals
that explode before all its ancestors.

Proposition 4.3. Under Assumption 2.2, there exists K' > 0 sufficiently large, such that

E [|[{a € Uy : a1 > K', a explodes before all its ancestors}|] < oo.
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Proof. As explained before the proposition statement, we think of sequences a € U, as a
concatenation of conservative sequences. Let a = a; ...a,, be a sequence of length m € N,
and assume that there exist k& € [m] and indices I; < Iy < ... < I such that a; =: a;, <
ar, < ...<ay,. Thatis, the I; are the indices of the running maxima of the sequence a. For
brevity of notation, we also set [, 1 :=m + 1, and set ap = &.

To show that a explodes before all its ancestors, we think of a as a concatenation of the
conservative sequences ay, - - - ay,,,—1, With j € [k]. By the fact that, for each u € U,, the
sequence (P;(u));en is independent and distributed like (P;(2)):cn, each of these conservative
sequences can be seen as corresponding to an aj,-conservative individual rooted at az, 1,
j € [k]. We can thus apply Lemma 4.2 to all these concatenated sequences.

Since, by definition we have a;,,, > ay,, applying a similar logic to (4.2) we have the following
inclusion:

E, := {a explodes before any of its ancestors explodes}

ﬂ{al ---ay,,,—1 gives birth to at least a;, children before a; - --a7,_; explodes}

Ip11—2 0 k
= ﬂ < 2 aji1 (CL|])> + Pa‘[e (CL‘IH171) < Z X((ll ce CL[Z_li) = ﬂ Ea’g.
(=1

Jj=1I i=ar,+1

Now, note that the events (E,, ¢ € [k]) are not independent, since, for a given ¢, the term
Pay,(ay,, ) appearing in E,, may be correlated with the term Yo L X(ay---ar,, ,—11)
appearing in E, ,,1. However, by the third condition of Assumption 2.2, these events are con-

ditionally independent, given the weights of a and all its ancestors, Wy, W, Wa,ay, - - -, Wa.
Thus,

(E ’ ®7Wa17Wa1a27"'7Wa)

Ipj1—2 "
( Z aJ+1(a|j)> + ,Pale (allg_*_lfl) < ‘ Z X<a1 e 'alg—li)

Jj=Ip

Ipp1-2 (
ar-ar,—1)
(( Z aj+1 (aj)> + Palg (a|1g+171) Ya ~

Jj=1I

gk
S

k
HP (Ea,e ’ W®7Wa1»Wa1a27 ey Wa) )
=1

where each Ya(glmal‘”l) is independent and distributed like Y%. Now, each of the terms ang

are independent, as the depend on different weights. Hence, so are each of the terms appearing

in the above product, so that
k
y<][P (Eg) . (4.6)

=1
We now let d; := I;,1 —I; — 1 for j € [k — 1] and dj, := m — I}, denote the number of entries
between the running maxima in the sequence a. We can then define, for (d;);ex) € NE (and
with the convention that [0] is the empty set),
gzk(ah, a12, e ,a[k, dl, .. ,dk)
={aeUy: Forall je{l,... k} and all i € [d;], aj,+; € [a,]}
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as the set of all sequences a with running maxima a; = ar,,...,a;, and d; many entries
between the j and (j + 1)™ maximum. For ease of writing, we omit the arguments of ;..
We then write the expected value of the number of individuals a € U, that explode before all
their ancestors such that a; > K’ as

0 0 m k
2, PE) =D, ) BEI< D) > X IP(E)
aEZ/lgo/ m=1 a:|a|]=m m=1k=lay, >..>a5, >K’ (dl)ée[k]ENS aePy, =1

a1 >K a1>K' Z’Z:I dy=m—k

In the first step, we introduce a sum over all sequence lengths m. In the second step, we
furthermore sum over the number of running maxima k, the values of the running maxima
ar,,...ar, the number of entries d; between each maxima I, and I, (or between I, and
m if £ = m), and all sequences a € & that admit such running maxima and inter-maxima
lengths. Moreover, we use (4.6) to bound P (E,) from above, now that we know the number
of running maxima in a.

We can now take the sum over a € &7, into the product, due to the fact that we can decompose

each sequence a € Z(ay,, ..., ay,,d,...dy) into a concatenation of sequences aV) ... a(®,
with a® .= ar, -+~ ar,,,—1 € Pi(ag,,dg) for each ¢ € [k]. This yields, for ay,...,a; and
di,...,d fixed,
k N k N
Y HP(E@ 17 Y IP’(E,LK).
ae Py, I=1 =10 :)a(® |=dy+1

al® allz—conservative

We can then directly apply Lemma 4.2 to each of the sums in the product to obtain, for some
n < 1 and with C' sufficiently large, the upper bound

k

k k
[T X P(Bu) <TTONE Lo (Payi)| = CoEiarf TTE | £, (Payi )]
(=1 4(0);)q(0)|=d, =1 “le 1 oIy

a®) ay,-conservative

We substitute this in (4.6) to arrive at

0 m k
k, Sk dy .
)IDINEDI > Ot [E[ L (P, W)
m=1 k=1 a1k>...>a11>K’ (dj)je[k]eNg =1

Sk de=m—k

<35 (et ¥ Y [TE [£0 (o]

ar, >K’ ar, >K' (=1
0 m o k
Y (7;;_ 11> et (Z E [ﬁ%l(Pa;W)]> .
a>K'

By (4.4) we can bound the innermost sum from above by 1/2 when K is sufficiently large, so
that we obtain the upper bound

ZZ( )C’ka’“ gi (1+C/2)" '™ < o0,

m=1k=1

where the last step follows when n < (1 + C/2)~!, which holds by choosing K’ sufficiently
large, as follows from (4.4) and (4.5). O
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The following proposition requires the following notation:
Up :={uely :u; < Lyie[|ul]} u{@}.

Following [58], we say elements of U}, are L-moderate. We also let U§ denote the set comple-
ment of Uy,

Proposition 4.4. Let (7;)>¢ be a (X, W)-CMJ branching process satisfying Condition 4 of
Assumption 2.2. Then, almost surely, for all t € (0,0), we have

{u e Z; : u is L-moderate}| < 0.

Proof. First, let (X(L), W(L)) denote the distribution of an auxiliary CMJ branching process,
where, if the symbol ‘~' denotes equality in distribution, we have W) ~ W and

, X(j),W) ifj<L,
(xO), wey ~ UL TS

(00, W) otherwise.
In other words, a (X(L),W(L))—CMJ process is truncated to ensure that no node produces
more than L children. Moreover, if B, (u) denotes the distribution of the random variable B(u)
under the distribution of the (X ") W (1))-CMJ process, this definition ensures that if u e Uy,
then By, (u) ~ B(u). Now, note that, if (Z,")),=¢ denotes an (X&), W ))-CMJ process, for
each t € (0,0) we have E(yw) ) [§(t)] < L, and, by (2.7), also E(yw) ww) [£(0)] < 1.
Therefore, by [45, Theorem 3.1(b)], (F;")120 is conservative, i.e. almost surely, for each
t e (0,0),

’Z(L)‘ < . (4.7)

We now construct a coupling of a (X, W)-CMJ branching process (.7 ;)= with a (X&), W (F))-

CMJ process (?ﬁ“)@o. Note that, by definition, for each L-moderate u € Uz, we have
XD (u) ~ X (u). We then construct (7;)i=o in the natural way from the random variables

defining (fEL))tzoz for each u € Uy, we set (X (u), W,) = (X (u), W), and for each

) u

u € Ui, with |u[ = m > 1, sample X (u) independently, conditionally on the weight W,,
One readily verifies that this coupling has the correct marginal distributions. Moreover, on this
coupling, almost surely, for each ¢ > 0, we have

J— J— 4.7
{ue T :u is L-moderate} | = ‘ﬁEL)‘ @D ©,

as desired O
Recall that, for a (X, W)-Crump-Mode-Jagers branching process (.7;):=0, we have
T = lim 7, = inf {t > 0: |.7| = w0} .
k—00

Recall also that we have T, = U,_, T = Ujey Zo-

Lemma 4.5. Let (7)o be a (X,W)-CMJ branching process satisfying Condition 4 of
Assumption 2.2. Then,
To ={uely:Bu) <10} S T, . (4.8)
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Proof. The second inclusion is clear, hence we just prove the first equality. If |7T5,| < oo, in
other words, the process becomes extinct, then 7, = o0 and the equality is clear. Otherwise,
on the event {|75| = w0}, since by (2.3) we have 7, < o0, it suffices to show that for any
ke N, 1, < 7. First, we order elements of U, u(l), u® . , according to birth time, breaking
ties with the lexicographic ordering. Suppose that 7, = 7, < o0 for some k € N. Then, since
| 75| = oo, the set

A={uely:Bu) =1y =74}

is infinite and each element of A is a descendant (though not necessarily a child) of one

of u™ ... u*~Y. Now, there are two (not mutually exclusive) cases: either there exists a
minimal element «’ € A such that A contains infinitely many elements of the form u'v € A,
with v € Uy, or, one of u ... u*~1 has infinitely many children in A. The latter case

occurs with probability 0, because, by Equation (2.6), for each j € [k — 1] and n € N, we have
Z;O:nﬂ X (uYi) > 0 almost surely. Hence, a single individual cannot produce infinitely many
children instantaneously. But now, for the prior case, the size of the collection

{u'v:vely},

is the total progeny of a Bienaymé-Galton-Watson branching process with offspring distribution
€W (0) ~ €(0), and by (2.7), this is finite almost surely. We deduce that, on {|7,| = o}, we
have 7, < 7, almost surely. O

Lemma 4.6. Let (F)=0 be a (X, W)-CMJ branching process that satisfies Assumption 2.2.
Almost surely,

o = inf {B(u)+ Pu)}.

Proof. First, as a shorthand in this proof, we define 70 := inf 7, {B(u) + P(u)}, so that
we need only show that 7, = 7} almost surely. Note that, for each u € U,,, we have
T < B(u)+P(u) and hence 7, < 7.5. Moreover, Assumption 2.2 guarantees that P (&) < o
almost surely, hence, in particular, 7, < P(2) < . Thus, by Proposition 4.4 and Lemma 4.5,
forany L — 1 €N, 7, € 7, contains only finitely many (L — 1)-moderate elements. Since
T is almost surely infinite (because of Condition 1 of Assumption 2.2), by the pigeonhole
principle, there must be infinitely many elements of the form u*L € T, with u* € U,,. Now,

for such u* and for any € > 0,

Jim P (B(u*) + P(u*) - B(u*L) > ¢)

o0
= Jim P <j=ZL+1X(u ) > 5) < lim P (Y, > ¢) = 0.
Formally, to find these elements ©*L we must condition on the sigma-algebra generated by
the ‘information’ in 75,. Thus, suppose that #(7) := U,y #~, denotes the sigma algebra
generated by the random variables {(B(u), W,) : u € Ty}. Clearly, 7, and Ty, are # (T)-
measurable. Now, if (conditioning on this sigma algebra) there exists u* € T, such that for
each j € N we have u*j € T, then B(u*j) < 7, for each j € N. Hence, B(u*) +P(u*) = 7,
and we are done. Otherwise, for any L € N, we can guarantee the existence of u* € 7, and a
final Jp > L such that u*Jp, € T but u*(Jp + 1) ¢ 7. Then, for any € > 0,

P (1) — 70 > | #(T2)) < P (Bu') + P(u*) = 7 > e | #(Ta0))
<IP>< > X(uj)>e

Jj=Jr+1
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Taking limits L — oo and then € — 0, we deduce that, 7.} = 7, almost surely, as required. [

4.1.1 Proof of Theorem 2.5

Proof of Theorem 2.5. Suppose that K’ is taken as in Proposition 4.3. Note that we may
view any w € U, as a concatenation w = wuwv, where u € Uk is K'-moderate, and v =
vy - - - Uk, where v; > K’ (here we also allow v to be empty, so that K’-moderate nodes w
may also be interpreted as a concatenation). Now, note that (on B(u) < o) the birth times
B(uv)—B(u) ~ B(v), and thus, by arguments analogous to those appearing in Proposition 4.3,
for any u € Uy, (in particular for u € Uk:),

E[|[{a =a1- am €Uy : a1 > K', ua explodes before uay,,_,, uay,_,,...,u}|] <. (4.9)

Now, since 7, < oo almost surely, we infer from Proposition 4.4 with L = K’, that |{u €
Uk - B(u) < T }| < o0 almost surely. Therefore, by (4.9), the set

S = {u€ly: B(u) < 7y, u explodes before all of its ancestors} .

is finite almost surely. By the definition of S and the fact that the infimum of a finite set is
attained by (at least) one of the elements, by Lemma 4.6, almost surely there exists u* € S
such that

B(u*) + P(u*) = qutelg{[))(?}) +Pv)} = uleri{fw{B(u) + P(u)} = Top.

This implies that u* has infinite degree in .7, . Moreover, since by Condition 1 of Assump-
tion 2.2 we have >,° | X(u*i) > 0 almost surely, it follows that for each i € N we have
B(u*1) < T, almost surely. Therefore, by the equality in (4.8), u* has infinite degree in 7, as
well. O

4.2 Sufficient criteria for an infinite path and structural results in the
star regime

To prove Theorem 2.8, we first state and prove the following lemma.

Lemma 4.7. Let (F;)i=0 be a (X, W)-CMJ branching process. Under Assumption 2.6,

P ( () U {B(wi) + P(ui) < Blu) + P(u)}) = 1. (4.10)

uelop j=11i=j

Proof. We first fix u € U, and condition on the random variables B(u) and W,. We then
sample each of the values of P(ui), then the values of Xy, (ui), for i € N. Note that for each
u € Uy, the random variables (P(ui));en are i.i.d. and distributed like P(i). Thus, by (2.9)
and the converse of the Borel-Cantelli lemma, on sampling each P(ui), for any w € S with
probability 1, we have P(ui) < v/} infinitely often. As a result, conditionally on the value of the
weight T, with probability 1 we have P(ui) < v for infinitely many i € N. Conditioning
on this event, let 41,1y, ..., denote indices such that, for each ¢ € N, we have P(ui,) < Iz
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almost surely. Then, by (2.10), there exists I € N, such that, for some § = 6(I;) > 0 and for

all 1y = [0,
m) =

0
= —.
")t

We now pass to a sub-sequence (i, )nen Of (i¢)sen, such that i, > Iy, and iy, ,, = inf{i, : ( €
N, i, > ¢(ig,)}. Then, by Equation (2.2), conditionally on W, the random variables

o0
P ( > X, (uk) = v

k=ig+1

As a result, for some ¢(i,) > i, sufficiently large,

#(ie)
P ( >0 X, (uk) = v

k=ip+1

ZZn+l

k=ip +1
tn neN

are independent of each other. Again applying the converse of the Borel-Cantelli lemma, we
obtain

o 0 Zlanrl
P ﬂ U Z Xw, (uk) = V}Z“ B(u), W, | = 1.
j=1n=j | k=ig,+1

But for every index i* € (i, )nen, We have by the definition of the sequence (i¢)een,
0
P(ui*) < v < Z Xw, (ui).
i=i%+1

Adding B(u) + 2211 Xw, (ui) (which equals B(ui*)) to both sides, we deduce that, almost
surely, conditionally on B(u) and W,

B(ui*) + P(ui*) < B(u) + P(u).
Then, by taking expectations over B(u) and W, we have
P (ﬂ U {B(ui) + P(ui) < B(u) + P(u)}) =1 (4.11)
i=1i=j

But now, since U, is countable, we deduce (4.10). O

4.2.1 Proof of Theorem 2.8

Proof of Theorem 2.8. On {|T| = 0}, let us first assume that 7, does not contain a node of
infinite degree. It then immediately follows from Kénigs Lemma (Lemma 2.1) that 7, contains
an infinite path. We then assume, on {|7| = oo}, that there exists u* € T, such that u*
has infinite degree, i.e. B(u*) + P(u*) = 74. But then, by Equation (4.10) from Lemma 4.7,
there must be a child of u*, u*j say, such that B(u*j) + P(u*j) < B(u*) + P(u*) = 7, a
contradiction. O
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4.2.2 Proof of Theorem 2.10

Proof of Theorem 2.10. For each u € U,,, we set

-1

(ﬂt(“))go = {uv €Uy : Z (ij+1(uv\j) < t)} )

7=0

where we recall that if v = v; - - - vy, then uv, = uv; - - - v;. Note that, if B(u) < oo, by (1.1)
we have Z(”) = {uv SuUv € %+B(u)}. However, the definition we use allows us to define
(,2(“)),520 even when B(u) = oo. Note that, by (2.1), (%(u))f;o ~ (J)i=0, and for each
u € Uy, the ((%("i))tzo)id\; are i.i.d. Now, upon sampling each of the random variables

(X (ui))ien, (regardless of whether B(u) < oo or not), recalling the notation from (1.2), note

that if we have
0

Pr(ui) < 2 X (uk),
k=i+1
then, if B(u) + P(u) < o0, we have B(ui) + Pr(ui) < B(u) + P(u). Now, by exploiting
an almost identical argument to the proof of Lemma 4.7 (as in Equations (2.9) and (2.10)),
combining Equations (2.11) and (2.12) from Condition 1 of Assumption 2.9 allows us to

deduce that
P ( N NU {PT(ui) < > X(uk)}) — 1.

uelop j=11i=j k=i+1

But then, this implies that if a node u* € Uy, has infinite degree in 7T, there exist infinitely
many indices i such that B(u*i) + Pr(u*i) < B(u*) +P(u*), and hence, by Lemma 4.5, that
(u*i)T < To. This proves the first statement.

For the second statement, by Equation (2.13) we have

Z]P <77T(uz’) < 2 X (uk) ‘ Wu> < o,

almost surely. Thus, by a conditional analogue of the Borel-Cantelli lemma,

P (QU{PT(M') <) X(uk)} ‘W) — 0,

k=i+1
almost surely. Taking expectations over W, and a union bound over u € U, we deduce that

P ( U ﬁ@{m(m) < i X(uk:)}) — 0.

uelyp j=11i=j k=i+1

This implies that, if «* is such that B(u*) +P(u*) = 7, almost surely, there exist only finitely
many indices ¢ such that 7" appears as a sub-tree of u*i in 7.

The final statement in Item 3 follows from the proof of Theorem 2.5, Equation 4.1.1 in
particular, which states that 7., contains a finite number of stars u* in 75, almost surely under
Assumption 2.2. O
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4.3 Uniqueness conditions related to the existence of a star or an
infinite path

In this section, it is useful to introduce some extra notation. First, recall that, given u € U,
the random variable B(u) 4+ P(u) determines the time at which u ‘explodes’, in the sense that,
if 0 = B(u) + P(u), the individual u has infinite degree in .7,. We also define the random
variable 7.t (1) as the amount of time taken after the ‘birth" of u, for there to be an infinite
path containing u in the process (.7 );=0. To make this more precise, we extend the notation
for elements v € U, to v € N: for v = vyvy--- € N® and £ € N, we set V|, = V12 Vg € Uy,
Then, for u € Uy, we set

i—1

Toath (W) 1= %g(f) {32} e N“: Z (Po,i (uv),)) < tforallic N} 3

j=0

Thus, by this definition, if 0 = B(u) + Tpatn(u) then 7, contains an infinite path passing
through wu.

The approach we use in this section is surprisingly simple, and reminiscent of the approach
used, for example, in [58] to show a unique node has infinite degree: we show that, for each
u € Uy, the random variables 7,4, (1) or P(u) have distributions that contain no atoms on
[0, c0). We use this to show that for any pair u, v € Uy, (which have ‘independent’ sub-trees),
the probability that both have infinite degrees, or lie on infinite paths simultaneously is 0.
As U, is countable, we can readily take a union bound over all these pairs, and deduce the
result. Condition 2 of Assumption 2.11 (and (2.1)) already provides this property to P(u). For
Tpath (1) We use the following result.

Lemma 4.8. Let ()10 be an explosive (X, W)-CMJ process. Under Condition 3 of As-
sumption 2.11, the distribution of Tya,(2) contains no atom on [0, o0).

Proof. We argue by contradiction and suppose that 7,:, (&) contains an atom. Set
@ :=1inf {t € [0,0) : P (Tpatn (&) = t) > 0} .

Now, exploiting Condition 3 of Assumption 2.11 and the definition of @, let a be such that
P (Tpath (@) = @) > 0, and a — a < ¢ (with € as in Condition 3). Let G; denote the sigma
algebra generated by (B(7))n. The ancestral node @ contains an infinite path precisely when
one of its children lies on an infinite path. Thus,

? ) - 216 = (i) - - 50

g1> (4.12)

o).

3Note that, since the definition of Tpath () includes the uncountable set N, it is not immediately clear
that this is measurable. This is the reason that we assume that (2, %, P) and .%; are complete: complete sigma
algebras with respect to probability measures are closed under the Souslin operation [14, Theorem 1.10.5, page
38|, which makes a number of uncountable unions measurable. In particular, for each ¢t > 0, we can write

{mpath(v) <t} = Upene [Nien {Z;;E (Pu, . (uv),)) < t} € ¥, and similarly, we know for each ¢ > 0 that
{Tpath(g) < ﬁ} € ]:t-

< ip (() — - B()
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Now, as the event {7,.n(7) = a — B(7)} depends on G; only via the sigma algebra generated
by B(i), we may re-write the summands on the right hand side as

P (i) = a - B

B@)zP(mﬁ@=a—B@

BU)) L(5(i)<e)

+P (Tpath(z') — a— B(i)

B(i)) L{B(i)=e)-

Now, note that (by (2.1)), as Tpatn(7) is identically distributed to 7, (), the distribution of
Toath(2) has no atom smaller than @ > a — ¢. As a result, on the event B(i) > «,

P () =~ B

B(z)) =0, almost surely.

Combining this with (4.12), this leads to the inequality
a0
P (Tpath<®) =a ‘ gl) < Z]P (Tpath(l') =a— B(Z)
=1

2

B@)) 1(B(i)<e},

and since P (7patn (@) = a) > 0, it must be the case that for some 4,

0 < P (roaen(i) = a — B(i), B(i) <€) = E [IP’ (Tpath(i) = a— B(i)

But now, when we integrate over the possible values of (i) on the right-hand side, this implies

that
{B(z‘) c[0,e): P (Tpath(z) — o — B(i) B(z’)) > 0}

is a set of positive measure with respect to IP. But then this implies that, with respect to the
distribution induced by B(i), the set

{z €]0,¢) : P (Tpatn(i) = a — x) > 0}, (4.13)

has positive measure. But now, as the set of atoms of the distribution of 7.4, (2) (as with
any finite measure) must always be countable, (4.13) must be countable. As the distribution
of B(i) contains no atoms on [0,¢) by Condition 3 in Assumption 2.11, countable subsets of
[0,¢) are null sets with respect to the distribution induced by B(7); this implies that (4.13)
must be a null set, a contradiction. O

4.3.1 Proof of Theorem 2.12

Proof of Theorem 2.12. The first and second statements of the theorem are clearly satisfied
on {|7%| < c}. Now note that, for 7, to have two nodes of infinite degree, there must be
two elements u, v € Uy, such that

B(u) + P(u) = B(v) + P(v) = Two.

By Equation (2.3), 7, < 0 almost surely on {|75| = o0}, hence the left-hand side must also
be finite. But now, note that, as long as v is not an ancestor of u, (which is the case if v > u
with respect to the lexicographical ordering), then P(v) is independent of B(u),B(v), and
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P(u). Moreover, by Condition 2 of Assumption 2.11, P(v) has no atom on [0, c0). Therefore,
for v > u we have,

P <77(v) =P(u) + B(v) — B(u)

B(u)aB(U)aP(U)> 14B(w),B(v),P(w)<wc} = 0 almost surely,

and hence, for any u, v € U, with u # v,
P (B(u) + P(u) = B(v) + P(v), B(u) + P(u) < ) = 0.
But then, since U, is countable, taking a union bound, we deduce

P (7% has two nodes of infinite degree)

<P ( U {B(u) + P(u) = B(v) + P(v), B(u) + P(u) < oo}) (4.18)

U, VEUp UFV
< > P(B(u)+P(u) = B(v) + P(v), B(u) + P(u) < ) = 0.

This proves the first statement of the theorem. In a similar manner, using Condition 3 of
Assumption 2.11 and Lemma 4.8, we have

P (7% has two infinite paths)

<P ( U {B(u) + Tpath (1) = B(v) + Tpatn (v), B(w) + Tpatn(u) < oo}) (4.15)

U, VEUx ,uFV
< > P(B(w) + Tam(u) = B(0) + Tpan(v), B(w) + Tyam (1) < 50) = 0,
U, VEUp yuFV

proving the second statement. Finally, for the third statement we need only prove that a
node of infinite degree and an infinite path cannot co-exist. Note that there may be u such
that P(u) and 7. (9) are correlated, for example, if & is a parent of u. But, noting N* =

{fuely : |u| =k},
{Tpatn (D) = B(u) + P(u), Tparn (&) < 0}
c | J {BO)+ man(v) = B(u) + P(u), B(v) + Tpam (v) < 0} .
veNlul+1

|u|+1

Now, for v € Nlul+1 Tpath (V) is independent of u, and therefore, for each v € N we have

P (B(v) + Tpawn(v) = B(w) + P(u) | B(v), B(w), P(u)) Li5(w),5u).Pw)<w)
=P (Tpatn(v) = B(u) + P(u) — B(v) | B(v), B(u), P(1)) 1B(),B(u)puw)<cc} = 0,

almost surely. Therefore, again using a union bound, we have

P (7 has an infinite path and a node of infinite degree, |75| = o) (4.16)
<P ( U {B(u) + P(u) = Tpaen (D), B(w) + Tparn(u) < oo})
ueUn

<P ( U U {B(u) + P(u) = B(v) + Tpaen (v), B(t) + Tpam (1) < oo})

U,Eucn 'UEN‘"“+1

< YD P(B(u) + P(u) = B(v) + Tyarm(v), B(u) + Tpan (1) < 50) = 0.

UEZ/{OC UEN‘“H’l

We deduce the final statement by using a union bound, and combining Equations (4.14), (4.15),
and (4.16) with Kénig's lemma (Lemma 2.1). O
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5 Proofs for applications of main results

In this section we use the general results of Section 2 to prove the main theorems in Section 3.1.
In particular, we show that the conditions stated in Theorem 3.4 are sufficient and that the
condition in Theorem 3.7 is necessary and sufficient to apply the results of Section 2 to
exponentially distributed inter-birth times.

5.1 Preliminary results and tools

We first collect some useful lemmas that we use throughout the proofs in this section.

Lemma 5.1. Let (X (i));en be independent random variables and fix ¢ > 0 and (b,)nen €
(0,00)N. Then,

o0 o
1
P (Z X; < bn) H‘C (1+€) log (n)b,, ! (Xl) B nlte’
i=1

=1

Proof. Let Y ~ Exp (b, (1 + €)logn) be given, independent of each of the X;. Then,
0¢]
P(ZXi<bn) (ZX <Y,V < ) (ZX <Y> P(Y >b,).
i=1 i=1

Evaluating both probabilities by using that Y is an exponential random variable, we obtain

— log(n b;l © X )logn 1
E [e SRR Zis ] e IR H£(1+a )log (n)b,, 1(X> - TLH"E’

as desired. ]

We believe that the following lemmas are more well-known, but we provide a proof of the first
for completeness. Note, as is clear from the proof, that (5.1) is a special case of the more
general Equation (4.1) from Lemma 4.1.

Lemma 5.2. Let Z,,..., 7, be independent exponential random variables with parameters
ro,...,Tk_1, respectively, and fix A > 0. Then,

k k
/r'.
P Z; <\ = ] .
(Z ! A) HO rj+ (k+ 1At

Jj=

Moreover, let (X« (j))jen be independent, exponential random variables with rates (r;)en,
satisfying pu; := >, 1 B [Xyx(j)] < co forie N. For any ¢ < 1 and for any i € N,

k 0 k
1 T
P §Z~< E Xox(7) | < || i . 5.1
(j 4 ) <‘7)> 1—cddr 4 cpt (5.1)
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Proof. For the first inequality, we may, without loss of generality take A\ = 1, since for an expo-
nential random variable X ~ Exp (r), X/ is again exponentially distributed with parameter
Ar. Then,

P(i%él) >P(Z; <1/(k+1)forall je{0,...,k})

k
—T]/k+1
Hrj + ( k+1

Jj=0 j=0

Il
—
—~
[u—

where the right-hand side uses the inequality 1 —e™ > 1%: for all x = 0. Meanwhile, the
upper bound in (5.1) uses a standard Chernoff bound. First, note that for ¢ < 1,

-1

X1

-1 _ - ]

cl; —c(Z 7"-) <rj, forall j =i+ 1. (5.2)
j=i+1"J

Furthermore, for each i € N,

* T’—C,u'_l © M_l “1
) S

j=it1 J j=it1 j j=ir1 i

where the last step uses the inequality [ [,(1 —p;) = 1— >, p;, for p; € [0,1]. By the moment
generating function of exponential random variables, we have

o0

E [ecﬂflz?o:iﬂ Xw*(j)] — 1_[ "y (2) 1 (54)

1 )
=it T Cy 1—-c

where the exponential moments exist by (5.2). Finally, this yields

k 0 k
P <Z Zj < Z Xy (])) <P (ecﬂfl(Z;O:iH Xw*(j)fozon) ) H n
—c+dr; c,u
]_O J )

j=0 j=it+1

as desired. u

Lemma 5.3 (Paley-Zygmund Inequality). Let Z be a non-negative random variable with finite
variance, and let d € (0,1). Then,

E (2]’

P(Z=dE[Z]) = (1— cl)2vEer 7)1 E[ZF

5.2 Structure theorems related to explosive recursive trees

5.2.1 Proof of Theorem 3.4

Proof of Theorem 3.4. Recall that for fixed w, W, the random variables (X, (ui));cy are
independent, with each Xy, (ui) ~ Exp (f(i — 1, W,)), conditionally on W,,. Since the ex-

ponential distribution is a smooth distribution, one readily verifies that the conditions of As-
sumption 2.11 are met; hence the associated tree 7, contains either a unique node of infinite
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degree, or a unique infinite path. Now, to prove Item 1, note that Conditions 3 and 4 of As-
sumption 2.2 are immediately satisfied. Moreover, since f satisfies (w*), Equation (2.4) and
thus Condition 1 is satisfied by setting

i (5.5)

1=n+

where each X« (i) ~ Exp (f(i — 1,w*)). By choosing ¢ < 1 according to Equation (3.2) and
by following the calculations in Equations (5.3) and (5.4) (with 7; := f(j — 1,w*)), we see
that Condition 2 is satisfied. Finally, note that, uniformly in w, we have

ee}
> 0.
Zl_[ fi,w) + C/Ln
Indeed, taking logarithms and using the inequality
72
—log(l—2) < —, U<z <1,
og(1—x) $+2(1_x) x

we obtain

1Og<nfzw )+ cppt ) 210g<1— zuc)gbicu;l)

0 2, ,—2
Z cp,t n C Hy < 3
S\ fGw) +opt T 2f (6 w) (f (1 0%) + eppt) ) 2

which implies that

Thus, by Equation (3.2),

0 e ST faw)
;E (£ (Pu(@);W)] = Y E !H Fl, W) + cu,ﬂ]

so that Condition 5 is satisfied, where the final step uses the assumption in Item 1. We can
now apply Theorems 2.5 and 2.12 to obtain the desired result.

For Item 2, if there exists ¢ > 1 satisfying Equation (3.3), we write c = d~!(1+¢), for some 0 <
d < 1 and € > 0. Otherwise, assume (2.9) is satisfied with v/ = dp? = dE [, .| X (i)]
for some d € (0,1). First note that, since the X, (i) are mutuaIIy independent exponential

random variables,
ar(ZX > Zfzw ()2 (5.6)

i=n+1
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By the Paley-Zygmund inequality, it thus follows that

' < 2, Xl d%v) -0 _d)g(uw)Q +§’?) f(i,w)=2 b s _Qd) ’ (57)

i=n+1

which implies (2.10) in either case. We now need only show that Equation (3 3) implies
that (2.9) is satisfied with this choice of (v*),en. We apply Lemma 5.1 with b, := du® and
e > 0sothat c=d '(1+¢), and by cond|t|on|ng on the vertex-weight W, to obtain

f(i W) 1
P d / - .
<P < M” [H M ) llogn nlte
We thus obtain that (2.9) is satisfied when Equation (3.3) holds. O

5.2.2 Proof of Theorem 3.7

Proof of Theorem 3.7. In the proof we seek to apply Theorem 2.10. We first apply Item 1 of
Theorem 2.10 to show that, if (3.4) is satisfied, T appears as a sub-tree of 7, infinitely often.
That is, we show that Condition 1 of Assumption 2.9 is satisfied when assuming Equation (3.4)
holds. As we assume that Equation 2.2 holds as well, this implies Item 1 of Theorem 2.10.

In a similar manner to the proof of Theorem 3.4 above, we choose v = du,’, for d < 1.
This way, Equation (2.12) follows from Equation (5.7), using the Paley-Zygmund inequality.
To show (2.11), we first condition on an ordering O € O in which the vertices of T" appear. In
particular, given such an ordering, by extending the definitions of the stopping times associated
with the (X, W)-CMJ process, we can define the stopping times

To,; = inf {t =>0:0j < 2}
Now, with O(T') the set of possible orderings of the vertices of T', we wish to show that

0
ST T) = Y P(0=r0, <70, <70, <duy) == (58)
n=1

n=10e0O(T)

We make the following observations:

(I) The probability of seeing an ordering O;,j = 0,...,k, depends on the minima of the
exponential random variables associated with the next vertex in the tree to appear.

Suppose that the vertices of T are {vy,...,v;}, labelled by order of appearance, and
that v;” € {vo,...,vj_1} is the parent of v; for each j € [k]. Then, conditionally on
the weights of the nodes in T', W,, ..., W,,, the ordering (O););=o,.r occurs with
probability

: Fldeg* (o]), W)

P(O’Wvo,...,va) =11

=0 g:() f(deg+ (Uia O\j)a in)1deg+(vi,0‘j)<deg+(vi,T) '

The jth product in the above equation denotes the probability that the next exponential
clock associated with the process, amongst those yet to ring, corresponds to v;-r, and
hence respects the ordering O.
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(I1) We may write

(IIl) By properties of the exponential distribution, the distribution of the minimum of a
collection of independent exponential random variables is independent of the index that
attains that minimum. Thus, conditionally on seeing the ordering O, the waiting times
(TOU+1 — To‘j)jzo ,,,,, « are independent, with

=0

TO‘J‘H OI TR EXp (2 f deg U O| ) )ldeg *(i, O‘ y<deg™ (i, T)) J= 0,..., k.
Thus, by Lemma 5.2, we have

o 0,.0)

P (O =70, STo, <+ <To, <dpu,

< ( d )k""l ﬁ[ Z?:O f(deg+ (27 O\j)? VVi)]'deg+ (i,0|j)<deg+(i,T)
k+1 Zg:o f(deg*(z’, Olj), Wi)1deg+(i,0‘j)<deg+(i,T) + ()t

7=0
- <d01 (w) > k+1 ﬁ 5:0 f(deg+ (Z7 O|] )7 Wi)ldeg+ (i,Ob.)<deg+ (4,T)
k+1 7=0 520 f(deg+ (27 O'j)? I/Vi)]-dngr(i,O‘j)<deg+(7L,T) + :u';l 7

where the last line follows from our assumption that u > ¢1(w)p,, with ¢;(w) < 1.

Combining Items (I)-(11l) and taking expectations over the weights W, ..., W,, , we deduce
that Equation (5.8) holds if Equation (3.4) is satisfied.

For the converse statement, if Equation (3.4) is not satisfied and the sum instead converges,
we now apply Item 2 of Theorem 2.10 in a similar manner. In particular, we now wish to show

that, for any w € S,

ZP <T c XK 2R ) Z Z (0 =To, STo, S To, S Z )N(w(j)> < ©.
i=1 i=10eO(T =1
(5.9)

But now, for each j we have X, (j) <s Xu#(j), where X« (j) ~ Xu#(j), since we assume
that Equation (w*) holds. Thus, using the same observations as above but instead looking for
an upper bound in Item (I11), we apply Equation (5.1) in Lemma 5.2 with ¢ < 1 fixed, to see
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that

P (0 =70, < o, " < 70, < Z Xw(]) ‘ WUO,...,va,O> (5.10)

0

<P (0:7_00 gTOh <TO\k < Z Xw*(j)‘Wv()?"'?vavO)

j=it1

6y 1 ﬁ ! o f(deg®(4,0),), Wi)1deg+(i,0‘j)<deg+(z‘,T)
I—c ZZ:O f(deg+ (Zv O\j)a I/Vi)]'dngr (i,0|j)<deg+(i,T) + Clui_l

J=0

1 k g=0 f(deg+ (Z.v O\j)v M/i)ldeg+(i,0|j)<deg+(i,T)

< (1 —c¢)ck+t H

120 210 f(deg™ (i, 0y)), Wi)1deg+(i,0‘j)<deg+(i,T) +p !

Again, combining Equation (5.10) with Items (1) and (ll) and taking expectations over the
weights W, ..., W,,, we deduce that Equation (5.9) holds if Equation (3.4) is not satisfied.
Hence, Condition 2 of Assumption 2.9 holds, so that Item 2 in Theorem 2.10 yields the desired
result. O

5.3 Possibility for both a star and infinite path to occur with positive
probability

The goal of this section is to produce the counter-example in Theorem 2.15. We first show,
in a similar spirit to [45, Claim 2.3], that infinite paths, when they appear in finite time, can
appear arbitrarily fast.

Lemma 5.4. Let (J)i=0 be an explosive (X, W)-CMJ process, and suppose that B(1) > 0
almost surely. It is either the case that P (T,an (@) < 00) = 0, or, for any € > 0,

P (rpatn(@) <€) > 0.

Proof. Suppose that P (7pan(2) < ) > 0. Then, we define
e*:=inf{e = 0: P (7pun(2) <€) > 0}.

By assumption, we have ¢* < o0, and moreover, P (T.n (@) < €*) = 0 (by monotone con-
vergence). Suppose that ¢* > 0. As an infinite path from @ must pass through the first
generation, we have

P (Toun (@) < &) = P (U (B(i) + Toan (i) < 5*}> . (5.11)

Since for each i we have B(i) = B(1), we must have P (By + Tpatn < €*) > 0; where B; ~
B(1) ~ X (1) and Tpath ~ Tpath (@), and By, Tpatn are independent. Indeed, otherwise a union
bound would show that the right-hand side of (5.11) equals zero. But then, it must be the

case that
B1> > 0}
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must be a set of positive P-measure. Again, as in (the proof of) Lemma 4.8, this implies that
with respect to the distribution induced by B, the set

{x e (0,e") : P (Tpatn < " — ) > 0}

has positive measure. In particular, there exists an x € (0, £*) such that P (7pan < €* — ) > 0,
a contradiction. We deduce that ¢* = 0. ]

5.3.1 Proof of Theorem 2.15

Proof of Theorem 2.15. We define an explosive (X, W)-CMJ process with weights W, =
(Ru, I,) € (0,0) x {0,1} for u € Uy. Here R, and I, are independent and distributed such
that P ([, =1) = P (I, =0) = 1/2, and R, has a smooth distribution such that, for some
constant o > 1, for all z € [1, ),

P(R, >z) >z @7V, (5.12)

We also fix p > 1 such that (« — 1)(p — 1) < 1. We can think of the variable I, as an
indication of the type of a node wu, effecting the distribution of (X, (uj));en. We then
define the (X, W)-CMJ process (.7;);>0 so that, conditionally on W, the random variables
(Xw, (ui));en are mutually independent, and for each v € Uy, i € N,

Exp (R.?), if W, = (R,,0);
Xw, (ui) ~ { Exp (1),  if W, = (Ry,1),i=1;
Sis if W, = (Ry,1),i>1;

where the (s;);>2 are constants with each s; > 0 defined to satisfy the following: if for each
k> 1 we set

0
Sk 1= Z s; <, then we have E[e"(fkvDs] 127 (5.13)
j=k+1

where Rj, ~ Ry is the the first element of the weight associated with the individual k € U,,.
We stress that this condition is satisfied when we choose the constants s; sufficiently small.
Note that under this construction, the conditions of Assumption 2.11 are satisfied: clearly, in
general B(1) ~ X(1) contains no atom on [0, ), so Condition 3 is satisfied. Moreover, for
any z > 0, by the conditional independence of (Xyy, (u?));en,

Wu) o

P <Z Xw, (ui) = z

since Xy, (ul) always has an exponential (hence smooth) distribution. Note also, that

Wu> =P <XWu(u1) =z— iXWu (ui)

=2

P(rp, <) =1, and P(|Ty] =) =1

Now, we have the following claim:

Claim 5.4.1. For all ue Uy,

P (ﬂ U {B(ui) + P(ui) < B(u) + P(u), I; = 0}

j=li=j

I, = 0) ~ 1. (5.14)
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Given Claim 5.4.1, in a similar manner to the proof of Theorem 2.8 (which uses (4.10)), we
can exploit Equation (5.14) to deduce that P (7p.n(@) < 0| Iz = 0) = 1. In particular, we
can ensure that 7, (9) < P(9). Indeed, Equation (5.14) guarantees that there exists a child
i such that B(i) + P (i) < P(); this child, in turn, by (5.14) has a child of infinite degree by
time P (). lterating this argument, we have an infinite path by time P(2).

Now, it cannot be the case that there exists u € Uy, such that I, = 0 and 7o, = B(u) + P(u).
Indeed, assume such a u does exist. Then, by the above argument it would follow that
Tpath (W) = B(u) +P(u) = 7. Hence u is contained in an infinite path and has infinite degree
in 7o, contradicting Theorem 2.12. On the other hand, for any u such that I, = 1, by construc-
tion, we have P(u) > ¢;. However, by Lemma 5.4 we deduce that, since P (7,1 (2) < 0) > 0
by the above argument, we have P (7.1 (@) < <1) > 0. It thus follows that, on {7, (@) < 61}
the tree T, contains an infinite path almost surely.

Now, suppose that I, = 1, an event that also occurs with probability 1/2. Then, for each
child k£ € N (in the first generation),

o0
P(B(kl) < P(@) ]Iy =1) =P <X(k1) <> X() | Lo = 1)
j=k+1

=P (X(kl) <) < 1—E [e"FevDs],

where the last inequality follows from the fact that X (k1) is exponentially distributed, either
with parameter 1 or Ry, and the probability is maximised if we choose the maximum of the
two. But then, by (5.13) and a union bound,

P (U B(k1) < P(2)

keN

It follows that, with positive probability, 7o, consists of a single infinite star and hence contains
no infinite path. O

We conclude with the proof of Claim 5.4.1.

Proof of Claim 5.4.1. By using a similar Borel-Cantelli argument as in the proof of Equa-

tion (4.11) of Lemma 4.7 (as in Equations (2.9) and (2.10)), it suffices to prove the follow-

ing: there exists a collection of numbers {1 € (0,0) : r € (0,00),n € N}, such that for any
€ (0, 0),

0
P(P<v,I,=0)=o

=1

3

and

i=n+1

i Xy (i ) > 0. (5.15)

lim inf P <
n—0o0

Here, we set
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for some d < 1. Then, note that we may deduce Equation (5.15) by a similar application of the
Paley-Zygmund inequality as in Equation (5.7). Moreover, applying Lemma 5.1 with b,, = v/,
and € > 0 fixed and using the independence of R,, and I,,, for n € N, we have

1 [< , .
PP<v, I,=0)= §IP (Z Xr,0(J) < yn>
j=1

1 z R,j? 1
>2<E HRp 1 jr—ll ]_ 1+5>'
j=1 Tl] + ( + 6)(”71) Og(n) n
It thus suffices to show that

o0 o0 .

R, 57
E , = 0. (5.16)
3 [ Rog? + (11 2)(03) ! 1og<n)]

To this end, we note that we may bound

(1+e)r

(14 ¢)(v")log(i) = 7 log(n) < Z 1) < Oy log(n)n?™t,

p
j=n+1

where we bound the sum from below by an integral and where C'; > 0 is a constant. For n
sufficiently large such that (1 + ¢)drlog(n)n?~! > 1, we now bound

E D - r\—1 =
e oo oem

a0
R,j 1
H R,.j7 + C log(n)ne—1) ~fin= log(n)n(»~—1)

j=1tn

0 p
- (H o 1> P (R, > Ci log(n)n™)

0 - o
> Oy <H jpj+ 1) (log(n)npfl) ( 1)7

j=1

for some constant Cy > 0 and where we use (5.12) in the final step. Since p > 1, Zlej*p <
o0, which implies that the infinite product on the right-hand side is strictly larger than zero.
Since (v — 1)(p — 1) < 1, the lower bound on the right-hand side is not summable in i, so
that we obtain (5.16), which concludes the proof. O

6 Examples of phase transitions in specific models of re-
cursive trees with fitness

The aim of this section is to prove Theorems 3.16 and 3.21. The previous section provided
conditions for the emergence of a unique vertex with infinite degree or a unique infinite path to
appear almost surely in the case the inter-birth times are exponential random variables whose
rate depends on some fitness function f. In this section we turn these conditions into phase
transitions for three specific examples. We start by proving Theorem 3.16 in Section 6.1 and
then prove Theorem 3.21 in Section 6.2.
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We also note that, in this section, we use the commonly applied ‘big O’, ‘little o' and ‘big
theta’ notation: we say f(x) = O(g(z)) if there exists positive constants M, x( such that, for
all z =z, we have |f(z)| < Mg(z); we say f(z) = o(g(x)) if lim,— | f(z)/g(x)| = 0; and
finally, we say f(z) — ©(g(x)) if f(z) = O(g(x)) and g(x) = O(f(x)).

6.1 Phase transitions for the emergence of an infinite star or path:
proof of Theorem 3.16

To prove Theorem 3.16, it suffices to check the conditions subject to which Theorem 3.4
holds. In the remainder of this section, it is be useful to have the following preliminary results
from [13] that we use throughout.

Lemma 6.1 ([13, Propositions 1.3.6, 1.5.7, 1.5.9a, and 1.5.10]). Let ¢ be a slowly-varying
function and ry, o be regularly-varying functions with exponents o, as € R, respectively, and
fix a € R. Then,

(i) Fora >0, it holds that lim,_,, {(x)z® = o0 and lim,_, {(x)x~® = 0.
(ii) The function r{ := (ry(-))* is regularly varying with exponent a;a.
(iii) Ifag > 0, then r(ro(+)) is regularly varying with exponent covyas.

(iv) The function ry + ro is regularly varying with exponent max{as, as}.

(v) The function riry is regularly varying with exponent o + a.

(vi) If aq < —1, then

JOO ri(t)dt = (—ay — 1+ o(1))xri(z), as T — .

xT

When oy = —1, the result remains true in the sense that the integral is slowly varying
in z, and that it is o(xry(z)).

We generally use Lemma 6.1 without always referring to it explicitly in the remainder of this
section. We mainly use it in the following manner. First, Lemma 6.1 shows that regularly-
varying functions are closed under elementary operations. Next, Item (vi) shows that, if s(n)
is regularly varying with exponent p > 0, then >..° s(i)~! is regularly varying with exponent
p — 1. In addition, Item (i) shows that slowly-varying functions are often "negligiblein the
sense that, for a regularly-varying function f with exponent v # 0, we can write f(x) =
z7+°()  Moreover, it shows that for any regularly-varying function s with exponent p > 1 that
e s(i)™' < oo, whilst for any regularly-varying function s with exponent p < 1 we have

Dy 8(1)7! = 0.

The following approximations for i, as defined in (3.1), are also used heavily.

Lemma 6.2. Consider the two choices for the fitness function f (mixed or additive weights),
as in Assumption 3.10, as well as the two choices for the degree function s (super-linear
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and barely super-linear), as in Assumption 3.13. For the super-linear case and for each fixed
w € [0, ),

w 1 + 0(1) —1
= sty —
For the barely super-linear case there exists a slowly-varying function L such that for each
w e [0,00),
w_ Lol oy
g(w)
In particular, for the barely super-linear log-stretched case, it follows that

L(n) = B~ (logn)'~fe~(esm",

Proof. We fix w € [0, ) throughout and generally use that

w_v 1% 1 Clto(l) &1
i §f<z,w> ;g<w>s<i>+h<w> g(w) Z()

where we recall that ¢ = 1 in the additive case, and we can omit the term h(w) in the fraction
at the cost of a o(1) term. Taking s as in the super-linear case, since s is assumed to be
regularly varying with exponent p > 1, by the integral test and using Lemma 6.1, we thus find

that )

w 1+o(1

Wy = ———————=ns(n
) 1)

With s as in the barely super-linear case, it follows from (vi) in Lemma 6.1 and an integral

test that
“ 1
L(n) := f ——duz.

n ()

For the log-stretched case, we have with s as in (3.5),

L(n) = foo 2~ exp(—(log x)?) da.

n+1

Using a change of variables y = (log x)”, we obtain, with T'(s,z), s,z > 0, the upper incom-
plete gamma function,4

L(n) = g7'T(1/8, (log(n + 1))?) = (87" + o(1))(log n)l—ﬂe—(logn)f@’

which concludes the proof. O

6.1.1 Conditions for an infinite star: Item 1 of Theorem 3.4.

To provide conditions for an infinite star to appear almost surely, we apply Theorem 3.4 by
proving the condition in ltem 1 is satisfied in certain cases. To this end, we state the following
lemma.

“The upper incomplete gamma function is defined, for 5,2 > 0 by I'(s, x) := S:O ts—le—tdt.
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Lemma 6.3. Equation (3.2) in Item 1 of Theorem 3.4 is satisfied when the following conditions
are met, based on the assumptions for the fitness type, degree function s, and vertex-weight
distribution:

Weight Degree Star

Mixed | Super-linear | (3.6) & (p—1)(a—1) > (y— VTTI) v
Additive | Super-linear | (3.6) & p(a—1)>1

Mixed | Log-stretched | (3.8) & fv > 1

Table 2: The first column represents the form of the fitness function, as in Assumption 3.10; the
second represents the form of the degree function, as in Assumption 3.13. The third column lists
the required assumptions on the vertex-weight distribution, as in Assumption 3.15, together with
the choices of the parameters that lead to a unique node of infinite degree.

We split the proof of Lemma 6.3 based on the different choices for the fitness function f and
degree function s, as in Assumptions 3.10 and 3.13, respectively. As a general approach, we
bound, for some sequence (k,),en € [0, )Y,

[H fG,W) + cun ] = JH e T S +PW = k).

5 SUDy<p, f(J: W) + cpyy

We now use that, by Assumption 3.10, for x > 0 and j € N,

sup /(j = Lw) < (supg(w))s(j = 1) +suph(w) = g(w)s(j ~ 1) +lz). (6.1
where the suprema are well-defined as we assume ¢ and & to be continuous. Since g and h
are regularly varying with exponents 1 and 7 in the mixed case and g = 1 and h is regularly
varying with exponent 1 in the additive case, it follows from [13, Theorem 1.5.3] that g(z) =
(1+0(1))g(x) and h = (1+0(1))h(z); in particular, they are regularly varying with the same
exponent (and § = g = 1 in the additive case). As such, using the weight functions g and h
falls in the same family of weight functions as g and h. The advantage of using g and h is that
these are monotone increasing. However, by this argument we can thus use g and h instead
and assume, without loss of generality, that they are monotone increasing. This yields

v 1
[Hfj’ )+ e ]gexp(_wn ;)f(%kn)Jrcunl)JrP(W)k")' (6.2)

Using Assumption 3.15, one can choose k,, to grow with n sufficiently fast so that the second
term on the right-hand side is summable in n. It then remains to show that the exponential
term is sufficiently small for this choice of k, as well, to obtain that the left hand side is
summable in n.

6.1.2 Conditions for an infinite path, Assumption 2.6.

To prove the appearance of an infinite path, we use Item 2 of Theorem 3.4. In particular
we verify Condition (2.9) with v := du for some constant d € (0,1) and p¥ as in (3.1).
Notably, the approach we use to do so works for any inter-birth distribution satisfying the
variance condition of Remark 3.6; it is not tailored to the exponential distribution.

We thus have the following lemma.
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Lemma 6.4. The condition in (2.9) satisfied when the following conditions are met, based
on the assumptions for the fitness type, degree function s, and vertex-weight distribution:

Weight Degree Path

Mixed | Super-linear | (3.7) & (p—1)(a—1) < (y— %) v
Additive | Super-linear | (3.7) & pla—1) <1

Mixed | Log-stretched | (3.9) & fv <1

Table 3: The first column represents the form of the fitness function, as in Assumption 3.10; the
second represents the form of the degree function, as in Assumption 3.13. The third column lists
the required assumptions on the vertex-weight distribution, as in Assumption 3.15, together with
the choices of the parameters that lead to a unique infinite path.

We observe that combining Lemmas 6.3 and 6.4 proves Theorem 3.16.

As a general approach to proving Lemma 6.4, we start with a general lower bound for each
of the terms in the sum in (2.9), and then show that this lower bound is not summable for
each of the specific cases dealt with in Lemma 6.4. We first introduce the event {WW > k,}
for some sequence (k;,)nen such that the tail probability P (W > k,,) is not summable. By a
similar argument as in (6.1), but applied to inf,,>, f(j — 1,w) (which is monotone increasing
in ), we may assume, without loss of generality, that f is monotone increasing in its second
argument.

Then, on the event {W > k,}, we stochastically dominate each inter-birth time Xy (j) by
Xy, (j), which is distributed as an exponential random variable with rate f(j — 1,k,), and is
independent of both W and Xy (7), for each j € N. It follows that P stochastically dominates
P = ZJ 1 an( ), which again is independent of W and P. We thus obtain the lower bound

PP <v?)>P{P <v’ n{W> })>P<75<yg>19>(w>k:n).

Since we choose k,, such that the second probability on the right-hand side is not summable,
it suffices to show that the first probability is uniformly bounded from below in n. By Markov's
inequality and the choice of v;¥, we obtain the lower bound

P<ﬁ<yg) <1—duE[P]>IP’(W k)

= (1= )IP’W>k
( njofj,

With £, such that the probability on the right-hand side is not summable and since d € (0, 1)
is arbitrary, it thus suffices to prove that

(6.3)

lim sup — ” Z f ik (6.4)

n—o Mn] 0

If this holds, it follows that the condition in (2.9) is satisfied. We thus prove (6.4) for the cases
in Lemma 6.4.
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6.1.3 Proofs of Lemmas 6.3 and 6.4

We now proceed to state the proofs of Lemmas 6.3 and 6.4. We do this case by case, and we
combine the proofs of the related statements in both lemmas. We use the approaches outlined
after the statements of both lemmas.

Proof of Lemmas 6.3 and 6.4, s super-linear, mixed weights. We first prove the claim from
Lemma 6.3. We distinguish between v < 1 and v > 1, and we start with the former case.
Observe that, when v < 1, it follows that max{y — (v — 1)/p,1} = 1. Hence, we can take
e > 0 small enough such that (1 —¢)(p — 1)(a — 1) > 1 = max{y — (y — 1)/p, 1}. We set
B:=(1—¢)(p—1) and k, := n”. We use (3.6) to deduce that P (W > k,,) < {(k,)n" (@18,
which, as (o — 1) > 1, is summable. For the first term on the right-hand side of (6.2), we
write

= cun e oyt o 1
exp( 2 BETTE )‘ p( o) 2 <>+h<nﬂ>/g<nﬁ>+cu—1/g<nﬂ>>

(6.5)
As v < 1, it follows that 3y < p — 1. Recalling that, by Lemma 6.2, 1! is regularly varying
with exponent p — 1, it follows that

h(n®) + cpt
g(n”)
is regularly varying with exponent £(p — 1). We now write s(z) = {(z)z” for some slowly-

varying function £. Moreover, since p > 1, we have j? + a, < (j + a/?)?. As a result, for any
n > 0 there exists J = J(n) € N such that for all j > J,

Qp i=

$(j) + an = £(j)j7 + an, < 3G + an) < (j + a/P)Pr. (6.6)

We can thus bound the sum in (6.5) from below by

Z : Z j+ alpy=rm > Z G - @(a;(pwfl)/p)? (6.7)
=R =1l

where the final step uses an integral test. Using this in (6.5), we thus obtain, for some constants
C,C" > 0, the upper bound

—1,—(ptn—1)/p
My, G, o i 1 )/p
exp C ) = exp C'ay™"

( g(n) (= )

As the term in the exponential varies regularly with exponent e(p — 1)(1 — n)/p > 0, the
exponential term is summable. We thus conclude that (3.2) is satisfied, which concludes the
proof for v < 1.

We then consider the case v > 1. We first use our assumption, and fix ¢ > 0 small such that
(1—e)p—1)(a—-1)
y—(O=1)/p

which is possible since max{y — (y —1)/p,1} = v — (v — 1)/p when ~,p > 1. We then set
f:=(1-¢e)(p—1)/(y—(y—1)/p). By the same argument as before, since f(a—1) > 1, the

> 1, (6.8)

DOI 10.20347/WIAS.PREPRINT.3060 Berlin 2023



The structure of genealogical trees associated with explosive branching processes 53

second term on the right-hand side of (6.2) is summable. To bound the first term, we again
write the upper bound

P (_ i’ Z 4 f( J,n5)1+ Chy’ ) - ( Z h(n?) 1+cu )/g(nﬂ))
(

6.9)
Note that the exponent associated with the regularly-varying function h(n®) is 8y = (1 —
e)p—1)v/(y — (v —1)/p) > p— 1 for ¢ sufficiently small (since we assume that v > 1).
Thus, making ¢ smaller if necessary (which means that (6.8) still holds), recalling that, by
Lemma 6.2, u, is regularly varying with exponent —(p — 1) in the super-linear case, it follows
that, if a, := (h(n®) + cu;')/g(n?), al/? is regularly varying with exponent

(I-e)p—-1(y—-1)
yp-1)+1

Bly—=1)/p=

As a result, using the same approach as in (6.7), we can bound the sum appearing in the
exponent in the right-hand side of (6.9) from below by

: ] + al/p (p+n) > jf(ern) _ @(a;(mnfl)/p)_
s0) + an o = j=T 4[]

Combining this lower bound with (6.9), for some constant C” > 0, we obtain the upper bound

o ugla;“’*"‘”)

o (O

Since we can choose 7 arbitrarily small, balancing the exponent of p,, ! (which is p — 1) with
the exponents of a_ ?~1/? and g(n?) it follows that the fraction is regularly varying in n with
an exponent that is positive if

(p—12(y-1) , plp—1)
Yp-1)+1  Ayp-1)+1

p-1=0-9( ) - a-aw-1.

As this inequality is clearly always satisfied for any € > 0 we obtain that the left-hand side
of (6.2) is summable (which implies (3.2)), as desired.

We then prove the claim in Lemma 6.4. Again, we distinguish between the cases v < 1 and
v > 1. Let € > 0 be sufficiently small such that

p—1D(a—1)<1l-—c¢ ifvy<1 (6.10)
p-—D(a-1)/(v=(v—1/p) <l-c ify>1 '
In either case, we set k, = n(1=9/(@=1) Then P (W > k,) = £(k,)n~1) by (3.7), which

is not summable in n. Moreover, we have pin(w) = £(n)n=®=Y for ¢ some slowly-varying
function (which may depend on w up to constants only) by Lemma 6.2. Now, when v < 1,
we have the upper bound

5

Sk S glka)s(h) + h(ka) — g(ka) 55 5(5)
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Since s varies regularly with exponent p > 1, it follows that the sum is finite. Since ¢ is
regularly varying with exponent 1 we can write g(z) = 2'*°(!) sp that we obtain the upper
bound n~(1=steW)/(@=1) A (1 —)/(aw — 1) > p — 1, it follows that (6.4) is satisfied.

Otherwise, for v > 1, by similar computations as in (6.6) and (6.7) and using that j? + x >
n(j + x'/P)P for j, x, sufficiently large and 1 small, we obtain, for > 0 sufficiently small,

1 & 1
Z f k) g(kn) Z s(j) + h(kn)/g(kn)

=0

g(ky)~(Fn)/p

1
o Sv-o(ft
(p—1-n)/p

By Lemma 6.1, the term g(kn)*(“”)/p/h(kn)(7’*1*’7)/1’ is regularly varying, with exponent

l—e/1+n p—1-—n 1—¢ v—1 v—1)n
< +7 )=— (7— ! )><—(p—1),
a—1\ p D a—1 D D

for n > 0 sufficiently small, where the last step uses the second inequality in (6.10). Conse-
quentially, it follows that g(k,)~ /7 /h(k,)P~1="/P = o(1") and we obtain (6.4). O

Proof of Lemmas 6.3 and 6.4, s super-linear, additive weights. We first prove the claim in
Lemma 6.3. We fix € € (0, 1/p) small such that p(a— 1)(1 —¢) > 1. Then, with k, := n(1=="
and using (3.6), P (W > k,,) < l(k,)n~@DP(1=2) and since (o — 1)p(1 — &) > 1 we can
deduce that the second term on the right-hand S|de of (6.2) is summable. For the first term,
we bound f(j, k) from above by sup;,1-- f(j, k) for all j < n'~*. With a similar argument
as in (6.1), we may assume that f is monotone increasing in its first argument, since s is
regularly-varying with exponent p > 1. This thus yields the upper bound

—-1,,1—¢

% ( Chy ' )
< — .
P ( Z 4 f( k) + ey ) P f(nt=2, k) + cpyt

As (1—¢)p > p—1 using Lemma 6.2, we see that f(n'~%, k,) +cu;' = s(n'=%) +h(n(1=9P) +
cutis regularly varying with exponent (1 — €)p. It follows that the fraction is a regularly-
varying function in n, with exponent (p — 1)e > 0. So, for some slowly-varying function L, we
can write the exponential term as exp(—L(n)nP~1¢). We thus arrive at the desired conclusion
that the exponential term is summable in n. This shows that the left-hand side of (6.2) is

summable and hence that (3.2) is satisfied.

We then prove the claim in Lemma 6.4. We fix ¢ > 0 sufficiently small such that p(a—1) < 1—¢
and let k, := n(1=9/(@=D We then have P (W > k,) = £(k,)n"1~%) by (3.7), which is not
summable in n. Then, for w fixed, u = ¢(n)n=®=V, for some slowly-varying function ¢
(which may depend on w up to constants only), by Lemma 6.2. By calculations similar to
those in (6.6) and (6.7), we have for any > 0 and some large constant C' > 0, for all n
sufficiently large,

.— C I (p—m) _ h(kn)—(p—l—n)/p)_
7=0 j=0 8(]) + h n h(k’n 1/p

Since h varies regularly with exponent 1, the last term is O(n~=P~1=7/(1-9) since p(a — 1) <
1 —e. As we can choose 7 arbitrarily small, by the choice of k,, it follows that (6.4) holds. [
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Proof of Lemmas 6.3 and 6.4, s log-stretched case, mixed weights. First, we prove the claim
from Lemma 6.3. We assume that S > 1 and recall that

fi,w) = gl (i + 1)o7 4 h(w),

where g and h are regularly-varying functions with exponents 1 and vy > 0, respectively. Fix
e > 0 small so that fv > 1 + . We apply (6.2) with

1+o0(1)
9(0)3

where the latter follows from Lemma 6.2. Now, using (3.8) we obtain

kn = exp((logn) #9¥), and g, = (logn)' P exp(~(logn)?),  (6.11)

P(W > k) < exp ( —¢(logky,)") = exp ( —¢(logn)'*®) < n 0+, (6.12)

for n sufficiently large, which implies that the second term on the right-hand side of (6.2) is
summable. For the first term, we define

I, == exp ((logn)”). (6.13)

Since g is regularly varying with exponent one, we can write g(z) = /(z)z = 2'*°() for some
slowly-varying function ¢. As a result, using (6.11),

pn /9(kn) = (9(w) + o(1))(logn)° " exp ((log n)” — (log n) "/ (1 + 0(1))).  (6.14)
We thus obtain that for all j > I,,, when n is large,
( + 1) exp((log(j + 1))?) > I, exp((log I,)?) = exp((logn)® + (logn)*) = p1," /g(kn).

Moreover, since S > 1+¢, it holds that h(k,) = o(u, '), irrespective of the regularly-varying
exponent v = 0 of h (since we can again write h(x) = 27*°(). As a result, we obtain the
lower bound

J

© 1
ZO g(kn) (G + 1) exp((log(j + 1))?) + h(k,) + p*!
1

i 1 _ (L4 o(1) _ g(0)p,
g(kn) A 30+ Dexp((log(y +1))7)  3g(ka)/g(0) ~ 4g(ky)’

Jj=

for n sufficiently large, where we recall the definition of y, from (3.1) (with w* = 0) and
use (the proof of) Lemma 6.2 in the final step. Substituting this bound into the sum in
the exponent of the first term on the right-hand side of (6.2), we obtain the upper bound
exp(—5¢g(0)ur, 1, /g(kn)). By the choice of I, in (6.13) and y,, as in (6.11),

_140(1)
e = (008

By (6.14), we deduce that that the dominant term in exp(—;&pur, pr,"/9(kn)) is

(log )"~ exp(—(log I,)") = exp(—(logn)”* (1 — o(1))).

exp(—exp(C'(logn)”))

for some C” > 0, since fv > 1 4 €. By a similar argument as in (6.12), this upper bound is
summable in n, as desired.
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We then prove the claim in Lemma 6.4. We fix € > 0 sufficiently small such that v <1 —¢
and set k, := exp((logn)1==/¥). It follows from (3.9) that, for n sufficiently large

HD(W > kn) > e—g(logn)lfs > n—l7
which is not summable. We then have upper bound

e}
sz g(k

Z:O

> 1

Z (i + 1) exp((log(i + 1))?) + h(k,)/g(kn)
= 1 C
Z B

< ;
(i + 1) exp((log(i + 1))%) ~ g(ky)

(6.15)

for some constant C'z > 0, which follows since for any ¢ > 0 and ¢ sufficiently large,

1 1
(i + 1) exp((log(i + 1))#) < (i + 1)(log(i + 1))+’

so that the sum is indeed finite. Hence, since g is regularly varying with exponent one and we
can thus write g(z) = 2'*°(), we obtain

= 1
Zfzk

1=0

) < Cyexp(—(1 + o(1))(logn)==)/").

Since Bv < 1—¢, the —(logn)(1=9)/* term in the exponential function dominates the (logn)”
term in the exponential function in (1)~ it thus follows that (6.4) is satisfied. O]

6.2 Sub-tree counts in specific models of recursive trees with fitness

The aim of this subsection is to turn the conditions of Theorem 3.7 into more concrete
conditions, which we then proceed to check for the different examples discussed in Section 3
to prove Theorem 3.21. We start by bounding the summands of (3.4) from below and above.

Lower bound. For a lower bound, we use any one fixed ordering O € O(T'), drop the indica-
tors from the denominator, and introduce the indicator of the event {sup;; ;<1 (i, W;) <
11, '}. By bounding all terms f(deg™ (v;, O,), W,,) (except for f(¢,W,,)) in the denominator
from above by u;l, we obtain the lower bound

g (v
S, W)
0 n > f(deg (vi, Op;), W )+u}

k:]‘

E |:1supi<k,j§k—1 f(lzw’ll] )<N”r:1

J

k—1 deg™ (v, T)—
T fe,w,,)
o e | FEW) + kg |

7=0 =0

where we use that the sum in the denominator has at most k — 1 terms besides f(¢,1W,,). By
the independence of the vertex-weights, setting

f+(k> W) ‘= sup f(l? W)> and f_(k7 W) = 12;{]‘?(% W)a (616)

i<k
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and using that the mapping x — x + y is increasing in z, we obtain the lower bound

k—1 _
f (kW) degwj,n]
| |]E{1 S (6.17)
FHkW)<pn _ _ 5
i (kW< (f (k,W)Jrkunl)

where we use that deg™ (v;, T) < k for any vertex v; and any tree T' of size k + 1.

Upper bound. For an upper bound we use a similar approach. First, irrespective of the
ordering O € O(T'), we can drop all terms from the denominator except f(¢,W,,) and s,"
and use independence of the vertex weights to obtain the upper bound

= D e wy)
Z Of deg (U270|]) in)1deg+(vi,0‘j)<deg+(v¢,T) +:u771

Il
=}

ka Cﬂ

e | (ﬁT“ FE W) <ﬁE[< [* (kW) >deg+<”j’”]
FOW) +pt | 7L LN W) + g ’

=0 i

(6.18)
where now f*(k,w) := sup,;, f(i,w) and we again use that the out-degrees are at most k.
As the terms in the expected value are at most one, we condition on the size of f*(k, W) to
obtain the upper bound

1 (21 m (e o220 ).

As a result, since |O(T)| < (k + 1)! for any tree of size k + 1, we can use the above in (3.4)
to obtain that, for some constant D = D(k) > 0, the inner sum in (3.4) is at most

lﬂI( e (g eams) R E ) =) ). (619)

We now use the lower and upper bound to determine, based on certain conditions on the
vertex-weights, whether the double sum in Theorem 3.7 is finite or infinite. In particular, we
are now in a position to prove Corollary 3.8.

6.2.1 Proof of Corollary 3.8

Proof of Corollary 3.8. We start by using the lower bound in (6.17). For each expected value
in the product, we have, since f~(k, W) < f*(k, W), the lower bound

£ (k, W) y deg* (3.7)
& [1”” s <(k + Dpyt )

_ eot (vs _ eot (v
> (k + ) k'u?l = DR [1f+(i,W)<u7Llf (k7 W)d e WT)] :
As p;;! diverges with n and by the moment condition, by monotone convergence we find that

the expected value on the right-hand side equals E [f*(k:, W)deg+(”f’T)] (1 —o(1)), which is
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finite. As such, substituting this in (6.17), we arrive at the lower bound
—1
Cl e om = cut,

since the sum of the out-degrees equals |7'| — 1 = k, and where C' > 0 is a constant.

For an upper bound we use (6.18): omitting the terms f*(k, 1) from the denominator, yields

the upper bound
o (e oms o]

By the moment condition we again have that, irrespective of the choice of k € N and the tree
T, that expected values are finite. As such, we obtain an upper bound D’u” for some constant
D’. Applying Theorem 3.7 then yields the desired result. 0

6.2.2 Proof of Theorem 3.21

Recall the quantities G; and G5 from (3.10). We first have the following result, which deals
with the case that f(k, W) is a regularly varying random variable.

Proposition 6.5. Assume that f(k, W) satisfies (3.6) and (3.7) for some slowly-varying
functions 0y, {;, respectively, and an exponent z > 0, for any k € Ny (where z is independent
of k), and assume that for each k € Ny there exists i), € {0, ..., k} such that inf,<;, f(i,w) =
f(ig,w) for all w e S. If there exists 1y > 0 such that

—(G1(T,2)—2G2(T,z))—n < o0 for all ne (0, 7]0), (620)

HM8

then the tree T, contains T as a sub-tree finitely often, almost surely. If there exists 19 > 0
such that

0

2 —(G1T2)=2Ga(To2)+n — o for all n € (0,n), (6.21)

then the tree T, contains T infinitely often, almost surely.

We finally state the following technical lemma, whose proof we defer to Section C in the
Appendix.

Lemma 6.6. Let r be a regularly-varying function with exponent p > 0 and let W be a
random variable with a regularly-varying tail distribution with exponent —(¢ — 1) < 0. Then,
r(W) is has a regularly-varying distribution with exponent —({ —1)/p.

With this proposition and lemma at hand, we can prove the results in Theorem 3.21.

Proof of Theorem 3.21. We fix k € N and let T be a sibling-closed tree of size k + 1. In all of
the cases we discuss, we use the approximations of y,, for the two main choices of the degree
function s (super-linear and barely super-linear), as in Lemma 6.2, and distinguish the proof
between these two main cases.
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Super-linear case. For the super-linear case with additive weights, we have that f(k,z) is
regularly varying in = with exponent 1; for the super-linear case with mixed weights, f(k,z) is
regularly varying in = with exponent v v 1, for any k € Ny. Applying (the proof of ) Lemma 6.6
and assuming that the vertex-weight distribution satisfies (3.6) and (3.7) with exponent o —1,
we obtain that f(k, W) satisfies these tail distribution inequalities with exponent z = o — 1
in the additive weight case and z = (o« — 1)/(7 v 1) in the mixed weight case for any k € Ny
(where the slowly-varying functions may depend on k). In both cases, for any k € Nj and
w = 0,

inf (i) = g(uw) (inf 5(9) + h(w) = g(w)s(ix) + h(w)

15

where i = arg min,;;, (). As 7 does not depend on w > 0, the condition on inf;<; f(i, w)
in Proposition 6.5 is satisfied. Moreover, in both cases, p, is regularly varying with exponent
—(p — 1). Hence, the inequalities in (3.11) and (3.12) follow by applying (6.20) and (6.21),
respectively.

Barely super-linear case. The proof follows directly from the fact that p2 is not summable for
any a = 0, as follows from Lemma 6.2, and that

k — (Gl(T7 Z) - ZGQ(T7 Z)) = 2 deg+(va T) - 2(deg+(U>T) - Z)ldeg+(U,T)>z =0,

veT veT

\%

which concludes the proof. O
It remains to prove Proposition 6.5.

Proof of Proposition 6.5. We first recall that we assume that the random variables (f(k, W))en,
satisfy (3.6) and (3.7) for some slowly-varying functions ¢y, £, respectively, and some exponent

z > 0 independent of k. By the definition of f* and f~ in (6.16) and the assumption that
for each k € Ny there exists iy, € {0,...,k} such that f~(k,w) := inf,<x f(i,w) = f(ig, w)
for all w € S, we have

P(f(ix,W)=2) =P (f (5,W) > 2z) <P(f*(k,W)>2) <Y P(f(i, W) > z). (6.22)

1=0

By the assumptions on the tail distribution of f(i, W), and by Lemma 6.1, we thus find that
we obtain an upper and lower bound for the tail probabilities of f~(k, W) and f*(k, W) that
are regularly-varying with exponent —z. We now apply [54, Proposition 1.3.2] to f*(k, W),
using the regularly-varying upper bound on its tail distribution (with X = f*(k,W), g =
deg™ (v, T), and regularly-varying exponent —z) to determine that, for some slowly-varying
function L1,

E[1f+(k,w)<uﬁlf+(kv W)deg+(”’T)] (6.23)
E [f*(ka W)deg“vﬂ} (1—o0(1)) if deg’(v,T) < 2,
<4 Li(p,") if deg”(v,T) = z,
#%Lﬂﬂﬁl)ﬂifdegﬂvm if deg®(v,T) > z.

We intend to use this in each of the product terms in the upper bound in (6.19) by omitting
the term f*(k, W) in the denominator (which yields a further upper bound) and taking out a
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dg(7

factor pn ) for each J < k —1. We thus have a sum of two quantities in each product

term, namely
eot (v; egt (v -
s ( JvT)E[1f+(k7W)<m—Llf+(k, W )des ( ’T)] +P (f+(k, W) = unl) ) (6.24)

When deg™ (v;, T) < z, the case distinction in (6.23) tells us that the first term is regularly
varying in i, with exponent deg™ (v;, T'). Since, by (6.22) f*(k, W) satisfies (3.6) (for some
slowly-varying function ¢, constant 7;, > 0 and exponent z > (), the second term is regularly
varying in p,, with exponent z > deg™ (v;, T'). Since p, tends to zero, it follows that, in this
case, the first term in (6.24) is dominant.

When deg™ (v;,T) = z, the case distinction tells us that the first term is regularly varying in
f4n with exponent deg™ (v;, T) = z, and by again applying (3.6), so is P (fT(k, W) = u,').
Finally, when deg+(vj,T) > z, it is readily verified that both terms are equal, up to a multi-
plicative constant. Hence, we can bound the entire term in (6.24) from above by

LQ (M;Ll)/%l?in{z,deg‘* (v;,1)}
for some slowly-varying function L,. Using this in each of the product terms in (6.19), we

obtain the upper bound

1

fo—
f+ (k’, W) deg™ (v;,T) N B
DE}( l FHeW)<pn’ f+(k3,W)+,U,r_Ll> ]+IP’(f (/g,W)>,un1)>

1_[1 L2 Nn :m{z deg™ (v;,T), 0})
7=0

where we have taken the terms ,udeg ©T) outside of the product to obtain a term uf. We

now recall that Go(T', ) counts the number of vertices v; in T' such that deg™ (v;, T) > z,
and G1(T', z) counts the sum of all degrees of such vertices v; (see (3.10)). As a result, for
some slowly-varying function Lg, using that products of slowly-varying functions are still slowly
varying by Lemma 6.1, we obtain the upper bound

Ls(u Nyt IR (17 (kW) 2 )
Now, we use that f*(k, W) satisfies (3.6) and apply 6.1 to arrive at
La(p, ), (109726202, (6.25)

for some slowly-varying function L,. Since we can bound L,(u;') < p,," for any n > 0 and
n sufficiently large, the desired result in (6.20) is obtained by applying Theorem 3.7.

To prove (6.21), we start from the lower bound in (6.17). Noting that the integrand is bounded
from above by one, we have

k—1 deg+(Uj7T)—1 f(g w. )

Ellﬁ(k,wkunl H) H e, w,) +]k‘/rl]
j= = i n

k—1 - deg™ (v;,T) 6.26

S TTEl1 71( f(k,W) ) g ( )

5 [k, W) + kpyt

J

—P(f (kW) < it R W) = )
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We first tend to the product on the right-hand side. By bounding the term f~(k,W) in the
denominator from above by y !, we bound it from below by

(k+1) HE[ eyt (B Wy 0 |

We now use the regularly-varying lower bound on the tail distribution of f~(k, W), as de-
rived from (6.22). Again applying [54, Proposition 1.3.2], we obtain a lower bound analo-
gous to (6.23) (and by possibly changing the slowly-varying function). The steps in in (6.24)
through (6.25) are then identical, so that we obtain, for some slowly-varying function Lj, the
lower bound

(k + 1)7kL5(Mgl)luf;(Gl(T,z)szz(T,z)).

We now substitute this in (6.26) with C' = (k + 1)~* and bound the probability from above
by omitting the first event, to arrive at

f ( ) deg™ (v;,T) — —(G1(T,2)—2G2(T,z
HE{ JrEm= <f (k, W) +ku—1> > OLa(pty Yy (7D

(6.27)
—B(f (kW) = )"

As follows from (6.22), the probability P (f*(k, W) > p;*)" is bounded from above by a
regularly-varying term (in pu,) with exponent kz. By Lemma 6.1, the right-hand side is
regularly-varying with exponent min{k — (G1(7, z) — 2G2(T, z)), kz}. In particular, it is pos-
itive for all n large if the first argument attains the minimum. To determine that this is the
case, we observe, with a similar argument as in from (3.13), that the first argument of the
minimum is at most k. Hence, when z > 1, it is immediate. When z < 1, we instead use
that G1(T', z) = k (since now Gy simply sums all degrees) and G5(7",z) = k + 1 — N, where
N > 1 is the number of leaves (i.e. nodes with out-degree zero) in T'. We thus have

k(Gi(T,2) — 2G5(T,2)) <kz < z2(k+1—N) <kz,
which holds since N > 1. As a result, we can bound the right-hand side of (6.27) from below,
for some slowly-varying function Lg, by

Le(p; Yl (G —(a-1)Ga(T:2)/2)
We finally use Lemma 6.1 to bound Lg(p,; ') = pu" for any n > 0 and n sufficiently large and
apply Theorem 3.7 to finally arrive at (6.21), which concludes the proof. O

A Additional results for other fitness functions

In Theorem 3.16 we discussed three particular choices of the fitness function: a super-linear
degree function s with either mixed or additive weight functions, and a log-stretched super-
linear degree function s with mixed weight functions. For these choices, we were able to prove
a complete phase diagram for the emergence of a unique vertex with infinite degree or a unique
infinite path, and for sub-tree counts in the former case.

In this section, we discuss three additional choices of the fitness function: barely super-linear
log-stretched degree function s with additive weight functions, and poly-log degree function
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s with either mixed or additive weight functions. We present these cases here, since we are
unable to prove a complete phase diagram; for each case there is a gap in the parameter
choices where we cannot prove the emergence of a unique vertex with infinite degree nor a
unique infinite path.

We summarise these choices in the following assumptions.

Assumption A.1l. Let f(i,w) = g(w)s(i) + h(w),i € No,w = 0 satisfy (w*) and one of the
following three cases.

B Barely super-linear log-stretched with additive weights: s is as in (3.5), g = 1,

and h(x) = {(x)x for some slowly-varying function ¢ : [0, 00) — [0, o), such that either
loglog(1/¢

Ja€[0,1): lim og log(1/6(z)) = a, (A1)

z—o  Joglogx

Sae[0.1) : Tim 281080()

z—o  Joglogx

or

= a. (A.2)

B Barely super-linear poly-log: For some 0 > 1,
s(1) = (1 + 2)(log(i + 2))7, 1 € N,

and g, h are as in the additive or mixed weight case of Assumption 3.10.

We then also introduce the following additional assumptions for the vertex-weight distribution.

Assumption A.2. The vertex-weights (IW;);cy are i.i.d. and their tail distribution satisfies one
of the following cases.

B Power law with lower-order term. Let 7 € (0,1). We have the following two condi-
tions.

1 There exist ¢, > 0 and 7 € (0, 1) such that

P(W > z) <2 te e T

\Y
&
>
N

2 There exist ¢,z > 0 and 7’ € (0, 1) such that
P(W=z)= x_leg(logI)T/, T = (A.4)

B Stretched exponential. Let x > 0. We have the following two conditions.

1 There exist ¢,z > 0 such that

P(W=ux)<e ™, x . (A.5)

A\
8

2 There exists ¢, z > 0 such that

P(W=>x)=e<, T =z (A.6)

\%
[
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We then have the following theorem, which is an equivalent result to Theorem 3.16.

Theorem A.3. Let (7;)ien be a (W, f)-recursive tree with fitness, where the fitness function
f and degree function s satisfy one of the cases in Assumptions 3.10 and 3.13, respectively,
and the vertex-weight distribution satisfies one of the cases in Assumption 3.15. The tree
T either contains a unique vertex with infinite degree and no infinite path almost surely,
or contains a unique infinite path and no vertex with infinite degree almost surely, when the
following conditions are met, based on the fitness function, degree function, and vertex-weight
assumptions:

Weight Degree Star Path

Additive | Log-Stretched | (A.1),(A3)& (v p)>(1—-pF)va | (A2),AN)&T>pv(1-p) (7vp)>a
Mixed Poly-log (A5) & (c—1)k>1+k (AB) & (c—1)k <1

Additive Poly-log 38) & (c—1)(1-1/v)>1 BN &a<?2

Table 4: The first column represents the form of the fitness function, as in Assumption 3.10;
the second represents the form of the degree function, as in Assumption A.1. The third and
fourth column, respectively, list the required assumptions on the vertex-weight distribution, as in
Assumptions 3.15 and A.2, together with the choices of the parameters that lead to either a unique
node of infinite degree or a unique infinite path.

The proof of Theorem A.3 follows from two lemmas, equivalent to Lemmas 6.3 and 6.4, which
we state now.

Lemma A.4. Equation (3.2) in Item 1 of Theorem 3.4 is satisfied when the following condi-
tions are met, based on the assumptions for the fitness type, degree function s, and vertex-
weight distribution:

Weight Degree Star

Additive | Log-Stretched | (A.1),(A3) & (v B)>(1—-5)va
Mixed Poly-log (AB) & (c—1)k>14+k

Additive Poly-log 38) & (c—1)(1—-1/v)>1

Table 5: The first column represents the form of the fitness function, as in Assumption 3.10; the
second represents the form of the degree function, as in Assumption A.1. The third column lists
the required assumptions on the vertex-weight distribution, as in Assumption A.2, together with
the choices of the parameters that lead to a unique node of infinite degree.

Lemma A.5. The condition in (2.9) satisfied when the following conditions are met, based
on the assumptions for the fitness type, degree function s, and vertex-weight distribution:

Weight Degree Path

Additive | Log-Stretched | (A.2),(A4) & 7" >pv (1-08), (7' vp)>a
Mixed Poly-log (A6) & (0 — 1)k <1

Additive Poly-log 37 & a<?2

Table 6: The first column represents the form of the fitness function, as in Assumption 3.10;
the second represents the form of the degree function, as in Assumption A.1. The third column
lists the required assumptions on the vertex-weight distribution, as in Assumptions 3.15 and A.2,
together with the choices of the parameters that lead to a unique infinite path.

It is clear that Theorem A.3 follows from Lemmas A.4 and A.5. Before we prove these two
lemmas, we state the following result, which is an analogoue of Lemma 6.2.
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Lemma A.6. Let [ satisfy the barely super-linear poly-log case, as in Assumption A.1. Then,
for any w = 0,

w

iy = =y,

1+ o0(1) oo
glw)(o — 1) 8™

Proof. We use Lemma 6.2, which tells us that u¥ = (1 + o(1))g(w)~*L(n), where

L(n) = f " log )7 dr.

n+2

Using a variable substitution y = log x and determining the integral yields the desired result.
O

The proofs of Lemmas A.4 and A.5 follow the same approach as those of Lemmas 6.3 and 6.4.

Proof of Lemmas A.4 and A.5, s log-stretched case, additive weights. To start, we prove the
claim in Lemma A.4. We assume that 57 > 1 and recall that

Fi,w) = (i + 1)est D" 4 p(a),

where h is a regularly-varying function with exponent 1. Fix € > 0 sufficiently small so that
p1 > 1+ €. We apply (6.2) with

1+o(1)
g

where the latter follows from Lemma 6.2. Since 7 € (0,1) and by (A.3), we have

(log n)' % exp(~(logn)®), (A7)

kn :=nexp(—(1—¢)é(logn)”), and pu, =

P (W = kn) < k;le—é(logkzn)'r
- :Lexp (1 —e)e(logn)™ —c(logn — (1 — e)e(logn)™)7) (A.8)
_ :Lexp (= ec(logn)™(1 + o(1))),

for n sufficiently large, so that the second term on the right-hand side of (6.2) is summable.
Next, we define

I, = h(ky,) exp (— (log h(k,))? + B(log h(k,))** ).

By Taylor's theorem, for |z| < 1, (1 +2)f = 1 + Bz + 22142 1 o(2%). Factoring out the
term log h(k,) we can thus write

(log 1,,)" = log h(k,)? (1 — (log h(ka))"~" + B(log h(kn))*~2)"
= (ogh(kn)’ — Bllogh(k )~ + 25(5 — })(log (k) (A9)
+ o((log h(k,))*~2).
It thus follows that for j > I,,,
(j + 1) exp ((log(j + 1))?) = L, exp ((log 1,,)?)

= i) exp (2 (5 2)(log h(k))* + of(log h(k))**2)).
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We claim that the exponential term is at least 1/2 for n large. Indeed, for § > 2/3 the
exponential term diverges with n, whilst for 5 € (0,2/3] is converges to a constant that is at
least 1. So, for all j > I,, and n sufficiently large,

h(ka) < 2(j + 1) exp((log(j + 1))7).

Moreover, as fi, is slowly varying and k,, and h are both regularly varying with exponents 1,
we have ' = o(h(k,)). We thus obtain the lower bound

& 1 & 1
2 G D) explelionG + D) k) + it > 2 5 + D exp(ogG + D))
(14 o(1))
Lo,

where we recall the definition of 1, from (3.1) (with w* = 0) and use (the proof of ) Lemma 6.2
in the final step. Using this in the first term on the right-hand side of (6.2), we obtain the

upper bound
c+o(l)

exp (— [ty (A.10)
With I,, and p,, as in (A.7) and using (A.9), we find

py, = 1 +50(1> (log In)l’ﬁ exp ( — (log In)ﬂ)

:1+50(1>(10gn)1_5exp( (log h(ka))® + B(log h(k,))*~H(1 + o(1))).

We now use that h(z) = {(z)x for some slowly-varying function ¢ which satisfies (A.1) for
some a € [0,7 v ). We can then write, using that h(z) = 2'*°W) and k, = n'*°® and for
lz| <1, that (1 + )" =1+ Bz + o(z?),

)

(A.11)

+ B(log h(kn))* (1 + o(1))
k)P (1 + log(£(k,)) (log k) ™H)? + B(logn)* 71 (1 + o(1)) (A.12)
k)’ — B(log kn)” " log(£(kn)) (1 + 0(1)) + B(logn)* 7! (1 + o(1))

—(log h(kn))”
= — (log
= —(log

Now, again using the expression for (1 + x)fB, observe that

(logk,)? = (logn)”® + (1 — &)eB(logn)’ (1 + o(1)).

Hence we may write (A.12) as

—(logn)? + [(1 — £)eB(logn)’* 7! + B(logn)* ! — B(log k)" " log(£(k,))](1 + o(1)).
(A.13)
Recall that we assume that ¢ is such that lim,_,. loglog(¢(z))/loglogx = @ for some @ €
[0,7 v B) (as we assume that 7 v 3 > @), that is, when log({(z)) = (logz)*™°™"), we can
write

(log k)P~ og(€(k,)) = (log k)P Ta~1+o),

Since @ < 7 v (3, this term is negligible compared to the other two terms in the square brackets
n (A.13), so that it can be included in the o(1) term. We thus obtain, combining (A.11)

DOI 10.20347/WIAS.PREPRINT.3060 Berlin 2023



T. lyer, B. Lodewijks 66

with (A.13),
wr, =
00 g ) 7 exp (— Qogn)? + (1~ e)eBliog )7 + Bllogm)*](1 + o(1))

= pnexp ((C" + o(1))(log n)? VA=),

We can thus, finally, bound the first term on the right-hand side of (6.2) from above by
substituting this in (A.10), which yields

c+o(1)

exp < - exp ((C" + o(1))(log n)[”(TVﬁ)’l)),
which is summable since 7 v 5 > 1 — 3 (and using an argument similar to that in (A.8)), as
desired.

We then prove the claim in Lemma A.5. We set k, := nexp(c(logn)™). It follows from (A.4)
that

/

P(W = k,) =n"exp(—c(logn)™) exp(c(logn + c¢(logn)™)") = n~?,

which is not summable. Then, we define

I, := h(kyn) exp(—(log h(k,))? — (log h(k,))**~1), (A.14)
and write
S f(iky) & (i + 1) exp((log(i + 1))?) + h(kn)
In 1 0 1
= Zin(k,) t_;ﬂ (i + 1) exp((log(i + 1))F)°

We recall the definition of s, from (3.1) (with w* = 0) and use (the proof of) Lemma 6.2 to
deduce that the above equals

exp(—(log h(kn))? — (log h(k, ) ™) 4+ (1 4 o(1)) ey, - (A.15)
We now need only show that this expression is o(x"), which clearly implies (6.4).

Let us start with the first term. By a similar sequence of computations as in (A.12), (A.13),
and using the fact that, for |z| < 1 we have (1 + 2)? =1 + B2 + o(2?), we obtain

exp (—(log h(kn))” — (log h(ka))** ™)
= exp(—(logkn)” — Blog kn)”~ log(£(kn)) (1 + 0(1)) — (log n)*’~* (1 + 0(1)))

= exp (— (logn)” — [¢B(log n)" 71 1 (logn)?* 7t + B(logn)? log(¢(k,))] (1 + o(1))).
(A.16)
We recall that h(z) = ¢(z)x, where ¢ is slowly varying, such that

lim log log(1/4(x))/loglogz = a,
for some a € [0, 7' v B3) (as by our assumption). That is, log(¢(x)) = —(log z)2°("). We thus

have
(log k,)? " og(l(k,)) = —(log k,, )P et (A.17)
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Since @ < 7' v 3, it follows that this term can be included in the o(1) term in (A.16). We
thus arrive at

exp(—(log h(k;n))ﬁ) = exp ( — (log n)ﬁ — [Qﬁ(log n)ﬁ”/’l + (log n)w’l](l + 0(1)))
— ,ug(log n)ﬁ’l exp ( — [Qﬁ(log n)[g“/’l + (log n)%’l](l + 0(1))).

Since we assume that 7/ > § v (1 — f3), we directly obtain that this is o(uY).

Recalling (A.15), it thus remains to prove that u;, = o(uY). By (A.16), (A.14), and (A.7), the
desired result follows by showing that exp(—(log I,,)?) = o(exp(—(logn)?)) or, equivalently,
(log I,,)? — (logn)? diverges with n. First, we note that h(z) = 2'*°() (as h is regularly
varying with exponent 1) and k, = n'*°(1). Again, using the approximation to (1 + 2)% in a
similar manner as in (A.12),

(log 1,,)® = (log h(ky) — (log h(k,))® — (log h(k,))**~1)”

(log h(k )) — B(log h(kn))* (1 + o(1))

(log kn)” + [B(log kn)?H log(€(kn)) — B(logn)* 1 ](1 + o(1))

(logn)? + [cB(logn)™ 7" + B(log k,)" " log(¢(ky)) — S(logn)*~'](1 + o(1)).
By the same argument that leads to (A.17), we argue that we can include the second term in

the square brackets within the o(1) term as it is of lower order compared to either (logn)?*7 !
or (logn)??~1. The desired result thus follows since 7/ > 3 v (1 — 3). O

Proof of Lemmas A.4 and A.5, s poly-log case, mixed weights. We first prove the claim in
Lemma A.4. We assume that (0 — 1)k > 1 + k and recall that

f(,w) = g(w)(i + 2)(log(i + 2))7 + h(w),

where g and h are regularly-varying functions with exponents 1 and v > 0, respectively. Fix
e > 0 sufficiently small so that (¢ — 1)x > 1+ ¢. We apply (6.2) with

1+ o0(1)
9(0)(e = 1)

where the latter follows from Lemma 6.2. Now, using (A.5), we obtain

k= (logm) 9%, and g1, = (logn) "), (A.18)

P (W = kn) <e = e_E(IOg”)lJrE < 77,_(1+E),

for n sufficiently large, so that the second term on the right-hand side of (6.2) is summable.
Then, we define

= (h(kn) + p1,")/9(Kn)- (A.19)
We write g(z) = {1 (z ):v and h( ) ( )x7 for some slowly-varying functions /1, {5, and
note that g(x) = 2'*°M and h(z) = 277°M. With k, and p, as in (A.18), we thus have

[n _ (log n)max{(a—1)/@(14—8)7}/5—(1+£)/H+o(1)'

We note that [, diverges with n since (6 — 1)k > 1 + €. It then directly follows for all n
sufficiently large and all j > I, that

(7 +2)(log(j +2))7 = j = Ln = (h(kn) + 1)/ g(kn).
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As a result, for all n large we obtain the lower bound

[0 0] 1 oo
JZ;) 9(ka) (G + 2)(10g(j + 2))7 + h(kn) + 1,0~ Z log j+2)°
. <1 + <1>>
39(kn)/9(0) ’

where we recall the definition of 1, from (3.1) (with w* = 0) and use (the proof of ) Lemma 6.2
in the final step. Substituting this bound into the first term on the right-hand side of (6.2),
and using (A.18), we obtain the upper bound

1 -1
exp ( _ 09(0);' O( >“IE]5H) > = exp ( — (10g 1og n) (o— U(log n) )—(1+6)/n+0(1)),
g\rn

(where we incorporate the constants into the o(1) in the exponent of the logn term). This is
summable when (o — 1) — (1 4+ ¢)/k > 1 (again using an argument similar to that in (A.8)).
Since ¢ is arbitrary, the desired result follows since (0 — 1)k > 1 + k.

We then prove the claim in Lemma A.5. We fix € > 0 sufficiently small such that (o — 1)k <
1 — ¢ and set k, := (logn)=9)/% It follows from (A.6) that

P(W > kn) > e—g(logn)l—g > n_17

which is not summable in n. By a similar computation as in (6.15),

e © ] c.
;) f(i7k3n) N g ; Z + 2 log 1+ 2)) (kn)/g(kn) = g(k:n)’

for some constant C, > 0. Since g varies regularly with exponent 1, we can write g(x) =
o) 5o that

Z log 77,) (1—5)/&-’1—0(1)'

As a result, since (0 — 1)k < 1 — ¢, this sum is o(u?). It follows that (6.4) is satisfied, which
concludes the proof. O]

Proof of Lemmas A.4 and A.5, s barely super-linear poly-log case, additive weights. We first
prove the claim in Lemma A.4. We assume that (0 — 1)(1 — 1/v) > 1, and recall that

fli,w) = (i + 2)(log(i + 2))7 + h(w),

where h is a regularly-varying function with exponent 1. Fix ¢ > 0 sufficiently small so that
o(1—1/v) > 1+ ¢e. We apply (6.2) with

1+ o0(1)

kn = exp((log n)(l-i—a)/u)’ and Hn = 1
O' —_—

(logn)~ 1), (A.20)

where the latter follows from Lemma A.6. Now, using (3.8) we obtain

)1+€ 7(1+€)

P (W > kn) < efé(logkn)” — efE(logn <n 7
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for n sufficiently large, so that the second term on the right-hand side of (6.2) is summable.

Then, we define
h(kn)

(log h(kn))o
It then follows that for all j > I,, and n sufficiently large,
(7 +2)(log(j +2))7 = In(log In)” = h(kn)(1 + 0(1)) > h(kn)/2.

Moreover, since p,' = o(h(k,)), irrespective of the values of o, > 1 and since h(z) =
21+ we obtain for all n sufficiently large the lower bound

I, =

1 B .
;_10 G+ D(logG + 1) + hlkn) + -1~ j;n AR,

_ b (L+o()) _ p,
- 5 ~ 6
where we recall the definition of 1, from (3.1) (with w* = 0) and use (A.20) in the final step.
We again use that h(z) = 2'*°() which yields

:1+0(1) o _(0_1):1+0() 0 (0—1) 71+0() e
11, (U_l)(lgfn) C _1)(1 kn)” o _1)(1g )"

(1+€)(o— 1)/

Substituting this into the lower bound in (A.21), we may bound the sum in the exponent in
the first term on the right-hand side of (6.2) to obtain the upper bound

exp (= S ") < exp (— (log) 701390200
By choosing ¢ sufficiently small, this upper bound is summable since (o — 1)(1 — 1/v) > 1,

which yields the desired result.

We then prove the claim in Lemma A.5. We fix « € (1,2), take ¢ > 0 sufficiently small such
that 1 —¢ > a — 1, and set k, := n!=9/(@=D_We then have P (W > k,,) = £(k,)n" (1~
by (3.7), which is not summable in n. We define I, := k, /(log k,,)” and bound

I,—1 1 1
Z f 1, k: S Z k Z (5 + 2)(log(j + 2))° (log kn)? + (L +0(1))pi,,

where we recall the definition of i, from (3.1) (with w* = 0) and use (the proof of ) Lemma 6.2.
By the choice of k,, and I,, and with p, as in (A.20), we have

i (o + o) = 0(g) + o (222) ™ = (7))

As a result, by choosing ¢ sufficiently small, since a — 1 < 1, the right-hand side of the above
is strictly smaller than one; it follows that (6.4) is satisfied. ]

B Verifying conditions for other inter-birth time distribu-
tions

In this section we consider the other birth-time distributions listed in Remark 3.17, and check
the conditions of Assumptions 2.2 and 2.6 (it is clear that all distributions are continuous
and thus satisfy Assumption 2.11). We do not repeat all the detailed calculations in the
previous subsection. Rather, we show where calculations differ, and where similar or analogous
arguments vyield the desired results.
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B.1 Conditions for an infinite star, Assumption 2.2.

We need to verify (2.5) and (2.8). We start with the former, and split between the different
inter-birth distributions listed in Remark 3.17.

Gamma. Let the inter-birth times be gamma random variables, i.e. for ¢ € N,k > 0, and
w =0, let X,,(i) ~ Gamma(k,kf(i —1,w)). Recall Y,, from (5.5) (with w* = 0). Then,

Lo kf(6,0) Nk o kf(,0) \" ~
H(kf€0 ) (kaeo ) = My()",
where

S Exp(kf(j — 1,0)).

Jj=n+1

We can, by possibly changing the constant ¢ so that ¢ < min{1, 1/k}, use the same computa-
tions as in (5.2) through (5.4) to derive the upper bound M, 1 (Y,) < (1 —¢)™" to conclude
that Condition (2.5) of Assumption 2.2 holds.

For the next two examples, we use that

X (ngwl,m)g S

Beta. Let the inter-birth times be distributed as follows. For any i € N and w > 0, let

a+ 1
a f(z'—l,w)Bi’

Xo(i) £ (B.1)

where (B;);en is a sequence of i.i.d. copies of a Beta(«, $) random variables, for some a >
1,5 € (0,1]. Recall Y,, from (5.5). Then, for A > 0,

a+/l (oz+5 A )kl
a f(j—1,00/ KV

where we set the empty product Hz_:lo equal to one. As the terms in the product are at most
one, we directly obtain the upper bound

a0
[]E [euglxo(j)]

Jj=n+1

= a+f oyt a+B 1o 1
< & = n :
ﬂfxp( o G- exp( o M ;fw)

By the definition of y !, it follows that this upper bound equals e(®*#/® so that (2.5) is
satisfied.
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Rayleigh. Let the inter-birth times be Rayleigh random variables, i.e. for any ¢+ € N and
w =0, let X, (i) ~ Rayleigh(1/2/7/f(i —1,w)). Recall Y,, from (5.5) (with w* = 0). Then,

= H (1 + f'(g\,O)GV/(Wf(Z’O)Z) (1 + erf<\/%f)26,0)>>>’

where erf(z) = (2/y/7)§; e~ dt denotes the error function. Since the error function is
bounded from above by one, we immediately arrive at the upper bound

My (Y, \exp<2AZMO Wwf@@) exp(%ngO ( Zfeo ))

Now, with A = cu. !, we finally arrive at the upper bound exp(2exp(1/7)), as desired.

We now verify Condition 5 of Assumption 2.2, i.e. Equation (2.8), which is summarised in the
following lemma.

Lemma B.1. Assume the inter-birth time distributions satisfy any of the choices in Re-

mark 3.17. With the same conditions for the fitness type, degree function s, and the vertex-
weight distribution, as in Lemmas 6.3 and A.4, Condition 5 of Assumption 2.2 is satisfied.

We split the proof of Lemma B.1 into the different choices for the inter-birth distributions.
We observe that, irrespective of the inter-birth distribution, we assume the mean of Xy, (j),
conditionally on W, is always 1/f(j — 1,W) for any j € N, so that the definition (and
asymptotic behaviour) of y, remains unchanged and only depends on the fitness function f.

Proof of Lemma B.1, Gamma case. For some sequence (¢,,),en, we have

E (L (PasW)] [(ﬁsz kf]’+cu )k]

< P(W=>=4¢,).
exp( cp,, Zkf ST >+ ( )

This expression is, up to a constant in the exponential term, equivalent to the upper bound
n (6.2). We can thus follow the proof of Lemma 6.3 to obtain the desired result for the gamma
case in general. O

Proof of Lemma B.1, Beta case. Recall X, (j) from (B.1), with « > 1, € (0,1]. We have
that

a+ A >
Q f(]_law)

where 1 F(a; b; z) denotes the confluent hypergeometric function, defined as

E[£2(Xu()] = 1Fi (asa + §; -

0

1Fi(a;b; 2) , a,b>0,zeR,
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where a*) := T'(a+k)/T(a), with T' the gamma function. We now use the Kummer transform
1Fi(a;b;z) = e*1F1(b — a; b; —z), to obtain
o

E [LA(Xw(7))] =exp<— ;:ﬁf(j jl,w)olel(B;aJrﬁ;aJrﬁf(j —Al,w)>
atp A )ZE(aw)r(mk:);'<azﬁf(jjl7w)) .

zexp(—

We then use that, since 8 < 1 and thus [§] = 1,

F(a+5)F(6+k;)_ﬁ Bl Y 14l {5 0 K(a))!
FBC(a+pB+k) fla+p+0 " L|af+1+6 J10+k  (k+]a])!
This yields the upper bound

. a+ A = D' sa+B A k
E [£A(Xu ()] < exp (= fj—1w>]§ T B2

We then observe that, for any z > 0 we have

1 2

Z(e*—1) < z/2+z )

(-1 <e
Indeed, this is easy to check for z > 1, whereas for z < 1 we use the inequalities logz < x —1
and e — 2z — 1 < & + 23 (the Iatter using Zj 5 ], < 1). Thus, for z >0 and a > 1,

0

Sl 41 TS G 1
,;(kﬂod)! SN (EP SNy R () L A ()]

=0

2+ (B.3)

Combining (B.2) and (B.3), we thus arrive at

ElLELG) < eXp<_ ;azﬁf(j _/\1 w) <azﬁf(j _A1,w)>2>'

We then take some sequence (J,,)nen With J, < n to obtain

E[L.,-1(Pu;W)] <E [Ec%l(??n — P W)]

La+ 81 + -
< exp (_ Cﬂnlaza j_ZJ" O + (a ) ZJ > P(W = k,)
B La+ B 2(a + ) c
= exp (—cunl o JZJ]” G (1 T kn)>) +P(W = k).

We now choose J,, for the different cases of the degree function s (according to Assump-
tion 3.13) such that for all j > J,,, we have u,, f(j, k,) = 4c(a + B)/c. This yields the upper
bound

7j=J
a+p S )
Sexp(—c , +P(W =k,
da j;n [ k) + 1 ( )
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With this upper bound at hand, we also claim that we can use the proof of Lemma 6.3 to
obtain the desired upper bounds, despite the fact that the sum in the exponential term starts
from J,, rather than from 0 (which is the case in Lemma 6.3).

For all additive cases we have J,, = 0, so that we can directly use the proof Lemma 6.3. This is
due to the fact that yu,, f(7, kn) = pnf(0, k) diverges with n, so that it is at least 4(a + )/«
for all n sufficiently large. Indeed, for all additive weights types, for some small ¢ > 0 and
some constant C' > 0,

Super-linear: = (C + o(1))ns(n)~t, k,, := n(1=ep,
Log-stretched: ,un = (C + o(1))(logn)' =B exp(—(logn)?), ky := nexp(—(1 — ¢)é(logn)7).
Poly-log: tin = (C 4 0(1))(logn)~ =1, ky := exp((logn)(1+e)/7),

One can directly verify that pu,f(0,k,) = O(u,h(k,)) diverges with n, where h is some
regularly-varying function with exponent 1.

For the three mixed weights cases (depending on the degree function s), we can set J, as
follows, where K is a sufficiently large constant:

Super-linear: Jp 1= Kns—1/p,
Log-stretched: J, := K1, with [, as in (6.13).
Poly-log: Jp = K1, with I,, as in (A.19).

Using that for all 7 > J,,,

i f (G kn) = pinf (Tns kn) = png(kn)s(Jn),

it is readily verified in all three cases that wu, f(j,k,) = 4(a + B)/c for all j = J, and all
sufficiently large n. It also holds that the bounds used in the proof of Lemma 6.3 still hold when
using this choice of J,, in the mixed weights cases, so that the conclusions from Lemma 6.3
are valid here, too. O

Proof of Lemma B.1, Rayleigh case. We have

. [£ Pn,W 1:[ ( C;fnk )eunz/(ﬂf(j,km)(l _erf<\/%>>) (B.4)

7=0

+P(W > k,).

We now use that, for any = > 0,

2 2 2
e” (1 —erf(x)) = —=e" f P At = J —s(s+22) 45
\/Tl x \/7
=z — e (5120 g = 1 — erf(22 ,
\/T‘JO ( )

where we use a variable substitution s =t — x. Also using that 1 —x < e * for all x € R, we
can bound the first term on the right-hand side of (B.4) from above from

P (_ ' 2 At erf<¢%>>>'
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Since the error function is increases and lim,_,, erf(z) = 1, we can now repeat the same
argument as in the Beta case: we create an upper bound by starting the sum from some index
J,,, such that we can bound
2cut .
1-— erf(#) >0, for all j = J,,
VT (s kn)

for some small constant § > 0. The choice of .J,, can be the same as in the Beta case, and
the result thus follows through here, as well. O

B.2 Conditions for an infinite path, Assumption 2.6.

We need to verify Conditions (2.9) and (2.10). Here, we choose v = du for some arbitrary
constant d € (0,1), as in the proof of Theorem 3.4. We recall from the proof of Lemma 6.4
that the lower bound in (6.3) uses Markov's inequality only. Hence, since we assume that the
mean of the inter-birth time X, (j) equals 1/f(j — 1,w), irrespective of the its distribution,
it follows that the proofs of Lemmas 6.4 and A.5 immediately follow for the other choices of
inter-birth distributions in Remark 3.17.

It thus remains to verify (2.10). We observe that the proof of (2.10) for exponentially dis-
tributed inter-birth times, as in the proof of Theorem 3.4, holds more generally, as long as for
any ¢ € N and w > 0, and for some K > 0,

K
fi—1,w)?

This is readily checked for all the cases in Remark 3.17, and is related to Remark 3.6.

Var(X, (i) < KE [X,(i)]° =

C Proof of Lemma 6.6

Proof of Lemma 6.6. The aim of the proof is to provide an upper and lower bound for
P (r(W) = x) that are asymptotically equivalent (i.e. the same up to a (1 + o(1)) multi-
plicative factor). First, we define, for a function r : [0,00) — (0, 0), the generalised inverse
as

r(z):=inf{y > 0:r(y) = =}, x = 0.

We start by proving an upper bound. Suppose (W) = x. Then W e {y = 0: r(y) = z}, so
that by the definition of the generalised inverse, it follows that W > r—(x). As a result

Pir(W)zz) <P(W =r(x)), (C.1)
which concludes the upper bound. For a lower bound, suppose (W) < z. Then,
{y=0:r(y) =z} <{y=0:r(y) =r(W)}

Hence, the infimum of the left-hand side is larger than the infimum of the right-hand side, so
that 7 (x) = r=(r(W)). As a result,

P(r(W)=z) =P (r(W)) >r(z))
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We use [13, Proposition 1.5.12] to obtain that 7 (r(z)) = (1 + o(1))z as x — oo. Hence,
since 7 (r(W)) > r=(z) implies W = r—(x), we can write r—(r(W)) = (1 + t(W))W, for
some function ¢ such that ¢(z) — 0 as & — o0. We thus obtain

Pir(r(W)) >r(z)) =P(Q+t(W))W >r(z)).

Now, for any £ > 0 we can take z sufficiently large so that, since W = r—(z), |[t(W)| < e.
We thus obtain the lower bound,

P(W >r(z)/(1—¢)).
As the tail distribution of W is regularly varying with exponent —(¢ — 1), we obtain
P(W>r(z)/(1—¢) =(1—¢) " +0o(1))P(W >r(z)).
As ¢ is arbitrary, combining this with the upper bound in (C.1), we obtain
P(r(W)=z)=(14o01)P(W =r—(z)).

We now use that, by [13, Theorem 1.5.12], the function = is regularly varying with exponent
1/p. This implies, by Lemma 6.1 and the assumption on the tail distribution of 1/, that the
right-hand side is regularly varying with exponent —(¢ — 1)/p as desired. O
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