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On the structure of genealogical trees associated with
explosive Crump–Mode-Jagers branching processes

Tejas Iyer, Bas Lodewijks

Abstract

We study the structure of genealogical trees associated with explosive Crump–Mode–
Jagers branching processes (stopped at the explosion time), proving criteria for the
associated tree to contain a node of infinite degree (a star) or an infinite path. Next, we
provide uniqueness criteria under which with probability 1 there exists exactly one of a
unique star or a unique infinite path. Under the latter uniqueness criteria we also provide
an example where, with strictly positive probability less than 1, there exists a unique
star in the model. We thus illustrate that this probability is not restricted to being 0 or
1. Moreover, we provide structure theorems when there is a star, where we prove that
certain trees appear as sub-trees in the tree infinitely often. We apply our results to a
general discrete evolving tree model, named explosive recursive trees with fitness. As a
particular case, we study a family of super-linear preferential attachment models with
fitness. For these models, we derive phase transitions in the model parameters in three
different examples, leading to either exactly one star with probability 1 or one infinite
path with probability 1, with every node having finite degree. Furthermore, we highlight
examples where sub-trees T of arbitrary size can appear infinitely often; behaviour that
is markedly distinct from super-linear preferential attachment models studied in the
literature so far.
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1 Introduction

Given a population of an entity moving towards explosion, that is, the emergence of infinitely
many individuals in finite time, what can be said about the genealogical tree associated with
the population at the time of explosion? On the one hand, an infinite path in the tree may
be interpreted as an infinite line of evolution, with infinitely many ‘variants’ contributing to
the explosion; on the other, a node of infinite degree (which we often call a star) may be
interpreted, informally, as the emergence of a ‘dominant variant’. This is the goal of the
present investigation, where as a simplified model of an evolving population, we use Crump–
Mode–Jagers branching processes.

In a CMJ branching process (named after [17, 35]), an ancestral root individual produces
offspring according to a collection of points on the non-negative real line. Each individual
‘born’ produces offspring according to an identically distributed collection of points, translated
by their birth time (see Section 1.3 for a more formal description). One is generally interested
in properties of the population as a function of time. Classical work from the 1970s and ’80s
related to this model generally deals with the Malthusian case, which, informally, refers to
the fact that the population grows exponentially in time. These include strong laws of large
numbers for characteristics associated with the process [56], properties of birth times in the kth
generation [43], an x log x theorem [59], and numerous other results, for example [10, 57, 39,
37, 38]; see also the classical books [5, 36]. A number of more recent results are concerned with
asymptotic fluctuations associated with the process in the Malthusian case, see, for example,
[31, 41, 32, 44]. Other results are motivated by applications of these processes, including
M/G/1 queues [28], vaccination and epidemic modelling [6, 7, 49], and numerous applications
to random graphs, see Section 1.1 below.

Far fewer results exist for CMJ branching processes when a Malthusian parameter does not
exist. In a particular case of reinforced branching process, a condensation phase transition
can occur, where non-exponential growth occurs due to individuals having random weights
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that influence their offspring distribution. In this case, a ‘small’ numbers of individuals with
large weight produce larger and larger families, which in turn lead a rate of growth faster
than exponential [19]. In more extreme circumstances, individuals produce larger and larger
families so quickly that the process explodes in finite time. General criteria for explosion have
been provided in terms of the solution of a functional fixed point equation by Komjáthy [45],
who also extended the necessary and sufficient criteria for explosion in branching random
walks in [1]. We refer the reader to [45] for a more comprehensive overview of the literature
related to explosion in branching processes. In [11], the authors provide sufficient criteria for
local explosion in closely related growth-fragmentation processes. Meanwhile, more, sufficient
criteria for explosion in CMJ processes are in preparation in [33].

1.1 Random recursive trees with fitness

Aside from the applications outlined above, CMJ branching processes are often involved in the
analysis of random graph models, more often, random trees. As far as the authors are aware,
direct applications date back to Pittel [61], in providing a new proof for the limiting behaviour
of the heights of random recursive trees and affine preferential attachment trees, but the
technique of using continuous-time embeddings to analyse discrete combinatorial processes is
more classical, going back to works of Arthreya and Karlin [3, 4].

Later, works by, for example [62, 12, 30, 58, 25] showed that CMJ branching processes can be
applied to a large number of growing tree models. A natural framework of evolving trees, which
corresponds to genealogical trees of CMJ branching processes and encompasses many existing
models of recursive trees (which we refer to as random recursive trees with fitness [34]), posits
that nodes v arrive one at a time, and are assigned a random i.i.d. weight Wv sampled from a
measure µ on an arbitrary measure space pS,Sq (see Definition 3.1). Newly arriving nodes then
connect, with edges directed outwards from the target nodes, with probability proportional to
a general, measurable fitness function f : N0 ˆ S Ñ r0,8q that incorporates information
about the current out-degree of the target, and its weight. A natural quantity of interest in
this model is the proportion of nodes rNk (at the nth time-step) having out-degree k. This
model may be roughly classified according to the following conjectured phases [34]:

1 The non-condensation phase: There exists λ ą 0 such that
ř8

j“1 E
”

śj´1
i“0

fpi,W q
fpi,W q`λ

ı

“ 1.
In this case, if pk denotes the limit of rNk, we have

ř8

k“0 pk “ 1. In other words, all of
the mass of edges is distributed around nodes of microscopic degrees.

2 The condensation phase (see [15, 19, 21, 18]): We have
ř8

j“1 E
”

śj´1
i“0

fpi,W q
fpi,W q`λ

ı

ă 1,
for any λ ą 0 such that the sum converges. In this case, 0 ă

ř8

k“0 pk ă 1, so that a
positive fraction of ‘mass’ is lost from the empirical measure to a sub-linear number of
nodes of ‘large degrees’.

3 The extreme-condensation phase: For any λ ą 0 we have
ř8

j“1 E
”

śj´1
i“0

fpi,W q
fpi,W q`λ

ı

“ 8.

In this case,
ř8

k“0 pk “ 0, so that all of the ‘mass’ of edges is concentrated in nodes of
‘large’ degrees.

Part of the goal of this article is to investigate the behaviour of the third phase above, in the
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explosive case that

8
ÿ

i“0

1
fpi, wq

ă 8, for µ-almost all w P S.

Note that this implies that
ś8

i“0
fpi,W q

fpi,W q`λ
ą 0 almost surely, so that the condition in Phase 3

is satisfied.

In [58], Oliveira and Spencer showed that, in the case fpi, wq “ ip, with 1` 1
k
ă p ď 1` 1

k´1 for
some k P N (equality only for k ě 2), the infinite tree associated with this process is somehow
extreme: it contains a single node of infinite degree, connected to infinitely many children with
an associated sub-tree of size at most k, and only finitely many with an associated sub-tree
of size k ` 1 or larger. This paper uses the fact that the associated CMJ branching process is
explosive, a technique also exploited in similar works related to ‘balls-in-bins’ processes [55].
Related work by Arthreya [2, Theorem 2.1] attempts to prove that, according to a certain
summability condition, either every node in the infinite tree has finite degree, or with positive
probability there exists a single node such that all but finitely many new nodes connect to
this node. However, there is a mistake here, in that [2, Theorem 2.1b] should really state: the
probability that there exists a single node such that all but finitely many new-coming nodes
connect to this node is zero (indeed, note that [2, Corollary 2.2] directly contradicts [58]).
Nevertheless, the associated summability condition and result in this paper is interesting, and
motivates the question of whether there is a critical condition that guarantees the existence of
a node of infinite degree in the infinite tree, or every node having finite degree, cf. Theorem 3.4,
below.

A related question is whether or not, in the associated recursive tree with fitness model, the
index associated with the node of maximal degree is fixed after some finite time, or changes
infinitely often, that is, whether or not there is a persistent hub. A unique node of infinite
degree in the infinite tree associated with the model thus implies the existence of such a hub.
In a slightly different model of evolving graphs, when fpi, wq “ gpiq with g being a concave
sub-linear function, one of the results of Dereich and Mörters [20] shows that a persistent
hub emerges if and only if

ř8

i“1 gpiq
´2 ă 8. In the recursive tree model described above,

Galashin [23] proved that, if fpi, wq “ gpiq, with g convex and unbounded, a persistent hub
always appears. This has been extended to a much wider range of functions g, independent of
the weight w, by Banerjee and Bhamidi in [8].

When weights are added, however, in the sense that fpi, wq may depend on w, a different
picture emerges. Suppose that w takes values in r0,8q. In the case fpi, wq “ wpi` 1q, under
a particular set of conditions leading to the condensation phase (Item 2 above), in [19] the
authors show that there is no persistent hub, and the size of the node of maximal degree grows
sub-linearly in the size of the tree. In the case fpi, wq “ i`w or fpi, wq “ w, when the weights
w are sampled according to certain classes of distributions, in [53, 63] and [52, 51], respectively,
the authors provide critical criteria depending on the parameters of the weight distribution, for
the existence, or non-existence, of a persistent hub. A number of other particular models of so
called preferential attachment with fitness have been studied, see, for example, [26, 42, 22],
and related works regarding local weak limits of preferential attachment type models [9, 50, 24].
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1.2 Overview of our contribution and structure

In this paper we provide general sufficient conditions for the genealogical tree associated with
an explosive CMJ branching process to contain a node of infinite degree or an infinite path at
the explosion time (in Theorems 2.5 and 2.8, respectively). When there is a node of infinite
degree, we provide criteria for one to see a fixed tree as a sub-tree of a child of that node
either infinitely often, or finitely often, in Theorem 2.10. We also prove uniqueness criteria in
Theorem 2.12, under which there almost surely exists a unique node of infinite degree or a
unique infinite path. Under the conditions of the uniqueness theorem, we provide a counter-
example in Theorem 2.15, where the events that there is a node of infinite degree, or an
infinite path, both have positive probability, less than 1. Finally, in Theorems 3.4, 3.7, and
Corollary 3.8 we apply our results to the recursive tree with fitness model and prove phase
transitions in three particular models in Theorems 3.16 and 3.21. We encourage the reader
more interested in this discrete model to refer to these results first.

The question of whether the genealogical tree of an explosive CMJ branching process contains
an infinite path or a node of infinite degree has not been investigated in this level of gen-
erality previously. Our techniques involve significant improvements of those of [58] (see also
Sections 2.5 and 3.3), and thus allow us to greatly extend the picture associated with the
general recursive tree with fitness model. Intriguingly, our results show that when there is a
unique node of infinite degree in the infinite tree associated with the model, in many particular
cases there exist children of the node of infinite degree that have arbitrarily large, but finite,
degree (or even an arbitrarily large, but finite, number of descendants). Previous comments
in the literature seem to indicate that it was believed that when there is an infinite degree
node, the degrees of all other nodes are bounded, see [8, Section 3]. Finally, we remark that
the phase transitions related to the emergence of a node of infinite degree are reminiscent of
a different notion of condensation in conditioned Bienaymé-Galton-Watson trees [40].

1.2.1 Structure of the paper

The paper is structured in the following way. Below, in Section 1.3, we introduce a formal
description of the model and the notation we use in this paper. Section 2 states the main results,
which are most general and require certain assumptions on the inter-birth time distribution.
Section 3 then discusses the particular example of exponentially distributed inter-birth times
and how this relates to a family of discrete tree models coined recursive trees with fitness. Here,
we derive sufficient conditions such that the assumptions used for the main results are satisfied.
Moreover, when considering certain sub-families of recursive trees with fitness, we prove more
precise results in terms of phase diagrams for the existence of either unique infinite-degree
nodes or unique infinite paths. As mentioned above, we encourage the reader more interested
in results related to the discrete recursive tree model (which is also less abstract), to refer to
the results of Section 3.1 first, before reading the section below.

Aside for a few exceptions, Section 4 proves the main results of Section 2, Section 5 proves
the most general results of Section 3, and Section 6 proves the particular examples of Sec-
tion 3. Finally, we consider a number of other models in Appendix A and B, showing that the
assumptions subject to which the main results hold are valid more broadly.
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1.3 Notation and preliminaries

In this paper, we consider properties of the genealogical trees associated with Crump-Mode-
Jagers branching processes; a tree-valued stochastic process pTtqtě0 which one may regard
as the genealogical tree representing a population evolving over time. The goal then, is to
define a state space of individuals, in this setting, the infinite Ulam-Harris tree of potential
individuals associated with a common ancestor, birth times Bpuq associated with individuals,
which themselves are encoded by a random function pX,W q, and then define Tt as the set of
individuals born up to time t. Note that the notation we use is slightly different to the common
notation regarding CMJ branching processes, see Remark 1.1 further below.

First, we generally use N :“ t1, 2, . . .u, N0 :“ NYt0u and for n P N we let rns :“ t1, . . . , nu.
We consider individuals in the process as being labelled by elements of the infinite Ulam-
Harris tree U8 :“

Ť

ně0 Nn; where N0 :“ t∅u contains a single element ∅ which we call the
root. We denote elements u P U8 as a tuple, so that, if u “ pu1, . . . , ukq P Nk, k ě 1, we
write u “ u1 ¨ ¨ ¨uk. An individual u “ u1u2 ¨ ¨ ¨uk is to be interpreted recursively as the ukth
child of the individual u1 ¨ ¨ ¨uk´1; for example, 1, 2, . . . represent the offspring of ∅. Suppose
that pΩ,Σ,Pq is a complete probability space and pS,Sq is a measure space. We also equip
U8 with the sigma algebra generated by singleton sets. Then, we fix a random mappings
X : ΩˆU8 Ñ r0,8s, W : ΩˆU8 Ñ S, and define pX,W q : ΩˆU8 Ñ r0,8sˆ S, so that
u ÞÑ pXpuq,Wuq. In general, for u P U8 and j P N, one interpretsWu as a ‘weight’ associated
with u, and Xpujq the waiting time between the birth of the pj ´ 1qth and jth child of u.

We introduce some notation related to elements u P U8: we use | ¨ | to measure the length
of a tuple u, so that, if u “ ∅ we set |u| “ 0, whilst if u “ u1 ¨ ¨ ¨uk then |u| “ k. If, for
some x P U8, we have x “ uv, we say u is a ancestor of x. We introduce a notation to refer
to ancestors: given ` ď |u|, we set u|` :“ u1 ¨ ¨ ¨u`. It will be helpful to equip U8 with the
lexicographic total order ďL: given elements u, v we say u ďL v if either u is a ancestor of v,
or u` ă v` where ` “ min ti P N : ui ‰ viu. We say a subset T Ă U8 is a tree if, given that
u P T , we also have u|` P T , for each ` ď |u|. Note that any such trees can be viewed as
graphs in the natural way, connecting nodes to their children.

Now, we use the values of X to associate birth times Bpuq to individuals u P U8. In particular,
we define B : Ωˆ U8 Ñ r0,8s recursively as follows:

Bp∅q :“ 0 and for u P U8, i P N, Bpuiq :“ Bpuq `
i
ÿ

j“1
Xpujq.

Consequentially, a value of Xpuiq “ 8 indicates that the individual u has stopped producing
offspring, and does not produce i children or more.

Finally, we set Tt “ tx P U8 : Bpxq ď tu and identify for each t ě 0, Tt as the genealogical
tree of individuals with birth time at most t. Again we emphasise that one may think of this,
intuitively, as the set of all individuals, originating from a common ancestor, that have been
born by time t. More formally, we identify the process with pĂTtqtě0; a measurable mapping
Ω ˆ r0,8q ˆ U8 Ñ r0,8s. Then, if u P Tt, we set ĂTtpuq “ Bpuq, and otherwise, set
ĂTtpuq “ 8. In addition, we set Wt “ tpx,Bpxq,Wxq : x P Ttu, so that pWtqtě0 also
incorporates information about the random ‘weights’ of individuals in the tree Tt. We let
pFtqtě0 and pWtqtě0 denote the filtrations generated by pĂTtqtě0 and pWtqtě0, respectively;
and by taking their completions if necessary, assume that both Ft and Wt are complete. By
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abuse of notation, we use the symbol Tt to refer to ĂTt, the set Tt, and the graph associated
with Tt where the vertex set is Tt and edges connect elements to their children. For a given
choice of X,W , we say pTtqtě0 is the genealogical tree process associated with an pX,W q-
Crump-Mode-Jagers branching process; often, we refer to pTtqtě0 directly as an pX,W q-
Crump-Mode-Jagers branching process, viewed as a stochastic process in t, adapted to its
natural filtration pFtqtě0.1

For u P U8, we let Pipuq denote the time, after the birth of u, required for u to produce i
offspring. That is,

Pipuq :“
i
ÿ

j“1
Xpujq and Ppuq :“ P8puq “

8
ÿ

j“1
Xpujq.

Note that, as a result of this definition, for any u, v P U8 with u “ u1 ¨ ¨ ¨uk and v “ v1 ¨ ¨ ¨ v`,
if we set uv0 :“ u we have

Bpuvq ´ Bpuq “
`´1
ÿ

j“0

`

Pvj`1puv|jq
˘

. (1.1)

It will also be beneficial to extend the notation P to arbitrary trees T : for T Ď U8, we define

PT puq :“ inf tt ą 0 : Bpuvq ´ Bpuq ă t for all v P T u . (1.2)

Thus, with the above notation Pipuq “ Prispuq. We also set PT :“ PT p∅q, Pi “ Pip∅q, and
P :“ Pp∅q.

We generally assume a dependence between the values pPipuqqiPNYt8u and Wu. However, for
brevity of notation, we often do not explicitly indicate this dependence. We use the notation
Pi and P to denote generic copies of random variables distributed like Pipuq, and Ppuq
respectively.

For each u P U8 it will be helpful to a have a map ξpuq : Ω ˆ r0,8s Ñ N indicating the
number of children u has produced, more precisely, we define ξpuqptq such that

ξpuqptq “

#

ř8

i“1 1tPipuqďsu if t “ Bpuq ` s, s P r0,8s;
0 otherwise.

With regards to the process pTtqtě0, we define the stopping times pτkqkPN0 such that

τk :“ inftt ě 0 : |Tt| ě ku,

where we adopt the convention that the infimum of the empty set is 8. One readily verifies
that p|Tt|qtě0 is right-continuous, and thus |Tτk | ě k. For each k P N we define the tree
Tk as the tree consisting of the first k individuals in Tτk ordered by birth time, breaking ties
lexicographically. We call τ8 :“ limkÑ8 τk the explosion time of the process. We also define
the tree T8 :“

Ť8

k“1 Tk. Note that it may be the case that |T8| ă 8; in this case τ8 “ 8
and

T8 “ tx P U8 : Bpxq ă 8u ,
1Note that distinct functions pX,W q, pX 1,W 1q may lead to the same tree, if, for example Xpuiq “

X 1puiq “ 8, but Xpupi` 1qq ‰ X 1pupi` 1qq, but this is only a formal technicality, which we can overcome
by viewing pX,W q as an appropriate equivalence class of functions.
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The structure of genealogical trees associated with explosive branching processes 9

and the set on the right-hand side is finite. If |T8| ă 8, we say extinction occurs, other-
wise survival occurs. For a non-negative real-valued random variable X and λ ą 0 we let
MλpZq,LλpZq denote the associated moment generating function and Laplace transform,
respectively, i.e.

MλpZq :“ E
“

eλZ
‰

and LλpZq :“ E
“

e´λZ
‰

.

Moreover, if the random variable Z has, additionally, some dependence on a random variable
W P S, we write

MλpZ;W q :“ E
”

eλZ
ˇ

ˇ

ˇ
W

ı

and LλpZ;W q :“ E
”

e´λZ
ˇ

ˇ

ˇ
W

ı

.

In addition, for real valued random variables Z1 and Z2, we say Z1 ďS Z2, if, for each a P R

P pZ1 ą aq ď P pZ2 ą aq .

Finally, for r ě 0 we use Exp prq to denote the exponential distribution with parameter r.

Remark 1.1. With the more commonly used notation for CMJ branching processes, one
assigns a point process (denoted ξpuq) to each u P U8, and refers to the points σpuq1 ď σ

puq
2 , . . .

associated with this point process (in the notation used here Bpu1q,Bpu2q, . . .). We do not use
this framework here, because, this requires one to be able to write the measure ξpuq “

ř8

i“1 δσi ,
which requires one to impose σ-finiteness assumptions on the point process (see, for example,
[48, Corollary 6.5]). This σ-finiteness is implied by the classical Malthusian condition, but, in
this general setting, we believe it is easier to have a framework where one can directly refer to
the points Bpu1q,Bpu2q, . . .

2 Statements of main results

In this paper, we are interested in properties of the infinite tree T8, in particular the question of
whether or not this tree contains an infinite path or a node of infinite degree. This section deals
with results in their most general form: Section 2.1 states some global assumptions imposed
throughout the paper, Section 2.2 deals with criteria for a node of infinite degree (or star),
Section 2.3 deals with criteria for an infinite path, and structural properties of the tree T8
when there is a star, and Section 2.4 deals with uniqueness properties, providing criteria for a
the appearance of a unique star or unique infinite path (but not both) to appear almost surely.
In Theorem 2.15 we also show that in the regime where there is, almost surely, exactly one of
a unique star or infinite path, either may appear with positive probability. Finally, we provide
an overview of the proof techniques used, and the relation to existing literature in Section 2.5.

2.1 Global assumptions

In general in this paper, we assume that the values of pXpujqqjPN depend on Wu. We also
assume that the sequences of random variables

ppXpujqqjPN,Wuq are i.i.d. for different u P U8; (2.1)

although we expect that some of our techniques may carry over to a more general setting.
For a given w P S, we let pXwpujqqjPN denote a sequence pXpujqqjPN, conditionally on the
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weight Wu “ w. Another common assumption we use throughout is the following: for any
given w P S and any u P U8, the sequence of random variables

pXwpuiqqiPN is mutually independent. (2.2)

The existence of an explosive pX,W q-CMJ process satisfying (2.1) is a straightforward applica-
tion of (for example) the Kolmogorov extension theorem (indeed, this is the classical definition
of a CMJ process).

We also generally assume that the event t|T8| “ 8u has positive probability, and

P
`

τ8 ă 8
ˇ

ˇ |T8| “ 8
˘

“ 1. (2.3)

That is, the process is almost surely explosive, when conditioned on survival. In general, we say
an event A occurs almost surely on survival if P

`

A
ˇ

ˇ |T8| “ 8
˘

“ 1. In all statements in this
paper referring to an “explosive pX,W q-CMJ process”, we assume it satisfies (2.1) and (2.3).

In this paper, we also rely on the following well-known fact in graph theory.

Lemma 2.1 (Kőnig’s Lemma). Any infinite tree contains a node of infinite degree or an
infinite path.

2.2 Sufficient criteria for a star

In this subsection, we provide sufficient criteria for the infinite tree T8 to contain an infinite
star. Our main assumptions are as follows.

Assumption 2.2. We have the following conditions.

1 There exist non-negative real-valued random variables pYnqnPN0 with finite mean such
that, for any w P S,

8
ÿ

i“n`1
Xwpiq ďS Yn. (2.4)

2 If we let µn :“ E rYns, then we also have, for some c P p0,8q,

lim sup
nÑ8

Mcµ´1
n
pYnq ă 8. (2.5)

Moreover, we assume that pµnqnPN0 is non-increasing in n, with limnÑ8 µn “ 0.

3 For each n P N and any given w P S, the random variables pXwpiqqiPN are mutually
independent.

4 For each n P N,
8
ÿ

i“n`1
Xpiq ą 0 almost surely, (2.6)

and additionally, we have
E rξp0qs “ E rsuptk : Xpkq “ 0us ă 1. (2.7)
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5 With c as appearing in Equation (2.5),

8
ÿ

i“1
E
”

Lcµ´1
i
pPip∅q;W q

ı

ă 8. (2.8)

Remark 2.3. Note that under Condition 1 of Assumption 2.2, we have P p|T8| “ 8q “ 1. đ

Remark 2.4. In Assumption 2.2 we can consider Conditions 1 and 3 as a uniform explosivity
condition: it implies that, for any u P U8 and any ε ą 0,

lim
LÑ8

P

˜

8
ÿ

j“L`1
Xjpuq ě ε

ˇ

ˇ

ˇ

ˇ

X1puq, . . . , XLpuq

¸

“ 0,

with the convergence uniform in X1puq, . . . , XLpuq; a fact that is crucial for Lemma 4.6, and
hence the proof of Theorem 2.5, to hold. Condition 4 is there as a technical assumption, used,
for example, in Proposition 4.4 and Lemma 4.5. It ensures that τk ă τ8 for each k P N. Indeed,
if, for example, E rξp0qs ą 1, the tree consisting of all the individuals born instantaneously at
time 0 is the genealogical tree of a supercritical Bienaymé-Galton-Watson branching process.
Hence, with positive probability this tree is infinitely large, and thus there may be no node of
infinite degree in this infinite tree. Condition 2 is used to prove the Chernoff type concentration
bound in Lemma 4.1 which, when combined with the summability condition in Condition 5,
leads to the proof of the crucial Proposition 4.3. đ

The conditions of Assumption 2.2 allow us to formulate the following theorem.

Theorem 2.5 (Infinite star). Under Assumption 2.2, almost surely the infinite tree T8 contains
a node of infinite degree (i.e. an infinite star).

The proof of Theorem 2.5 appears in Section 4.1.

2.3 Sufficient criteria for an infinite path and structural results in the
star regime

In this subsection, we provide sufficient criteria for T8 to contain an infinite path and whether
or not T8 contains infinitely many copies of a fixed tree T . We first state the following
assumption.

Assumption 2.6. There exists a collection of numbers tνwn P r0,8q : w P S, n P Nu, such
that for any w P S,

8
ÿ

i“1
P pP ă νwi q “ 8, (2.9)

and

lim inf
iÑ8

P

˜

8
ÿ

j“i`1
Xwpjq ě νwi

¸

ą 0. (2.10)
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Remark 2.7. Assumption 2.6 intuitively states that, conditionally on the weight w of the root
∅, infinitely many children i of ∅ produce an infinite offspring within time νwi . On the other
hand, the root takes at least νwi amount of time after the birth of its ith child to produce
an infinite offspring, with a probability that is bounded from below, uniformly in i. Hence,
infinitely many children i explode before their parent ∅. đ

We can then formulate the following theorem.
Theorem 2.8 (Infinite path). Under Assumption 2.6, the tree T8 contains an infinite path
almost surely on survival.

The proof of Theorem 2.8 appears in Section 4.2.

Similar criteria to those related to the criteria for an infinite path allow us to also determine
results related to the structure of T8 in the sense that, when we know that T8 contains an
infinite star, certain sub-structures appear infinitely often; others only finitely often. We define
T8pÓ uq :“ tv P T8 : v “ uw, w P U8u as the sub-tree in T8 rooted at u. For a fixed tree T
containing ∅ and u P U8, we define uT :“ tuv : v P T u. We say such a tree T is a sub-tree
rooted at u P T8, if, uT Ď T8pÓ uq. Recalling Equation (1.2) we then have the following set
of assumptions.
Assumption 2.9. Let pTtqtě0 be an explosive pX,W q-CMJ process. For a given finite tree
T Ď U8 containing ∅ we have the following conditions.

1 There exists a collection of numbers tνwn P r0,8q : w P S, n P N0u, such that for any
w P S,

8
ÿ

i“1
P pPT ă νwi q “ 8, (2.11)

and

lim inf
iÑ8

P

˜

8
ÿ

i“j`1
Xwpjq ě νwi

¸

ą 0. (2.12)

2 For any w P S and with p rXwpiq, i P Nq „ pXwpiq, i P Nq, independent of the process
pTtqtě0,

8
ÿ

i“1
P

˜

PT ă

8
ÿ

j“i`1

rXwpjq

¸

ă 8. (2.13)

We can then formulate the following theorem.
Theorem 2.10 (Sub-tree count). Let pTtqtě0 be an explosive pX,W q-CMJ process. Then,
for any finite tree T Ď U8 containing ∅:

1 If Condition 1 of Assumption 2.9 is satisfied, almost surely, if u P T8 has infinite degree,
T appears infinitely often as a sub-tree rooted at a child of u.

2 If Condition 2 of Assumption 2.9 is satisfied, almost surely, if u P T8 has infinite degree,
T appears only finitely often as a sub-tree of a child of u. In particular, if Assumption 2.2
is satisfied, almost surely, the tree T appears only finitely often as a sub-tree of T8.

The proof of Theorem 2.10 appears in Section 4.2.
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2.4 Uniqueness conditions related to the existence of a star or an
infinite path

In many cases, we expect T8 to contain exactly one node of infinite degree or exactly one
infinite path and also, often expect co-existence of an infinite path and node of infinite degree
to be impossible. This leads us to the following assumption.

Assumption 2.11. We have the following conditions.

1 Condition 4 of Assumption 2.2 is satisfied.

2 The distribution of Pp∅q contains no atom on r0,8q.

3 For some ε ą 0 and for each i P N, the distribution of Bpiq contains no atom on r0, εq.

We then have the following result.

Theorem 2.12 (Unique infinite star or path). Let pTtqtě0 be an explosive pX,W q-CMJ
process. Then:

1 If Conditions 1 and 2 of Assumption 2.11 are satisfied, T8 contains at most 1 node of
infinite degree, almost surely.

2 If Conditions 1 and 3 of Assumption 2.11 are satisfied, T8 contains at most 1 infinite
path, almost surely.

3 If all the conditions of Assumption 2.11 are satisfied, almost surely, on survival, T8
contains exactly one of the following: a node of infinite degree, an infinite path.

The proof of Theorem 2.12 appears in Section 4.3.

Remark 2.13. Though assumed to hold throughout, Theorem 2.12 can be proved without
assuming (2.2). đ

Remark 2.14. A case when the tree T8 has more than one infinite path with positive proba-
bility is when time 0 explosion can occur, i.e. when E rξp0qs ą 1, so that τ8 “ 0 with positive
probability, and T8 is the genealogical tree of a supercritical Bienaymé-Galton-Watson branch-
ing process. This case is ruled out by Item 2 of Assumption 2.11, which, in particular, implies
that ξp0q “ 0 almost surely. đ

Given Item 3 of Theorem 2.12, one might expect the event that T8 contains a node of infinite
degree to occur with probability 0 or 1: for example, perhaps one might expect this to event
to ‘look like’ a tail event, measurable with respect to the tail sigma algebra of an appropriate
filtration. The following theorem shows that this is not actually the case in full generality.

Theorem 2.15. There exists an explosive pX,W q-CMJ process satisfying the conditions of
Assumption 2.11 such that

P pT8 contains a node of infinite degree q P p0, 1q. (2.14)
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Note that, applying Item 3 of Theorem 2.12, Equation (2.14) also implies that for such an
explosive pX,W q-CMJ process,

P pT8 contains an infinite pathq P p0, 1q.

We note that, unlike the other theorems stated in this section, the proof of Theorem 2.15
appears in Section 5, in particular in Section 5.3.

2.5 Proof techniques and relation to existing literature

As mentioned in the introduction, Theorem 2.5 was proved in the case that the pXpiq, i P Nq
are independent, with Xpiq „ Exp pipq , p ą 1 in [58]. The technique used in that paper was
to show that the number of nodes u P U8 that are k-fertile in the tree T8 (that is, contain a
sub-tree of size at least k ` 1), is almost surely finite for all k ą 1{pp ´ 1q [58, Lemma 5.1],
and then deduce an infinite path cannot exist, almost surely. Applying Lemma 2.1 then yields
the desired conclusion. An immediate generalisation of these techniques to the more general
setting considered here does not allow one to to prove Theorem 2.5. Indeed, as we will see in
Theorem 3.21, Theorem 2.5 applies to cases where the number of k-fertile nodes is almost
surely infinite for any k P N. Instead, we use a different approach to prove Theorem 2.5. By
a first moment method and appropriate concentration bounds (Lemma 4.1), we show that
the expected number of nodes a P U8, with a high enough initial index a1, that explodes
before all of its ancestors (that is, produces infinitely many offspring before any of its direct
ancestors does), is finite (see Proposition 4.3). Combining this with a coupling argument in
Proposition 4.4 (a significant generalisation of [58, Lemma 5.3]), we show that the expected
number of nodes that explodes before all of their ancestors is finite. Finally, the uniform
explosivity assumption (see Remark 2.4) allows one to deduce that the explosion time of the
process τ8 is the infimum of the explosion times Bpuq ` Ppuq of individuals u P U8. Using
the aforementioned first moment arguments, we can show that this infimum coincides with an
infimum over a finite set. Hence, at τ8 there exists at least one node of infinite degree.

The proofs of Theorems 2.8 and 2.10 use a different approach: by Borel-Cantelli arguments,
we can show that before the explosion time associated with an individual, either infinitely
many children explode themselves (leading to an infinite path, cf. Theorem 2.8), or otherwise
certain finite sub-trees appear infinitely often when there is a star (cf. Theorem 2.10). The
uniqueness conditions appearing in Theorem 2.12 are reminiscent of similar uniqueness condi-
tions appearing, for example, previously in [58] (using the fact that the associated distribution
of Pp∅q is smooth). However, this requires novelty when proving the existence of a unique
infinite path in the level of generality we consider (see Lemma 4.8).

3 Examples of applications and an open problem

In this section, we provide applications of our main results, Theorem 2.5, Theorem 2.8, and
Theorem 2.12 in the case that the inter-birth times pXwpiqqiPN are exponentially distributed.
If Xwpiq has an exponential distribution with parameter fpi, wq, say, the memory-less property
and the property of minima of exponential distributions show that T8 may be interpreted
as the limiting infinite tree in a model of pW, fq-recursive trees with fitness. In this model,
evolving in discrete time, nodes arrive one at a time, are assigned i.i.d. weights, and connect to
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an existing node sampled with probability proportional to its ‘fitness function’. In this model,
we are not only able to provide phase transitions related to the emergence of an infinite path,
but also apply Theorem 2.10 to provide criteria for the emergence of a particular sub-tree
infinitely often. This is the content of Section 3.1.

In Section 3.2 we consider more concrete cases, when the weights W are real-valued, closely
connected to super-linear preferential attachment models. In Section 3.2.1 we provide some
background for the analysis of such models, in the context of existing literature. Then, Theo-
rem 3.16 in Section 3.2 provides a classification of the phases where one sees a unique node of
infinite degree or a unique infinite path, proving phase transitions for three different examples.
These results apply not only to the case that the values pXwpiqqiPN have exponential distri-
butions, but other distribution types (see Remarks 3.6 and 3.17); which may be of interest
in applications. In Theorem 3.21 we are able to characterise the sub-trees of children of the
star that can emerge in this model. We discuss implications of these results in the particular
‘super-linear degree’ example in Section 3.2.4, which, in particular, allows us to produce phase
diagrams in Figures 1 and 2.

Finally, we discuss the proof techniques involved in Section 3.3 and state an open problem in
Section 3.4.

3.1 The structure of explosive recursive trees with fitness

Suppose the values of pXwpiq, i P Nq are exponentially distributed and independent. The
properties related to the exponential distribution yield that the sequence of trees pTiqiPN as-
sociated with an explosive pX,W q-CMJ branching process are identical in law to a sequence
of recursive trees with fitness which we define below. First, we define the fitness function
f : N0 ˆ S Ñ r0,8q to be a measurable function such that fpi, wq is the rate of the expo-
nential random variable Xwpi` 1q.

In this section, we generally consider trees as being rooted with edges directed away from
the root, and hence the number of ‘children’ of a node corresponds to its out-degree. More
precisely, given a vertex labelled v in a directed tree T we let deg`pv, T q denote its out-degree
in T . We now define the recursive tree with fitness model.

Definition 3.1 (Recursive tree with fitness). Suppose that pWiqiPN are i.i.d. copies of a random
variable W that takes values in S, and let f : N0 ˆ S Ñ r0,8q denote a fitness function.
A pW, fq-recursive tree with fitness is the sequence of random trees pTiqiPN such that: T0
consists of a single node 0 with weight W0 and for n ě 1, Tn is updated recursively from Tn´1
as follows:

1 Sample a vertex j P Tn´1 with probability proportional to its fitness, i.e., with probability

fpdeg`pj, Tn´1q,Wjq
řn´1
j“0 fpdeg`pj, Tn´1q,Wjq

.

2 Connect j with an edge directed outwards to a new vertex n with weight Wn.

Remark 3.2. Due to the equivalence in law with trees associated with an pX,W q-CMJ
branching process, by abuse of notation we refer to a sequence of recursive tree with fitness
by pTiqiPN, despite the fact that the vertex set of these trees is N0 rather than U8. đ
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Remark 3.3. The correspondence between recursive trees with fitness and the trees pTiqiPN
associated with an pX,W q-CMJ process, when Xwpiq „ Exp pfpi` 1, wqq holds for all i P
N, w P S, is a consequence of the memory-less property and the fact that the minimum of
exponential random variable is also exponentially distributed, with a rate given by the sum of
the rates of the corresponding variables; see for example [34, Section 2.1]. The use of such
continuous-time embeddings to analyse combinatorial processes was pioneered by Arthreya and
Karlin [4]. This correspondence allows us to translate our main results to the infinite recursive
tree, which we also denote by T8. đ

3.1.1 The star/path transition in explosive recursive trees with fitness

Our first result pertains to the existence of a node of infinite degree or an infinite path in
recursive trees with fitness. To this end, we make the following assumption:

Dw˚ P S : @w P S, j P N : fpj, wq ě fpj, w˚q and
8
ÿ

j“0

1
fpj, w˚q

ă 8. (w˚)

That is, there exists a minimiser w˚ P S that, uniformly in j P N, minimises fpj, ¨q, and the
reciprocals of fpj, w˚q are summable. Moreover, we define

µwn :“
8
ÿ

i“n

1
fpi, wq

, w P S, n P N, and set µn :“ µw
˚

n . (3.1)

Note that µwn ď µn ă 8 for all w P S by (w˚).

Theorem 3.4 (Star/path in explosive recursive trees). Let pTiqiPN be a pW, fq-recursive tree
with fitness and assume f satisfies (w˚). Then,

1 If, for some c ă 1, we have

8
ÿ

n“1
E

«

8
ź

i“0

fpi,W q

fpi,W q ` cµ´1
n

ff

ă 8, (3.2)

the tree T8 contains a unique node of infinite degree, and no infinite path.

2 If either for some c ą 1 and all w P S , we have

8
ÿ

n“1
E

«

8
ź

i“0

fpi,W q

fpi,W q ` cpµwn q
´1 log n

ff

“ 8, (3.3)

or, as a weaker condition, Equation (2.9) is satisfied with νwn :“ dµwn for d ă 1, the tree
T8 contains a unique infinite path, and no node of infinite degree.

The proof of Theorem 3.4 appears in Section 5, in particular Section 5.2.1.

Remark 3.5. It turns out that Equation (3.3) is a sufficient condition for Equation (2.9) to
be satisfied with νwn :“ dµwn for d ă 1. However, we include it as a general comparison to
Equation (3.2). đ
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Remark 3.6. Analogues of Theorem 3.4 extend to more general distributions of Xwpiq,
other than exponential distributions. In particular, we can apply the same techniques used
to prove Item 2 of Theorem 3.4 whenever pXwpiq, i P Nq are independent and Var pXwpiqq ď
KE rXwpiqs

2 for some K ą 0, possibly depending on w. In this case the expected value
in (3.3) is replaced by the Laplace transform E

“

Lcpµwn q
´1 lognpPp∅q;W q

‰

. See the proof in
Section 5.2.1 for more details. đ

3.1.2 Sub-trees in explosive recursive trees with fitness when there is a star

In Section 2.3, we described a tree T as a finite subset of the Ulam-Harris tree containing the
root, with a natural directed edge structure induced by parents being connected to children.
We apply the same notion here, upon identifying labels of elements of T8 with the Ulam-
Harris labelling. For a tree T Ď U8 and u P T8 (when we label the elements of T8 with the
Ulam-Harris labelling), we say that T appears as a sub-tree, rooted at u, in T8 if uT Ď T8.
Because the presence of ‘earlier siblings’ in a copy of a tree T can influence the probability of
a tree emerging 2 it is convenient to also assume that T is sibling closed, where we define as
follows. If u “ u1 ¨ ¨ ¨um P T then u “ u1 ¨ ¨ ¨um´1` P T for each ` P rums.

The occurrence of a sibling-closed tree T in T8 may also depend on the order in which
the vertices in T appear, which can vary in such a way that they preserve the lexicographic
ordering. An ordering of a tree T with |T | “ k` 1 vertices, for some k P N, is a permutation
O : T Ñ t0, 1, . . . , ku, such that Opuq ď Opvq if and only if u ďL v. Given an ordering
O, we generally refer to the vertices of a tree T with k ` 1 vertices as tv0, . . . , vku, where
vi :“ O´1piq for each i. Given a sibling-closed tree T , we let OpT q denote the set of all
orderings of T . For a given ordering O and j ď k, we let O|j denote the (also sibling-closed)
tree on the vertex set tv0, . . . , vju; note that this is well defined because O preserves the order
ďL. Also note that each O|j inherits the natural directed edge structure from T . For a given
vertex vi, with i ď j, deg`pvi, O|jq denotes its out-degree in O|j .

We then have the following theorem.

Theorem 3.7 (Sub-tree counts). Fix k P N, and let pTiqiPN be a pW, fq-recursive tree with
fitness such that f satisfies (w˚) and so that T8 contains a unique star. Moreover, assume
that for each w P S we have µwn ě c1pwqµn, where 0 ă c1pwq ď 1. Let T be a sibling-closed
tree, with |T | “ k ` 1. The tree T8 contains T as a sub-tree infinitely often if and only if

8
ÿ

n“1

ÿ

OPOpT q

E

»

–

k
ź

j“0

śdeg`pvj ,T q´1
`“0 fp`,Wvjq

řj
i“0 fpdeg`pvi, O|jq,Wviq1deg`pvi,O|j qădeg`pvi,T q ` µ

´1
n

fi

fl “ 8. (3.4)

Corollary 3.8. Fix k P N and assume that, for each i P rks we have E
“

fpi,W qk
‰

ă 8. Let
T be a sibling-closed tree with k ` 1 vertices. Then, under the assumptions of Theorem 3.7
the tree T8 contains T as a sub-tree infinitely often if and only if

ř8

n“1 µ
k
n “ 8.

The proof of Theorem 3.7 appears in Section 5.2.2. On the other hand, the proof of Corol-
lary 3.8 appears separately, in Section 6.2.1.

2For example, if the tree T corresponds to a path, it is intuitively less likely to have a path emerge where
every node of the path is the first child of its parent rather than a path where some nodes are born later but,
by random chance, produce children faster.
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3.2 Phase transitions in specific models of explosive recursive trees
with fitness

In this section we investigate three particular cases of the results presented in Section 3.1,
where we are able to prove phase transitions for the structure of the infinite limiting tree
T8 in terms of the fitness function and the vertex-weight distribution. We assume that the
vertex-weights are non-negative and real-valued, i.e. they take values in S “ r0,8q. We also
assume that the fitness function fpi,W q grows faster than linear in the degree (i.e. its first
argument). These cases are thus examples of super-linear preferential attachment with fitness.

3.2.1 Connection to existing literature: super-linear preferential attachment

As alluded to in the introduction, Section 1.1, a model of recursive trees (with fitness) that
has received substantial attention the last two decades are preferential attachment models.
Such models are thought to serve as a good explanation of the formation real-world networks
due the preferential attachment paradigm, which suggests that networks are constructed by
adding vertices and edges successively, in such a way that new vertices prefer to be connected
to existing vertices with large degree. In particular, many of such models intrinsically give
rise to properties also found in many real-world networks (i.e. the scale-free property and
(ultra)small-world property), rather than such properties being imposed on the model. We
refer to [29] and the references therein for an extensive overview of the literature on such
models and their applications.

Super-linear preferential attachment is a particular type of preferential attachment where new
vertices connect to existing vertices with out-degree i with a probability proportional to fpiq,
for some fitness function f : N0 Ñ p0,8q such that

ř8

i“0 fpiq
´1 ă 8. Most often, as in

e.g. [16, 58, 64], the case fpiq “ pi ` 1qp for some p ą 1 is studied, though there are also
choices for f that satisfy the summability condition such that fpiqi´p Ñ 0 as i Ñ 8 for
any p ą 1. We coin these functions barely super-linear. Though Pólya urn models with barely
super-linear fitness functions have been studied previously [27], as far as the authors are aware
this is the first case such fitness functions are treated for preferential attachment models.

Super-linear preferential attachment models are suggested to possibly explain the formation of
real-world networks such as the Internet, where these networks are in a ‘preasymptotic regime’
(are of relatively small size) where the explosive nature of the model cannot be observed yet,
based on statistical parameter estimation, simulations, and non-rigorous analysis [46, 47, 60].

The inclusion of vertex-weights allows for a more heterogeneous and hence more realistic
model, where different vertices may behave differently (in distribution), even when their out-
degree is the same, as also discussed in the introduction. The presence of vertex-weights often
leads to rich behaviour where phase transitions based on the vertex-weight distribution can be
observed (see the introduction for examples), which we show in this section to be case for the
examples we consider here, too.

We study a number of examples for which we can apply the results in Section 3.2. We state
the assumptions for the fitness function f and the vertex-weight distribution, after which we
present the results related to Theorems 3.4 and 3.7. We conclude the section with a discussion
of these results in Section 3.2.4, where we also provide some interesting phase diagrams in
Figures 1 and 2, and with some open problems in Section 3.4.
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3.2.2 Assumptions for the fitness function and vertex-weight distribution

When stating the particular assumptions for the fitness function f and the vertex-weight
distribution, it is helpful to use the notions of slowly-varying and regularly-varying functions,
which we recall in the following definition.

Definition 3.9. A measurable function L : r0,8q Ñ r0,8q is said to be slowly varying if for
any a ą 0 we have

lim
xÑ8

Lpaxq

Lpxq
“ 1.

We say a measurable function g : r0,8q Ñ r0,8q is regularly varying with exponent β P R
if gpxq “ xβLpxq, where L : r0,8q Ñ r0,8q is slowly varying. Finally, we say that a random
variable W is regularly varying with exponent z ă 0 if the tail distribution P pW ě xq is a
regularly-varying function (in x) with exponent z ă 0.

We then assume that the fitness function satisfies the following assumption.

Assumption 3.10 (Fitness function). The fitness function f is such that Equation (w˚) is
satisfied with w˚ “ 0. Furthermore, there exists s : N0 Ñ p0,8q, which we call the degree
function, and continuous functions g : r0,8q Ñ p0,8q and h : r0,8q Ñ r0,8q, which we
call the weight functions, such that f satisfies

fpi, wq :“ gpwqspiq ` hpwq, i P N0, w ě 0.

We then distinguish the following two cases, based on the weight functions.

� Additive weights. g ” 1 and h is regularly varying with exponent 1.

� Mixed weights. g and h are regularly varying with exponents 1 and γ ě 0, respectively.

Remark 3.11. The assumption that w˚ “ 0 is not necessary, but used to simplify notation
and computations. The results presented here follow equivalently for w˚ ą 0 as well. đ

Remark 3.12. The function g and h are regularly varying with exponents 1 and γ ě 0 in the
mixed case; g ” 1 and h is regularly varying with exponent 1 in the additive case. The choice
of the exponents is due to the fact that, when the vertex-weights are regularly varying with
exponent ´pα´ 1q ă 0, then gpW q and hpW q are random variables that are regularly varying
with exponents ´pα ´ 1q and ´pα ´ 1q{γ, respectively (see Lemma 6.6 for details). Hence,
changing the exponent of, for example, the regularly-varying function g to ζ ‰ 1 in the mixed
case, is equivalent to changing the exponent of the regularly-varying random variable W from
´pα´1q to ´pα´1q{ζ and changing the exponent of the regularly-varying function h from γ
to γ{ζ. As such, we take ζ “ 1 without loss of generality. The function h is regularly varying
with exponent 1 in the additive case without loss of generality for the same reason. đ

Depending on the precise form of the degree function, the model behaviour markedly differs.
We assume the degree function s satisfies the following assumption.

Assumption 3.13 (Degree function). The degree function s : N0 Ñ p0,8q satisfies one of
the following cases.
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� Super-linear preferential attachment. s is regularly varying with exponent p ą 1.

� Barely super-linear preferential attachment. s is regularly varying with exponent 1,
such that

ř8

i“0 spiq
´1 ă 8.

As a particular example of the barely super-linear case, we consider

� Barely super-linear log-stretched preferential attachment. For some β P p0, 1q,

spiq “ pi` 1q exppplogpi` 1qqβq, i P N0. (3.5)

Remark 3.14. We note that these choices for the fitness function f are not exhaustive, but
do cover a wide range of examples. In particular, the weight types considered, i.e. additive
or mixed weights, are common in the literature of linear preferential attachment with fitness
(see e.g. [21, 26, 53, 19, 34, 22]). When the vertex-weights are constant almost surely, the
additive and mixed cases all fall into the same classes of super-linear preferential attachment.
The barely super-linear class has not been studied previously, as far as the authors are aware.
đ

Finally, we require several assumptions on the distribution of the vertex-weights. For different
choices of the fitness function f , different assumptions are required, which are summarised in
the following overview.

Assumption 3.15 (Vertex-weight distribution). The vertex-weights pWiqiPN are i.i.d. and their
tail distribution satisfies one (or more) of the following conditions.

� Power law. Let α ą 1. We have the following two conditions.

1 There exist x ą 0 and a slowly-varying function ` : r0,8q Ñ r0,8q such that

P pW ě xq ď `pxqx´pα´1q, x ě x. (3.6)

2 There exist x ą 0 and a slowly-varying function ` : r0,8q Ñ r0,8q such that

P pW ě xq ě `pxqx´pα´1q, x ě x. (3.7)

� Log-stretched exponential. Let ν ą 1. We have the following two conditions.

1 There exist c, x ą 0 such that

P pW ě xq ď e´cplog xqν , x ą x. (3.8)

2 There exist c, x ą 0 such that

P pW ě xq ě e´cplog xqν , x ě x. (3.9)
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3.2.3 Phase transitions for super-linear preferential attachment models with fitness

Based on these assumptions for the fitness function, degree function, and vertex-weight dis-
tribution, we can formulate the following theorem that treats the appearance of a unique
infinite-degree vertex or a unique infinite path in T8.

Theorem 3.16. Let pTiqiPN be a pW, fq-recursive tree with fitness, where the fitness function
f and degree function s satisfy one of the cases in Assumptions 3.10 and 3.13, respectively,
and the vertex-weight distribution satisfies one of the cases in Assumption 3.15. The tree
T8 either contains a unique vertex with infinite degree and no infinite path almost surely,
or contains a unique infinite path and no vertex with infinite degree almost surely, when the
following conditions are met, based on the fitness function, degree function, and vertex-weight
assumptions:
Fitness Degree Star Path
Mixed Super-linear (3.6) & pp´ 1qpα´ 1q ą

`

γ ´ γ´1
p

˘

_ 1 (3.7) & pp´ 1qpα´ 1q ă
`

γ ´ γ´1
p

˘

_ 1
Additive Super-linear (3.6) & ppα´ 1q ą 1 (3.7) & ppα´ 1q ă 1
Mixed Log-stretched (3.8) & βν ą 1 (3.9) & βν ă 1

Table 1: The first column represents the form of the fitness function, as in Assumption 3.10;
the second represents the form of the degree function, as in Assumption 3.13. The third and
fourth column, respectively, list the required assumptions on the vertex-weight distribution, as in
Assumption 3.15, together with the choices of the parameters that lead to either a unique node
of infinite degree or a unique infinite path.

The proof of Theorem 3.16 appears in Section 6.1.

Remark 3.17. Though Theorem 3.16 is presented for exponentially distributed inter-birth
times, we expect the same results to hold for a large family of distributions, such that Xwpujq
has mean 1{fpj ´ 1, wq for each u P U8, j P N, and w P r0,8q. In particular, we discuss the
extension of Theorem 3.16 to the following examples Appendix B:

1 Gamma distribution: For each u P U8, j P N, and w P r0,8q, the inter-birth time
Xwpujq follows a Gammapk, kfpj ´ 1, wqq distribution, for some k ą 0.

2 Beta distribution: For each u P U8, j P N, and w P r0,8q, the inter-birth time
Xwpujq equals α`β

α
1

fpj´1,wqBpujq, where pBpujqquPU8,jPN is a sequence of i.i.d. copies
of a Betapα, βq random variable, for some α ě 1 and β ď p0, 1s.

3 Rayleigh distribution: For each u P U8, j P N, and w P r0,8q, the inter-birth time
Xwpujq follows a Rayleighp

a

2{π{fpj ´ 1, wqq distribution. đ

Remark 3.18. In Section A we discuss three more examples of barely super-linear preferential
attachment with fitness: the log-stretched case with additive fitness, as well as a poly-log case
with either additive or mixed fitness. Again, the extension of the results to the other inter-birth
time distributions as in Remark 3.17 apply here, too.

We do not include these results here, as we cannot prove a complete phase diagram, i.e. for
certain parameter choices we cannot prove the appearance of a unique infinite-degree vertex
nor a unique infinite path. đ

Remark 3.19. When the vertex-weights are almost surely bounded (or, in particular, a de-
terministic constant), it follows from the above theorem that in all cases, a unique vertex
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with infinite degree emerges in T8 almost surely. Indeed, in such a case the vertex-weight
distribution would satisfy, the upper bounds in (3.6) or (3.8) for any α ą 1, ν ą 1. As such,
we can take α Ñ 8, ν Ñ 8 to conclude the claim. In the case spiq “ pi ` 1qp with p ą 1,
this recovers the results of Oliveira and Spencer [58, Theorem 1.1]. đ

Remark 3.20. It is interesting to note that, though two different techniques with distinct
assumptions are used to prove Theorems 2.5 and 2.8 (for the existence of an infinite star or
path in T8), the application of these two general results in Theorem 3.16 allows us to obtain
a complete phase diagram for the three examples discussed here. đ

When the infinite tree T8 contains a unique vertex with infinite degree almost surely, we
can also quantify Theorem 3.21, in the sense that, depending on assumptions on the fitness
function f and vertex-weight distribution, we can determine almost surely whether or not T8
contains an infinite number of copies of which kinds of sub-trees. We remark that we can do
this in a relatively general manner, subject to the assumption that T8 contains a unique vertex
with infinite degree. That is, for any degree function s that satisfies the (barely) super-linear
cases in Assumption 3.13 the results below apply.

To this end, we define for a finite tree T and constant z ą 0,

G1 “ G1pT, zq :“
ÿ

vPT

deg`pv, T q1deg`pv,T qąz, G2 “ G2pT, zq :“
ÿ

vPT

1deg`pv,T qąz.

(3.10)
We can then have the following result.

Theorem 3.21. Let pTiqiPN be a pW, fq-recursive tree with fitness, where we assume that
f satisfies Assumption 3.10, that the degree function s satisfies Assumption 3.13, and that
the vertex-weight distribution satisfies (3.6) and (3.7) for some slowly-varying functions `, `,
respectively, and some α ą 1. Furthermore, we assume that T8 contains a unique vertex with
infinite degree, almost surely. Fix k P N and let T be a sibling-closed tree of size k` 1. Then,
we have the following.

� Super-linear case: We take γ “ 1 for additive weights, γ ě 0 for mixed weights, and
set z “ pα´ 1q{pγ _ 1q. The tree T almost surely appears infinitely often as a sub-tree
of T8 when

p ă 1` 1
k ´ pG1pT, zq ´ zG2pT, zqq

. (3.11)

The tree T almost surely appears finitely often as a sub-tree of T8 when

p ą 1` 1
k ´ pG1pT, zq ´ zG2pT, zqq

. (3.12)

� Barely super-linear case: The tree T appears as a sub-tree of T8 infinitely often,
almost surely.

The proof of Theorem 3.21 appears in Section 6.2, in particular, Section 6.2.2.

Remark 3.22. In fact, we have a strengthening of Theorem 3.21 which applies to any pW, fq-
recursive tree with fitness (in particular without the assumption thatW is real-valued), as long
as, for any j P N0, fpj,W q satisfies (3.6) and (3.7) for some slowly-varying functions `j, `j,
respectively, and an exponent z ą 0, and for each k P N0 there exists ik P t0, . . . , ku such
that infiďk fpi, wq “ fpik, wq for all w P S. See Proposition 6.5 for more details. đ
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Remark 3.23. When the vertex-weight distribution satisfies E rW as ă 8 for all a ą 0,
it directly follows from the assumptions on the fitness function f in Assumption 3.10 and
Corollary 3.8 that the results in Theorem 3.21 extend to this case, where we set G1pT, zq “
G2pT, zq “ 0.

Furthermore, we stress that for all barely super-linear cases and for certain super-linear cases
(see the upcoming discussion), sub-trees T of arbitrary size appear infinitely often as a sub-tree
of T8, almost surely. This is markedly different when compared to the super-linear preferential
attachment model fpi, wq “ pi ` 1qp (p ą 1) studied by Oliveira and Spencer in [58], where
only sub-trees T with size at most rpp´ 1q´1s can appear infinitely often almost surely. đ

3.2.4 Discussion related to Theorem 3.21: the super-linear case

Let us provide some intuition for Theorem 3.21 by discussing two particular examples.

Super-linear degree, mixed weights. We let fpi, wq “ pw ` 1qpi ` 1qp for some p ą 1. That
is, we consider the mixed weights case for the fitness function f , with gpxq :“ x ` 1, h ” 0,
and γ “ 0, as in Assumption 3.10, and the super-linear case for the degree function s, i.e.
spiq :“ pi ` 1qp, p ą 1, as in Assumption 3.13. We require that T8 contains a unique vertex
with infinite degree almost surely, so that, by Theorem 3.16, we assume that the vertex-weight
distribution satisfies (3.6) and that pp ´ 1qpα ´ 1q ą 1. Then, additionally assume that the
vertex-weight distribution satisfies (3.7) with the same α ą 1 but potentially with a different
slowly-varying function. Now, Theorem 3.21 states that a tree T of size k`1, for some k P N,
appears infinitely often as a sub-tree of T8 almost surely when

p ă 1` 1
k ´ pG1pT, α ´ 1q ´ pα ´ 1qG2pT, α ´ 1qq .

First, noting that the sum of all degrees equals |T | ´ 1 “ k, we observe that

G1pT, α ´ 1q ´ pα ´ 1qG2pT, α ´ 1q P r0, kq, (3.13)

for any choice of T and α, so that the upper bound yields a restriction on p. We omit the
arguments of G1 and G2 from here on out for ease of writing. Combining our two assumptions
we then require that

1
α ´ 1 ă p´ 1 ă 1

k ´ pG1 ´ pα ´ 1qG2q
,

and we can only find p ą 1 that satisfy both inequality when

k ´ pG1 ´ pα ´ 1qG2q ă α ´ 1. (3.14)

Now, if k ă α ´ 1, there is no vertex in T with an out-degree larger than α ´ 1, so that
G1 “ G2 “ 0 and the inequality is satisfied. For k ě α´1 we distinguish two cases. piq There
is no vertex in T with a degree larger than α´ 1. It again follows that G1 “ G2 “ 0, so that
the inequality in (3.14) is not satisfied; piiq There exists at least one vertex with degree larger
than α´1. Then, k´G1 ą 0 since k equals the sum of all degrees, whilst pα´1qp1´G2q ď 0
(since G2 ě 1), so that (3.14) is not satisfied.

We thus conclude that, when pp´1qpα´1q ą 1, only trees T with size k`1, where k ă α´1,
appear infinitely often. In particular, we do not require any assumptions on the structure of
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such trees T ; only their size is relevant. The reversed inequality in Theorem 3.21 can be anal-
ysed in a similar manner to derive the phase diagram in Figure 1.

Super-linear degree, additive weights. We let fpi, wq “ pi ` 1qp ` w for some p ą 1. That
is, we consider the additive weight case for the fitness function f , with hpxq “ x, as in
Assumption 3.10, and the super-linear case for the degree function s, i.e. spiq “ pi`1qp, p ą 1,
as in Assumption 3.13. We make the same assumptions as in the first example, except that
we now require ppα´ 1q ą 1. First, when p is so large that pp´ 1qpα´ 1q ą 1, we can derive
the same conclusions as in the first example. When p is such that

1
α ´ 1 _ 1 ă p ă 1` 1

α ´ 1 , (3.15)

different behaviour can be observed. Here, as we illustrate with the following particular family
of trees, we observe the peculiar behaviour that the structure of a tree T plays a role in terms
of whether it appears infinitely or finitely often as a sub-tree in T8.

Let T be an m-ary tree of size k ` 1 for some m, k P N such that k “ `m for some ` P N,
i.e. a tree where the ` internal vertices (non-leaf vertices) have out-degree m (note that stars
are the particular case ` “ 1). We observe that, by distinguishing the two cases m ą α ´ 1
and m ď α ´ 1 (where in the latter case G1 “ G2 “ 0),

G1pT, α ´ 1q ´ pα ´ 1qG2pT, α ´ 1q “ maxtk ´ pα ´ 1q`, 0u.

As a result, recalling k “ `m, an m-ary tree T appears infinitely often as a sub-tree of T8,
almost surely, when

1
α ´ 1 _ 1 ă p ă 1` 1

`mintα ´ 1,mu .

Observe that for ` “ 1, i.e. stars of size k ` 1 “ m` 1, these inequalities are satisfied by any
p that satisfies (3.15), so that a star of any size appears infinitely often as a sub-tree of T8,
almost surely, when p satisfies (3.15). For ` ě 2, these inequalities can be satisfied only when
α ď 2 and ` ă 1{p2´ αq or when α ą 2.

Again, the reversed inequality in Theorem 3.21 can be analysed in a similar manner to derive
the phase diagram in Figure 2, where some of the phases for ternary trees (m “ 3) are shown.

We thus observe that it is possible for two trees T1, T2 of sizes k1 ` 1 ă k2 ` 1, respectively,
to appear finitely and infinitely often as a sub-tree of T8, almost surely. This behaviour is
completely opposite to the behaviour of the first example (or when pp´ 1qpα´ 1q ą 1 in this
example).

As a final remark, any tree of any size appears infinitely often as a sub-tree of T8 in the barely
sub-linear case discussed in Theorem 3.21. As discussed in Section 2.5, this behaviour has not
been observed in explosive tree models studied so far.
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Figure 1: The phase diagram for the case fpi, wq “ pw`1qpi`1qp. Below the curve pp´1qpα´
1q “ 1 (the dark shaded region), the tree T8 contains a unique infinite path, whereas above the
curve (the light shaded region) the tree contains a unique vertex of infinite degree. Moreover, in
the light shaded region, below the kth horizontal dotted line, corresponding to 1 ` 1{k, (with
k “ 1, 2, 3, 4 visible here), any tree of size k ` 1 appears as a sub-tree of a child of the node of
infinite degree infinitely often, whereas above the kth horizontal line, in the light shaded region,
trees of size k`1 appear only finitely often as a sub-tree of a child of the node of infinite degree.
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Phase diagram for p and α, super−linear degree, additive weights
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Figure 2: The phase diagram for the case fpi, wq “ pi` 1qp`w. Below the curve ppα´ 1q “ 1
(the dark shaded region), the tree T8 contains a unique infinite path, whereas above the curve
(the lighter shaded regions) the tree contains a unique vertex of infinite degree. In the area
above the line pp´ 1qpα´ 1q “ 1 (lightest shaded region), below the kth horizontal dotted line,
corresponding to 1 ` 1{k, (with k “ 1, 2, 3, 4 visible here), any tree of size k ` 1 appears as a
sub-tree of a child of the node of infinite degree infinitely often, whereas above the kth horizontal
line, in the lightest shaded region, trees of size k ` 1 appear only finitely often as a sub-tree
of a child of the node of infinite degree. In the area in between the curves ppα ´ 1q “ 1 and
pp ´ 1qpα ´ 1q “ 1 (the semi-dark region) a star of any size appears as a sub-tree of a child
of the node of infinite degree infinitely often. Additionally, below the `th curve in this region,
corresponding to pp ´ 1q`mintα ´ 1, 3u “ 1, (with ` “ 2, 3, 4 visible here) ternary trees of size
3`` 1 appear as a sub-tree of the node of infinite degree infinitely often, whereas above the `th
curve, such trees only appear finitely often.
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3.3 Proof techniques

The proofs of the results in Section 3 generally apply the results of Section 2. However, we are
unaware of previous proofs of Lemma 5.1, used to prove Theorem 3.4. Moreover, exploiting
the memory-less property of the exponential distribution allows the derivation of a necessary
and sufficient condition for the emergence of a structure infinitely often when T8 contains an
infinite star, as in Theorem 3.7. The proof of this theorem, we believe, is more elegant than the
approach used to prove [58, Theorem 1.2] for the particular case fpi, wq “ pi`1qp, p ą 1. The
assumptions made in Section 3.2 allow us to deduce a variety of phase-transitions in applied
models (cf. Theorem 3.16), which we believe extend to a fairly general family of distributions
(see Remark 3.17).

We prove the most general results, as presented in Section 3.1, in Section 5, and prove the
results for the examples presented in Section 3.2 in Section 6.

3.4 Open problem

It is unclear whether or not any explosive pX,W q-CMJ process for which the vertex-weights
are almost surely constant always yields an infinite star almost surely. In other words, when
assuming that the pXpiqqiPN are mutually independent and positive, we have the following
open problem.

Open problem 3.24. Consider an explosive pX,W q-CMJ process pTtqtě0, such that the
sequence pXpiqqiPN are mutually independent and positive. Is it the case that almost surely
T8 contains a unique vertex with infinite degree?

Remark 3.25. In the case of the recursive tree with fitness, if Xpiq „ Exp pgpiqq, with g
unbounded, and convex, we believe that the affirmative of Open problem 3.24 holds, by an
argument using a combination of the result of Galashin [23, Theorem 1] and Proposition 4.4.
đ

Remark 3.26. Note that the counter-example in Theorem 2.15 relies on the dependence of
the pXpiqqiPN on the weights. Thus, if T8 does almost surely contain a unique node of infinite
degree in Open problem 3.24, one may interpret this, informally, as saying that ‘new nodes are
unable to out-compete older nodes, without the influence of a random weight’. đ

4 Proofs of main results

This section is dedicated to proving the most general results, as presented in Section 2. We
prove the existence of an infinite star (cf. Theorem 2.5) in Section 4.1, prove the existence of of
an infinite path (cf. Theorem 2.8) and the structural result of sub-trees in the star regime (cf.
Theorem 2.10) in Section 4.2, and finally prove the uniqueness properties (cf. Theorem 2.12)
in Section 4.3.

4.1 Sufficient criteria for a star

This section is dedicated to the proof of Theorem 2.5. We first have the following lemma:
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Lemma 4.1. Fix k, n P N, let pa1, . . . , akq P Nk. Let pZiqiPrks be independent random vari-
ables, and let pXp`qq`ěn`1 be as in (2.1), satisfying Conditions 1 and 2 of Assumption 2.2.
Then, there exists n0 ą 0 and C “ Cpn0q ą 0 such that, for all n ě n0,

P

˜

k
ÿ

i“1
Zi ď

8
ÿ

`“n`1
Xp`q

¸

ď P

˜

k
ÿ

i“1
Zi ď Yn

¸

ď C
k
ź

j“1
Lcµ´1

n
pZiq, (4.1)

where Yn is as in (2.4) and independent of the pZiqiPrks.

Proof. First note that the first inequality in (4.1) is an immediate consequence of (2.4). Then,
for any λ ą 0,

P

˜

k
ÿ

i“1
Zi ď Yn

¸

“ P

˜

exp
˜

λYn ´ λ
k
ÿ

i“1
Zi

¸

ě 1
¸

ď MYnpλq
k
ź

i“1
LλpZiq,

where the last inequality uses Markov’s inequality and the independence of the random vari-
ables. Next, setting λ :“ cµ´1

n and recalling that, by (2.5), we can set
C :“ lim sup

nÑ8
MYnpcµ

´1
n q ă 8,

we deduce the result.

We now introduce the following terminology, used in the remainder of the section, which,
although not strictly needed, we believe makes the proofs conceptually easier to understand.
For a, b P U8 we say that

“a has at least k children before b explodes”
if Bpaq ` Pkpaq ă Bpbq ` Ppbq. We say that

“a explodes before all of its ancestors”
if, for each ` ă |a|, we have Bpaq `Ppaq ă Bpa|`q `Ppa|`q. Finally, for a P U8 with |a| ě 1,
we say that a “ a1 ¨ ¨ ¨ am is a1-conservative if, for each j P t2, . . . ,mu, we have aj ď a1.
(Note that this implies that any a such that |a| “ 1 is a1-conservative.)
Lemma 4.2. Under Assumption 2.2, there exist η ă 1 and K “ Kpηq ą 0 such that for all
a1 ą Kpηq, all integers m P N, and some constant C ą 0,

ÿ

a:|a|“m
a is a1-conservative

P pa has at least a1 children before ∅ explodes q ď Cηm´1E
”

Lcµ´1
a1
pPa1 ;W q

ı

.

Proof. Suppose that a “ a1 ¨ ¨ ¨ am P U8. For a to have at least a1 children before the
explosion of ∅, in particular, each of the births corresponding to the ancestors of a need to
occur (leading to a term as in Equation (1.1) with u “ ∅ and v “ a). Thus, for a1 sufficiently
large, by (1.1) and Lemma 4.1, we have

P pa has at least a1 children before ∅ explodes q “ P pBpaq ` Pa1paq ă Pp∅qq (4.2)

“ P

˜˜

m´1
ÿ

j“1
Paj`1pa|jq

¸

` Pa1paq ď
8
ÿ

k“a1`1
Xpkq

¸

(4.1)
ď C

m´1
ź

j“1
E
”

Lcµ´1
a1
pPaj`1 ;W q

ı

ˆ E
”

Lcµ´1
a1
pPa1 ;W q

ı

,
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where the last line follows from the fact that, by (2.1), for each u P U8 the sequence pPjpuqqjPN
is independent and distributed like pPjp∅qqjPN. When we sum over the possible conservative
sequences a that are a1-conservative, each aj takes values between 1 and a1, for j “ 2, . . . ,m.
Thus,

ÿ

a:|a|“m
a a1-conservative

P pa has at least a1 children before ∅ explodes q

ď

a1
ÿ

a2“1

a1
ÿ

a3“1
¨ ¨ ¨

a1
ÿ

am“1
C

m´1
ź

j“1
E
”

Lcµ´1
a1
pPaj`1 ;W q

ı

ˆ E
”

Lcµ´1
a1
pPa1 ;W q

ı

“ C

˜

a1
ÿ

`“1
E
”

Lcµ´1
a1
pP`;W q

ı

¸m´1

E
”

Lcµ´1
a1
pPa1 ;W q

ı

.

(4.3)

We now need only show that for a1 sufficiently large,
a1
ÿ

`“1
E
”

Lcµ´1
a1
pP`;W q

ı

ă η.

Indeed, since
ř8

i“` E
”

Lcµ´1
`
pP`;W q

ı

ă 8 by (2.8) in Assumption 2.2, there exists L “

Lpηq ą 0 such that, for all a1 ą L,
a1
ÿ

`“L

E
”

Lcµ´1
a1
pP`;W q

ı

ă

8
ÿ

`“L

E
”

Lcµ´1
`
pP`;W q

ı

ă
η

2 , (4.4)

where the inequality uses the fact that cµ´1
n is non-decreasing in n. On the other hand, since

limnÑ8 cµ
´1
n “ 8, by bounded convergence (bounding the integrand by 1) we have

lim
nÑ8

L´1
ÿ

`“1
E
“

Lcµ´1
n
pP`;W q

‰

“ 0.

As a result, for some K ě L sufficiently large and for all a1 ą K, we arrive at
L´1
ÿ

`“1
E
”

Lcµ´1
`
pP`;W q

ı

ă
η

2 . (4.5)

Combining Equations (4.4) and (4.5) in (4.3), we conclude the proof.

The above lemma provides an upper bound for the probability of the event that a vertex a
explodes before the root of the tree, in the case that a is a1-conservative. However, when a
does not satisfy this condition, we can view a as a concatenation of a number of conservative
sequences. That is, we write a “ b1 ¨ ¨ ¨ b`, where bi “ bi1 . . . bimi for each i P r`s and for some
` P N, pmiqiPr`s P N`, and pbi,jqiPr`s,jPrmis, such that bi is bi1-conservative for each i P r`s. By
the independence of birth processes of distinct individuals (or in fact, the independence of
disjoint sub-trees) by Equation (2.2), we are able to apply Lemma 4.2 to each conservative
sequence in the concatenation to arrive at a bound for the expected number of individuals
that explode before all its ancestors.

Proposition 4.3. Under Assumption 2.2, there exists K 1 ą 0 sufficiently large, such that

E r|ta P U8 : a1 ą K 1, a explodes before all its ancestorsu|s ă 8.
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Proof. As explained before the proposition statement, we think of sequences a P U8 as a
concatenation of conservative sequences. Let a “ a1 . . . am be a sequence of length m P N,
and assume that there exist k P rms and indices I1 ă I2 ă . . . ă Ik such that a1 “: aI1 ă

aI2 ă . . . ă aIk . That is, the Ij are the indices of the running maxima of the sequence a. For
brevity of notation, we also set Ik`1 :“ m` 1, and set a0 “ ∅.

To show that a explodes before all its ancestors, we think of a as a concatenation of the
conservative sequences aIj ¨ ¨ ¨ aIj`1´1, with j P rks. By the fact that, for each u P U8, the
sequence pPipuqqiPN is independent and distributed like pPip∅qqiPN, each of these conservative
sequences can be seen as corresponding to an aIj -conservative individual rooted at aIj´1,
j P rks. We can thus apply Lemma 4.2 to all these concatenated sequences.

Since, by definition we have aI``1 ą aI` , applying a similar logic to (4.2) we have the following
inclusion:
Ea :“ ta explodes before any of its ancestors explodesu

k
č

`“1
ta1 ¨ ¨ ¨ aI``1´1 gives birth to at least aI` children before a1 ¨ ¨ ¨ aI`´1 explodesu

“

k
č

`“1

$

&

%

˜

I``1´2
ÿ

j“I`

Paj`1pa|jq

¸

` PaI`
pa|I``1´1q ď

8
ÿ

i“aI``1
Xpa1 ¨ ¨ ¨ aI`´1iq

,

.

-

“:
k
č

`“1
Ea,`.

Now, note that the events pEa,`, ` P rksq are not independent, since, for a given `, the term
PaI`

pa|I``1´1q appearing in Ea,` may be correlated with the term
ř8

i“aI``1`1 Xpa1 ¨ ¨ ¨ aI``1´1iq

appearing in Ea,``1. However, by the third condition of Assumption 2.2, these events are con-
ditionally independent, given the weights of a and all its ancestors, W∅,Wa1 ,Wa1a2 , . . . ,Wa.
Thus,
PpEa |W∅,Wa1 ,Wa1a2 , . . . ,Waq

“

k
ź

`“1
P

¨

˝

˜

I``1´2
ÿ

j“I`

Paj`1pa|jq

¸

` PaI`
pa|I``1´1q ď

8
ÿ

i“aI``1
Xpa1 ¨ ¨ ¨ aI`´1iq

ˇ

ˇ

ˇ

ˇ

W∅, . . . ,Wa

˛

‚

(2.4)
ď

k
ź

`“1
P

˜˜

I``1´2
ÿ

j“I`

Paj`1pa|jq

¸

` PaI`
pa|I``1´1q ď Y

pa1¨¨¨aI`´1q
aI`

ˇ

ˇ

ˇ

ˇ

W∅,Wa1 , . . . ,Wa

¸

:“
k
ź

`“1
P
´

rEa,`

ˇ

ˇ

ˇ
W∅,Wa1 ,Wa1a2 , . . . ,Wa

¯

,

where each Y pa1¨¨¨aI`´1q
aI`

is independent and distributed like YaI` . Now, each of the terms rEa,`
are independent, as the depend on different weights. Hence, so are each of the terms appearing
in the above product, so that

P pEaq ď
k
ź

`“1
P
´

rEa,`

¯

. (4.6)

We now let dj :“ Ij`1´ Ij ´ 1 for j P rk´ 1s and dk :“ m´ Ik denote the number of entries
between the running maxima in the sequence a. We can then define, for pdjqjPrks P Nk

0 (and
with the convention that r0s is the empty set),

PkpaI1 , aI2 , . . . , aIk , d1, . . . , dkq

:“ ta P U8 : For all j P t1, . . . , ku and all i P rdjs, aIj`i P raIj su
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as the set of all sequences a with running maxima a1 “ aI1 , . . . , aIk and dj many entries
between the jth and pj ` 1qth maximum. For ease of writing, we omit the arguments of Pk.
We then write the expected value of the number of individuals a P U8 that explode before all
their ancestors such that a1 ą K 1 as

ÿ

aPU8
a1ąK1

P pEaq “
8
ÿ

m“1

ÿ

a:|a|“m
a1ąK1

P pEaq ď
8
ÿ

m“1

m
ÿ

k“1

ÿ

aIką...ąaI1ąK
1

ÿ

pd`q`PrksPNk0
řk
`“1 d`“m´k

ÿ

aPPk

k
ź

`“1
P
´

rEa,`

¯

.

In the first step, we introduce a sum over all sequence lengths m. In the second step, we
furthermore sum over the number of running maxima k, the values of the running maxima
aI1 , . . . aIk , the number of entries d` between each maxima I` and I``1 (or between Ik and
m if ` “ m), and all sequences a P Pk that admit such running maxima and inter-maxima
lengths. Moreover, we use (4.6) to bound P pEaq from above, now that we know the number
of running maxima in a.

We can now take the sum over a P Pk into the product, due to the fact that we can decompose
each sequence a P PkpaI1 , . . . , aIk , d1, . . . dkq into a concatenation of sequences ap1q . . . apkq,
with ap`q :“ aI` ¨ ¨ ¨ aI``1´1 P P1paI` , d`q for each ` P rks. This yields, for aI1 , . . . , aIk and
d1, . . . , dk fixed,

ÿ

aPPk

k
ź

`“1
P
´

rEa,`

¯

“

k
ź

`“1

ÿ

ap`q:|ap`q|“d``1
ap`q aI`

-conservative

P
´

rEa,`

¯

.

We can then directly apply Lemma 4.2 to each of the sums in the product to obtain, for some
η ă 1 and with C sufficiently large, the upper bound
k
ź

`“1

ÿ

ap`q:|ap`q|“d`
ap`q aI`

-conservative

P
´

rEa,`

¯

ď

k
ź

`“1
Cηd`E

”

Lcµ´1
aI`

pPaI`
;W q

ı

“ Ckη
řk
`“1 d`

k
ź

`“1
E
”

Lcµ´1
aI`

pPaI`
;W q

ı

.

We substitute this in (4.6) to arrive at
8
ÿ

m“1

m
ÿ

k“1

ÿ

aIką...ąaI1ąK
1

ÿ

pdjqjPrksPNk0
řk
`“1 d`“m´k

Ckη
řk
`“1 d`

k
ź

`“1
E
”

Lcµ´1
aI`

pPaI`
;W q

ı

ď

8
ÿ

m“1

m
ÿ

k“1

ˆ

m´ 1
k ´ 1

˙

Ckηm´k
ÿ

aI1ąK
1

¨ ¨ ¨
ÿ

aIkąK
1

k
ź

`“1
E
”

Lcµ´1
aI`

pPaI`
;W q

ı

“

8
ÿ

m“1

m
ÿ

k“1

ˆ

m´ 1
k ´ 1

˙

Ckηm´k

˜

ÿ

aąK1

E
“

Lcµ´1
a
pPa;W q

‰

¸k

.

By (4.4) we can bound the innermost sum from above by η{2 when K 1 is sufficiently large, so
that we obtain the upper bound

8
ÿ

m“1

m
ÿ

k“1

ˆ

m´ 1
k ´ 1

˙

Ckηm2´k “ C

2

8
ÿ

m“1
p1` C{2qm´1ηm ă 8,

where the last step follows when η ă p1 ` C{2q´1, which holds by choosing K 1 sufficiently
large, as follows from (4.4) and (4.5).
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The following proposition requires the following notation:

UL :“ tu P U8 : ui ď L, i P r|u|su Y t∅u.

Following [58], we say elements of UL are L-moderate. We also let U c
L denote the set comple-

ment of UL.

Proposition 4.4. Let pTtqtě0 be a pX,W q-CMJ branching process satisfying Condition 4 of
Assumption 2.2. Then, almost surely, for all t P p0,8q, we have

|tu P Tt : u is L-moderateu| ă 8.

Proof. First, let pXpLq,W pLqq denote the distribution of an auxiliary CMJ branching process,
where, if the symbol ‘„’ denotes equality in distribution, we have W pLq „ W and

pXpLq
pjq,W pLq

q „

#

pXpjq,W q if j ď L,
p8,W q otherwise.

In other words, a
`

XpLq,W pLq
˘

-CMJ process is truncated to ensure that no node produces
more than L children. Moreover, if BLpuq denotes the distribution of the random variable Bpuq
under the distribution of the pXpLq,W pLqq-CMJ process, this definition ensures that if u P UL
then BLpuq „ Bpuq. Now, note that, if pT pLq

t qtě0 denotes an pXpLq,W pLqq-CMJ process, for
each t P p0,8q we have EpXpLq,W pLqq rξptqs ď L, and, by (2.7), also EpXpLq,W pLqq rξp0qs ă 1.
Therefore, by [45, Theorem 3.1(b)], pT pLq

t qtě0 is conservative, i.e. almost surely, for each
t P p0,8q,

ˇ

ˇ

ˇ
T pLq
t

ˇ

ˇ

ˇ
ă 8. (4.7)

We now construct a coupling of a pX,W q-CMJ branching process pT tqtě0 with a pXpLq,W pLqq-
CMJ process pT pLq

t qtě0. Note that, by definition, for each L-moderate u P UL, we have
XpLqpuq „ Xpuq. We then construct pT tqtě0 in the natural way from the random variables
defining pT pLq

t qtě0: for each u P UL, we set pXpuq,Wuq “ pXpLqpuq,W pLq
u q, and for each

u P U c
L, with |u| “ m ě 1, sample Xpuq independently, conditionally on the weight Wu|m´1

.
One readily verifies that this coupling has the correct marginal distributions. Moreover, on this
coupling, almost surely, for each t ě 0, we have

ˇ

ˇtu P T t : u is L-moderateu
ˇ

ˇ “

ˇ

ˇ

ˇ
T
pLq

t

ˇ

ˇ

ˇ

(4.7)
ă 8,

as desired

Recall that, for a pX,W q-Crump-Mode-Jagers branching process pTtqtě0, we have

τ8 “ lim
kÑ8

τk “ inf tt ą 0 : |Tt| “ 8u .

Recall also that we have T8 “
Ť8

k“1 Tk “
Ť8

k“1 Tτk .

Lemma 4.5. Let pTtqtě0 be a pX,W q-CMJ branching process satisfying Condition 4 of
Assumption 2.2. Then,

T8 “ tu P U8 : Bpuq ă τ8u Ď Tτ8 . (4.8)
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Proof. The second inclusion is clear, hence we just prove the first equality. If |T8| ă 8, in
other words, the process becomes extinct, then τ8 “ 8 and the equality is clear. Otherwise,
on the event t|T8| “ 8u, since by (2.3) we have τ8 ă 8, it suffices to show that for any
k P N, τk ă τ8. First, we order elements of U8, up1q, up2q . . . , according to birth time, breaking
ties with the lexicographic ordering. Suppose that τk “ τ8 ă 8 for some k P N. Then, since
|T8| “ 8, the set

Λ “ tu P U8 : Bpuq “ τ8 “ τku

is infinite and each element of Λ is a descendant (though not necessarily a child) of one
of up1q, . . . , upk´1q. Now, there are two (not mutually exclusive) cases: either there exists a
minimal element u1 P Λ such that Λ contains infinitely many elements of the form u1v P Λ,
with v P U8, or, one of up1q, . . . , upk´1q has infinitely many children in Λ. The latter case
occurs with probability 0, because, by Equation (2.6), for each j P rk´1s and n P N, we have
ř8

i“n`1 Xpu
pjqiq ą 0 almost surely. Hence, a single individual cannot produce infinitely many

children instantaneously. But now, for the prior case, the size of the collection

tu1v : v P U8u ,

is the total progeny of a Bienaymé-Galton-Watson branching process with offspring distribution
ξpu

1qp0q „ ξp0q, and by (2.7), this is finite almost surely. We deduce that, on t|T8| “ 8u, we
have τk ă τ8 almost surely.
Lemma 4.6. Let pTtqtě0 be a pX,W q-CMJ branching process that satisfies Assumption 2.2.
Almost surely,

τ8 “ inf
uPT8

tBpuq ` Ppuqu .

Proof. First, as a shorthand in this proof, we define τ`8 :“ infuPT8 tBpuq ` Ppuqu, so that
we need only show that τ8 “ τ`8 almost surely. Note that, for each u P U8, we have
τ8 ď Bpuq`Ppuq and hence τ8 ď τ`8 . Moreover, Assumption 2.2 guarantees that Pp∅q ă 8
almost surely, hence, in particular, τ8 ď Pp∅q ă 8. Thus, by Proposition 4.4 and Lemma 4.5,
for any L ´ 1 P N, T8 Ď Tτ8 contains only finitely many pL ´ 1q-moderate elements. Since
T8 is almost surely infinite (because of Condition 1 of Assumption 2.2), by the pigeonhole
principle, there must be infinitely many elements of the form u˚L P T8, with u˚ P U8. Now,
for such u˚ and for any ε ą 0,

lim
LÑ8

P pBpu˚q ` Ppu˚q ´ Bpu˚Lq ą εq

“ lim
LÑ8

P

˜

8
ÿ

j“L`1
Xpu˚jq ą ε

¸

ď lim
LÑ8

P pYL ą εq “ 0.

Formally, to find these elements u˚L we must condition on the sigma-algebra generated by
the ‘information’ in T8. Thus, suppose that W pT8q :“

Ť

kPN Wτk denotes the sigma algebra
generated by the random variables tpBpuq,Wuq : u P T8u. Clearly, τ8 and T8 are W pT8q-
measurable. Now, if (conditioning on this sigma algebra) there exists u˚ P T8 such that for
each j P N we have u˚j P T8, then Bpu˚jq ď τ8 for each j P N. Hence, Bpu˚q`Ppu˚q “ τ8,
and we are done. Otherwise, for any L P N, we can guarantee the existence of u˚ P T8 and a
final JL ě L such that u˚JL P T8 but u˚pJL ` 1q R T8. Then, for any ε ą 0,

P
`

τ`8 ´ τ8 ą ε |W pT8q
˘

ď P pBpu˚q ` Ppu˚q ´ τ8 ą ε |W pT8qq

ď P

˜

8
ÿ

j“JL`1
Xpu˚jq ą ε

ˇ

ˇ

ˇ

ˇ

W pT8q

¸

ď P pYL ě εq .
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Taking limits LÑ 8 and then εÑ 0, we deduce that, τ`8 “ τ8 almost surely, as required.

4.1.1 Proof of Theorem 2.5

Proof of Theorem 2.5. Suppose that K 1 is taken as in Proposition 4.3. Note that we may
view any w P U8 as a concatenation w “ uv, where u P UK1 is K 1-moderate, and v “
v1 ¨ ¨ ¨ vk, where v1 ą K 1 (here we also allow v to be empty, so that K 1-moderate nodes w
may also be interpreted as a concatenation). Now, note that (on Bpuq ă 8) the birth times
Bpuvq´Bpuq „ Bpvq, and thus, by arguments analogous to those appearing in Proposition 4.3,
for any u P U8 (in particular for u P UK1),

E
“
ˇ

ˇ

 

a “ a1 ¨ ¨ ¨ am P U8 : a1 ą K 1, ua explodes before ua|m´1 , ua|m´2 , . . . , u
(
ˇ

ˇ

‰

ă 8. (4.9)

Now, since τ8 ă 8 almost surely, we infer from Proposition 4.4 with L “ K 1, that |tu P
UK1 : Bpuq ď τ8u| ă 8 almost surely. Therefore, by (4.9), the set

S :“ tu P U8 : Bpuq ď τ8, u explodes before all of its ancestorsu .

is finite almost surely. By the definition of S and the fact that the infimum of a finite set is
attained by (at least) one of the elements, by Lemma 4.6, almost surely there exists u˚ P S
such that

Bpu˚q ` Ppu˚q “ inf
vPS
tBpvq ` Ppvqu “ inf

uPU8
tBpuq ` Ppuqu “ τ8.

This implies that u˚ has infinite degree in Tτ8 . Moreover, since by Condition 1 of Assump-
tion 2.2 we have

ř8

i“n`1 Xpu
˚iq ą 0 almost surely, it follows that for each i P N we have

Bpu˚iq ă τ8 almost surely. Therefore, by the equality in (4.8), u˚ has infinite degree in T8 as
well.

4.2 Sufficient criteria for an infinite path and structural results in the
star regime

To prove Theorem 2.8, we first state and prove the following lemma.

Lemma 4.7. Let pTtqtě0 be a pX,W q-CMJ branching process. Under Assumption 2.6,

P

˜

č

uPU8

8
č

j“1

8
ď

i“j

tBpuiq ` Ppuiq ă Bpuq ` Ppuqu

¸

“ 1. (4.10)

Proof. We first fix u P U8 and condition on the random variables Bpuq and Wu. We then
sample each of the values of Ppuiq, then the values of XWupuiq, for i P N. Note that for each
u P U8, the random variables pPpuiqqiPN are i.i.d. and distributed like Ppiq. Thus, by (2.9)
and the converse of the Borel-Cantelli lemma, on sampling each Ppuiq, for any w P S with
probability 1, we have Ppuiq ă νwi infinitely often. As a result, conditionally on the value of the
weight Wu, with probability 1 we have Ppuiq ă νWu

i for infinitely many i P N. Conditioning
on this event, let i1, i2, . . . , denote indices such that, for each ` P N, we have Ppui`q ă νWu

i`
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almost surely. Then, by (2.10), there exists I0 P N, such that, for some δ “ δpI0q ą 0 and for
all i` ě I0,

P

˜

8
ÿ

k“i``1
XWupukq ě νWu

i`

ˇ

ˇ

ˇ

ˇ

Wu

¸

ě δ.

As a result, for some φpi`q ą i` sufficiently large,

P

˜

φpi`q
ÿ

k“i``1
XWupukq ě νWu

ij

ˇ

ˇ

ˇ

ˇ

Wu

¸

ě
δ

2 .

We now pass to a sub-sequence pi`nqnPN of pi`q`PN, such that i`1 ą I0, and i`n`1 “ infti` : ` P
N, i` ą φpi`nqu. Then, by Equation (2.2), conditionally on Wu, the random variables

¨

˝

i`n`1
ÿ

k“i`n`1
XWupukq

˛

‚

nPN

are independent of each other. Again applying the converse of the Borel-Cantelli lemma, we
obtain

P

¨

˝

8
č

j“1

8
ď

n“j

$

&

%

i`n`1
ÿ

k“i`n`1
XWupukq ě νWu

i`n

,

.

-

ˇ

ˇ

ˇ

ˇ

ˇ

Bpuq,Wu

˛

‚“ 1.

But for every index i˚ P pi`nqnPN, we have by the definition of the sequence pi`q`PN,

Ppui˚q ă νWu
i˚ ď

8
ÿ

i“i˚`1
XWupuiq.

Adding Bpuq `
ři˚

i“1 XWupuiq (which equals Bpui˚q) to both sides, we deduce that, almost
surely, conditionally on Bpuq and Wu,

Bpui˚q ` Ppui˚q ă Bpuq ` Ppuq.

Then, by taking expectations over Bpuq and Wu, we have

P

˜

8
č

j“1

8
ď

i“j

tBpuiq ` Ppuiq ă Bpuq ` Ppuqu

¸

“ 1. (4.11)

But now, since U8 is countable, we deduce (4.10).

4.2.1 Proof of Theorem 2.8

Proof of Theorem 2.8. On t|T8| “ 8u, let us first assume that T8 does not contain a node of
infinite degree. It then immediately follows from Kőnigs Lemma (Lemma 2.1) that T8 contains
an infinite path. We then assume, on t|T8| “ 8u, that there exists u˚ P T8 such that u˚
has infinite degree, i.e. Bpu˚q `Ppu˚q “ τ8. But then, by Equation (4.10) from Lemma 4.7,
there must be a child of u˚, u˚j say, such that Bpu˚jq ` Ppu˚jq ă Bpu˚q ` Ppu˚q “ τ8, a
contradiction.

DOI 10.20347/WIAS.PREPRINT.3060 Berlin 2023



The structure of genealogical trees associated with explosive branching processes 35

4.2.2 Proof of Theorem 2.10

Proof of Theorem 2.10. For each u P U8, we set

pT puq
t qtě0 :“

#

uv P U8 :
`´1
ÿ

j“0

`

Pvj`1puv|jq ď t
˘

+

,

where we recall that if v “ v1 ¨ ¨ ¨ vm then uv|j “ uv1 ¨ ¨ ¨ vj. Note that, if Bpuq ă 8, by (1.1)
we have T puq

t “
 

uv : uv P Tt`Bpuq
(

. However, the definition we use allows us to define
pT puq

t qtě0 even when Bpuq “ 8. Note that, by (2.1), pT puq
t qtě0 „ pTtqtě0, and for each

u P U8, the ppT puiq
t qtě0qiPN are i.i.d. Now, upon sampling each of the random variables

pXpuiqqiPN, (regardless of whether Bpuq ă 8 or not), recalling the notation from (1.2), note
that if we have

PT puiq ă
8
ÿ

k“i`1
Xpukq,

then, if Bpuq ` Ppuq ă 8, we have Bpuiq ` PT puiq ă Bpuq ` Ppuq. Now, by exploiting
an almost identical argument to the proof of Lemma 4.7 (as in Equations (2.9) and (2.10)),
combining Equations (2.11) and (2.12) from Condition 1 of Assumption 2.9 allows us to
deduce that

P

˜

č

uPU8

8
č

j“1

8
ď

i“j

#

PT puiq ă
8
ÿ

k“i`1
Xpukq

+¸

“ 1.

But then, this implies that if a node u˚ P U8 has infinite degree in T8, there exist infinitely
many indices i such that Bpu˚iq`PT pu

˚iq ă Bpu˚q`Ppu˚q, and hence, by Lemma 4.5, that
pu˚iqT Ď T8. This proves the first statement.

For the second statement, by Equation (2.13) we have

8
ÿ

i“1
P

˜

PT puiq ă
8
ÿ

k“i`1
Xpukq

ˇ

ˇ

ˇ

ˇ

Wu

¸

ă 8,

almost surely. Thus, by a conditional analogue of the Borel-Cantelli lemma,

P

˜

8
č

j“1

8
ď

i“j

#

PT puiq ă
8
ÿ

k“i`1
Xpukq

+

ˇ

ˇ

ˇ

ˇ

Wu

¸

“ 0,

almost surely. Taking expectations over Wu and a union bound over u P U8, we deduce that

P

˜

ď

uPU8

8
č

j“1

8
ď

i“j

#

PT puiq ă
8
ÿ

k“i`1
Xpukq

+¸

“ 0.

This implies that, if u˚ is such that Bpu˚q`Ppu˚q “ τ8, almost surely, there exist only finitely
many indices i such that T appears as a sub-tree of u˚i in T8.

The final statement in Item 3 follows from the proof of Theorem 2.5, Equation 4.1.1 in
particular, which states that T8 contains a finite number of stars u˚ in T8 almost surely under
Assumption 2.2.
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4.3 Uniqueness conditions related to the existence of a star or an
infinite path

In this section, it is useful to introduce some extra notation. First, recall that, given u P U8,
the random variable Bpuq`Ppuq determines the time at which u ‘explodes’, in the sense that,
if σ “ Bpuq ` Ppuq, the individual u has infinite degree in Tσ. We also define the random
variable τpathpuq as the amount of time taken after the ‘birth’ of u, for there to be an infinite
path containing u in the process pTtqtě0. To make this more precise, we extend the notation
for elements v P U8 to v P NN: for v “ v1v2 ¨ ¨ ¨ P N8 and ` P N, we set v|` “ v1v2 ¨ ¨ ¨ v` P U8.
Then, for u P U8 we set

τpathpuq :“ inf
tě0

#

Dv P N8 :
i´1
ÿ

j“0

`

Pvj`1puv|jq
˘

ď t for all i P N
+

.3

Thus, by this definition, if σ “ Bpuq ` τpathpuq then Tσ contains an infinite path passing
through u.

The approach we use in this section is surprisingly simple, and reminiscent of the approach
used, for example, in [58] to show a unique node has infinite degree: we show that, for each
u P U8, the random variables τpathpuq or Ppuq have distributions that contain no atoms on
r0,8q. We use this to show that for any pair u, v P U8, (which have ‘independent’ sub-trees),
the probability that both have infinite degrees, or lie on infinite paths simultaneously is 0.
As U8 is countable, we can readily take a union bound over all these pairs, and deduce the
result. Condition 2 of Assumption 2.11 (and (2.1)) already provides this property to Ppuq. For
τpathpuq we use the following result.

Lemma 4.8. Let pTtqtě0 be an explosive pX,W q-CMJ process. Under Condition 3 of As-
sumption 2.11, the distribution of τpathp∅q contains no atom on r0,8q.

Proof. We argue by contradiction and suppose that τpathp∅q contains an atom. Set

ra :“ inf tt P r0,8q : P pτpathp∅q “ tq ą 0u .

Now, exploiting Condition 3 of Assumption 2.11 and the definition of ra, let a be such that
P pτpathp∅q “ aq ą 0, and a ´ ra ă ε (with ε as in Condition 3). Let G1 denote the sigma
algebra generated by pBpiqqiPN. The ancestral node ∅ contains an infinite path precisely when
one of its children lies on an infinite path. Thus,

P
`

τpathp∅q “ a
ˇ

ˇG1
˘

“ P

˜

8
ď

i“1
tτpathpiq “ a´ Bpiqu

ˇ

ˇ

ˇ

ˇ

G1

¸

(4.12)

ď

8
ÿ

i“1
P
ˆ

τpathpiq “ a´ Bpiq
ˇ

ˇ

ˇ

ˇ

G1

˙

.

3Note that, since the definition of τpathpuq includes the uncountable set N8, it is not immediately clear
that this is measurable. This is the reason that we assume that pΩ,Σ,Pq and Ft are complete: complete sigma
algebras with respect to probability measures are closed under the Souslin operation [14, Theorem 1.10.5, page
38], which makes a number of uncountable unions measurable. In particular, for each t ě 0, we can write
tτpathpuq ď tu “

Ť

vPN8
Ş

iPN

!

ři´1
j“0

`

Pvj`1puv|j q
˘

ď t
)

P Σ, and similarly, we know for each t ě 0 that
tτpathp∅q ď tu P Ft.
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Now, as the event tτpathpiq “ a´ Bpiqu depends on G1 only via the sigma algebra generated
by Bpiq, we may re-write the summands on the right hand side as

P
ˆ

τpathpiq “ a´ Bpiq
ˇ

ˇ

ˇ

ˇ

Bpiq
˙

“ P
ˆ

τpathpiq “ a´ Bpiq
ˇ

ˇ

ˇ

ˇ

Bpiq
˙

1tBpiqăεu

` P
ˆ

τpathpiq “ a´ Bpiq
ˇ

ˇ

ˇ

ˇ

Bpiq
˙

1tBpiqěεu.

Now, note that (by (2.1)), as τpathpiq is identically distributed to τpathp∅q, the distribution of
τpathpiq has no atom smaller than ra ą a´ ε. As a result, on the event Bpiq ě ε,

P
ˆ

τpathpiq “ a´ Bpiq
ˇ

ˇ

ˇ

ˇ

Bpiq
˙

“ 0, almost surely.

Combining this with (4.12), this leads to the inequality

P
`

τpathp∅q “ a
ˇ

ˇG1
˘

ď

8
ÿ

i“1
P
ˆ

τpathpiq “ a´ Bpiq
ˇ

ˇ

ˇ

ˇ

Bpiq
˙

1tBpiqăεu,

and since P pτpathp∅q “ aq ą 0, it must be the case that for some i,

0 ă P pτpathpiq “ a´ Bpiq,Bpiq ă εq “ E
„

P
ˆ

τpathpiq “ a´ Bpiq
ˇ

ˇ

ˇ

ˇ

Bpiq
˙

1tBpiqăεu


.

But now, when we integrate over the possible values of Bpiq on the right-hand side, this implies
that

"

Bpiq P r0, εq : P
ˆ

τpathpiq “ a´ Bpiq
ˇ

ˇ

ˇ

ˇ

Bpiq
˙

ą 0
*

is a set of positive measure with respect to P. But then this implies that, with respect to the
distribution induced by Bpiq, the set

tx P r0, εq : P pτpathpiq “ a´ xq ą 0u , (4.13)

has positive measure. But now, as the set of atoms of the distribution of τpathpiq (as with
any finite measure) must always be countable, (4.13) must be countable. As the distribution
of Bpiq contains no atoms on r0, εq by Condition 3 in Assumption 2.11, countable subsets of
r0, εq are null sets with respect to the distribution induced by Bpiq; this implies that (4.13)
must be a null set, a contradiction.

4.3.1 Proof of Theorem 2.12

Proof of Theorem 2.12. The first and second statements of the theorem are clearly satisfied
on t|T8| ă 8u. Now note that, for T8 to have two nodes of infinite degree, there must be
two elements u, v P U8 such that

Bpuq ` Ppuq “ Bpvq ` Ppvq “ τ8.

By Equation (2.3), τ8 ă 8 almost surely on t|T8| “ 8u, hence the left-hand side must also
be finite. But now, note that, as long as v is not an ancestor of u, (which is the case if v ąL u
with respect to the lexicographical ordering), then Ppvq is independent of Bpuq,Bpvq, and
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Ppuq. Moreover, by Condition 2 of Assumption 2.11, Ppvq has no atom on r0,8q. Therefore,
for v ąL u we have,

P
ˆ

Ppvq “ Ppuq ` Bpvq ´ Bpuq
ˇ

ˇ

ˇ

ˇ

Bpuq,Bpvq,Ppvq
˙

1tBpuq,Bpvq,Ppuqă8u “ 0 almost surely,

and hence, for any u, v P U8 with u ‰ v,
P pBpuq ` Ppuq “ Bpvq ` Ppvq,Bpuq ` Ppuq ă 8q “ 0.

But then, since U8 is countable, taking a union bound, we deduce
P pT8 has two nodes of infinite degreeq

ď P

˜

ď

u,vPU8,u‰v

 

Bpuq ` Ppuq “ Bpvq ` Ppvq,Bpuq ` Ppuq ă 8
(

¸

ď
ÿ

u,vPU8,u‰v
P
`

Bpuq ` Ppuq “ Bpvq ` Ppvq,Bpuq ` Ppuq ă 8
˘

“ 0.

(4.14)

This proves the first statement of the theorem. In a similar manner, using Condition 3 of
Assumption 2.11 and Lemma 4.8, we have
P pT8 has two infinite pathsq

ď P

˜

ď

u,vPU8,u‰v

 

Bpuq ` τpathpuq “ Bpvq ` τpathpvq,Bpuq ` τpathpuq ă 8
(

¸

ď
ÿ

u,vPU8,u‰v
P
`

Bpuq ` τpathpuq “ Bpvq ` τpathpvq,Bpuq ` τpathpuq ă 8
˘

“ 0,

(4.15)

proving the second statement. Finally, for the third statement we need only prove that a
node of infinite degree and an infinite path cannot co-exist. Note that there may be u such
that Ppuq and τpathp∅q are correlated, for example, if ∅ is a parent of u. But, noting Nk “

tu P U8 : |u| “ ku,
tτpathp∅q “ Bpuq ` Ppuq, τpathp∅q ă 8u

Ď
ď

vPN|u|`1

tBpvq ` τpathpvq “ Bpuq ` Ppuq,Bpvq ` τpathpvq ă 8u .

Now, for v P N|u|`1, τpathpvq is independent of u, and therefore, for each v P N|u|`1 we have
P
`

Bpvq ` τpathpvq “ Bpuq ` Ppuq
ˇ

ˇBpvq,Bpuq,Ppuq
˘

1tBpvq,Bpuq,Ppuqă8u
“ P

`

τpathpvq “ Bpuq ` Ppuq ´ Bpvq
ˇ

ˇBpvq,Bpuq,Ppuq
˘

1tBpvq,Bpuq,Ppuqă8u “ 0,
almost surely. Therefore, again using a union bound, we have

P pT8 has an infinite path and a node of infinite degree, |T8| “ 8q (4.16)

ď P

˜

ď

uPU8

 

Bpuq ` Ppuq “ τpathp∅q,Bpuq ` τpathpuq ă 8
(

¸

ď P

˜

ď

uPU8

ď

vPN|u|`1

 

Bpuq ` Ppuq “ Bpvq ` τpathpvq,Bpuq ` τpathpuq ă 8
(

¸

ď
ÿ

uPU8

ÿ

vPN|u|`1

P
`

Bpuq ` Ppuq “ Bpvq ` τpathpvq,Bpuq ` τpathpuq ă 8
˘

“ 0.

We deduce the final statement by using a union bound, and combining Equations (4.14), (4.15),
and (4.16) with Kőnig’s lemma (Lemma 2.1).
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5 Proofs for applications of main results

In this section we use the general results of Section 2 to prove the main theorems in Section 3.1.
In particular, we show that the conditions stated in Theorem 3.4 are sufficient and that the
condition in Theorem 3.7 is necessary and sufficient to apply the results of Section 2 to
exponentially distributed inter-birth times.

5.1 Preliminary results and tools

We first collect some useful lemmas that we use throughout the proofs in this section.

Lemma 5.1. Let pXpiqqiPN be independent random variables and fix ε ą 0 and pbnqnPN P
p0,8qN. Then,

P

˜

8
ÿ

i“1
Xi ă bn

¸

ě

8
ź

i“1
Lp1`εq log pnqb´1

n
pXiq ´

1
n1`ε .

Proof. Let Y „ Exp pb´1
n p1` εq log nq be given, independent of each of the Xi. Then,

P

˜

8
ÿ

i“1
Xi ă bn

¸

ě P

˜

8
ÿ

i“1
Xi ă Y, Y ď bn

¸

ě P

˜

8
ÿ

i“1
Xi ă Y

¸

´ P pY ě bnq .

Evaluating both probabilities by using that Y is an exponential random variable, we obtain

E
”

e´p1`εq logpnq b´1
n

ř8
i“1 Xi

ı

´ e´p1`εq logn
“

8
ź

i“1
Lp1`εq log pnqb´1

n
pXiq ´

1
n1`ε ,

as desired.

We believe that the following lemmas are more well-known, but we provide a proof of the first
for completeness. Note, as is clear from the proof, that (5.1) is a special case of the more
general Equation (4.1) from Lemma 4.1.

Lemma 5.2. Let Z0, . . . , Zk be independent exponential random variables with parameters
r0, . . . , rk´1, respectively, and fix λ ą 0. Then,

P

˜

k
ÿ

j“0
Zj ď λ

¸

ě

k
ź

j“0

rj
rj ` pk ` 1qλ´1 .

Moreover, let pXw˚pjqqjPN be independent, exponential random variables with rates prjqjPN,
satisfying µi :“

ř8

j“i`1 E rXw˚pjqs ă 8 for i P N. For any c ă 1 and for any i P N,

P

˜

k
ÿ

j“0
Zj ď

8
ÿ

j“i`1
Xw˚pjq

¸

ď
1

1´ c

k
ź

j“0

rj
rj ` cµ

´1
i

. (5.1)
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Proof. For the first inequality, we may, without loss of generality take λ “ 1, since for an expo-
nential random variable X „ Exp prq, X{λ is again exponentially distributed with parameter
λr. Then,

P

˜

k
ÿ

j“0
Zj ď 1

¸

ě P pZj ď 1{pk ` 1q for all j P t0, . . . , kuq

“

k
ź

j“0

`

1´ e´rj{pk`1q˘
ě

k
ź

j“0

rj
rj ` pk ` 1q ,

where the right-hand side uses the inequality 1 ´ e´x ě x
1`x , for all x ě 0. Meanwhile, the

upper bound in (5.1) uses a standard Chernoff bound. First, note that for c ă 1,

cµ´1
i “ c

˜

8
ÿ

j“i`1

1
rj

¸´1

ă rj, for all j ě i` 1. (5.2)

Furthermore, for each i P N,
8
ź

j“i`1

rj ´ cµ
´1
i

rj
“

8
ź

j“i`1

ˆ

1´ cµ´1
i

rj

˙

ą 1´ cµ´1
i

8
ÿ

j“i`1

1
rj
“ 1´ c, (5.3)

where the last step uses the inequality
ś

ip1´ piq ě 1´
ř

i pi, for pi P r0, 1s. By the moment
generating function of exponential random variables, we have

E
”

ecµ
´1
i

ř8
j“i`1 Xw˚ pjq

ı

“

8
ź

j“i`1

rj
rj ´ cµ

´1
i

(5.3)
ď

1
1´ c, (5.4)

where the exponential moments exist by (5.2). Finally, this yields

P

˜

k
ÿ

j“0
Zj ď

8
ÿ

j“i`1
Xw˚pjq

¸

ď P
´

ecµ
´1
i p

ř8
j“i`1 Xw˚ pjq´

řk
j“0 Zjq ě 1

¯

ď
1

1´ c

k
ź

j“0

rj
rj ` cµ

´1
i

,

as desired.

Lemma 5.3 (Paley-Zygmund Inequality). Let Z be a non-negative random variable with finite
variance, and let d P p0, 1q. Then,

P pZ ě dE rZsq ě p1´ dq2 E rZs2

Var pZq ` E rZs2
.

5.2 Structure theorems related to explosive recursive trees

5.2.1 Proof of Theorem 3.4

Proof of Theorem 3.4. Recall that for fixed u,Wu, the random variables pXWupuiqqiPN are
independent, with each XWupuiq „ Exp pfpi´ 1,Wuqq, conditionally on Wu. Since the ex-
ponential distribution is a smooth distribution, one readily verifies that the conditions of As-
sumption 2.11 are met; hence the associated tree T8 contains either a unique node of infinite

DOI 10.20347/WIAS.PREPRINT.3060 Berlin 2023



The structure of genealogical trees associated with explosive branching processes 41

degree, or a unique infinite path. Now, to prove Item 1, note that Conditions 3 and 4 of As-
sumption 2.2 are immediately satisfied. Moreover, since f satisfies (w˚), Equation (2.4) and
thus Condition 1 is satisfied by setting

Yn :“
8
ÿ

i“n`1

rXw˚piq, (5.5)

where each rXw˚piq „ Exp pfpi´ 1, w˚qq. By choosing c ă 1 according to Equation (3.2) and
by following the calculations in Equations (5.3) and (5.4) (with rj :“ fpj ´ 1, w˚q), we see
that Condition 2 is satisfied. Finally, note that, uniformly in w, we have

8
ź

i“n

fpi, wq

fpi, wq ` cµ´1
n

ą 0.

Indeed, taking logarithms and using the inequality

´ log p1´ xq ď x`
x2

2p1´ xq , 0 ă x ă 1,

we obtain

´ log
˜

8
ź

i“n

fpi, wq

fpi, wq ` cµ´1
n

¸

“ ´

8
ÿ

i“n

log
ˆ

1´ cµ´1
n

fpi, wq ` cµ´1
n

˙

ď

8
ÿ

i“n

ˆ

cµ´1
n

fpi, w˚q ` cµ´1
n

`
c2µ´2

n

2fpi, w˚qpfpi, w˚q ` cµ´1
n q

˙

ă
3
2 ,

which implies that
8
ź

i“n

fpi, wq

fpi, wq ` cµ´1
n

ą e´3{2.

Thus, by Equation (3.2),

8
ÿ

n“1
E
“

Lcµ´1
n
pPnp∅q;W q

‰

“

8
ÿ

n“1
E

«

n´1
ź

i“0

fpi,W q

fpi,W q ` cµ´1
n

ff

ă e3{2
8
ÿ

n“1
E

«

8
ź

i“0

fpi,W q

fpi,W q ` cµ´1
n

ff

ă 8,

so that Condition 5 is satisfied, where the final step uses the assumption in Item 1. We can
now apply Theorems 2.5 and 2.12 to obtain the desired result.

For Item 2, if there exists c ą 1 satisfying Equation (3.3), we write c “ d´1p1`εq, for some 0 ă
d ă 1 and ε ą 0. Otherwise, assume (2.9) is satisfied with νwn “ dµwn “ dE

“
ř8

i“n`1 Xwpiq
‰

for some d P p0, 1q. First note that, since the Xwpiq are mutually independent exponential
random variables,

Var
˜

8
ÿ

i“n`1
Xwpiq

¸

“

8
ÿ

i“n

1
fpi, wq2

ď pµwn q
2. (5.6)
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By the Paley-Zygmund inequality, it thus follows that

P

˜

8
ÿ

i“n`1
Xwpiq ě dµwn

¸

ě p1´ dq2 pµwn q
2

pµwn q
2 `

ř8

i“n fpi, wq
´2

(5.6)
ě
p1´ dq2

2 , (5.7)

which implies (2.10) in either case. We now need only show that Equation (3.3) implies
that (2.9) is satisfied with this choice of pνwn qnPN. We apply Lemma 5.1 with bn :“ dµwn and
ε ą 0 so that c “ d´1p1` εq, and by conditioning on the vertex-weight W , to obtain

P pP ă dµwn q ě E

«

8
ź

i“0

fpi,W q

fpi,W q ` cpµwn q
´1 log n

ff

´
1

n1`ε .

We thus obtain that (2.9) is satisfied when Equation (3.3) holds.

5.2.2 Proof of Theorem 3.7

Proof of Theorem 3.7. In the proof we seek to apply Theorem 2.10. We first apply Item 1 of
Theorem 2.10 to show that, if (3.4) is satisfied, T appears as a sub-tree of T8 infinitely often.
That is, we show that Condition 1 of Assumption 2.9 is satisfied when assuming Equation (3.4)
holds. As we assume that Equation 2.2 holds as well, this implies Item 1 of Theorem 2.10.

In a similar manner to the proof of Theorem 3.4 above, we choose νwn “ dµwn , for d ă 1.
This way, Equation (2.12) follows from Equation (5.7), using the Paley-Zygmund inequality.
To show (2.11), we first condition on an ordering O P O in which the vertices of T appear. In
particular, given such an ordering, by extending the definitions of the stopping times associated
with the pX,W q-CMJ process, we can define the stopping times

τO|j :“ inf
 

t ě 0 : O|j Ď Tt

(

.

Now, with OpT q the set of possible orderings of the vertices of T , we wish to show that
8
ÿ

n“1
P
`

T Ď Tdµwn

˘

“

8
ÿ

n“1

ÿ

OPOpT q

P
´

0 “ τO|0 ď τO|1 ¨ ¨ ¨ ď τO|k ď dµwn

¯

“ 8. (5.8)

We make the following observations:

(I) The probability of seeing an ordering O|j, j “ 0, . . . , k, depends on the minima of the
exponential random variables associated with the next vertex in the tree to appear.
Suppose that the vertices of T are tv0, . . . , vku, labelled by order of appearance, and
that v`j P tv0, . . . , vj´1u is the parent of vj for each j P rks. Then, conditionally on
the weights of the nodes in T , Wv0 , . . . ,Wvk , the ordering pO|jqj“0,...,k occurs with
probability

P
ˆ

O

ˇ

ˇ

ˇ

ˇ

Wv0 , . . . ,Wvk

˙

“

k
ź

j“0

fpdeg`pv`j q,Wv`j
q

řj
i“0 fpdeg`pvi, O|jq,Wviq1deg`pvi,O|j qădeg`pvi,T q

.

The jth product in the above equation denotes the probability that the next exponential
clock associated with the process, amongst those yet to ring, corresponds to v`j , and
hence respects the ordering O.
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(II) We may write

k
ź

j“0
fpdeg`pv`j , O|jq,Wv`j

q “

k
ź

j“0

deg`pvj ,T q´1
ź

`“0
fp`,Wvjq.

(III) By properties of the exponential distribution, the distribution of the minimum of a
collection of independent exponential random variables is independent of the index that
attains that minimum. Thus, conditionally on seeing the ordering O, the waiting times
pτO|j`1

´ τO|j qj“0,...,k are independent, with

τO|j`1
´ τO|j`1

„ Exp
˜

j
ÿ

i“0
fpdeg`pi, O|jq,Wiq1deg`pi,O|j qădeg`pi,T q

¸

, j “ 0, . . . , k.

Thus, by Lemma 5.2, we have

P
ˆ

0 “ τO|0 ď τO|1 ď ¨ ¨ ¨ ď τO|k ď dµwn

ˇ

ˇ

ˇ

ˇ

Wv0 , . . . ,Wvk , O

˙

ě

´ d

k ` 1

¯k`1 k
ź

j“0

řj
i“0 fpdeg`pi, O|jq,Wiq1deg`pi,O|j qădeg`pi,T q

řj
i“0 fpdeg`pi, O|jq,Wiq1deg`pi,O|j qădeg`pi,T q ` pµ

w
n q
´1

ě

´dc1pwq

k ` 1

¯k`1 k
ź

j“0

řj
i“0 fpdeg`pi, O|jq,Wiq1deg`pi,O|j qădeg`pi,T q

řj
i“0 fpdeg`pi, O|jq,Wiq1deg`pi,O|j qădeg`pi,T q ` µ

´1
n

,

where the last line follows from our assumption that µwn ě c1pwqµn, with c1pwq ă 1.

Combining Items (I)-(III) and taking expectations over the weights Wv0 , . . . ,Wvk , we deduce
that Equation (5.8) holds if Equation (3.4) is satisfied.

For the converse statement, if Equation (3.4) is not satisfied and the sum instead converges,
we now apply Item 2 of Theorem 2.10 in a similar manner. In particular, we now wish to show
that, for any w P S,

8
ÿ

i“1
P
´

T Ď Tř8
j“i`1

rXwpjq

¯

“

8
ÿ

i“1

ÿ

OPOpT q

P

˜

0 “ τO|0 ď τO|1 ¨ ¨ ¨ ď τO|k ď
8
ÿ

j“i`1

rXwpjq

¸

ă 8.

(5.9)
But now, for each j we have rXwpjq ďS rXw˚pjq, where rXw˚pjq „ Xw˚pjq, since we assume
that Equation (w˚) holds. Thus, using the same observations as above but instead looking for
an upper bound in Item (III), we apply Equation (5.1) in Lemma 5.2 with c ă 1 fixed, to see
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that

P

˜

0 “ τO|0 ď τO|1 ¨ ¨ ¨ ď τO|k ď
8
ÿ

j“i`1

rXwpjq

ˇ

ˇ

ˇ

ˇ

Wv0 , . . . ,Wvk , O

¸

(5.10)

ď P

˜

0 “ τO|0 ď τO|1 ¨ ¨ ¨ ď τO|k ď
8
ÿ

j“i`1

rXw˚pjq

ˇ

ˇ

ˇ

ˇ

Wv0 , . . . ,Wvk , O

¸

(5.1)
ď

1
1´ c

k
ź

j“0

řj
i“0 fpdeg`pi, O|jq,Wiq1deg`pi,O|j qădeg`pi,T q

řj
i“0 fpdeg`pi, O|jq,Wiq1deg`pi,O|j qădeg`pi,T q ` cµ

´1
i

ď
1

p1´ cqck`1

k
ź

j“0

řj
i“0 fpdeg`pi, O|jq,Wiq1deg`pi,O|j qădeg`pi,T q

řj
i“0 fpdeg`pi, O|jq,Wiq1deg`pi,O|j qădeg`pi,T q ` µ

´1
i

.

Again, combining Equation (5.10) with Items (I) and (II) and taking expectations over the
weights Wv0 , . . . ,Wvk , we deduce that Equation (5.9) holds if Equation (3.4) is not satisfied.
Hence, Condition 2 of Assumption 2.9 holds, so that Item 2 in Theorem 2.10 yields the desired
result.

5.3 Possibility for both a star and infinite path to occur with positive
probability

The goal of this section is to produce the counter-example in Theorem 2.15. We first show,
in a similar spirit to [45, Claim 2.3], that infinite paths, when they appear in finite time, can
appear arbitrarily fast.

Lemma 5.4. Let pTtqtě0 be an explosive pX,W q-CMJ process, and suppose that Bp1q ą 0
almost surely. It is either the case that P pτpathp∅q ă 8q “ 0, or, for any ε ą 0,

P pτpathp∅q ă εq ą 0.

Proof. Suppose that P pτpathp∅q ă 8q ą 0. Then, we define

ε˚ :“ inf tε ě 0 : P pτpathp∅q ă εq ą 0u .

By assumption, we have ε˚ ă 8, and moreover, P pτpathp∅q ă ε˚q “ 0 (by monotone con-
vergence). Suppose that ε˚ ą 0. As an infinite path from ∅ must pass through the first
generation, we have

P pτpathp∅q ă ε˚q “ P

˜

ď

iPN
tBpiq ` τpathpiq ă ε˚u

¸

. (5.11)

Since for each i we have Bpiq ě Bp1q, we must have P pB1 ` τpath ă ε˚q ą 0; where B1 „

Bp1q „ Xp1q and τpath „ τpathp∅q, and B1, τpath are independent. Indeed, otherwise a union
bound would show that the right-hand side of (5.11) equals zero. But then, it must be the
case that

"

B1 P p0, ε˚q : P
ˆ

τpath ă ε˚ ´ B1

ˇ

ˇ

ˇ

ˇ

B1

˙

ą 0
*
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must be a set of positive P-measure. Again, as in (the proof of) Lemma 4.8, this implies that
with respect to the distribution induced by B1, the set

tx P p0, ε˚q : P pτpath ă ε˚ ´ xq ą 0u

has positive measure. In particular, there exists an x P p0, ε˚q such that P pτpath ă ε˚ ´ xq ą 0,
a contradiction. We deduce that ε˚ “ 0.

5.3.1 Proof of Theorem 2.15

Proof of Theorem 2.15. We define an explosive pX,W q-CMJ process with weights Wu “

pRu, Iuq P p0,8q ˆ t0, 1u for u P U8. Here Ru and Iu are independent and distributed such
that P pIu “ 1q “ P pIu “ 0q “ 1{2, and Ru has a smooth distribution such that, for some
constant α ą 1, for all x P r1,8q,

P pRu ą xq ě x´pα´1q. (5.12)

We also fix p ą 1 such that pα ´ 1qpp ´ 1q ă 1. We can think of the variable Iu as an
indication of the type of a node u, effecting the distribution of pXWupujqqjPN. We then
define the pX,W q-CMJ process pTtqtě0 so that, conditionally on Wu, the random variables
pXWupuiqqiPN are mutually independent, and for each u P U8, i P N,

XWupuiq „

$

’

&

’

%

Exp pRui
pq , if Wu “ pRu, 0q;

Exp p1q , if Wu “ pRu, 1q, i “ 1;
si, if Wu “ pRu, 1q, i ą 1;

where the psiqiě2 are constants with each si ą 0 defined to satisfy the following: if for each
k ě 1 we set

ςk :“
8
ÿ

j“k`1
sj ă 8, then we have E

“

e´pRk_1qςk
‰

ą 1´ 2´k; (5.13)

where Rk „ R∅ is the the first element of the weight associated with the individual k P U8.
We stress that this condition is satisfied when we choose the constants si sufficiently small.
Note that under this construction, the conditions of Assumption 2.11 are satisfied: clearly, in
general Bp1q „ Xp1q contains no atom on r0,8q, so Condition 3 is satisfied. Moreover, for
any z ě 0, by the conditional independence of pXWupuiqqiPN,

P

˜

8
ÿ

i“1
XWupuiq “ z

ˇ

ˇ

ˇ

ˇ

Wu

¸

“ P

˜

XWupu1q “ z ´
8
ÿ

i“2
XWupuiq

ˇ

ˇ

ˇ

ˇ

Wu

¸

“ 0,

since XWupu1q always has an exponential (hence smooth) distribution. Note also, that

P pτ8 ă 8q “ 1, and P p|T8| “ 8q “ 1.

Now, we have the following claim:
Claim 5.4.1. For all u P U8,

P

˜

8
č

j“1

8
ď

i“j

tBpuiq ` Ppuiq ă Bpuq ` Ppuq, Iui “ 0u
ˇ

ˇ

ˇ

ˇ

Iu “ 0
¸

“ 1. (5.14)
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Given Claim 5.4.1, in a similar manner to the proof of Theorem 2.8 (which uses (4.10)), we
can exploit Equation (5.14) to deduce that P pτpathp∅q ă 8 | I∅ “ 0q “ 1. In particular, we
can ensure that τpathp∅q ď Pp∅q. Indeed, Equation (5.14) guarantees that there exists a child
i such that Bpiq `Ppiq ď Pp∅q; this child, in turn, by (5.14) has a child of infinite degree by
time Pp∅q. Iterating this argument, we have an infinite path by time Pp∅q.

Now, it cannot be the case that there exists u P U8 such that Iu “ 0 and τ8 “ Bpuq`Ppuq.
Indeed, assume such a u does exist. Then, by the above argument it would follow that
τpathpuq “ Bpuq`Ppuq “ τ8. Hence u is contained in an infinite path and has infinite degree
in T8, contradicting Theorem 2.12. On the other hand, for any u such that Iu “ 1, by construc-
tion, we have Ppuq ě ς1. However, by Lemma 5.4 we deduce that, since P pτpathp∅q ă 8q ą 0
by the above argument, we have P pτpathp∅q ă ς1q ą 0. It thus follows that, on tτpathp∅q ă ς1u
the tree T8 contains an infinite path almost surely.

Now, suppose that I∅ “ 1, an event that also occurs with probability 1{2. Then, for each
child k P N (in the first generation),

P pBpk1q ă Pp∅q | I∅ “ 1q “ P

˜

Xpk1q ă
8
ÿ

j“k`1
Xpjq

ˇ

ˇ

ˇ

ˇ

I∅ “ 1
¸

“ P pXpk1q ă ςkq ď 1´ E
“

e´pRk_1qςk
‰

,

where the last inequality follows from the fact that Xpk1q is exponentially distributed, either
with parameter 1 or Rk, and the probability is maximised if we choose the maximum of the
two. But then, by (5.13) and a union bound,

P

˜

ď

kPN
Bpk1q ă Pp∅q

ˇ

ˇ

ˇ

ˇ

I∅ “ 1
¸

ă

8
ÿ

k“1
2´k “ 1.

It follows that, with positive probability, T8 consists of a single infinite star and hence contains
no infinite path.

We conclude with the proof of Claim 5.4.1.

Proof of Claim 5.4.1. By using a similar Borel-Cantelli argument as in the proof of Equa-
tion (4.11) of Lemma 4.7 (as in Equations (2.9) and (2.10)), it suffices to prove the follow-
ing: there exists a collection of numbers tνrn P p0,8q : r P p0,8q, n P Nu, such that for any
r P p0,8q,

8
ÿ

n“1
P pP ă νrn, In “ 0q “ 8,

and

lim inf
nÑ8

P

˜

8
ÿ

i“n`1
Xpr,0qpiq ě νrn

¸

ą 0. (5.15)

Here, we set

νrn :“ dE

«

8
ÿ

i“n`1
Xpr,0qpiq

ff

“ d
8
ÿ

i“n`1

1
rip

,
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for some d ă 1. Then, note that we may deduce Equation (5.15) by a similar application of the
Paley-Zygmund inequality as in Equation (5.7). Moreover, applying Lemma 5.1 with bn “ νrn
and ε ą 0 fixed and using the independence of Rn and In, for n P N, we have

P pP ă νrn, In “ 0q “ 1
2P

˜

8
ÿ

j“1
XpRn,0qpjq ă νrn

¸

ě
1
2

˜

E

«

8
ź

j“1

Rnj
p

Rnjp ` p1` εqpνrnq´1 logpnq

ff

´
1

n1`ε

¸

.

It thus suffices to show that
8
ÿ

n“1
E

«

8
ź

j“1

Rnj
p

Rnjp ` p1` εqpνrnq´1 logpnq

ff

“ 8. (5.16)

To this end, we note that we may bound

p1` εqpνrnq´1 logpiq “ p1` εqr
d

logpnq
˜

8
ÿ

j“n`1

1
jp

¸´1

ă C1 logpnqnp´1,

where we bound the sum from below by an integral and where C1 ą 0 is a constant. For n
sufficiently large such that p1` εqdr logpnqnp´1 ą 1, we now bound

E

«

8
ź

j“1

Rnj
p

Rnjp ` p1` εqpνrnq´1 logpnq

ff

ě E

«

8
ź

j“1

Rnj
p

Rnjp ` C1 logpnqnpp´1q1RněC1 logpnqnpp´1q

ff

ě

˜

8
ź

j“1

jp

jp ` 1

¸

P
`

Rn ě C1 logpnqnp´1˘

ě C2

˜

8
ź

j“1

jp

jp ` 1

¸

`

logpnqnp´1˘´pα´1q
,

for some constant C2 ą 0 and where we use (5.12) in the final step. Since p ą 1,
ř8

j“1 j
´p ă

8, which implies that the infinite product on the right-hand side is strictly larger than zero.
Since pα ´ 1qpp ´ 1q ă 1, the lower bound on the right-hand side is not summable in i, so
that we obtain (5.16), which concludes the proof.

6 Examples of phase transitions in specific models of re-
cursive trees with fitness

The aim of this section is to prove Theorems 3.16 and 3.21. The previous section provided
conditions for the emergence of a unique vertex with infinite degree or a unique infinite path to
appear almost surely in the case the inter-birth times are exponential random variables whose
rate depends on some fitness function f . In this section we turn these conditions into phase
transitions for three specific examples. We start by proving Theorem 3.16 in Section 6.1 and
then prove Theorem 3.21 in Section 6.2.
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We also note that, in this section, we use the commonly applied ‘big O’, ‘little o’ and ‘big
theta’ notation: we say fpxq “ Opgpxqq if there exists positive constants M,x0 such that, for
all x ě x0, we have |fpxq| ď Mgpxq; we say fpxq “ opgpxqq if limxÑ8 |fpxq{gpxq| “ 0; and
finally, we say fpxq “ Θpgpxqq if fpxq “ Opgpxqq and gpxq “ Opfpxqq.

6.1 Phase transitions for the emergence of an infinite star or path:
proof of Theorem 3.16

To prove Theorem 3.16, it suffices to check the conditions subject to which Theorem 3.4
holds. In the remainder of this section, it is be useful to have the following preliminary results
from [13] that we use throughout.

Lemma 6.1 ([13, Propositions 1.3.6, 1.5.7, 1.5.9a, and 1.5.10]). Let ` be a slowly-varying
function and r1, r2 be regularly-varying functions with exponents α1, α2 P R, respectively, and
fix a P R. Then,

(i) For a ą 0, it holds that limxÑ8 `pxqx
a “ 8 and limxÑ8 `pxqx

´a “ 0.

(ii) The function ra1 :“ pr1p¨qq
a is regularly varying with exponent α1a.

(iii) If α2 ą 0, then r1pr2p¨qq is regularly varying with exponent α1α2.

(iv) The function r1 ` r2 is regularly varying with exponent maxtα1, α2u.

(v) The function r1r2 is regularly varying with exponent α1 ` α2.

(vi) If α1 ă ´1, then
ż 8

x

r1ptq dt “ p´α1 ´ 1` op1qqxr1pxq, as xÑ 8.

When α1 “ ´1, the result remains true in the sense that the integral is slowly varying
in x, and that it is opxr1pxqq.

We generally use Lemma 6.1 without always referring to it explicitly in the remainder of this
section. We mainly use it in the following manner. First, Lemma 6.1 shows that regularly-
varying functions are closed under elementary operations. Next, Item (vi) shows that, if spnq
is regularly varying with exponent p ą 0, then

ř8

i“n spiq
´1 is regularly varying with exponent

p ´ 1. In addition, Item (i) shows that slowly-varying functions are often "negligibleïn the
sense that, for a regularly-varying function f with exponent γ ‰ 0, we can write fpxq “
xγ`op1q. Moreover, it shows that for any regularly-varying function s with exponent p ą 1 that
ř8

i“1 spiq
´1 ă 8, whilst for any regularly-varying function s with exponent p ă 1 we have

ř8

i“1 spiq
´1 “ 8.

The following approximations for µwn , as defined in (3.1), are also used heavily.

Lemma 6.2. Consider the two choices for the fitness function f pmixed or additive weightsq,
as in Assumption 3.10, as well as the two choices for the degree function s (super-linear
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and barely super-linear), as in Assumption 3.13. For the super-linear case and for each fixed
w P r0,8q,

µwn “
1` op1q

gpwqpp´ 1qnspnq
´1.

For the barely super-linear case there exists a slowly-varying function L such that for each
w P r0,8q,

µwn “
1` op1q
gpwq

Lpnq.

In particular, for the barely super-linear log-stretched case, it follows that
Lpnq “ β´1

plog nq1´βe´plognqβ .

Proof. We fix w P r0,8q throughout and generally use that

µwn “
8
ÿ

i“n

1
fpi, wq

“

8
ÿ

i“n

1
gpwqspiq ` hpwq

“
1` op1q
gpwq

8
ÿ

i“n

1
spiq

,

where we recall that g ” 1 in the additive case, and we can omit the term hpwq in the fraction
at the cost of a op1q term. Taking s as in the super-linear case, since s is assumed to be
regularly varying with exponent p ą 1, by the integral test and using Lemma 6.1, we thus find
that

µwn “
1` op1q

gpwqpp´ 1qnspnq
´1.

With s as in the barely super-linear case, it follows from pviq in Lemma 6.1 and an integral
test that

Lpnq :“
ż 8

n

1
spxq

dx.

For the log-stretched case, we have with s as in (3.5),

Lpnq “

ż 8

n`1
x´1 expp´plog xqβq dx.

Using a change of variables y “ plog xqβ, we obtain, with Γps, xq, s, x ą 0, the upper incom-
plete gamma function,4

Lpnq “ β´1Γp1{β, plogpn` 1qqβq “ pβ´1
` op1qqplog nq1´βe´plognqβ ,

which concludes the proof.

6.1.1 Conditions for an infinite star: Item 1 of Theorem 3.4.

To provide conditions for an infinite star to appear almost surely, we apply Theorem 3.4 by
proving the condition in Item 1 is satisfied in certain cases. To this end, we state the following
lemma.

4The upper incomplete gamma function is defined, for s, x ą 0 by Γps, xq :“
ş8

x
ts´1e´tdt.
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Lemma 6.3. Equation (3.2) in Item 1 of Theorem 3.4 is satisfied when the following conditions
are met, based on the assumptions for the fitness type, degree function s, and vertex-weight
distribution:

Weight Degree Star
Mixed Super-linear (3.6) & pp´ 1qpα´ 1q ą

`

γ ´ γ´1
p

˘

_ 1
Additive Super-linear (3.6) & ppα´ 1q ą 1
Mixed Log-stretched (3.8) & βν ą 1

Table 2: The first column represents the form of the fitness function, as in Assumption 3.10; the
second represents the form of the degree function, as in Assumption 3.13. The third column lists
the required assumptions on the vertex-weight distribution, as in Assumption 3.15, together with
the choices of the parameters that lead to a unique node of infinite degree.

We split the proof of Lemma 6.3 based on the different choices for the fitness function f and
degree function s, as in Assumptions 3.10 and 3.13, respectively. As a general approach, we
bound, for some sequence pknqnPN P r0,8qN,

E

«

8
ź

j“0

fpj,W q

fpj,W q ` cµ´1
n

ff

ď

8
ź

j“0

supwďkn fpj, wq
supwďkn fpj, wq ` cµ´1

n

` P pW ě knq .

We now use that, by Assumption 3.10, for x ě 0 and j P N,

sup
wďx

fpj ´ 1, wq ď
`

sup
wďx

gpwq
˘

spj ´ 1q ` sup
wďx

hpwq “: gpxqspj ´ 1q ` hpxq, (6.1)

where the suprema are well-defined as we assume g and h to be continuous. Since g and h
are regularly varying with exponents 1 and γ in the mixed case and g ” 1 and h is regularly
varying with exponent 1 in the additive case, it follows from [13, Theorem 1.5.3] that gpxq “
p1` op1qqgpxq and h “ p1` op1qqhpxq; in particular, they are regularly varying with the same
exponent (and g “ g ” 1 in the additive case). As such, using the weight functions g and h
falls in the same family of weight functions as g and h. The advantage of using g and h is that
these are monotone increasing. However, by this argument we can thus use g and h instead
and assume, without loss of generality, that they are monotone increasing. This yields

E

«

8
ź

j“0

fpj,W q

fpj,W q ` cµ´1
n

ff

ď exp
ˆ

´ cµ´1
n

8
ÿ

j“0

1
fpj, knq ` cµ´1

n

˙

` P pW ě knq . (6.2)

Using Assumption 3.15, one can choose kn to grow with n sufficiently fast so that the second
term on the right-hand side is summable in n. It then remains to show that the exponential
term is sufficiently small for this choice of kn as well, to obtain that the left hand side is
summable in n.

6.1.2 Conditions for an infinite path, Assumption 2.6.

To prove the appearance of an infinite path, we use Item 2 of Theorem 3.4. In particular
we verify Condition (2.9) with νwn :“ dµwn for some constant d P p0, 1q and µwn as in (3.1).
Notably, the approach we use to do so works for any inter-birth distribution satisfying the
variance condition of Remark 3.6; it is not tailored to the exponential distribution.

We thus have the following lemma.
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Lemma 6.4. The condition in (2.9) satisfied when the following conditions are met, based
on the assumptions for the fitness type, degree function s, and vertex-weight distribution:

Weight Degree Path
Mixed Super-linear (3.7) & pp´ 1qpα´ 1q ă

`

γ ´ γ´1
p

˘

_ 1
Additive Super-linear (3.7) & ppα´ 1q ă 1
Mixed Log-stretched (3.9) & βν ă 1

Table 3: The first column represents the form of the fitness function, as in Assumption 3.10; the
second represents the form of the degree function, as in Assumption 3.13. The third column lists
the required assumptions on the vertex-weight distribution, as in Assumption 3.15, together with
the choices of the parameters that lead to a unique infinite path.

We observe that combining Lemmas 6.3 and 6.4 proves Theorem 3.16.

As a general approach to proving Lemma 6.4, we start with a general lower bound for each
of the terms in the sum in (2.9), and then show that this lower bound is not summable for
each of the specific cases dealt with in Lemma 6.4. We first introduce the event tW ě knu
for some sequence pknqnPN such that the tail probability P pW ě knq is not summable. By a
similar argument as in (6.1), but applied to infwěx fpj ´ 1, wq (which is monotone increasing
in x), we may assume, without loss of generality, that f is monotone increasing in its second
argument.

Then, on the event tW ě knu, we stochastically dominate each inter-birth time XW pjq by
rXknpjq, which is distributed as an exponential random variable with rate fpj ´ 1, knq, and is
independent of bothW and XW pjq, for each j P N. It follows that P stochastically dominates
rP “

ř8

j“1
rXknpjq, which again is independent of W and P . We thus obtain the lower bound

P pP ă νwn q ě P ptP ă νwn u X tW ě knuq ě P
´

rP ă νwn

¯

P pW ě knq .

Since we choose kn such that the second probability on the right-hand side is not summable,
it suffices to show that the first probability is uniformly bounded from below in n. By Markov’s
inequality and the choice of νwn , we obtain the lower bound

P
´

rP ă νwn

¯

ě

´

1´ 1
dµwn

E
”

rP
ı ¯

P pW ě knq

“

ˆ

1´ 1
dµwn

8
ÿ

j“0

1
fpj, wq

˙

P pW ě knq .
(6.3)

With kn such that the probability on the right-hand side is not summable and since d P p0, 1q
is arbitrary, it thus suffices to prove that

lim sup
nÑ8

1
µwn

8
ÿ

j“0

1
fpj, knq

ă 1. (6.4)

If this holds, it follows that the condition in (2.9) is satisfied. We thus prove (6.4) for the cases
in Lemma 6.4.
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6.1.3 Proofs of Lemmas 6.3 and 6.4

We now proceed to state the proofs of Lemmas 6.3 and 6.4. We do this case by case, and we
combine the proofs of the related statements in both lemmas. We use the approaches outlined
after the statements of both lemmas.

Proof of Lemmas 6.3 and 6.4, s super-linear, mixed weights. We first prove the claim from
Lemma 6.3. We distinguish between γ ď 1 and γ ą 1, and we start with the former case.
Observe that, when γ ď 1, it follows that maxtγ ´ pγ ´ 1q{p, 1u “ 1. Hence, we can take
ε ą 0 small enough such that p1 ´ εqpp ´ 1qpα ´ 1q ą 1 “ maxtγ ´ pγ ´ 1q{p, 1u. We set
β :“ p1´ εqpp´ 1q and kn :“ nβ. We use (3.6) to deduce that P pW ě knq ď `pknqn

´pα´1qβ,
which, as βpα ´ 1q ą 1, is summable. For the first term on the right-hand side of (6.2), we
write

exp
˜

´

8
ÿ

j“0

cµ´1
n

fpj, knq ` cµ´1
n

¸

“ exp
˜

´
cµ´1

n

gpnβq

8
ÿ

j“0

1
spjq ` hpnβq{gpnβq ` cµ´1

n {gpn
βq

¸

.

(6.5)
As γ ď 1, it follows that βγ ă p ´ 1. Recalling that, by Lemma 6.2, µ´1

n is regularly varying
with exponent p´ 1, it follows that

an :“ hpnβq ` cµ´1
n

gpnβq

is regularly varying with exponent εpp ´ 1q. We now write spxq “ `pxqxp for some slowly-
varying function `. Moreover, since p ą 1, we have jp ` an ď pj ` a1{p

n q
p. As a result, for any

η ą 0 there exists J “ Jpηq P N such that for all j ě J ,

spjq ` an “ `pjqjp ` an ď jηpjp ` anq ď pj ` a
1{p
n q

p`η. (6.6)

We can thus bound the sum in (6.5) from below by
8
ÿ

j“J

1
spjq ` an

ě

8
ÿ

j“J

pj ` a1{p
n q

´pp`ηq
ě

8
ÿ

j“J`ra
1{p
n s

j´pp`ηq “ Θ
`

a´pp`η´1q{p
n

˘

, (6.7)

where the final step uses an integral test. Using this in (6.5), we thus obtain, for some constants
C,C 1 ą 0, the upper bound

exp
ˆ

´ C
µ´1
n a´pp`η´1q{p

n

gpnβq

˙

“ exp
`

´ C 1ap1´ηq{pn

˘

.

As the term in the exponential varies regularly with exponent εpp ´ 1qp1 ´ ηq{p ą 0, the
exponential term is summable. We thus conclude that (3.2) is satisfied, which concludes the
proof for γ ď 1.

We then consider the case γ ą 1. We first use our assumption, and fix ε ą 0 small such that

p1´ εqpp´ 1qpα ´ 1q
γ ´ pγ ´ 1q{p ą 1, (6.8)

which is possible since maxtγ ´ pγ ´ 1q{p, 1u “ γ ´ pγ ´ 1q{p when γ, p ą 1. We then set
β :“ p1´ εqpp´1q{pγ´pγ´1q{pq. By the same argument as before, since βpα´1q ą 1, the
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second term on the right-hand side of (6.2) is summable. To bound the first term, we again
write the upper bound

exp
ˆ

´ cµ´1
n

8
ÿ

j“0

1
fpj, nβq ` cµ´1

n

˙

“ exp
ˆ

´
cµ´1

n

gpnβq

8
ÿ

j“0

1
spjq ` phpnβq ` cµ´1

n q{gpn
βq

˙

.

(6.9)
Note that the exponent associated with the regularly-varying function hpnβq is βγ “ p1 ´
εqpp ´ 1qγ{pγ ´ pγ ´ 1q{pq ą p ´ 1 for ε sufficiently small (since we assume that γ ą 1).
Thus, making ε smaller if necessary (which means that (6.8) still holds), recalling that, by
Lemma 6.2, µn is regularly varying with exponent ´pp´ 1q in the super-linear case, it follows
that, if an :“ phpnβq ` cµ´1

n q{gpn
βq, a1{p

n is regularly varying with exponent

βpγ ´ 1q{p “ p1´ εqpp´ 1qpγ ´ 1q
γpp´ 1q ` 1 .

As a result, using the same approach as in (6.7), we can bound the sum appearing in the
exponent in the right-hand side of (6.9) from below by

8
ÿ

j“J

1
spjq ` an

ě

8
ÿ

j“J

pj ` a1{p
n q

´pp`ηq
ě

8
ÿ

j“J`ra
1{p
n s

j´pp`ηq “ Θpa´pp`η´1q{p
n q.

Combining this lower bound with (6.9), for some constant C2 ą 0, we obtain the upper bound

exp
´

´ C2
µ´1
n a´pp`η´1q

n

gpnβq

¯

.

Since we can choose η arbitrarily small, balancing the exponent of µ´1
n (which is p´ 1) with

the exponents of a´pp´1q{p
n and gpnβq it follows that the fraction is regularly varying in n with

an exponent that is positive if

p´ 1 ą p1´ εq
ˆ

pp´ 1q2pγ ´ 1q
γpp´ 1q ` 1 `

ppp´ 1q
γpp´ 1q ` 1

˙

“ p1´ εqpp´ 1q.

As this inequality is clearly always satisfied for any ε ą 0 we obtain that the left-hand side
of (6.2) is summable (which implies (3.2)), as desired.

We then prove the claim in Lemma 6.4. Again, we distinguish between the cases γ ď 1 and
γ ą 1. Let ε ą 0 be sufficiently small such that

#

pp´ 1qpα ´ 1q ă 1´ ε if γ ď 1,
pp´ 1qpα ´ 1q{pγ ´ pγ ´ 1q{pq ă 1´ ε if γ ą 1.

(6.10)

In either case, we set kn “ np1´εq{pα´1q. Then P pW ě knq ě `pknqn
´p1´εq by (3.7), which

is not summable in n. Moreover, we have µnpwq “ `pnqn´pp´1q for ` some slowly-varying
function (which may depend on w up to constants only) by Lemma 6.2. Now, when γ ď 1,
we have the upper bound

8
ÿ

j“0

1
fpj, knq

“

8
ÿ

j“0

1
gpknqspjq ` hpknq

ď
1

gpknq

8
ÿ

j“0

1
spjq

.
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Since s varies regularly with exponent p ą 1, it follows that the sum is finite. Since g is
regularly varying with exponent 1 we can write gpxq “ x1`op1q sp that we obtain the upper
bound n´p1´ε`op1qq{pα´1q. As p1´ εq{pα ´ 1q ą p´ 1, it follows that (6.4) is satisfied.

Otherwise, for γ ą 1, by similar computations as in (6.6) and (6.7) and using that jp ` x ě
ηpj ` x1{pqp for j, x, sufficiently large and η small, we obtain, for η ą 0 sufficiently small,

8
ÿ

j“0

1
fpj, knq

“
1

gpknq

8
ÿ

j“0

1
spjq ` hpknq{gpknq

ď
1

ηgpknq

8
ÿ

j“tphpknq{gpknqq1{pu

j´pp´ηq “ O
´ gpknq

´p1`ηq{p

hpknqpp´1´ηq{p

¯

.

By Lemma 6.1, the term gpknq
´p1´ηq{p{hpknq

pp´1´ηq{p is regularly varying, with exponent

´
1´ ε
α ´ 1

´1` η
p

` γ
p´ 1´ η

p

¯

“ ´
1´ ε
α ´ 1

´

γ ´
γ ´ 1
p

´
pγ ´ 1qη

p

¯

ă ´pp´ 1q,

for η ą 0 sufficiently small, where the last step uses the second inequality in (6.10). Conse-
quentially, it follows that gpknq´p1´ηq{p{hpknqpp´1´ηq{p “ opµwn q and we obtain (6.4).

Proof of Lemmas 6.3 and 6.4, s super-linear, additive weights. We first prove the claim in
Lemma 6.3. We fix ε P p0, 1{pq small such that ppα´ 1qp1´ εq ą 1. Then, with kn :“ np1´εqp

and using (3.6), P pW ě knq ď `pknqn
´pα´1qpp1´εq, and since pα ´ 1qpp1 ´ εq ą 1 we can

deduce that the second term on the right-hand side of (6.2) is summable. For the first term,
we bound fpj, knq from above by supjďn1´ε fpj, knq for all j ď n1´ε. With a similar argument
as in (6.1), we may assume that f is monotone increasing in its first argument, since s is
regularly-varying with exponent p ą 1. This thus yields the upper bound

exp
ˆ

´

8
ÿ

j“0

cµ´1
n

fpj, knq ` cµ´1
n

˙

ď exp
´

´
cµ´1

n n1´ε

fpn1´ε, knq ` cµ´1
n

¯

.

As p1´εqp ą p´1 using Lemma 6.2, we see that fpn1´ε, knq`cµ
´1
n “ spn1´εq`hpnp1´εqpq`

cµ´1
n is regularly varying with exponent p1 ´ εqp. It follows that the fraction is a regularly-

varying function in n, with exponent pp´ 1qε ą 0. So, for some slowly-varying function L, we
can write the exponential term as expp´Lpnqnpp´1qεq. We thus arrive at the desired conclusion
that the exponential term is summable in n. This shows that the left-hand side of (6.2) is
summable and hence that (3.2) is satisfied.

We then prove the claim in Lemma 6.4. We fix ε ą 0 sufficiently small such that ppα´1q ă 1´ε
and let kn :“ np1´εq{pα´1q. We then have P pW ě knq ě `pknqn

´p1´εq by (3.7), which is not
summable in n. Then, for w fixed, µwn “ `pnqn´pp´1q, for some slowly-varying function `
(which may depend on w up to constants only), by Lemma 6.2. By calculations similar to
those in (6.6) and (6.7), we have for any η ą 0 and some large constant C ą 0, for all n
sufficiently large,

8
ÿ

j“0

1
fpj, knq

“

8
ÿ

j“0

1
spjq ` hpknq

ď C
8
ÿ

j“thpknq1{pu

j´pp´ηq “ Ophpknq´pp´1´ηq{p
q.

Since h varies regularly with exponent 1, the last term is Opn´pp´1´ηq{p1´εqq since ppα´ 1q ă
1´ε. As we can choose η arbitrarily small, by the choice of kn, it follows that (6.4) holds.
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Proof of Lemmas 6.3 and 6.4, s log-stretched case, mixed weights. First, we prove the claim
from Lemma 6.3. We assume that βν ą 1 and recall that

fpi, wq “ gpwqpi` 1qeplogpi`1qqβ
` hpwq,

where g and h are regularly-varying functions with exponents 1 and γ ě 0, respectively. Fix
ε ą 0 small so that βν ą 1` ε. We apply (6.2) with

kn :“ exppplog nqp1`εq{νq, and µn “
1` op1q
gp0qβ plog nq1´β expp´plog nqβq, (6.11)

where the latter follows from Lemma 6.2. Now, using (3.8) we obtain

P pW ě knq ď exp
`

´ cplog knqν
˘

“ exp
`

´ cplog nq1`ε
˘

ď n´p1`εq, (6.12)

for n sufficiently large, which implies that the second term on the right-hand side of (6.2) is
summable. For the first term, we define

In :“ exp
`

plog nqβ
˘

. (6.13)

Since g is regularly varying with exponent one, we can write gpxq “ `pxqx “ x1`op1q for some
slowly-varying function `. As a result, using (6.11),

µ´1
n {gpknq “ pgpwqβ ` op1qqplog nqβ´1 exp

`

plog nqβ ´ plog nqp1`εq{νp1` op1qq
˘

. (6.14)

We thus obtain that for all j ě In, when n is large,

pj ` 1q exppplogpj ` 1qqβq ě In exppplog Inqβq “ exppplog nqβ ` plog nqβ2
q ě µ´1

n {gpknq.

Moreover, since βν ą 1`ε, it holds that hpknq “ opµ´1
n q, irrespective of the regularly-varying

exponent γ ě 0 of h (since we can again write hpxq “ xγ`op1q). As a result, we obtain the
lower bound

8
ÿ

j“0

1
gpknqpj ` 1q exppplogpj ` 1qqβq ` hpknq ` µ´1

n

ě
1

gpknq

8
ÿ

j“In

1
3pj ` 1q exppplogpj ` 1qqβq “

µInp1` op1qq
3gpknq{gp0q

ě
gp0qµIn
4gpknq

,

for n sufficiently large, where we recall the definition of µn from (3.1) (with w˚ “ 0) and
use (the proof of) Lemma 6.2 in the final step. Substituting this bound into the sum in
the exponent of the first term on the right-hand side of (6.2), we obtain the upper bound
expp´1

4cgp0qµInµ
´1
n {gpknqq. By the choice of In in (6.13) and µn as in (6.11),

µIn “
1` op1q
gp0qβ plog Inq1´β expp´plog Inqβq “ expp´plog nqβ2

p1´ op1qqq.

By (6.14), we deduce that that the dominant term in expp´ c
4CµInµ

´1
n {gpknqq is

expp´ exppC 1plog nqβqq

for some C 1 ą 0, since βν ą 1 ` ε. By a similar argument as in (6.12), this upper bound is
summable in n, as desired.
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We then prove the claim in Lemma 6.4. We fix ε ą 0 sufficiently small such that βν ă 1´ ε
and set kn :“ exppplog nqp1´εq{νq. It follows from (3.9) that, for n sufficiently large

P pW ě knq ě e´cplognq1´ε
ě n´1,

which is not summable. We then have upper bound
8
ÿ

i“0

1
fpi, knq

“
1

gpknq

8
ÿ

i“0

1
pi` 1q exppplogpi` 1qqβq ` hpknq{gpknq

(6.15)

ď
1

gpknq

8
ÿ

i“0

1
pi` 1q exppplogpi` 1qqβq ď

Cβ
gpknq

,

for some constant Cβ ą 0, which follows since for any ε ą 0 and i sufficiently large,

1
pi` 1q exppplogpi` 1qqβq ď

1
pi` 1qplogpi` 1qq1`ε ,

so that the sum is indeed finite. Hence, since g is regularly varying with exponent one and we
can thus write gpxq “ x1`op1q, we obtain

8
ÿ

i“0

1
fpi, knq

ď Cβ expp´p1` op1qqplog nqp1´εq{νq.

Since βν ă 1´ ε, the ´plog nqp1´εq{ν term in the exponential function dominates the plog nqβ
term in the exponential function in pµwn q´1; it thus follows that (6.4) is satisfied.

6.2 Sub-tree counts in specific models of recursive trees with fitness

The aim of this subsection is to turn the conditions of Theorem 3.7 into more concrete
conditions, which we then proceed to check for the different examples discussed in Section 3
to prove Theorem 3.21. We start by bounding the summands of (3.4) from below and above.

Lower bound. For a lower bound, we use any one fixed ordering O P OpT q, drop the indica-
tors from the denominator, and introduce the indicator of the event tsupiďk,jďk´1 fpi,Wjq ă

µ´1
n u. By bounding all terms fpdeg`pvi, O|jq,Wviq (except for fp`,Wvjqq in the denominator

from above by µ´1
n , we obtain the lower bound

E
„

1supiďk,jďk´1 fpi,Wvj qăµ
´1
n

k´1
ź

j“0

deg`pvj ,T q´1
ź

`“0

fp`,Wvjq
řj
i“0 fpdeg`pvi, O|jq,Wviq ` µ

´1
n



ě E
„

1supiďk,jďk´1 fpi,Wvj qăµ
´1
n

k´1
ź

j“0

deg`pvj ,T q´1
ź

`“0

fp`,Wvjq

fp`,Wvjq ` kµ
´1
n



,

where we use that the sum in the denominator has at most k´ 1 terms besides fp`,Wvjq. By
the independence of the vertex-weights, setting

f`pk,W q :“ sup
iďk

fpi,W q, and f´pk,W q :“ inf
iďk

fpi,W q, (6.16)
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and using that the mapping x ÞÑ x` y is increasing in x, we obtain the lower bound

k´1
ź

j“0
E
„

1f`pk,W qăµ´1
n

´ f´pk,W q

f´pk,W q ` kµ´1
n

¯deg`pvj ,T q


, (6.17)

where we use that deg`pvj, T q ď k for any vertex vj and any tree T of size k ` 1.

Upper bound. For an upper bound we use a similar approach. First, irrespective of the
ordering O P OpT q, we can drop all terms from the denominator except fp`,Wvjq and µ´1

n

and use independence of the vertex weights to obtain the upper bound

E

«

k´1
ź

j“0

śdeg`pvj ,T q´1
`“0 fp`,Wvjq

řj
i“0 fpdeg`pvi, O|jq,Wviq1deg`pvi,O|j qădeg`pvi,T q ` µ

´1
n

ff

ď

k´1
ź

j“0
E

»

–

deg`pvj ,T q´1
ź

`“0

fp`,Wvjq

fp`,Wvjq ` µ
´1
n

fi

fl ď

k´1
ź

j“0
E
„

´ f`pk,W q

f`pk,W q ` µ´1
n

¯deg`pvj ,T q


,

(6.18)
where now f`pk, wq :“ supiďk fpi, wq and we again use that the out-degrees are at most k.
As the terms in the expected value are at most one, we condition on the size of f`pk,W q to
obtain the upper bound

k´1
ź

j“0

ˆ

E
„

1f`pk,W qăµ´1
n

´ f`pk,W q

f`pk,W q ` µ´1
n

¯deg`pvj ,T q


` P
`

f`pk,W q ě µ´1
n

˘

˙

.

As a result, since |OpT q| ă pk ` 1q! for any tree of size k ` 1, we can use the above in (3.4)
to obtain that, for some constant D “ Dpkq ą 0, the inner sum in (3.4) is at most

D
k´1
ź

j“0

ˆ

E
„

1f`pk,W qăµ´1
n

´ f`pk,W q

f`pk,W q ` µ´1
n

¯deg`pvj ,T q


` P
`

f`pk,W q ě µ´1
n

˘

˙

. (6.19)

We now use the lower and upper bound to determine, based on certain conditions on the
vertex-weights, whether the double sum in Theorem 3.7 is finite or infinite. In particular, we
are now in a position to prove Corollary 3.8.

6.2.1 Proof of Corollary 3.8

Proof of Corollary 3.8. We start by using the lower bound in (6.17). For each expected value
in the product, we have, since f´pk,W q ď f`pk,W q, the lower bound

E
„

1f`pi,W qăµ´1
n

´ f´pk,W q

pk ` 1qµ´1
n

¯deg`pvj ,T q


ě pk ` 1q´kµdeg`pvj ,T q
n E

”

1f`pi,W qăµ´1
n
f´pk,W qdeg`pvj ,T q

ı

.

As µ´1
n diverges with n and by the moment condition, by monotone convergence we find that

the expected value on the right-hand side equals E
”

f´pk,W qdeg`pvj ,T q
ı

p1 ´ op1qq, which is
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finite. As such, substituting this in (6.17), we arrive at the lower bound

C
k´1
ź

j“0
µdeg`pvj ,T q
n “ Cµkn,

since the sum of the out-degrees equals |T | ´ 1 “ k, and where C ą 0 is a constant.

For an upper bound we use (6.18): omitting the terms f˚pk,W q from the denominator, yields
the upper bound

D
k´1
ź

j“0

´

µdeg`pvj ,T q
n E

”

f`pk,W qdeg`pvj ,T q
ı ¯

.

By the moment condition we again have that, irrespective of the choice of k P N and the tree
T , that expected values are finite. As such, we obtain an upper bound D1µkn for some constant
D1. Applying Theorem 3.7 then yields the desired result.

6.2.2 Proof of Theorem 3.21

Recall the quantities G1 and G2 from (3.10). We first have the following result, which deals
with the case that fpk,W q is a regularly varying random variable.

Proposition 6.5. Assume that fpk,W q satisfies (3.6) and (3.7) for some slowly-varying
functions `k, `k, respectively, and an exponent z ą 0, for any k P N0 (where z is independent
of k), and assume that for each k P N0 there exists ik P t0, . . . , ku such that infiďk fpi, wq “
fpik, wq for all w P S. If there exists η0 ą 0 such that

8
ÿ

n“1
µk´pG1pT,zq´zG2pT,zqq´η
n ă 8 for all η P p0, η0q, (6.20)

then the tree T8 contains T as a sub-tree finitely often, almost surely. If there exists η0 ą 0
such that

8
ÿ

n“1
µk´pG1pT,zq´zG2pT,zqq`η
n “ 8, for all η P p0, η0q, (6.21)

then the tree T8 contains T infinitely often, almost surely.

We finally state the following technical lemma, whose proof we defer to Section C in the
Appendix.

Lemma 6.6. Let r be a regularly-varying function with exponent ρ ą 0 and let W be a
random variable with a regularly-varying tail distribution with exponent ´pζ ´ 1q ă 0. Then,
rpW q is has a regularly-varying distribution with exponent ´pζ ´ 1q{ρ.

With this proposition and lemma at hand, we can prove the results in Theorem 3.21.

Proof of Theorem 3.21. We fix k P N and let T be a sibling-closed tree of size k` 1. In all of
the cases we discuss, we use the approximations of µn for the two main choices of the degree
function s (super-linear and barely super-linear), as in Lemma 6.2, and distinguish the proof
between these two main cases.
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Super-linear case. For the super-linear case with additive weights, we have that fpk, xq is
regularly varying in x with exponent 1; for the super-linear case with mixed weights, fpk, xq is
regularly varying in x with exponent γ_1, for any k P N0. Applying (the proof of) Lemma 6.6
and assuming that the vertex-weight distribution satisfies (3.6) and (3.7) with exponent α´1,
we obtain that fpk,W q satisfies these tail distribution inequalities with exponent z “ α ´ 1
in the additive weight case and z “ pα´ 1q{pγ _ 1q in the mixed weight case for any k P N0
(where the slowly-varying functions may depend on k). In both cases, for any k P N0 and
w ě 0,

inf
iďk

fpi, wq “ gpwqpinf
iďk

spiqq ` hpwq “ gpwqspikq ` hpwq,

where ik “ arg miniďk spiq. As ik does not depend on w ě 0, the condition on infiďk fpi, wq
in Proposition 6.5 is satisfied. Moreover, in both cases, µn is regularly varying with exponent
´pp ´ 1q. Hence, the inequalities in (3.11) and (3.12) follow by applying (6.20) and (6.21),
respectively.

Barely super-linear case. The proof follows directly from the fact that µan is not summable for
any a ě 0, as follows from Lemma 6.2, and that

k ´ pG1pT, zq ´ zG2pT, zqq “
ÿ

vPT

deg`pv, T q ´
ÿ

vPT

pdeg`pv, T q ´ zq1deg`pv,T qąz ě 0,

which concludes the proof.

It remains to prove Proposition 6.5.

Proof of Proposition 6.5. We first recall that we assume that the random variables pfpk,W qqkPN0

satisfy (3.6) and (3.7) for some slowly-varying functions `k, `k, respectively, and some exponent
z ą 0 independent of k. By the definition of f` and f´ in (6.16) and the assumption that
for each k P N0 there exists ik P t0, . . . , ku such that f´pk, wq :“ infiďk fpi, wq “ fpik, wq
for all w P S, we have

P pfpik,W q ě xq “ P
`

f´pk,W q ě x
˘

ď P
`

f`pk,W q ě x
˘

ď

k
ÿ

i“0
P pfpi,W q ě xq . (6.22)

By the assumptions on the tail distribution of fpi,W q, and by Lemma 6.1, we thus find that
we obtain an upper and lower bound for the tail probabilities of f´pk,W q and f`pk,W q that
are regularly-varying with exponent ´z. We now apply [54, Proposition 1.3.2] to f`pk,W q,
using the regularly-varying upper bound on its tail distribution (with X “ f`pk,W q, β “
deg`pv, T q, and regularly-varying exponent ´z) to determine that, for some slowly-varying
function L1,

E
”

1f`pk,W qăµ´1
n
f`pk,W qdeg`pv,T q

ı

(6.23)

ď

$

’

’

&

’

’

%

E
”

f`pk,W qdeg`pv,T q
ı

p1´ op1qq if deg`pv, T q ă z,

L1pµ
´1
n q if deg`pv, T q “ z,

z`op1q
deg`pv,T q´zL1pµ

´1
n qµ

z´deg`pv,T q
n if deg`pv, T q ą z.

We intend to use this in each of the product terms in the upper bound in (6.19) by omitting
the term f`pk,W q in the denominator (which yields a further upper bound) and taking out a
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factor µdeg`pvj ,T q
n for each j ď k ´ 1. We thus have a sum of two quantities in each product

term, namely

µdeg`pvj ,T q
n E

”

1f`pk,W qăµ´1
n
f`pk,W qdeg`pv,T q

ı

` P
`

f`pk,W q ě µ´1
n

˘

. (6.24)

When deg`pvj, T q ă z, the case distinction in (6.23) tells us that the first term is regularly
varying in µn with exponent deg`pvj, T q. Since, by (6.22) f`pk,W q satisfies (3.6) (for some
slowly-varying function `k, constant xk ą 0 and exponent z ą 0), the second term is regularly
varying in µn with exponent z ą deg`pvj, T q. Since µn tends to zero, it follows that, in this
case, the first term in (6.24) is dominant.

When deg`pvj, T q “ z, the case distinction tells us that the first term is regularly varying in
µn with exponent deg`pvj, T q “ z, and by again applying (3.6), so is P pf`pk,W q ě µ´1

n q.
Finally, when deg`pvj, T q ą z, it is readily verified that both terms are equal, up to a multi-
plicative constant. Hence, we can bound the entire term in (6.24) from above by

L2pµ
´1
n qµ

mintz,deg`pvj ,T qu
n

for some slowly-varying function L2. Using this in each of the product terms in (6.19), we
obtain the upper bound

D
k´1
ź

j“0

ˆ

E
„

1f`pk,W qăµ´1
n

´ f`pk,W q

f`pk,W q ` µ´1
n

¯deg`pvj ,T q


` P
`

f`pk,W q ě µ´1
n

˘

˙

ď Dµkn

k´1
ź

j“0

`

L2pµ
´1
n qµ

mintz´deg`pvj ,T q,0u
n

˘

,

where we have taken the terms µdeg`pvj ,T q
n outside of the product to obtain a term µkn. We

now recall that G2pT, zq counts the number of vertices vj in T such that deg`pvj, T q ą z,
and G1pT, zq counts the sum of all degrees of such vertices vj (see (3.10)). As a result, for
some slowly-varying function L3, using that products of slowly-varying functions are still slowly
varying by Lemma 6.1, we obtain the upper bound

L3pµ
´1
n qµ

k´G1pT,zq
n P

`

f`pk,W q ě µ´1
n

˘G2pT,zq ,

Now, we use that f`pk,W q satisfies (3.6) and apply 6.1 to arrive at

L4pµ
´1
n qµ

k´pG1pT,zq´zG2pT,zqq
n , (6.25)

for some slowly-varying function L4. Since we can bound L4pµ
´1
n q ď µ´ηn for any η ą 0 and

n sufficiently large, the desired result in (6.20) is obtained by applying Theorem 3.7.

To prove (6.21), we start from the lower bound in (6.17). Noting that the integrand is bounded
from above by one, we have

E
„

1f`pk,W qăµ´1
n

k´1
ź

j“0

deg`pvj ,T q´1
ź

`“0

fp`,Wvjq

fp`,Wvjq ` kµ
´1
n



ě

k´1
ź

j“0
E
„

1f´pk,W qăµ´1
n

´ f´pk,W q

f´pk,W q ` kµ´1
n

¯deg`pvj ,T q


´ P
`

f´pk,W q ă µ´1
n , f`pk,W q ě µ´1

n

˘k
.

(6.26)
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We first tend to the product on the right-hand side. By bounding the term f´pk,W q in the
denominator from above by µ´1

n , we bound it from below by

pk ` 1q´kµkn
k
ź

j“0
E
”

1f´pk,W qăµ´1
n
f´pk,W qdeg`pvj ,T q

ı

We now use the regularly-varying lower bound on the tail distribution of f´pk,W q, as de-
rived from (6.22). Again applying [54, Proposition 1.3.2], we obtain a lower bound analo-
gous to (6.23) (and by possibly changing the slowly-varying function). The steps in in (6.24)
through (6.25) are then identical, so that we obtain, for some slowly-varying function L5, the
lower bound

pk ` 1q´kL5pµ
´1
n qµ

k´pG1pT,zq´zG2pT,zqq
n .

We now substitute this in (6.26) with C “ pk ` 1q´k and bound the probability from above
by omitting the first event, to arrive at
k´1
ź

j“0
E
„

1f`pk,W qăµ´1
n

´ f´pk,W q

f´pk,W q ` kµ´1
n

¯deg`pvj ,T q


ě CL5pµ
´1
n qµ

k´pG1pT,zq´zG2pT,zqq
n

´ P
`

f`pk,W q ě µ´1
n

˘k
.

(6.27)

As follows from (6.22), the probability P pf`pk,W q ě µ´1
n q

k is bounded from above by a
regularly-varying term (in µn) with exponent kz. By Lemma 6.1, the right-hand side is
regularly-varying with exponent mintk ´ pG1pT, zq ´ zG2pT, zqq, kzu. In particular, it is pos-
itive for all n large if the first argument attains the minimum. To determine that this is the
case, we observe, with a similar argument as in from (3.13), that the first argument of the
minimum is at most k. Hence, when z ě 1, it is immediate. When z ă 1, we instead use
that G1pT, zq “ k (since now G1 simply sums all degrees) and G2pT, zq “ k ` 1´N , where
N ě 1 is the number of leaves (i.e. nodes with out-degree zero) in T . We thus have

kpG1pT, zq ´ zG2pT, zqq ď kz ô zpk ` 1´Nq ď kz,

which holds since N ě 1. As a result, we can bound the right-hand side of (6.27) from below,
for some slowly-varying function L6, by

L6pµ
´1
n qµ

k´pG1pT,zq´pα´1qG2pT,zq{zq
n .

We finally use Lemma 6.1 to bound L6pµ
´1
n q ě µηn for any η ą 0 and n sufficiently large and

apply Theorem 3.7 to finally arrive at (6.21), which concludes the proof.

A Additional results for other fitness functions

In Theorem 3.16 we discussed three particular choices of the fitness function: a super-linear
degree function s with either mixed or additive weight functions, and a log-stretched super-
linear degree function s with mixed weight functions. For these choices, we were able to prove
a complete phase diagram for the emergence of a unique vertex with infinite degree or a unique
infinite path, and for sub-tree counts in the former case.

In this section, we discuss three additional choices of the fitness function: barely super-linear
log-stretched degree function s with additive weight functions, and poly-log degree function
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s with either mixed or additive weight functions. We present these cases here, since we are
unable to prove a complete phase diagram; for each case there is a gap in the parameter
choices where we cannot prove the emergence of a unique vertex with infinite degree nor a
unique infinite path.

We summarise these choices in the following assumptions.

Assumption A.1. Let fpi, wq “ gpwqspiq ` hpwq, i P N0, w ě 0 satisfy (w˚) and one of the
following three cases.

� Barely super-linear log-stretched with additive weights: s is as in (3.5), g ” 1,
and hpxq “ `pxqx for some slowly-varying function ` : r0,8q Ñ r0,8q, such that either

Da P r0, 1q : lim
xÑ8

log logp1{`pxqq
log log x “ a, (A.1)

or

Da P r0, 1q : lim
xÑ8

log logp`pxqq
log log x “ a. (A.2)

� Barely super-linear poly-log: For some σ ą 1,

spiq “ pi` 2qplogpi` 2qqσ, i P N0,

and g, h are as in the additive or mixed weight case of Assumption 3.10.

We then also introduce the following additional assumptions for the vertex-weight distribution.

Assumption A.2. The vertex-weights pWiqiPN are i.i.d. and their tail distribution satisfies one
of the following cases.

� Power law with lower-order term. Let τ P p0, 1q. We have the following two condi-
tions.

1 There exist c, x ą 0 and τ P p0, 1q such that

P pW ě xq ď x´1e´cplog xqτ , x ě x. (A.3)

2 There exist c, x ą 0 and τ 1 P p0, 1q such that

P pW ě xq ě x´1ecplog xqτ 1 , x ě x. (A.4)

� Stretched exponential. Let κ ą 0. We have the following two conditions.

1 There exist c, x ą 0 such that

P pW ě xq ď e´cxκ , x ě x. (A.5)

2 There exists c, x ą 0 such that

P pW ě xq ě e´cxκ , x ě x. (A.6)
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We then have the following theorem, which is an equivalent result to Theorem 3.16.

Theorem A.3. Let pTiqiPN be a pW, fq-recursive tree with fitness, where the fitness function
f and degree function s satisfy one of the cases in Assumptions 3.10 and 3.13, respectively,
and the vertex-weight distribution satisfies one of the cases in Assumption 3.15. The tree
T8 either contains a unique vertex with infinite degree and no infinite path almost surely,
or contains a unique infinite path and no vertex with infinite degree almost surely, when the
following conditions are met, based on the fitness function, degree function, and vertex-weight
assumptions:

Weight Degree Star Path
Additive Log-Stretched (A.1),(A.3) & pτ _ βq ą p1´ βq _ a (A.2),(A.4) & τ 1 ą β _ p1´ βq, pτ 1 _ βq ą a
Mixed Poly-log (A.5) & pσ ´ 1qκ ą 1` κ (A.6) & pσ ´ 1qκ ă 1
Additive Poly-log (3.8) & pσ ´ 1qp1´ 1{νq ą 1 (3.7) & α ă 2

Table 4: The first column represents the form of the fitness function, as in Assumption 3.10;
the second represents the form of the degree function, as in Assumption A.1. The third and
fourth column, respectively, list the required assumptions on the vertex-weight distribution, as in
Assumptions 3.15 and A.2, together with the choices of the parameters that lead to either a unique
node of infinite degree or a unique infinite path.

The proof of Theorem A.3 follows from two lemmas, equivalent to Lemmas 6.3 and 6.4, which
we state now.

Lemma A.4. Equation (3.2) in Item 1 of Theorem 3.4 is satisfied when the following condi-
tions are met, based on the assumptions for the fitness type, degree function s, and vertex-
weight distribution:

Weight Degree Star
Additive Log-Stretched (A.1),(A.3) & pτ _ βq ą p1´ βq _ a
Mixed Poly-log (A.5) & pσ ´ 1qκ ą 1` κ
Additive Poly-log (3.8) & pσ ´ 1qp1´ 1{νq ą 1

Table 5: The first column represents the form of the fitness function, as in Assumption 3.10; the
second represents the form of the degree function, as in Assumption A.1. The third column lists
the required assumptions on the vertex-weight distribution, as in Assumption A.2, together with
the choices of the parameters that lead to a unique node of infinite degree.

Lemma A.5. The condition in (2.9) satisfied when the following conditions are met, based
on the assumptions for the fitness type, degree function s, and vertex-weight distribution:

Weight Degree Path
Additive Log-Stretched (A.2),(A.4) & τ 1 ą β _ p1´ βq, pτ 1 _ βq ą a
Mixed Poly-log (A.6) & pσ ´ 1qκ ă 1
Additive Poly-log (3.7) & α ă 2

Table 6: The first column represents the form of the fitness function, as in Assumption 3.10;
the second represents the form of the degree function, as in Assumption A.1. The third column
lists the required assumptions on the vertex-weight distribution, as in Assumptions 3.15 and A.2,
together with the choices of the parameters that lead to a unique infinite path.

It is clear that Theorem A.3 follows from Lemmas A.4 and A.5. Before we prove these two
lemmas, we state the following result, which is an analogoue of Lemma 6.2.
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Lemma A.6. Let f satisfy the barely super-linear poly-log case, as in Assumption A.1. Then,
for any w ě 0,

µwn “
1` op1q

gpwqpσ ´ 1qplog nq´pσ´1q.

Proof. We use Lemma 6.2, which tells us that µwn “ p1` op1qqgpwq´1Lpnq, where

Lpnq :“
ż 8

n`2
x´1
plog xq´σ dx.

Using a variable substitution y “ log x and determining the integral yields the desired result.

The proofs of Lemmas A.4 and A.5 follow the same approach as those of Lemmas 6.3 and 6.4.

Proof of Lemmas A.4 and A.5, s log-stretched case, additive weights. To start, we prove the
claim in Lemma A.4. We assume that βτ ą 1 and recall that

fpi, wq “ pi` 1qeplogpi`1qqβ
` hpwq,

where h is a regularly-varying function with exponent 1. Fix ε ą 0 sufficiently small so that
βτ ą 1` ε. We apply (6.2) with

kn :“ n expp´p1´ εqcplog nqτ q, and µn “
1` op1q

β
plog nq1´β expp´plog nqβq, (A.7)

where the latter follows from Lemma 6.2. Since τ P p0, 1q and by (A.3), we have

P pW ą knq ď k´1
n e´cplog knqτ

“
1
n

exp
`

p1´ εqcplog nqτ ´ cplog n´ p1´ εqcplog nqτ qτ
˘

“
1
n

exp
`

´ εcplog nqτ p1` op1qq
˘

,

(A.8)

for n sufficiently large, so that the second term on the right-hand side of (6.2) is summable.
Next, we define

In :“ hpknq exp
`

´ plog hpknqqβ ` βplog hpknqq2β´1˘.

By Taylor’s theorem, for |x| ă 1, p1 ` xqβ “ 1 ` βx ` βpβ´1q
2 x2 ` opx3q. Factoring out the

term log hpknq we can thus write

plog Inqβ “ log hpknqβ
`

1´ plog hpknqqβ´1
` βplog hpknqq2β´2˘β

“ plog hpknqqβ ´ βplog hpknqq2β´1
`

3
2β

`

β ´ 1
3

˘

plog hpknqq3β´2

` o
`

plog hpknqq3β´2˘.

(A.9)

It thus follows that for j ě In,

pj ` 1q exp
`

plogpj ` 1qqβ
˘

ě In exp
`

plog Inqβ
˘

“ hpknq exp
´3β

2
`

β ´ 1
3

˘

plog hpknqq3β´2
` opplog hpknqq3β´2

q

¯

.
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We claim that the exponential term is at least 1{2 for n large. Indeed, for β ą 2{3 the
exponential term diverges with n, whilst for β P p0, 2{3s is converges to a constant that is at
least 1. So, for all j ě In and n sufficiently large,

hpknq ď 2pj ` 1q exppplogpj ` 1qqβq.

Moreover, as µn is slowly varying and kn and h are both regularly varying with exponents 1,
we have µ´1

n “ ophpknqq. We thus obtain the lower bound

8
ÿ

j“0

1
pj ` 1q exppcplogpj ` 1qqβq ` hpknq ` µ´1

n

ě

8
ÿ

j“In

1
5pj ` 1q exppplogpj ` 1qqβq

“
µInp1` op1qq

5 ,

where we recall the definition of µn from (3.1) (with w˚ “ 0) and use (the proof of) Lemma 6.2
in the final step. Using this in the first term on the right-hand side of (6.2), we obtain the
upper bound

exp
`

´
c`op1q

5 µInµ
´1
n

˘

. (A.10)

With In and µn as in (A.7) and using (A.9), we find

µIn “
1` op1q

β
plog Inq1´β exp

`

´ plog Inqβ
˘

“
1` op1q

β
plog nq1´β exp

`

´ plog hpknqqβ ` βplog hpknqq2β´1
p1` op1qq

˘

.

(A.11)

We now use that hpxq “ `pxqx for some slowly-varying function ` which satisfies (A.1) for
some a P r0, τ _ βq. We can then write, using that hpxq “ x1`op1q and kn “ n1`op1q, and for
|x| ă 1, that p1` xqβ “ 1` βx` opx2q,

´plog hpknqqβ ` βplog hpknqq2β´1
p1` op1qq

“ ´ plog knqβp1` logp`pknqqplog knq´1
q
β
` βplog nq2β´1

p1` op1qq
“ ´ plog knqβ ´ βplog knqβ´1 logp`pknqqp1` op1qq ` βplog nq2β´1

p1` op1qq
(A.12)

Now, again using the expression for p1` xqβ, observe that

plog knqβ “ plog nqβ ` p1´ εqcβplog nqβ`τ´1
p1` op1qq.

Hence we may write (A.12) as

´plog nqβ `
“

p1´ εqcβplog nqβ`τ´1
` βplog nq2β´1

´ βplog knqβ´1 logp`pknqq
‰

p1` op1qq.
(A.13)

Recall that we assume that ` is such that limxÑ8 log logp`pxqq{ log log x “ a for some a P
r0, τ _ βq (as we assume that τ _ β ą a), that is, when logp`pxqq “ plog xqa`op1q, we can
write

plog knqβ´1 logp`pknqq “ plog knqβ`a´1`op1q.

Since a ă τ_β, this term is negligible compared to the other two terms in the square brackets
in (A.13), so that it can be included in the op1q term. We thus obtain, combining (A.11)
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with (A.13),

µIn “

1` op1q
β

plog nq1´β exp
`

´ plog nqβ `
“

p1´ εqcβplog nqβ`τ´1
` βplog nq2β´1‰

p1` op1qq
˘

“ µn exp
`

pC 1 ` op1qqplog nqβ`pτ_βq´1˘.

We can thus, finally, bound the first term on the right-hand side of (6.2) from above by
substituting this in (A.10), which yields

exp
´

´
c` op1q

5 exp
`

pC 1 ` op1qqplog nqβ`pτ_βq´1˘
¯

,

which is summable since τ _ β ą 1´ β (and using an argument similar to that in (A.8)), as
desired.

We then prove the claim in Lemma A.5. We set kn :“ n exppcplog nqτ 1q. It follows from (A.4)
that

P pW ě knq ě n´1 expp´cplog nqτ 1q exppcplog n` cplog nqτ 1qτ 1q ě n´1,

which is not summable. Then, we define

In :“ hpknq expp´plog hpknqqβ ´ plog hpknqq2β´1
q, (A.14)

and write
8
ÿ

i“0

1
fpi, knq

“

8
ÿ

i“0

1
pi` 1q exppplogpi` 1qqβq ` hpknq

ď

In
ÿ

i“0

1
hpknq

`

8
ÿ

i“In`1

1
pi` 1q exppplogpi` 1qqβq .

We recall the definition of µn from (3.1) (with w˚ “ 0) and use (the proof of) Lemma 6.2 to
deduce that the above equals

expp´plog hpknqqβ ´ plog hpknqq2β´1
q ` p1` op1qqµIn . (A.15)

We now need only show that this expression is opµwn q, which clearly implies (6.4).

Let us start with the first term. By a similar sequence of computations as in (A.12), (A.13),
and using the fact that, for |x| ă 1 we have p1` xqβ “ 1` βx` opx2q, we obtain

exp p´plog hpknqqβ ´ plog hpknqq2β´1
q

“ expp´plog knqβ ´ βplog knqβ´1 logp`pknqqp1` op1qq ´ plog nq2β´1
p1` op1qqq

“ exp
`

´ plog nqβ ´
“

cβplog nqβ`τ 1´1
` plog nq2β´1

` βplog nqβ´1 logp`pknqq
‰

p1` op1qq
˘

.
(A.16)

We recall that hpxq “ `pxqx, where ` is slowly varying, such that

lim
xÑ8

log logp1{`pxqq{ log log x “ a,

for some a P r0, τ 1_ βq (as by our assumption). That is, logp`pxqq “ ´plog xqa`op1q. We thus
have

plog knqβ´1 logp`pknqq “ ´plog knqβ`a´1`op1q. (A.17)
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Since a ă τ 1 _ β, it follows that this term can be included in the op1q term in (A.16). We
thus arrive at

expp´plog hpknqqβq “ exp
`

´ plog nqβ ´
“

cβplog nqβ`τ 1´1
` plog nq2β´1‰

p1` op1qq
˘

“ µβnplog nqβ´1 exp
`

´
“

cβplog nqβ`τ 1´1
` plog nq2β´1‰

p1` op1qq
˘

.

Since we assume that τ 1 ą β _ p1´ βq, we directly obtain that this is opµwn q.

Recalling (A.15), it thus remains to prove that µIn “ opµwn q. By (A.16), (A.14), and (A.7), the
desired result follows by showing that expp´plog Inqβq “ opexpp´plog nqβqq or, equivalently,
plog Inqβ ´ plog nqβ diverges with n. First, we note that hpxq “ x1`op1q (as h is regularly
varying with exponent 1) and kn “ n1`op1q. Again, using the approximation to p1 ` xqβ in a
similar manner as in (A.12),

plog Inqβ “
`

log hpknq ´ plog hpknqqβ ´ plog hpknqq2β´1˘β

“ plog hpknqqβ ´ βplog hpknqq2β´1
p1` op1qq

“ plog knqβ `
“

βplog knqβ´1 logp`pknqq ´ βplog nq2β´1‰
p1` op1qq

“ plog nqβ `
“

cβplog nqβ`τ 1´1
` βplog knqβ´1 logp`pknqq ´ βplog nq2β´1‰

p1` op1qq.
By the same argument that leads to (A.17), we argue that we can include the second term in
the square brackets within the op1q term as it is of lower order compared to either plog nqβ`τ 1´1

or plog nq2β´1. The desired result thus follows since τ 1 ą β _ p1´ βq.

Proof of Lemmas A.4 and A.5, s poly-log case, mixed weights. We first prove the claim in
Lemma A.4. We assume that pσ ´ 1qκ ą 1` κ and recall that

fpi, wq “ gpwqpi` 2qplogpi` 2qqσ ` hpwq,

where g and h are regularly-varying functions with exponents 1 and γ ě 0, respectively. Fix
ε ą 0 sufficiently small so that pσ ´ 1qκ ą 1` ε. We apply (6.2) with

kn :“ plog nqp1`εq{κ, and µn “
1` op1q

gp0qpσ ´ 1qplog nq´pσ´1q, (A.18)

where the latter follows from Lemma 6.2. Now, using (A.5), we obtain

P pW ě knq ď e´ckκn “ e´cplognq1`ε
ď n´p1`εq,

for n sufficiently large, so that the second term on the right-hand side of (6.2) is summable.
Then, we define

In :“ phpknq ` µ´1
n q{gpknq. (A.19)

We write gpxq “ `1pxqx and hpxq “ `2pxqx
γ for some slowly-varying functions `1, `2, and

note that gpxq “ x1`op1q and hpxq “ xγ`op1q. With kn and µn as in (A.18), we thus have

In “ plog nqmaxtpσ´1qκ,p1`εqγu{κ´p1`εq{κ`op1q.

We note that In diverges with n since pσ ´ 1qκ ą 1 ` ε. It then directly follows for all n
sufficiently large and all j ě In, that

pj ` 2qplogpj ` 2qqσ ě j ě In “ phpknq ` µ
´1
n q{gpknq.
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As a result, for all n large we obtain the lower bound

8
ÿ

j“0

1
gpknqpj ` 2qplogpj ` 2qqσ ` hpknq ` µ´1

n

ě
1

gpknq

8
ÿ

j“In

1
3pj ` 2qplogpj ` 2qqσ

“
µInp1` op1qq
3gpknq{gp0q

,

where we recall the definition of µn from (3.1) (with w˚ “ 0) and use (the proof of) Lemma 6.2
in the final step. Substituting this bound into the first term on the right-hand side of (6.2),
and using (A.18), we obtain the upper bound

exp
´

´
cgp0q ` op1q

3
µInµ

´1
n

gpknq

¯

“ exp
`

´ plog log nq´pσ´1q
plog nqpσ´1q´p1`εq{κ`op1q˘,

(where we incorporate the constants into the op1q in the exponent of the log n term). This is
summable when pσ ´ 1q ´ p1` εq{κ ą 1 (again using an argument similar to that in (A.8)).
Since ε is arbitrary, the desired result follows since pσ ´ 1qκ ą 1` κ.

We then prove the claim in Lemma A.5. We fix ε ą 0 sufficiently small such that pσ ´ 1qκ ă
1´ ε and set kn :“ plog nqp1´εq{κ. It follows from (A.6) that

P pW ě knq ě e´cplognq1´ε
ě n´1,

which is not summable in n. By a similar computation as in (6.15),

8
ÿ

i“0

1
fpi, knq

“
1

gpknq

8
ÿ

i“0

1
pi` 2qplogpi` 2qqσ ` hpknq{gpknq

ď
Cσ
gpknq

,

for some constant Cσ ą 0. Since g varies regularly with exponent 1, we can write gpxq “
x1`op1q, so that

8
ÿ

i“0

1
fpi, knq

ď plog nq´p1´εq{κ`op1q.

As a result, since pσ ´ 1qκ ă 1´ ε, this sum is opµwn q. It follows that (6.4) is satisfied, which
concludes the proof.

Proof of Lemmas A.4 and A.5, s barely super-linear poly-log case, additive weights. We first
prove the claim in Lemma A.4. We assume that pσ ´ 1qp1´ 1{νq ą 1, and recall that

fpi, wq “ pi` 2qplogpi` 2qqσ ` hpwq,

where h is a regularly-varying function with exponent 1. Fix ε ą 0 sufficiently small so that
σp1´ 1{νq ą 1` ε. We apply (6.2) with

kn :“ exppplog nqp1`εq{νq, and µn “
1` op1q
σ ´ 1 plog nq´pσ´1q, (A.20)

where the latter follows from Lemma A.6. Now, using (3.8) we obtain

P pW ě knq ď e´cplog knqν “ e´cplognq1`ε
ă n´p1`εq,
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for n sufficiently large, so that the second term on the right-hand side of (6.2) is summable.
Then, we define

In :“ hpknq

plog hpknqqσ
.

It then follows that for all j ě In and n sufficiently large,
pj ` 2qplogpj ` 2qqσ ě Inplog Inqσ “ hpknqp1` op1qq ą hpknq{2.

Moreover, since µ´1
n “ ophpknqq, irrespective of the values of σ, ν ą 1 and since hpxq “

x1`op1q, we obtain for all n sufficiently large the lower bound
8
ÿ

j“0

1
pj ` 1qplogpj ` 1qqσ ` hpknq ` µ´1

n

ě

8
ÿ

j“In

1
5pj ` 1qplogpj ` 1qqσ (A.21)

“
µInp1` op1qq

5 ě
µIn
6 ,

where we recall the definition of µn from (3.1) (with w˚ “ 0) and use (A.20) in the final step.
We again use that hpxq “ x1`op1q, which yields

µIn “
1` op1q
pσ ´ 1q plog Inq´pσ´1q

“
1` op1q
pσ ´ 1q plog knq´pσ´1q

“
1` op1q
pσ ´ 1q plog nq´p1`εqpσ´1q{ν .

Substituting this into the lower bound in (A.21), we may bound the sum in the exponent in
the first term on the right-hand side of (6.2) to obtain the upper bound

exp
`

´ c
6µInµ

´1
n

˘

ď exp
`

´ plog nqpσ´1qp1´p1`εq{νq`op1q˘.

By choosing ε sufficiently small, this upper bound is summable since pσ ´ 1qp1 ´ 1{νq ą 1,
which yields the desired result.

We then prove the claim in Lemma A.5. We fix α P p1, 2q, take ε ą 0 sufficiently small such
that 1 ´ ε ą α ´ 1, and set kn :“ np1´εq{pα´1q. We then have P pW ě knq ě `pknqn

´p1´εq

by (3.7), which is not summable in n. We define In :“ kn{plog knqσ and bound
8
ÿ

i“0

1
fpi, knq

ď

In´1
ÿ

i“0

1
kn
`

8
ÿ

i“In

1
pj ` 2qplogpj ` 2qqσ “

1
plog knqσ

` p1` op1qqµIn ,

where we recall the definition of µn from (3.1) (with w˚ “ 0) and use (the proof of) Lemma 6.2.
By the choice of kn and In and with µn as in (A.20), we have

1
µwn

´ 1
plog knqσ

` p1` op1qqµIn
¯

“ O
´ 1

log n

¯

` p1` op1qq
´ log In

log n

¯´pσ´1q
Ñ

´α ´ 1
1´ ε

¯σ´1
.

As a result, by choosing ε sufficiently small, since α´ 1 ă 1, the right-hand side of the above
is strictly smaller than one; it follows that (6.4) is satisfied.

B Verifying conditions for other inter-birth time distribu-
tions

In this section we consider the other birth-time distributions listed in Remark 3.17, and check
the conditions of Assumptions 2.2 and 2.6 (it is clear that all distributions are continuous
and thus satisfy Assumption 2.11). We do not repeat all the detailed calculations in the
previous subsection. Rather, we show where calculations differ, and where similar or analogous
arguments yield the desired results.
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B.1 Conditions for an infinite star, Assumption 2.2.

We need to verify (2.5) and (2.8). We start with the former, and split between the different
inter-birth distributions listed in Remark 3.17.

Gamma. Let the inter-birth times be gamma random variables, i.e. for i P N, k ą 0, and
w ě 0, let Xwpiq „ Gammapk, kfpi´ 1, wqq. Recall Yn from (5.5) (with w˚ “ 0). Then,

MλpYnq “
8
ź

`“n

´ kfp`, 0q
kfp`, 0q ´ λ

¯k

“

ˆ 8
ź

`“n

kfp`, 0q
kfp`, 0q ´ λ

˙k

“ MλprYnq
k,

where
rYn

d
“

8
ÿ

j“n`1
Exppkfpj ´ 1, 0qq.

We can, by possibly changing the constant c so that c ă mint1, 1{ku, use the same computa-
tions as in (5.2) through (5.4) to derive the upper bound Mcµ´1

n
pYnq ď p1´ cq´k to conclude

that Condition (2.5) of Assumption 2.2 holds.

For the next two examples, we use that

8
ÿ

`“n

1
fp`, 0q2 ď

ˆ 8
ÿ

`“n

1
fp`, 0q

˙2

“ µ´2
n .

Beta. Let the inter-birth times be distributed as follows. For any i P N and w ě 0, let

Xwpiq
d
“
α ` β

α

1
fpi´ 1, wqBi, (B.1)

where pBiqiPN is a sequence of i.i.d. copies of a Betapα, βq random variables, for some α ě
1, β P p0, 1s. Recall Yn from (5.5). Then, for λ ą 0,

E
“

eλX0pjq
‰

“

8
ÿ

k“0

k´1
ź

`“0

α ` `

α ` β ` `

´α ` β

α

λ

fpj ´ 1, 0q

¯k 1
k! ,

where we set the empty product
ś´1

`“0 equal to one. As the terms in the product are at most
one, we directly obtain the upper bound

Mµ´1
n
pYnq “

8
ź

j“n`1
E
”

eµ
´1
n X0pjq

ı

ď

8
ź

j“n`1
exp

´α ` β

α

µ´1
n

fpj ´ 1, 0q

¯

“ exp
ˆ

α ` β

α
µ´1
n

8
ÿ

j“n

1
fpj, 0q

˙

.

By the definition of µ´1
n , it follows that this upper bound equals epα`βq{α, so that (2.5) is

satisfied.
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Rayleigh. Let the inter-birth times be Rayleigh random variables, i.e. for any i P N and
w ě 0, let Xwpiq „ Rayleighp

a

2{π{fpi´ 1, wqq. Recall Yn from (5.5) (with w˚ “ 0). Then,

MλpYnq “
8
ź

`“n

ˆ

1` λ

fp`, 0qe
λ2{pπfp`,0q2q

´

1` erf
´ λ
?
πfp`, 0q

¯¯

˙

,

where erfpxq :“ p2{
?
πq

şx

0 e´t2 dt denotes the error function. Since the error function is
bounded from above by one, we immediately arrive at the upper bound

MλpYnq ď exp
ˆ

2λ
8
ÿ

`“n

1
fp`, 0qe

λ2{pπfp`,0q2q
˙

ď exp
ˆ

2λ
8
ÿ

`“n

1
fp`, 0q exp

ˆ

λ2

π

8
ÿ

`“n

1
fp`, 0q2

˙˙

.

Now, with λ “ cµ´1
n , we finally arrive at the upper bound expp2 expp1{πqq, as desired.

We now verify Condition 5 of Assumption 2.2, i.e. Equation (2.8), which is summarised in the
following lemma.

Lemma B.1. Assume the inter-birth time distributions satisfy any of the choices in Re-
mark 3.17. With the same conditions for the fitness type, degree function s, and the vertex-
weight distribution, as in Lemmas 6.3 and A.4, Condition 5 of Assumption 2.2 is satisfied.

We split the proof of Lemma B.1 into the different choices for the inter-birth distributions.
We observe that, irrespective of the inter-birth distribution, we assume the mean of XW pjq,
conditionally on W , is always 1{fpj ´ 1,W q for any j P N, so that the definition (and
asymptotic behaviour) of µn remains unchanged and only depends on the fitness function f .

Proof of Lemma B.1, Gamma case. For some sequence p`nqnPN, we have

E
“

Lcµ´1
n
pPn;W q

‰

“ E

«

ˆ n´1
ź

j“0

kfpj,W q

kfpj,W q ` cµ´1
n

˙k
ff

ď exp
ˆ

´ cµ´1
n

n´1
ÿ

j“0

1
kfpj, `nq ` cµ´1

n

˙

` P pW ě `nq .

This expression is, up to a constant in the exponential term, equivalent to the upper bound
in (6.2). We can thus follow the proof of Lemma 6.3 to obtain the desired result for the gamma
case in general.

Proof of Lemma B.1, Beta case. Recall Xwpjq from (B.1), with α ě 1, β P p0, 1s. We have
that

E rLλpXwpjqqs “ 1F1

´

α;α ` β;´α ` β
α

λ

fpj ´ 1, wq

¯

,

where 1F1pa; b; zq denotes the confluent hypergeometric function, defined as

1F1pa; b; zq :“
8
ÿ

k“0

apkqzk

bpkqk! , a, b ą 0, z P R,
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where apkq :“ Γpa`kq{Γpaq, with Γ the gamma function. We now use the Kummer transform
1F1pa; b; zq “ ez1F1pb´ a; b;´zq, to obtain

E rLλpXwpjqqs “ exp
´

´
α ` β

α

λ

fpj ´ 1, wq

¯

1F1

´

β;α ` β; α ` β
α

λ

fpj ´ 1, wq

¯

“ exp
´

´
α ` β

α

λ

fpj ´ 1, wq

¯
8
ÿ

k“0

Γpα ` βqΓpβ ` kq
ΓpβqΓpα ` β ` kq

1
k!

´α ` β

α

λ

fpj ´ 1, wq

¯k

.

We then use that, since β ď 1 and thus rβs “ 1,

Γpα ` βqΓpβ ` kq
ΓpβqΓpα ` β ` kq “

k´1
ź

`“0

β ` `

α ` β ` `
ď

k´1
ź

`“0

1` `
tαu` 1` ` “

tαu
ź

`“1

`

`` k
“

k!ptαuq!
pk ` tαuq! .

This yields the upper bound

E rLλpXwpjqqs ď exp
´

´
α ` β

α

λ

fpj ´ 1, wq

¯
8
ÿ

k“0

ptαuq!
pk ` tαuq!

´α ` β

α

λ

fpj ´ 1, wq

¯k

. (B.2)

We then observe that, for any z ą 0 we have
1
z
pez ´ 1q ď ez{2`z2

.

Indeed, this is easy to check for z ě 1, whereas for z ă 1 we use the inequalities log x ď x´1
and ez ´ z ´ 1 ď z2

2 ` z
3 (the latter using

ř8

j“3
1
j! ď 1). Thus, for z ą 0 and α ě 1,

8
ÿ

k“0

1
pk ` tαuq!z

k
ď

1
ptαuq!

8
ÿ

k“0

1
pk ` 1q!z

k
“

1
ptαuq!

1
z
pez ´ 1q ď 1

ptαuq!e
z{2`z2

. (B.3)

Combining (B.2) and (B.3), we thus arrive at

E rLλpXwpjqqs ď exp
´

´
1
2
α ` β

α

λ

fpj ´ 1, wq `
´α ` β

α

λ

fpj ´ 1, wq

¯2¯
.

We then take some sequence pJnqnPN with Jn ď n to obtain

ErLcµ´1
n
pPn;W qs ď E

“

Lcµ´1
n
pPn ´ PJn ;W q

‰

ď exp
ˆ

´ cµ´1
n

α ` β

2α

n´1
ÿ

j“Jn

1
fpj, knq

`

´α ` β

α

¯2
c2µ´2

n

n´1
ÿ

j“Jn

1
fpj, knq2

˙

` P pW ě knq

“ exp
ˆ

´ cµ´1
n

α ` β

2α

n´1
ÿ

j“Jn

1
fpj, knq

´

1´ 2pα ` βq
α

c

µnfpj, knq

¯

˙

` P pW ě knq .

We now choose Jn for the different cases of the degree function s (according to Assump-
tion 3.13) such that for all j ě Jn, we have µnfpj, knq ě 4cpα` βq{α. This yields the upper
bound

exp
ˆ

´ c
α ` β

4α µ´1
n

n´1
ÿ

j“Jn

1
fpj, knq

˙

` P pW ě knq

ď exp
ˆ

´ c
α ` β

4α µ´1
n

n´1
ÿ

j“Jn

1
fpj, knq ` µ´1

n

˙

` P pW ě knq .
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With this upper bound at hand, we also claim that we can use the proof of Lemma 6.3 to
obtain the desired upper bounds, despite the fact that the sum in the exponential term starts
from Jn rather than from 0 (which is the case in Lemma 6.3).

For all additive cases we have Jn “ 0, so that we can directly use the proof Lemma 6.3. This is
due to the fact that µnfpj, knq ě µnfp0, knq diverges with n, so that it is at least 4pα`βq{α
for all n sufficiently large. Indeed, for all additive weights types, for some small ε ą 0 and
some constant C ą 0,

Super-linear: µn “ pC ` op1qqnspnq´1, kn :“ np1´εqp.
Log-stretched: µn “ pC ` op1qqplognq1´β expp´plognqβq, kn :“ n expp´p1´ εqcplognqτ q.
Poly-log: µn “ pC ` op1qqplognq´pβ´1q, kn :“ exppplognqp1`εq{τ q.

One can directly verify that µnfp0, knq “ Θpµnhpknqq diverges with n, where h is some
regularly-varying function with exponent 1.

For the three mixed weights cases (depending on the degree function s), we can set Jn as
follows, where K is a sufficiently large constant:

Super-linear: Jn :“ Knεpp´1q{p.
Log-stretched: Jn :“ KIn, with In as in (6.13).
Poly-log: Jn :“ KIn, with In as in (A.19).

Using that for all j ě Jn,

µnfpj, knq ě µnfpJn, knq ě µngpknqspJnq,

it is readily verified in all three cases that µnfpj, knq ě 4pα ` βq{α for all j ě Jn and all
sufficiently large n. It also holds that the bounds used in the proof of Lemma 6.3 still hold when
using this choice of Jn in the mixed weights cases, so that the conclusions from Lemma 6.3
are valid here, too.

Proof of Lemma B.1, Rayleigh case. We have

E
“

Lcµ´1
n
pPn;W q

‰

ď

n´1
ź

j“0

ˆ

1´ cµ´1
n

fpj, knq
eµ
´2
n {pπfpj,knq2q

´

1´ erf
´ cµ´1

n?
πfpj, knq

¯¯

˙

(B.4)

` P pW ě knq .

We now use that, for any x ą 0,

ex2
p1´ erfpxqq “ 2

?
π

ex2
ż 8

x

e´t2 dt “ 2
?
π

ż 8

0
e´sps`2xq ds

ě
2
?
π

ż 8

0
e´ps`2xq2 ds “ 1´ erfp2xq,

where we use a variable substitution s “ t´ x. Also using that 1´ x ď e´x for all x P R, we
can bound the first term on the right-hand side of (B.4) from above from

exp
ˆ

´ cµ´1
n

n´1
ÿ

j“0

1
fpj, knq

´

1´ erf
´ 2cµ´1

n?
πfpj, knq

¯¯

˙

.
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Since the error function is increases and limxÑ8 erfpxq “ 1, we can now repeat the same
argument as in the Beta case: we create an upper bound by starting the sum from some index
Jn, such that we can bound

1´ erf
´ 2cµ´1

n?
πfpj, knq

¯

ě δ, for all j ě Jn,

for some small constant δ ą 0. The choice of Jn can be the same as in the Beta case, and
the result thus follows through here, as well.

B.2 Conditions for an infinite path, Assumption 2.6.

We need to verify Conditions (2.9) and (2.10). Here, we choose νwn “ dµwn for some arbitrary
constant d P p0, 1q, as in the proof of Theorem 3.4. We recall from the proof of Lemma 6.4
that the lower bound in (6.3) uses Markov’s inequality only. Hence, since we assume that the
mean of the inter-birth time Xwpjq equals 1{fpj ´ 1, wq, irrespective of the its distribution,
it follows that the proofs of Lemmas 6.4 and A.5 immediately follow for the other choices of
inter-birth distributions in Remark 3.17.

It thus remains to verify (2.10). We observe that the proof of (2.10) for exponentially dis-
tributed inter-birth times, as in the proof of Theorem 3.4, holds more generally, as long as for
any i P N and w ě 0, and for some K ą 0,

VarpXwpiqq ď KE rXwpiqs
2
“

K

fpi´ 1, wq2 .

This is readily checked for all the cases in Remark 3.17, and is related to Remark 3.6.

C Proof of Lemma 6.6

Proof of Lemma 6.6. The aim of the proof is to provide an upper and lower bound for
P prpW q ě xq that are asymptotically equivalent (i.e. the same up to a p1 ` op1qq multi-
plicative factor). First, we define, for a function r : r0,8q Ñ p0,8q, the generalised inverse
as

rÐpxq :“ infty ě 0 : rpyq ě xu, x ě 0.
We start by proving an upper bound. Suppose rpW q ě x. Then W P ty ě 0 : rpyq ě xu, so
that by the definition of the generalised inverse, it follows that W ě rÐpxq. As a result

P prpW q ě xq ď P pW ě rÐpxqq , (C.1)

which concludes the upper bound. For a lower bound, suppose rpW q ă x. Then,

ty ě 0 : rpyq ě xu Ď ty ě 0 : rpyq ě rpW qu.

Hence, the infimum of the left-hand side is larger than the infimum of the right-hand side, so
that rÐpxq ě rÐprpW qq. As a result,

P prpW q ě xq ě P prÐprpW qq ą rÐpxqq
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We use [13, Proposition 1.5.12] to obtain that rÐprpxqq “ p1 ` op1qqx as x Ñ 8. Hence,
since rÐprpW qq ą rÐpxq implies W ě rÐpxq, we can write rÐprpW qq “ p1 ` tpW qqW , for
some function t such that tpxq Ñ 0 as xÑ 8. We thus obtain

P prÐprpW qq ą rÐpxqq “ P pp1` tpW qqW ą rÐpxqq .

Now, for any ε ą 0 we can take x sufficiently large so that, since W ě rÐpxq, |tpW q| ă ε.
We thus obtain the lower bound,

P pW ą rÐpxq{p1´ εqq .

As the tail distribution of W is regularly varying with exponent ´pζ ´ 1q, we obtain

P pW ą rÐpxq{p1´ εqq “ pp1´ εqζ´1
` op1qqP pW ą rÐpxqq .

As ε is arbitrary, combining this with the upper bound in (C.1), we obtain

P prpW q ě xq “ p1` op1qqP pW ě rÐpxqq .

We now use that, by [13, Theorem 1.5.12], the function rÐ is regularly varying with exponent
1{ρ. This implies, by Lemma 6.1 and the assumption on the tail distribution of W , that the
right-hand side is regularly varying with exponent ´pζ ´ 1q{ρ as desired.
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