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Abstract

We study the structure of genealogical trees of reduced subcritical

Galton-Watson processes in a random environment assuming that all

(in time randomly varying) o�spring generating functions are frac-

tional linear. We show that this structure may di�er signi�cantly

from that for the \classical" reduced subcritical Galton-Watson pro-

cesses. In particular, it may look like a complex \hybrid" of classical

reduced super- and subcritical processes. Some relations with ran-

dom walks in a random environment are discussed.
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1 Introduction and statement of results

This paper deals with the model of a Galton-Watson process in a random en-

vironment (GWRE ) (see, for example, [AK72], [AN72, xVI.5] and [SW69]). A

GWRE is speci�ed by a family f = ffn : n � 0g of independent and identically

distributed o�spring generating functions1): It is assumed that conditioned on

the environment f ; the reproduction of particles follows the pattern of a \clas-

sical" inhomogeneous Galton-Watson branching process. That is, given f and

the total number Zn of particles in the n-th generation the reproduction law of

the number Zn+1 of particles in the (n + 1)-th generation is described via the

generating function

Ef

n
sZn+1

��� Zno = (fn (s))
Zn ; 0 � s � 1:

Here Ef refers to expectation with respect to the quenched law Pf of the

model, that is the process law given the environment f :

In this paper we always assume that logf 00(1) is integrable with respect to

the law IP of the environment f : (The prime refers to the derivative.) According

to a standard classi�cation, a GWRE is said to be subcritical, critical or super-

critical if IE log f 00(1) < 0; = 0; or > 0; respectively (IE refers to expectation

with respect to IP):

1) f : [0;1]! [0;1] is an o�spring generating function if f(s) =
P
1

i=0
�is

i with �i � 0

and
P

i
�i = 1:
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In the sequel we assume that Z0 = 1:

The quantity we want to study is the number Zm;n ; 0 � m � n; of particles

at timem having non-empty o�spring at time n:Of course, this quantity requires

a �ner description of the model as used above. The most convenient way is to

think in terms of Galton-Watson trees. For our purpose, we skip a formal

description and only refer to [FP74] or [FSS77], for instance. Given Zn > 0; the

process fZm;n : 0 � m � ng is called the reduced GWRE.

Reduced processes have been studied in the constant environment setting by

several authors, see [FP74], [Zub75], [FSS77], [Dur78], [Vat79], [Sag95], provid-

ing a detailed description of the genealogical structure. Applications of some of

those results to the problem of estimating the age of the most recent common

ancestor (Eve) of all nowadays living people (given such an Eve exists) can be

found in O'Connell [O'C95]; see also Jagers et al. [JNT91] and Vigilant et al.

[VPH+89] for related discussions.

In the present paper we are interested in reduced Galton-Watson processes

in the random environment case. For this purpose, it is very convenient to

restrict completely to fractional linear o�spring generating functions. That is,

1� fn(s) =
�(n)

1� �(n)
� �(n)s

1� �(n)s
; 0 � s � 1; n � 0; (1)

where

�(n); �(n) > 0 and �(n) + �(n) < 1: (2)

(Note that the latter conditions exclude the cases fn(s) � 1 or fn(s) � s for

some n; hence, in particular, f 0n(1) = 0 and f 00n (1) = 0 are forbidden.)

A �rst step to deal with such reduced processes in a random environment

was done by [BV96]. There it was shown that in the critical case the structure of

the genealogical trees of such processes resembles a bit the classical supercritical

case. Our interest however concerns the subcritical case. It will turn out that

here even more interesting e�ects may occur. In fact, under certain condi-

tions, we get some kind of \hybrid" behavior from the point of view of classical

processes: At the initial stage, the reduced tree might look as in the classical

supercritical processes, whereas in the �nal stage it resembles again the classi-

cal subcritical case. Theorems 3 and 4 below will give a rigorous description of

these phenomena.

Henceforth we will use the following notation:

Xi := log f 0i�1(1) 2 R; �i :=
f 00
i�1(1)

2
�
f 0
i�1(1)

�2 2 (0;1); i � 1: (3)

Throughout we assume that the random walk

Sn :=
X

1� i�n

Xi ; n � 0; (4)

in R (starting from 0) is non-lattice.
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Remark 1 (lattice case) The lattice case can also be studied by the methods

of the present paper. However, for this one needs some additional assumptions

such as, for instance, IPfX1 = 0g > 0; and we simply want to avoid such

technicalities. 3

Recall that for classical reduced subcritical Galton-Watson processes the

�niteness of a so-called Z logZ{moment is of some importance; see, for instance,

[FP74], [Pre79]. In the present random environment case there is a similar quan-

tity, the moment IEf 00(1) log f
0
0(1): But the situation is a bit delicate, since one

has to distinguish between three di�erent regions of �niteness, namely whether

this moment is less than 0, equal to 0, and larger than 0: Accordingly, for the

survival probability one has three di�erent speeds (see Lemma 11 below). On

the other hand, a new phenomenon concerning a conditional limit theorem for

the reduced process is obtained only in the last case.

Now we are ready to formulate our principal results. They are expressed in

terms of the annealed law P := IEPf : Recall that we always assume (1) and

(2), and that logf 00(1) is IP{integrable.

Theorem 2 (conditional limit theorem of the classical type) Let either

condition (a) or (b) be ful�lled:

(a) (strongly subcritical case)

IEf 00(1) < 1; IEf 00(1) logf
0
0(1) < 0; (5)

and, in addition,

min
�
IEf 000 (1); IE�1

�
<1: (6)

(b) (intermediate subcritical case)

IEf 00(1) < 1; IEf 00(1) logf
0
0(1) = 0; (7)

and, additionally,

IE �1f
0
0(1)<1; IE �1f

0
0(1) jlogf 00(1)j<1; IEf 00(1)(log f

0
0(1))

2
<1: (8)

Then, for m � 0 and l � 1; the following limits

lim
n!1

P
n
Zn�m;n = l

��� Zn > 0
o
=: pl(m) > 0 (9)

of conditional probabilities exist and satisfy

1X
l=1

pl(m) = 1 (10)

and

lim
m!1

p1(m) = 1: (11)
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The quantity minfm � 1 : Zn�m;n = 1g is called the age of the most recent

common ancestor of the non-empty n{th generation. (In [FP74] and other

papers this quantity was called the source time of the n{th generation.) Thus,

according to Theorem 2, in the strongly and intermediate subcritical cases the

most recent common ancestor is \located" close to the moment n. Thus, in this

regime the situation is similar to that for classical subcritical Galton-Watson

processes ([FP74]).

Theorem 3 (hybrid conditional limit theorem) Assume

(c) (weakly subcritical case)

IE log f 00(1) < 0; 0 < IEf 00(1) log f
0
0(1) <1 (12)

and, in addition,

IE �1 <1; IE �1 f
0
0(1) <1: (13)

Then for m � 0 and l � 1; the limits (9) with (10) exist, and for m; l � 1 also

the limits

lim
n!1

P
n
Zm;n = l

��� Zn > 0
o
=: bpl(m) > 0; (14)

with
1X
l=1

bpl(m) = 1: (15)

Consequently, in this weakly subcritical case, besides (9) and (10) as in the

previous theorem, with a positive probability the most recent common ancestor

is located exactly at the beginning of the genealogical tree just as for classi-

cal supercritical Galton-Watson processes ([Zub75]). This phenomenon is now

considered in more detail. For each n � 1; let un and vn be integers such that

lim
n!1

un = lim
n!1

vn = 1; lim
n!1

(n� un � vn) = 1: (16)

Theorem 4 (branchless thick trunk) Let conditions (12), (13) and (16) be

ful�lled. Then

lim
n!1

P
n
Zun ;n = Zn�vn ;n

��� Zn > 0
o
= 1: (17)

This means that for weakly subcritical GWRE at late times the reduced ge-

nealogical tree can be interpreted as follows. After the branching of the reduced

process at the beginning as in (14), there are very long branches without any

branching till the moment n � vn ; and after this the branching is allowed to

continue. See the idealized picture in the �gure below.
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0 un n � un n

Figure 1: Reduced weakly subcritical GWRE at a late time

As will be seen later in the proof, this phenomenon is closely related to

some well-known random walk e�ects: Random walks with negative drift but

conditioned to stay positive, appropriately scaled converge to some Brownian

excursion ([Kao78]). In our context, the initial period of excursion corresponds

to a `supercritical phase' whereas the �nal period reects the `subcritical phase'

of branching. At least on a heuristic level this explains a bit the strange behavior

of the reduced process as expressed in Theorem 4.

The rest of this paper is laid out as follows. After some preparations in

Section 2, the proofs of the Theorems 2{4 will be provided in the Sections 3{5,

respectively. For this we exploit an idea of Kozlov [Koz76] who studied the

behavior of survival probabilities of critical GWRE, and which was modi�ed by

Afans'ev [Afa80] to investigate the analogous problem for subcritical GWRE.

Remark 5 (completeness of conditions) Conditions (5), (7) and (12) cover

all the possibilities in the subcritical case provided that f 00(1) logf
0
0(1) is IP{

integrable. Indeed, by Jensen's inequality, IE log f 00(1) � log IEf 00(1): Therefore,

(5), (7) and (12) cover �rst of all the case IEf 00(1) < 1: On the other hand, if

IEf 00(1) � 1, then in view of the elementary inequality x logx � x�1 for x � 0;

with equality if and only if x = 1; we have IEf 00(1) log f
0
0(1) > IEf 00(1)�1 � 0;

where the strong inequality follows from the subcriticality IE log f 00(1) < 0;

which forbids that f 00(1) = 1; IP{a.s. 3

Remark 6 (technical conditions) Conditions (6), (8), and (13), however,

are of purely technical nature. They had been used in [Afa80] to establish

the asymptotics of the survival probability, on which we rely in this paper; see

Lemma 11 below. 3

Remark 7 (terminal population in the quenched approach) Because of

Zn;n = Zn ; by Theorems 2 and 3 we get in particular, that for subcritical

GWRE the conditional distribution of Zn given Zn > 0 tends to a (proper) law

as n ! 1 (Yaglom type theorem). For the case when there is no averaging

over the environment (quenched approach) this fact has been proved in [AK72]

without restricting to fractional linear o�spring generating functions (1). 3
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Remark 8 (relations to RWRE) The case of geometric o�spring distribu-

tions is covered by the fractional linear o�spring generating functions of (1).

(Here we have �(n) � (1� �(n)) �(n) additionally.) In this particular case

there is a natural correspondence between the models of GWRE and random

walk in a random environment having negative drift and jumps �1; which starts
at zero and is stopped after the �rst return to zero; see [Dwa69], [KKS75],

[Koz73] and [VD96] for more details. Passing to reduced trees, this relation re-

mains valid by dropping parts of the walk and stick together the remaining parts

in the obvious way. Then all our results imply facts for such a random walk

in a random environment. In particular, it follows from Theorem 3 that, given

the maximum of the stopped random walk exceeds n, the walk may oscillate

several times between the level n and the vicinity of 0 with positive probability

before hitting zero. Such phenomenon di�ers signi�cantly from the behavior

of the classical random walk with negative drift. Note that a similar random

medium e�ect was observed by Sinai [Sin82] and [BV96] concerning a random

walk in a random environment without drift. 3

For standard facts on Galton-Watson processes we refer to [AN72], for ran-

dom walks to [Fel71].

2 Preparation: Some basic facts on GWRE

Recalling notation (3) and (4), for 0 � r � n; set

ar+1;n := exp
h
�

X
r+1�i�n

Xi

i
; br+1;n :=

X
r+1� i�n

�i ar+1;i�1 ; (18)

and

an := a1;n ; bn := b1;n : (19)

Note that ar+1;n > 0 and br+1;n > 0; except bn+1;n � 0: Note also the multi-

plicativity

ar ar+1;n � an ; hence br + ar (ar+1;n + br+1;n) � an + bn > 0: (20)

For 0 � m � n; put

Fm;n(s) := fm(fm+1(���fn�1(s) ���)); Fn(s) := F0;n(s);

reading Fn;n(s) as s: Set

qm;n := 1� Fm;n(0); qn := q0;n = Pf (Zn > 0); (21)

and

Q(n) := IE qn = P fZn > 0g (22)

(survival probability of Zn): Recall we always consider fractional linear o�spring

generating functions as written in (1) and (2). For convenience, we expose the

following statement due to Agresti [Agr75].
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Lemma 9 (formulas for iterates) For 0 � m � n and 0 � s � 1;

1� Fm;n(s) =
1

am+1;n

1�s + bm+1;n
: (23)

In particular,

1� Fn(s) =
1

an

1�s + bn
: (24)

Specializing (23) to s = 0 gives

(am+1;n + bm+1;n)
�1 � 1: (25)

Recalling (21), (23), and (20), for 0 � m � n; put

0 < wm;n :=
am

qm;n

= an + am bm+1;n = an + bn � bm � an + bn : (26)

For 0 � m � n and l � 1; set

0 � Un(m; l) :=
wm;n bl�1m

(an + bn)
l+1 � 1

an + bn
= qn � 1

an
= eSn ; (27)

and

0 � Vn(m; l) :=
bl�1m

(an + bn)
l
: (28)

The next lemma is established in [BV96]. Recall notation (22).

Lemma 10 (representation of conditional probabilities) For l � 1 and

0 � m � n;

P
n
Zm;n = l

��� Zn > 0
o
= Q�1(n) IEUn(m; l); (29)

P
n
Zm;n � l

��� Zn > 0
o
= Q�1(n) IEVn(m; l): (30)

It is known [AK72] that the extinction time for subcritical GWRE is �nite

P{a.s. However, to prove the Theorems 2{4 we need more detailed information

about the behavior of the survival probabilities Q(n) as n ! 1; taken from

[Afa80].

Lemma 11 (asymptotics for the survival probability)Let Z be a subcrit-

ical GWRE satisfying (1) and (2). Then

Q(n) = P fZn > 0g � h(n)Gn as n!1
where

(i) h(n) � c1 > 0; G = IEf 00(1); if (5) and (6) hold;

(ii) h(n) = c2n
�1=2; G = IEf 00(1); if (7) and (8) hold;

(iii) h(n) = c3n
�3=2; G = min

0�t�1
IE (f 00(1))

t
; if (12) and (13) hold.
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Here and in what follows the symbols c, c1 ; ::: are used to denote positive

constants not necessarily the same in di�erent formulas.

Note that the previous three lemmas reduce the conditional probabilities in

the center of our theorems to expressions in terms of the environment f only,

in particular on assertions on the random walk S: This we will heavily use in

the further procedure.

3 Classical type behavior

In this section we want to provide the Proof of Theorem 2. We will use ideas

based on random walks a bit di�erent from S; namely ones obtained by some

standard transformations (see, for example, [VT76]). Based on Lemma 10, such

transformations allow to reduce the problem under consideration to relatively

easy arguments about a random walk with negative drift (strongly subcritical

case) or to a known problem for a driftless randomwalk (intermediate subcritical

case).

1� (preparation) Recall that 0 < IEf 00(1) := g < 1 by the assumptions in

Theorem 2. Then, evidently,

g�n
nY
i=1

exi IP
�
Xi 2 dxi ; �i 2 dyi

�
(31)

is a law of a random vector
�
�i ; �i : 1 � i � n

	
; say, with n independent and

identically distributed pairs (�1 ; �1) ; :::; (�n ; �n) in R� (0;1): Clearly,

IE �i = g�1
Z 1

�1

IP(X1 2 dx) x ex = g�1 IEf 00(1) log f
0
0(1) � 0 (32)

(under (a) or (b)). Recalling notation (27), (26), (18), (19), and (31), one can

see that

IEUn(n�m; l) = gn IEMn(m; l); 0 � m � n; l � 1; (33)

where

Mn(m; l) :=

�
1+

P
n�m+1� i�n

�i e
�i+���+�n

�� P
1� i�n�m

�i e
�i+���+�n

�l�1
�
1 +

P
1� i�n

�i e�i+���+�n
�l+1 � 1: (34)

It will be more convenient to introduce the random variables

�j := ��n�j+1 ; �j := �n�j+1 ; 1 � j � n: (35)
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Substituting i = n� j + 1; formula (34) turns into

Mn(m; l) =

�
1+

P
1� j �m

�j e
��1������j

�� P
m+1� j�n

�j e
��1������j

�l�1
�
1 +

P
1� j�n

�j e��1������j
�l+1 � 1: (36)

Next we use the random walk

Yn :=
X

1� i�n

�i ; n � 0; (37)

and, for 0 � m � n; the quantities

Am+1;n := exp
h
�

X
m+1� i�n

�i

i
; Bm+1;n :=

X
m+1� i�n

�iAm+1;i ; (38)

and

An := A1;n ; Bn := B1;n : (39)

Note that Am+1;n > 0 and Bm+1;n > 0; except Bn+1;n � 0: Then we can rewrite

formula (36) as

Mn(m; l) =
(1 +Bm) (AmBm+1;n)

l�1

(1 +Bn)
l+1

� 1; 0 � m � n; l � 1: (40)

2� (convergence and positivity under positive drift) First we consider the case

IE�1 = �g�1 IEf 00(1) logf 00(1) > 0 (41)

(that is the strongly subcritical case (5)). Applying arguments as in the standard

proof of strong law of large numbers, by the additional moment condition (6),

0 < lim
n!1

Mn(m; l) =: M1(m; l) � 1; IP�a:s:; m � 0; l � 1:

Hence, recalling notation (22), identity (33), and assumption (41), by the asymp-

totics Lemma 11 (i) we get

lim
n!1

Q�1(n) IEUn(n�m; l) = c1 IEM1(m; l) 2 (0;1):

By the representation formula (29), this proves (9) in the strongly subcritical

case (a).

3� (driftless case) To demonstrate (9) for the case IE�1 = 0 (that is in the

intermediate subcritical case (7)) we introduce the weak lower ladder epochs

��0 := 0; ��j := min
n
t > ��j�1 : Yt � Y��

j�1

o
; j � 1; (42)
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and set

I�
j
(n) := I

n
��
j�1 � n < ��

j

o
; ��

j
(n) := I

�
��
j
� n

	
: (43)

(Here and below the symbol IfEg is used to denote the indicator of an event

E.) By Lemma 11 (ii), for (9) it su�ces to establish that the limit

lim
n!1

p
n IEMn(m; l); m � 0; l � 1; (44)

exists and is positive.

4� (convergence in the driftless case) For any J > 1; we represent

IEMn(m; l) =

J�1X
j=1

IEMn(m; l) I�
j
(n) + IEMn(m; l)��

J
(n): (45)

Because of IE�1 = 0; it follows from [Koz76, (46){(49)] and conditions (7) and

(8) that

lim
J!1

limsup
n!1

p
n IE (1 +Bn)

�1
��
J
(n) = 0:

But from (40),

Mn(m; l) � (1 + Bn)
�1

:

Therefore it su�ces to consider IEMn(m; l) I�
j
(n) for a �xed j: Following the

pattern of [BV96, proof of Theorem 1] one can show that for each �xed j; m

and l; the limit

lim
n!1

p
n IEMn(m; l) I�j (n)

exists and is �nite. In view of the representations (33) and (29), and the asymp-

totics Lemma 11 (ii), this gives the existence of the �nite limit (44).

5� (positivity in the driftless case) To complete the proof of (9), it remains to

show the positivity of (44), i.e.

liminf
n!1

p
n IEMn(m; l) > 0; m � 0; l � 1: (46)

Clearly, from (40) and the multiplicativity of A,

Mn(m; l) �
�
�m+1 e

�Ym+1
�l�1

(1 + Bn)
l+1

=
(�m+1Am+1)

l�1�
1 +Bm+1 +Am+1Bm+2;n

�l+1 ;
hence,

Mn(m; l) � (�m+1Am+1)
l�1�

1 + Bm+1 + Am+1

�l+1�
1 +Bm+2;n

�l+1 : (47)
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Taking expectations in this inequality, we use the fact that the second factor

in the denominator is independent of the remaining expressions. But from the

i.i.d. property of the sequence f(�i ; �i) : i � 1g ;

IE
1

(1+Bm+2;n)
l+1 = IE IE

�
1

(1+Bm+2;n)
l+1

��� Ym+1

�
= IE

1

(1+Bn�m�1)
l+1 ;

thus

IE (1 +Bm+2;n)
�l�1 � IE (1 +Bn�m�1)

�l�1
I f��1 > n�m� 1g : (48)

By the arguments used in proving [Koz76, Lemma 2] one can demonstrate that

the limit

lim
n!1

IE

�
(1 +Bn)

�1

���� ��1 > n

�
exists and is positive. By Jensen's inequality we conclude that

liminf
n!1

IE

n
(1 + Bn)

�l�1
��� ��1 > n

o
� lim

n!1

�
IE

n
(1 + Bn)

�1
��� ��1 > n

o�l+1
> 0:

9>>=>>; (49)

Finally, see, for example, [Fel71, Ch. XII, Sec. 7],

IP (��1 > n) � c n�1=2 as n!1: (50)

Applying (48), (49), and (50) to the expectation of (47) shows that

liminf
n!1

p
n IEMn(m; l)

�
 
IE

(�m+1Am+1)
l�1

(1 + Bm+1 +Am+1)
l+1

!
liminf
n!1

p
n IP (��1 > n�m� 1)

� IE

n
(1 + Bn�m�1)

�l�1
��� ��1 > n�m� 1

o
> 0:

Summarizing, (46) is established and therefore (9) holds also in the intermediate

subcritical case (b).

6� (no loss of mass and degeneration under positive drift) Now we turn to the

proof of (10) and (11). From the representation (30), and similarly to (33),

P
n
Zn�m;n � l

���Zn>0
o

= Q�1(n) IEVn(n�m; l)

= Q�1(n) gn IENn(m; l);

9=; (51)
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where

Nn(m; l) =
(AmBm+1;n)

l�1

(1 +Bn)
l

� 1; 0 � m � n; l � 1:

Let �rst again (41) be valid (positive drift). Then, as in step 2�;

lim
n!1

Nn(m; l) =
1

1 + !1

� !m+1

1 + !1

�l�1
&
l!1

0 (52)

with IP{probability 1, where

!r :=

1X
i=r

�i e
�Yi <1; IP�a:s:; r � 1:

Hence, by Lemma 11 (i),

lim
n!1

P
n
Zn�m;n � l

��� Zn > 0
o

&
l!1

0; (53)

and therefore

lim
l!1

�
1�

lX
j=1

pj(m)
�
= 0

proving (10). Finally, since !m # 0 as m " 1; from (51) and (52),

lim
m!1

1X
j=2

pj(m) = 0; that is; lim
m!1

p1(m) = 1:

This yields (11) under (41), that is in the strongly subcritical case (a).

7� (degeneration in the driftless case) The proof of (11) in the case IE�1 = 0

needs more delicate estimates. Analogously to (45), for any J > 1;

IENn(m; l) =

J�1X
j=1

IENn(m; l) I�j (n) + IENn(m; l)��J (n): (54)

Since Nn(m; l) � (1+Bn)
�1; as in step 4� it su�ces to consider the expectation

IENn(m; l) I�
j
(n); for a �xed j: Start with j = 1: By (50), and according to

[Koz76, Lemma 1] (whose correct proof can be found in [BV96]), for each l � 2;

limsup
m!1

limsup
n!1

p
n IENn(m; l) I�1 (n)

= c limsup
m!1

limsup
n!1

IE

n
Nn(m; l)

��� ��1 > n
o

� c limsup
m!1

limsup
n!1

IE

n
AmBm+1;n

��� ��1 > n
o
= 0:

9>>>>>>>=>>>>>>>;
(55)
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Hence, it remains to look at a �xed j � 2: For T � 1 (and j; l � 2) �xed,

IENn(m; l) I�
j
(n) � IP

�
T � ��

j�1 � n < ��
j

	
+ IENn(m; l) I

�
��
j�1 < T; ��

j
> n

	
:

)
(56)

Evidently,

IP
�
T � ��j�1 � n < ��j

�
=

nX
k=T

IP
�
��j�1 = k

�
IP (��1 > n� k) :

Distinguishing additionally between k < n

2 and k � n

2 ; we may estimate above

by

� IP
�
��j�1 � T

�
IP
�
��1 > n

2

�
+

X
n

2
� k�n

IP(��1 > n� k) max
k� n

2

IP
�
��j�1 = k

�
:

Therefore, in view of

IP
�
��
j�1 = n

� � cj n
�3=2 as n!1

(see, for example, [Koz76, (17)]), we have

p
n IP

�
T � ��

j�1 � n < ��
j

� � c1 IP
�
��
j�1 � T

�
+ c2n

�1=2: (57)

Letting �rst n !1; and then T !1; these terms will disappear. It remains

to deal with the second term at the r.h.s. of (56), for T � 1 and j; l � 2 �xed.

For m > T;

IENn(m; l) I
�
��j�1 < T; ��j > n

	 � IEAmBm+1;n I
�
��j�1 < T; ��j > n

	
:

Distinguishing between di�erent values k of ��
j�1 ; using that m > T; and ap-

plying a renewal argument, the r.h.s. can be written asX
j�1�k<T

IE

n
e�Yk ; ��j�1 = k

o
IE

� X
m+1�k� i�n�k

�i+k e
�Y

0

i bI1(n�k)�: (58)

Here Y 0 denotes an independent copy of Y (but keeping the dependence struc-

ture with the �j); and bI1(n) is the indicator of the event that the Y 0
i
are positive

for 1 � i � n: Multiplying the latter expectation expression with
p
n� k; by

(55) and (57) (case j = 2 there), we see that (58) will vanish as �rst n ! 1
and then m!1: This �nishes the proof of (11).

8� (no loss of mass in the driftless case) It remains to prove that the limiting

measure has total mass 1 if IE�1 = 0: From the results of [Koz76, Section 3] it

follows that

limsup
J!1

limsup
n!1

Q�1(n) g�n IENn(m; l)��J (n) = 0;
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and that for each �xed j � 1;

lim
n!1

n�1=2Q�1(n) g�n IE
n
Nn(m; l)

��� ��j�1 � n < ��
j

o
= cj IE

1

1 + �1;j

� �m+1;j

1 + �1;j

�l�1
where the laws of the non-negative random variables �r;j ; r � 1; are speci�ed

by

IP(�r;j � x) = lim
n!1

IP

� nX
i=r

�i e
�Yi � x

���� ��j�1 � n < ��
j

�
:

Combining these facts with Lemma 11 (ii), it follows that (53) is valid for the

case IE�1 = 0 as well. Summarizing, we veri�ed (10) also in the intermediate

subcritical case, �nishing the proof of Theorem 2.

4 Hybrid behavior

In this section we will provide the Proof of Theorem 3. To this aim, analogously

to step 3� (p.9) in the proof of Theorem 2, for the random walk S with negative

drift we introduce weak lower ladder epochs

�0 := 0; �j := min
n
t > �j�1 : St � S�j�1

o
; j � 1: (59)

According to the conditions of Theorem 3 the function ' (t) := IEetX1 ;

0 � t � 1; possesses the following properties:

' (0) = 1; '0 (0) = IE logf 00(1) < 0; (60)

' (1) = IEf 00(1) < 1; '0 (1) = IEf 00(1) log f
0
0(1) > 0: (61)

Therefore, min0�t�1' (t) < 1 is attained at an interior point t of the interval

[0; 1]. Recall that in Lemma 11 (iii) this minimum is denoted by G. For the

following facts, see for example, [Afa90] and [VT76].

Lemma 12 (random walk asymptotics) Under the conditions (60){(61), as

n!1; for each j � 1; there are positive constants cj ; dj; ej such that,

IP (�j > n) � cj n
�3=2Gn; (62)

IP (�j = n) � dj n
�3=2Gn; (63)

IP (�j�1 � n < �j) � ej n
�3=2Gn; (64)

and a constant K satisfying

IP

�
min
1�p�n

Sp > �y
�
� Key n�3=2Gn; y > 0: (65)
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Introduce the events

Dj (n) := f�j�1 � n < �jg ; j � 1; n � 0; (66)

and the indicators

Ij(n) := I fDj (n)g ; �j(n) := I f�j � ng : (67)

Denote by IPj;n (�) and IEj;n (�), respectively, the conditional probability and

conditional expectation given Dj (n) :

In the sequel we need the following result being a slight reformulation of

Lemma 10 from [Afa90].

Lemma 13 (general error estimate) Let fWn =Wn(S1 ; :::; Sn) : n � 1g be

a sequence of random variables such that for each n;

Wn � eSt ; 1 � t � n:

Then under the conditions (60){(61),

lim sup
J!1

lim sup
n!1

Q�1(n) IEWn�J (n) = 0:

Now we are ready to describe the scheme of proving Theorem 3. For con-

venience, we introduce the symbol h = h(n;m) to denote (depending on the

situation) either m with 1 � m � n; or n�m with 0 � m � n: (Later we will

send n!1 for �xed m:) In view of (29) in Lemma 10, in order to demonstrate

Theorem 3 we �rst need to show that for each l � 1, the limit

lim
n!1

P
n
Zh;n = l

��� Zn > 0
o
= lim

n!1
Q�1(n) IEUn(h; l) (68)

exists. For this purpose, we use for J � 2 the representation

IEUn(h; l) =

J�1X
j=1

IP(Dj(n)) IEj;nUn(h; l) + IEUn(h; l)�J (n) (69)

(compare with (45)). First we will show that

lim sup
J!1

lim sup
n!1

Q�1(n) IEUn(h; l)�J (n) = 0; (70)

which then allows to deal with IP(Dj(n)) IEj;nUn(h; l) for a �xed j � 1 to

establish the existence of the limit (68). But in view of Lemma 12 and Lemma

11 (iii), the limit

lim
n!1

Q�1(n) IP(Dj(n)) 2 (0;1) (71)
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exists. Thus it then only remains to show the existence and positivity of the

limit

lim
n!1

IEj;nUn(h; l): (72)

To demonstrate this, we will proceed as follows. Recalling de�nitions (26) and

(27), we see that

Un(h; l) =
(an + bn � bh) b

l�1
h

(an + bn)
l+1

� 1; (73)

and therefore we will �nish the proof if we show that the conditional distribution

of the three-dimensional vector

g(n; h) := (an ; bh ; bn) (74)

conditioned on the event Dj(n); weakly converges as n!1 to a law of a vector

whose coordinates are positive a.s. However, bn (and bh if h = n�m) depend on

a growing number of summands, which are di�cult to handle with. To bypass

this obstacle we �x a su�ciently large u and write for n > u;

bn = bu + au bu+1;n�u + an�u bn�u+1;n (75)

and, if h = n�m > u > m;

bh = bu + au bu+1;n�u + an�u bn�u+1;h : (76)

Then we show that the conditional distribution of the three-dimensional vector

gu(n; h) :=

(
(an ; bm ; bn � au bu+1;n�u) if h = m;

(an ; bh � au bu+1;n�u ; bn � au bu+1;n�u) if h = n�m;
(77)

conditioned on the event Dj(n) weakly converges as n ! 1 to a law of a

vector whose coordinates are positive a.s. To return to the vector g(n; h) we

demonstrate that for su�ciently large u one can neglect the contribution given

by au bu+1;n�u to (75) and (76) (conditioned on Dj(n)):

Let us proceed to ful�ll this scheme. Recall the symbol h = h(n;m) intro-

duced after Lemma 13.

Lemma 14 (an error estimate) Under the conditions (60){(61), assertion

(70) holds.

Proof In view of (27), for t � n;

Un(h; l) � qn � qt � eSt : (78)

To complete the proof it remains to recall Lemma 13. (Note that it is not

disturbing that Un(h; l) depends on further random variables than those from

the sequence S1 ; S2 ; :::)
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For �xed 1 < u < n � v < n; we introduce the (2u + 2v + 1){dimensional

vector

Lu;v(n) :=
�
X1 ; �1 ; :::; Xu ; �u ; Sn�v ; Xn�v+1 ; �n�v+1 ; :::; Xn ; �n

�
(79)

and denote by Lu the vector consisting of the �rst 2u coordinates of Lu;v(n):

Let Lju;v(n) be a vector whose distribution coincides with that of Lu;v(n) condi-

tioned on Dj(n); and let bLj
u;v

(n) denote a vector whose law coincides with the

distribution of Lu;v(n) conditioned on �j = n:

We use the symbol =) for convergence in distribution.

Lemma 15 (convergence of conditioned auxiliary vectors) Under the

conditions of Theorem 3, for �xed j � 1; and u; v > 1;

Lj
u;v

(n) ==)
n!1

some Lj
u;v

(1); (80)

bLju;v(n) ==)
n!1

some bLju;v(1): (81)

Proof As summarized in [Afa90], for �xed u and v; the distribution of the

(u+v+1){dimensional vector (X1 ; :::; Xu ; Sn�v ; Xn�v+1 ; :::; Xn); conditioned

on the event f�1 > ng; converges weakly as n!1: We know that �i depends

on Xi only. With this in mind, following the same lines of arguments, one

can demonstrate that the distribution of the (2u+ 2v + 1){dimensional vector

L1
u;v

(n) also converges weakly as n!1. This proves (80) for j = 1:

To verify (81) for j = 1, we �x a vector z := (z1 ; :::; z2u+2v+1) and write

IP

n
Lu;v(n) � z

��� �1 = n
o

= IP

n
Lu;v(n) � z

��� �1 > n� 1
o

IP (�1 > n� 1)

IP (�1 = n)

� IP

n
Lu;v(n) � z

��� �1 > n
o

IP (�1 > n)

IP (�1 = n)
:

9>>>>>>>=>>>>>>>;
(82)

Since on the event f�1 > n � 1g the pair (Xn ; �n) is independent of the remain-

ing coordinates of Lu;v(n); we have

IP

n
Lu;v(n) � z

��� �1 > n� 1
o

= IP

n
Lu;v�1(n� 1) � z(1)

��� �1 > n� 1
o
IP

�
Xn � z2u+2v ; �n � z2u+2v+1

�
where z(1) is obtained from z by dropping the two last coordinates. From

this identity, Lemma 12, and (80) with j = 1; it follows that the conditional

distribution at the l.h.s. of (82) has a weak limit as n ! 1; proving (81) for

j = 1:
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Now we proceed by induction on j and assume that (80) and (81) are true

for some j� 1 � 1: First we note that by Lemma 12, for 1 < 2T < n and j � 2;

IP

n
T < �j�1 � n� T ; �j > n

o
=

n�TX
i=T+1

IP(�j�1 = i) IP(�1 > n� i)

� cGn

n�TX
i=T+1

(n� i)
�3=2

i�3=2 � c1n
�3=2Gn

1X
i=T+1

i�3=2:

9>>>>>>=>>>>>>;
(83)

Hence, in view of (64), for large T; the event fT < �j�1 < n� T; �j > ng gives
a negligible contribution to the probability IP f�j�1 � n < �jg : This fact allows
us in analyzing the asymptotic behavior of IP

�
Lu;v(n) � z

�� Dj(n)
	

to deal

only with the sum

1

IP (Dj(n))

X
i�T or n�T�i�n

IP

n
Lu;v(n) � z; �j�1 = i ; �j > n

o
: (84)

Let us study the i{th summand. Given �j�1 and S�j�1 ; the random walk S0r :=

S�j�1+r � S�j�1 ; r � 0; is an independent copy of S: Therefore, if we �rst

consider the case n � v � i � n; and write i = n � k for k to be independent

of n;

IP

n
Lu;v(n) � z

��� �j�1 = i; �j > n
o

= IP

n
Lu;v�(n�i)(i) � z(1)

��� �j�1 = i
o
IP

n
Ln�i � z(2)

��� �1 > n� i
o

= IP

n
Lu;v�k(n� k) � z(1)

��� �j�1 = n� k
o
IP

n
Lk � z(2)

��� �1 > k
o

9>>>>>=>>>>>;
(85)

where z(1) consists of the �rst 2u + 2(v � k) + 1 coordinates of z, and z(2) of

the remaining 2k ones. By the induction hypothesis a weak limit (as n ! 1)

of the right most term in (85) exists.

In the case n� T � i < n� v we again write i = n� k for k �xed, and we

�rst consider simply the vector Lu;k(n) which, as we know, has a weak limit

(conditioned on the event f�j�1 = n� k; �j > ng) as n!1; and then return

to the vector Lu;v(n): Thus, for all i 2 [n � T; n] a weak limit of the starting

conditional probability in (85) exists.

Assume now that 1 � i � u: Then, instead of Lu;v(n) we �rst consider the

vector L0
u;v

(n) which is obtained from Lu;v(n) by substituting Sn�v � Si for

Sn�v : Clearly,

IP

n
L0u;v(n) � z

��� �j�1 = i; �j > n
o

= IP

n
Li � z(1)

��� �j�1 = i
o
IP

n
Lu�i;v(n� i) � z(2)

��� �1 > n� i
o
9>=>; (86)
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where now z(1) consists of the �rst 2i coordinates of z, and z(2) of the remaining

ones. By the induction hypothesis, (86) has a weak limit as n!1: From here

it follows easily that (for such i) IP
�
Lu;v(n) � z

�� �j�1 = i; �j > n
�
has a weak

limit as n!1.

In order to consider the case u < i � T; we �rst add additional coordinates

Xu+1 ; �u+1 ; :::; Xi ; �i to Lu;v(n) and then proceed as in the previous case.

Thus we have established, the starting conditional probability in (85) has a

weak limit for all i in question. From here, (84), and Lemma 12 we deduce the

validity of (80).

To establish (81), one should use the same arguments replacing �j > n by

�j = n (where needed). This then �nishes the proof by induction.

Recalling de�nitions (74) and (77), denote by gju(n; h) (and gj(n; h)) a vec-

tor whose distribution coincides with the law of gu(n; h) (respectively g(n; h))

conditioned on Dj(n):

Lemma 16 (existence of a positive limit) Under the conditions of Theo-

rem 3, for �xed m; j and u > m;

gj
u
(n; h) ==)

n!1
some gj

u
(1;m) (87)

where gj
u
(1;m) is a vector whose coordinates are positive a.s.

(Note that the limit gju(1;m) is di�erent for the two choices of the symbol

h = h(n;m) introduced after Lemma 13.)

Proof The coordinates of the vector gu(n; h) depend on the coordinates of

Lu;u(n) in a simple way. Therefore the limit in (87) exists. The �rst component

of gu(n; h) is an = e�Sn : Moreover, according to Lemma 15, Sn = Sn�v +

Xn�v+1+ � � �+Xn conditioned on Dj(n) has a limit in law. Therefore, the �rst

coordinate of gju(1;m) is positive with probability one. The a.s.{positivity of

the remaining coordinates follows easily from the preceding fact.

The next lemma is a crucial step in proving the existence of the limit in (72)

for j = 1: Let 1 < u < n� v < n:

Lemma 17 (intermediate part, case j = 1) Under the conditions of Theo-

rem 3,

limsup
min(u;v)!1

limsup
n!1

Q�1(n) IE
n
au bu+1; n�v ; �1 > n

o
= 0: (88)

Proof By de�nition,

au bu+1; n�v =

n�vX
i=u+1

�i ai�1 : (89)



20 K. Fleischmann and V.A.Vatutin

We want to estimate the expectation of the i-th term restricted to �1 > n; which

implies that �1 > i � 1: We distinguish between the di�erent values x of Si�1
and y of Si : Write F for the distribution function of X1 = logf 00(1) (with

respect to IP): Then

IEf�i ai�1 ; �1 > ng =

Z 1

0
IP

n
Si�1 2 dx ; �1 > i � 1

o
e�x

�
Z 1

0

F(dy � x) IE
n
�i

��� Xi = y � x
o
IP

n
min

i+1� j�n

Sj > 0
��� Si = y

o
:

By (65),

IP

n
min

i+1� j�n

Sj > 0

��� Si = y
o

= IP

�
min

1� t�n�i
St > �y

�
� c1 e

y (n� i)
�3=2

Gn�i

with G < 1 from Lemma 11 (iii). Therefore,

IE

n
�i ai�1 ; �1 > n

o
� c1 (n � i)

�3=2
Gn�i

Z 1

0

IP

n
Si�1 2 dx ; �1 > i � 1

o
�
Z 1

�x

F(dz) ez IE
�
�i
�� Xi = z

	
� c1 (n � i)

�3=2
Gn�i

IP (�1 > i � 1) IE �1e
X1 < 1:

Applying (62) we see that

IE

n
�i ai�1 ; �1 > n

o
� c4 (n� i)

�3=2
i�3=2Gn: (90)

Hence, in view of Lemma 11 (iii),

Q�1(n) IE
n
au bu+1; n�v ; �1 > n

o
� c4n

3=2
X

u+1� i�n�v

(n� i)
�3=2

i�3=2 � c5

1X
i=min(u;v)

i�3=2;

9>>>=>>>; (91)

that proves (88).

Lemma 18 (intermediate part, general j) Under the conditions of Theo-

rem 3, for any " > 0; and j � 1;

lim sup
min(u;v)!1

lim sup
n!1

IPj;n

�
au bu+1;n�v > "

�
= 0; (92)

lim sup
min(u;v)!1

lim sup
n!1

IP

n
au bu+1;n�v > "

��� �j = n
o
= 0: (93)
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Proof By Chebyshev's inequality,

IP1;n (au bu+1;n�v > ") � "�1 IE1;n au bu+1;n�v

which, in view of Lemmas 17, 12, and 11 (iii), proves (92) for j = 1: To demon-

strate (93) it su�ces to note that

IP

n
aubu+1;n�v > "

��� �1 = n
o
� IP(�1 > n�1)

IP(�1 = n)
IP1;n�1

�
aubu+1;n�1�(v�1) > "

�
:

Now we apply induction on j: Assume the statement is true for j � 1 � 1; and

consider IPj;n (au bu+1;n�v > ") : By (83) it su�ces to show that for a �xed T;

1

IP (Dj(n))

X
i�T or n�T�i�n

IP

n
au bu+1;n�v > "; �j�1 = i ; �j > n

o
(94)

vanishes as �rst n!1 and then min(u; v)!1:

Let n � T � i � n: In this case the respective summand in (94) can be

estimated from above:

� 1

IP (Dj(n))
IP

n
au bu+1;n�v > "; �j�1 = i

o
=

IP (�j�1 = i)

IP (Dj(n))
IP

n
au bu+1;n�v > "

��� �j�1 = i
o

where the latter term tends to 0 under the required limit transition, by the

induction hypothesis.

If 1 � i � T (and without loss of generality T < u); we write au = ai ai+1;u
and consider separately the events fSi � �Lg and fSi > �Lg ; for L > 0: In

view of ai = e�Si ; we have

IP

n
au bu+1;n�v > "; �j�1 = i ; �j > n

o
� IP

n
Si � �L; �j�1 = i ; �j > n

o
+ IP

n
ai+1;u bu+1;n�v > " e�L; �j�1 = i ; �j > n

o
� IP (Si � �L) IP (�1 > n� i) + IP

n
ai+1;u bu+1;n�v > " e�L; �1 > n� i

o
:

From this estimate, letting n; u and v tend to in�nite in the needed order, one

can show, using the induction hypothesis, that for the i in question

lim sup
min(u;v)!1

lim sup
n!1

IP

n
au bu+1;n�v > "; �j�1 = i ; �j > n

o
IP (Dj(n))

� c IP(Si � �L) :
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Of course, the latter probability vanishes as L ! 1: Summarizing, the �rst

statement of the lemma is proved.

To deduce the second statement from this fact, it remains to repeat the

arguments used for j = 1:

Lemma 19 (convergence of conditioned vectors)Under the conditions of

Theorem 3, for �xed m and j;

gj(n; h) ==)
n!1

some gj(1;m)

where gj(1;m) is a vector whose coordinates are positive a.s.

Proof Combine Lemmas 18 and 16.

Remark 20 Using Lemmas 18 and 16 one can show also that for each j � 1

and admissible m; the vector (an ; an + bn � bh ; bh ; bn) conditioned on Dj(n)

weakly converges as n!1 to a vector whose coordinates are positive a.s. 3

Lemma 19 is the last preliminary result we need to prove (72), that is (68),

and now the desired statement follows relatively easily:

Lemma 21 (general case) Under the conditions of Theorem 3, for each �xed

j � 1; admissible m; and l � 1; the limit in (72) exists and is positive.

Proof Multiplying both sides of (69) by Q�1(n); applying Lemmas 14, 19, and

appealing to (71), we establish the existence of the limit in (72). To prove that

it is positive, we use Remark 20. This completes the proof of Lemma 21.

Lemma 22 (no loss of mass) Under the conditions of Theorem 3, the total

mass statement (15) holds.

Proof First we note that Zt;n � Zn for any t � n (given Zn > 0) and so it

su�ces to show that

lim
l!1

lim
n!1

P
n
Zn � l

��� Zn > 0
o
= 0: (95)

To this end we recall that by Lemma 10,

P
n
Zn � l

��� Zn > 0
o
= Q�1(n) IEVn(n; l):

Now

IEVn(n; l) =

JX
j=1

IP (Dj(n)) IEj;nVn(n; l) + IEVn(n; l)�J (n): (96)

Since

Vn(n; l) � (an + bn)
�1 � a�1t = eSt
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for t � n;

limsup
J!1

limsup
n!1

Q�1(n) IEVn(n; l)�J (n) = 0 (97)

by Lemma 13. On the other hand, by Lemma 19 for each �xed j;

lim
n!1

IEj;nVn(n; l) = IE
�l�1
j

(�j + �j)
l

where �j and �j are positive random variables. Therefore, by the dominated

convergence theorem

lim
l!1

IE
�l�1
j

(�j + �j)
l
= 0: (98)

Relations (96){(98) imply (95) and the proof of the lemma is �nished.

Completion of proof of Theorem 3 Combine Lemmas 21 and 22.

5 Branchless intermediate period

In this section we will provide the Proof of Theorem 4. This is mainly based on

ideas exploited in the previous section.

For 1 < u < n� v < n and l � 1; set

�f (l;u; n� v) := Pf

n
Zu;n = l; Zu;n 6= Zn�v;n ; Zn > 0

o
: (99)

Lemma 23 (su�cient condition) Let un and vn satisfy (16). If under the

conditions of Theorem 4,

lim
n!1

Q�1(n) IE�f (l;un ; n� vn) = 0; l � 1; (100)

holds, then claim (17) is true.

Proof By Theorem 3, the conditioned laws of Zn given Zn > 0 are rela-

tively compact. Because of Zun ; Zn�vn � Zn (under Zn > 0); this implies

the relative compactness of the conditioned laws of both
�
Zun

�� Zn > 0
	
and�

Zn�vn
�� Zn > 0

	
: Then (100) gives

lim
n!1

P
n
Zun ;n 6= Zn�vn ;n

��� Zn > 0
o
= 0;

that is the claim.

We continue with a calculation of some reduced process probabilities. For

1 < u < n� v < n and l � 1; set

�n(u; n� v) :=
au+1;n�v qu;n

au+1;n�v + bu+1;n�v qn�v;n
(101)
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and

�n(l; u) :=
au b

l�1
u

(au + bu qu;n)
l+1 : (102)

Lemma 24 (some reduced process probabilities) The following identities

hold:

Pf

n
Zu;n = Zn�v;n = l ; Zn > 0

o
= �n(l; u)

�
�n(u; n� v)

�l
; (103)

Pf

n
Zu;n = l ; Zn > 0

o
= �n(l; u) q

l

u;n : (104)

Proof First we note that in view of (23)

@

@s
Fu;n�v(s) =

au+1;n�v�
au+1;n�v + bu+1;n�v(1� s)

�2
and therefore

Pf

n
Zn�v;n = 1; Zn > 0

��� Zu = 1
o

=

1X
j=1

Pf

n
Zn�v = j

��� Zu = 1
o
j F

j�1
n�v;n(0) qn�v;n

= qn�v;n
@

@s
Fu;n�v(s)

����
s=Fn�v;n(0)

=
au+1;n�v qn�v;n�

au+1;n�v + bu+1;n�v qn�v;n

�2 :
By (23), this chain of identities can be continued with

=
au+1;n�v

au+1;n�v + bu+1;n�v qn�v;n

�
1� Fu;n�v(Fn�v;n(0))

�
=

au+1;n�v qu;n

au+1;n�v + bu+1;n�v qn�v;n
= �n(u; n� v):

Hence,

Pf

�
Zu;n = Zn�v;n = l ; Zn > 0

�

=

1X
j=l

Pf (Zu = j)

�
j

l

�
F j�l
u;n (0)

�
�n(u; n� v)

�l
:

9>>>>=>>>>;
(105)

In view of (24),

1X
j=l

Pf (Zu = j)

�
j

l

�
F j�l
u;n (0) =

1

l!

@l

@sl
Fu(s)

����
s=Fu;n(0)

=
1

l!

l! au b
l�1
u

(au + (1� s)bu)
l+1

����
s=Fu;n(0)

= �n(l; u);
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that combined with (105) gives identity (103). Claim (104) is still simpler to

verify.

Recall notations (99) and (67). For �xed l � 1 and J � 2 we write

IE�f (l;un ; n� vn)

=

JX
j=1

IE�f (l;un ; n� vn) Ij(n) + IE�f (l;un ; n� vn)�J (n):
(106)

It follows from this representation and Lemma 23 above that in order to prove

Theorem 4 it su�ces to show that

lim sup
J!1

lim sup
n!1

Q�1(n) IE�f (l;un ; n� vn)�J (n) = 0; (107)

and that for each �xed j � 1;

lim
n!1

Q�1(n) IE�f (l;un ; n� vn) Ij(n) = 0: (108)

To prove these two statements, we �rst estimate �f (l;u; n� v):

Lemma 25 (simpli�cation) For 1 < u < n� v < n;

�f (l;u; n� v) � l au bu+1;n�v ; l � 1:

Proof From the de�nition (101) of �n(u; n� v) and Lemma 9 it follows that

qu;n � �n(u; n� v) = qu;n
bu+1;n�v qn�v;n

au+1;n�v + bu+1;n�v qn�v;n
= q2u;n bu+1;n�v :

In view of the elementary inequality

xl � yl � l (x� y)xl�1; x > y > 0;

we have, by the formulas in Lemma 24,

�f (l;u; n� v)

= Pf

n
Zu;n = l; Zn > 0

o
� Pf

n
Zu;n = Zn�v ;n = l; Zn > 0

o
� l�n(l; u) q

l+1
u;n

bu+1;n�v :

By the de�nition (102) of �n and identity (24), we may continue with

=
l au b

l�1
u ql+1u;n bu+1;n�v

(au + bu qu;n)
l+1

� l au q
2
u;n bu+1;n�v

(au + bu qu;n)
2

= l au q
2
n
bu+1;n�v � l au bu+1;n�v

�nishing the proof.
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Lemma 26 (estimation of the J{term) Under the conditions of Theorem

4, statement (107) holds.

Proof From (99) and (78),

�f (l;u; n� v) � Pf (Zn > 0) = qn � eSt ; t � n;

which according to Lemma 13 implies (107).

Lemma 27 (estimation of the j{terms) For j � 1; and un and vn satis-

fying (16), statement (108) holds.

Proof From Lemma 25 and de�nition (99), it follows that

�f (l;u; n� v)
h
I (au bu+1;n�v � ") + I (au bu+1;n�v > ")

i
� l " + I (au bu+1;n�v > ") :

Hence,

IE�f (l;u; n� v) Ij(n) � l " IP (Dj(n)) + IP

n
au bu+1;n�v > "; Dj(n)

o
;

or, in view of Lemma 12,

Q�1(n) IE�f (l;un ; n� vn) Ij(n) � c "+ c1 IPj;n (aun bun+1;n�vn > ") :

Now, letting n!1; and taking into account (92) and the fact that, by identity

(89), au bu+1;n�v is monotonously non-increasing in u and v; we obtain

lim sup
n!1

Q�1(n) IE�f (l;un ; n� vn) Ij(n) � c ":

This proves (108) since " > 0 is arbitrary.

Proof of Theorem 4 Lemmas 26{27 establish (108) and (107). This, in view

of (106), implies (100), and therefore the validity of Theorem 4.
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