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Abstract

We study the structure of genealogical trees of reduced subcritical
Galton-Watson processes in a random environment assuming that all
(in time randomly varying) offspring generating functions are frac-
tional linear. We show that this structure may differ significantly
from that for the “classical” reduced subcritical Galton-Watson pro-
cesses. In particular, it may look like a complex “hybrid” of classical
reduced super- and subcritical processes. Some relations with ran-
dom walks in a random environment are discussed.
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1 Introduction and statement of results

This paper deals with the model of a Galton- Watson process in a random en-
vironment (GWRE) (see, for example, [AK72], [AN72, § VI.5] and [SW69]). A
GWRE is specified by a family f = {f,, : n > 0} of independent and identically
distributed offspring generating functions®). It is assumed that conditioned on
the environment f, the reproduction of particles follows the pattern of a “clas-
sical” inhomogeneous Galton-Watson branching process. That is, given f and
the total number Z, of particles in the n-th generation the reproduction law of
the number Z, 1 of particles in the (n + 1)-th generation is described via the
generating function

Ef {SZ”'H

Zf = (fa(s)™,  0<s<l.

Here Er refers to expectation with respect to the quenched law Pg of the
model, that is the process law given the environment f.

In this paper we always assume that log f{(1) is integrable with respect to
the law IP of the environment f. (The prime refers to the derivative.) According
to a standard classification, a GWRE is said to be subcritical, critical or super-
ceritical if [Elog fi(1) < 0, = 0, or > 0, respectively (E refers to expectation
with respect to IP).

1) f:[0,1] = [0,1] is an offspring generating function if f(s) = Z::o m;st with m; > 0
and Zi w; = 1.
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In the sequel we assume that Zp = 1.

The quantity we want to study is the number Z,,,, 0 < m < n, of particles
at time m having non-empty offspring at time n. Of course, this quantity requires
a finer description of the model as used above. The most convenient way is to
think in terms of Galton-Watson trees. For our purpose, we skip a formal
description and only refer to [FP74] or [FSST77], for instance. Given Z,, > 0, the
process {Zp,n: 0 < m < n} is called the reduced GWRE.

Reduced processes have been studied in the constant environment setting by
several authors, see [FP74], [Zub75], [FSS77], [Dur78], [Vat79], [Sag95], provid-
ing a detailed description of the genealogical structure. Applications of some of
those results to the problem of estimating the age of the most recent common
ancestor (Eve) of all nowadays living people (given such an Eve exists) can be
found in O’Connell [O’C95]; see also Jagers et al. [JNT91] and Vigilant et al.
[VPHT89] for related discussions.

In the present paper we are interested in reduced Galton-Watson processes
in the random environment case. For this purpose, it is very convenient to
restrict completely to fractional linear offspring generating functions. That is,

L= fals) = 1 i‘(;()n) - f(;();)s . 0<s<1, n>0, (1)
where
a(n),B(n) > 0 and a(n)+pB(n) < 1. (2)

(Note that the latter conditions exclude the cases f,(s) =1 or fh(s) = s for
some n, hence, in particular, f;,(1) =0 and f}/(1) = 0 are forbidden.)

A first step to deal with such reduced processes in a random environment
was done by [BV96]. There it was shown that in the critical case the structure of
the genealogical trees of such processes resembles a bit the classical supercritical
case. Our interest however concerns the subcritical case. It will turn out that
here even more interesting effects may occur. In fact, under certain condi-
tions, we get some kind of “hybrid” behavior from the point of view of classical
processes: At the initial stage, the reduced tree might look as in the classical
supercritical processes, whereas in the final stage it resembles again the classi-
cal subcritical case. Theorems 3 and 4 below will give a rigorous description of
these phenomena.

Henceforth we will use the following notation:

1!
(1
o= logfl(eR,  mo= 2 ) ix1 (3)
2 (fi-4(1))
Throughout we assume that the random walk
S, = Z X;, n >0, (4)
1<i<n

in R (starting from 0) is non-lattice.
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Remark 1 (lattice case) The lattice case can also be studied by the methods
of the present paper. However, for this one needs some additional assumptions
such as, for instance, IP{X; =0} > 0, and we simply want to avoid such
technicalities. <

Recall that for classical reduced subcritical Galton-Watson processes the
finiteness of a so-called Z log Z—moment is of some importance; see, for instance,
[FPT74], [Pre79]. In the present random environment case there is a similar quan-
tity, the moment [Ef}(1)log f{(1). But the situation is a bit delicate, since one
has to distinguish between three different regions of finiteness, namely whether
this moment is less than 0, equal to 0, and larger than 0. Accordingly, for the
survival probability one has three different speeds (see Lemma 11 below). On
the other hand, a new phenomenon concerning a conditional limit theorem for
the reduced process is obtained only in the last case.

Now we are ready to formulate our principal results. They are expressed in
terms of the annealed law P := [EP¢. Recall that we always assume (1) and
(2), and that log f§(1) is IP—integrable.

Theorem 2 (conditional limit theorem of the classical type) Let either

condition (a) or (b) be fulfilled:

(a) (strongly subcritical case)

Efo(1) < 1, IEfS(1)log £(1) < 0, (5)
and, in addition,
min (IEf(')'(l), IE 171) < oo. (6)
(b) (intermediate subcritical case)
Efy(1) < 1, IEf5(1)log f4(1) =0, (7)

and, additionally,
Emfy(1) <00, Enfo(1)[log fo(1)|<oo, Efo(1)(log fo(1)" <oo.  (8)
Then, for m >0 and 1 > 1, the following limits
Tim P{Zp 0 =1 ‘ Zn >0} = pi(m) > 0 (9)

of conditional probabilities exist and satisfy
o0
> p(m) =1 (10)
=1

and
lim pi(m) = 1. (11)

m— 00
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The quantity min{m > 1: Z,_,, », = 1} is called the age of the most recent
common ancestor of the non-empty n—th generation. (In [FP74] and other
papers this quantity was called the source time of the n—th generation.) Thus,
according to Theorem 2, in the strongly and intermediate subcritical cases the
most recent common ancestor is “located” close to the moment n. Thus, in this
regime the situation is similar to that for classical subcritical Galton-Watson
processes ([FP74]).

Theorem 3 (hybrid conditional limit theorem) Assume

(¢) (weakly subcritical case)
IE log f3(1) < 0, 0 < [Ef{(1)log f(1) < o0 (12)
and, in addition,

[En; < oo, IE 1 £§(1) < oo. (13)

Then for m > 0 and | > 1, the limits (9) with (10) ezist, and for m,l > 1 also
the limats
lim P{Zpn =1 ‘ Zn >0} = Bi(m) > 0, (14)

n—r 00

with

> Bi(m) = 1. (15)

Consequently, in this weakly subcritical case, besides (9) and (10) as in the
previous theorem, with a positive probability the most recent common ancestor
is located exactly at the beginning of the genealogical tree just as for classi-
cal supercritical Galton-Watson processes ([Zub75]). This phenomenon is now
considered in more detail. For each n > 1, let u,, and v, be integers such that

lim u, = lim v, = oo, lim (n— u, —v,) = o0. (16)
n— 0o n— 0o n—00
Theorem 4 (branchless thick trunk) Let conditions (12), (13) and (16) be
fulfilled. Then
Zn>0} =1, (17)

nli)n;op Zun,n = Ln—vy,,n

This means that for weakly subcritical GWRE at late times the reduced ge-
nealogical tree can be interpreted as follows. After the branching of the reduced
process at the beginning as in (14), there are very long branches without any
branching till the moment n — v, , and after this the branching is allowed to
continue. See the idealized picture in the figure below.
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0 Unp, n — Up n

Figure 1: Reduced weakly subcritical GWRE at a late time

As will be seen later in the proof, this phenomenon is closely related to
some well-known random walk effects: Random walks with negative drift but
conditioned to stay positive, appropriately scaled converge to some Brownian
ezcursion ([KaoT78]). In our context, the initial period of excursion corresponds
to a ‘supercritical phase’ whereas the final period reflects the ‘subcritical phase’
of branching. At least on a heuristic level this explains a bit the strange behavior
of the reduced process as expressed in Theorem 4.

The rest of this paper is laid out as follows. After some preparations in
Section 2, the proofs of the Theorems 2—4 will be provided in the Sections 3-5,
respectively. For this we exploit an idea of Kozlov [Koz76] who studied the
behavior of survival probabilities of critical GWRE, and which was modified by
Afans’ev [Afa80] to investigate the analogous problem for subcritical GWRE.

Remark 5 (completeness of conditions) Conditions (5), (7) and (12) cover
all the possibilities in the subcritical case provided that fi(1)log f5(1) is IP-
integrable. Indeed, by Jensen’s inequality, IElog fi(1) < logEfi(1). Therefore,
(5), (7) and (12) cover first of all the case [Efj(1) < 1. On the other hand, if
[Ef;(1) > 1, then in view of the elementary inequality zlogz > z—1 for z > 0,
with equality if and only if # = 1, we have [Ef{(1)log f{(1) > Ef{(1)-1 > 0,
where the strong inequality follows from the subcriticality [Elog fi(1) < 0,
which forbids that f{(1) =1, IP-a.s. <

Remark 6 (technical conditions) Conditions (6), (8), and (13), however,
are of purely technical nature. They had been used in [Afa80] to establish
the asymptotics of the survival probability, on which we rely in this paper; see
Lemma 11 below. <

Remark 7 (terminal population in the quenched approach) Because of
Znn = Zp, by Theorems 2 and 3 we get in particular, that for subcritical
GWRE the conditional distribution of Z,, given Z, > 0 tends to a (proper) law
as n — oo (Yaglom type theorem). For the case when there is no averaging
over the environment (quenched approach) this fact has been proved in [AKT2]
without restricting to fractional linear offspring generating functions (1). <
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Remark 8 (relations to RWRE) The case of geometric offspring distribu-
tions is covered by the fractional linear offspring generating functions of (1).
(Here we have a(n) = (1 —B(n))B(n) additionally.) In this particular case
there is a natural correspondence between the models of GWRE and random
walk in a random environment having negative drift and jumps £1, which starts
at zero and is stopped after the first return to zero; see [Dwa69], [KKS75],
[Koz73] and [VD96] for more details. Passing to reduced trees, this relation re-
mains valid by dropping parts of the walk and stick together the remaining parts
in the obvious way. Then all our results imply facts for such a random walk
in a random environment. In particular, it follows from Theorem 3 that, given
the maximum of the stopped random walk exceeds n, the walk may oscillate
several times between the level n and the vicinity of 0 with positive probability
before hitting zero. Such phenomenon differs significantly from the behavior
of the classical random walk with negative drift. Note that a similar random
medium effect was observed by Sinai [Sin82] and [BV96] concerning a random
walk in a random environment without drift. <o

For standard facts on Galton-Watson processes we refer to [ANT72], for ran-
dom walks to [Fel71].

2 Preparation: Some basic facts on GWRE

Recalling notation (3) and (4), for 0 < r < n, set
Gri1n 1= €XP [— > Xi}, bryin = > MGyrio1,  (18)
r+1<i<n r+1<i<n

and
Gn = G1n, by = bin. (19)

Note that a,41,» > 0 and b.11,, > 0, except byi1,, = 0. Note also the multi-
plicativity
Gr Gryln = Gn, hence b, +ar (@Gryin+brp1n) = an+by > 0. (20)

For 0 <m < n, put

Frn(s) = fm(fmy1(-fra(s) =), Fa(s) = Fon(s),
reading F, .(s) as s. Set
Gmn = 1= Fnn(0),  @n = qon = Pg(Zn >0), (21)
and
Q(n) := Egq, = P{Z, > 0} (22)
(survival probability of Z,). Recall we always consider fractional linear offspring

generating functions as written in (1) and (2). For convenience, we expose the
following statement due to Agresti [Agr75].
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Lemma 9 (formulas for iterates) For 0 <m <n and 0 <s <1,

1

1= Frn(s) = somm 77— (23)
ﬁ + bm+1,n
In particular,
1
1—Fp(s) = —. 24
() = = 29
Specializing (23) to s = 0 gives
(@mt1m +bmp1n) ™! < L (25)
Recalling (21), (23), and (20), for 0 < m < n, put
0 < Wryp = am_ _ On+ Gmbmiin = @ + by — by < an+b,.  (26)
dm,n

For 0<m<n and [ > 1, set

Wynn b1 1 1
0< U, l) := mn _Tm < :n<—:S" 27
< thim D (an4b)7 = antbn T am (27)
and
bl—l
an + by,

The next lemma is established in [BV96]. Recall notation (22).
Lemma 10 (representation of conditional probabilities) For | > 1 and
0<m<n,

P{Zpn =1 ‘ Zn >0} = Q7 (n) EUn(m,), (29)

P{ Znn > 1 ‘ Zn >0} = Q7Y (n) EVa(m, ). (30)

It is known [AKT72] that the extinction time for subcritical GWRE is finite
P-a.s. However, to prove the Theorems 2-4 we need more detailed information
about the behavior of the survival probabilities Q(n) as n — oo, taken from
[Afa80].

Lemma 11 (asymptotics for the survival probability) Let Z be a subcrit-
ical GWRE satisfying (1) and (2). Then
Qn) = P{Z,>0} ~ h(n)G™ as n— o
where
(i) h(n)=ec1 >0, G = Efi(1), if (5) and (6) hold;
(i) h(n) =can~2, G =IEfi(1), if (7) and (8) hold;
2

(iii) A(n)=csn3?, G= oléltigl IE (f(')(l))t, if (12) and (13) hold.
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Here and in what follows the symbols ¢, ¢y, ... are used to denote positive
constants not necessarily the same in different formulas.

Note that the previous three lemmas reduce the conditional probabilities in
the center of our theorems to expressions in terms of the environment f only,
in particular on assertions on the random walk S. This we will heavily use in
the further procedure.

3 Classical type behavior

In this section we want to provide the Proof of Theorem 2. We will use ideas
based on random walks a bit different from S, namely ones obtained by some
standard transformations (see, for example, [VT76]). Based on Lemma 10, such
transformations allow to reduce the problem under consideration to relatively
easy arguments about a random walk with negative drift (strongly subcritical
case) or to a known problem for a driftless random walk (intermediate subcritical
case).

1° (preparation) Recall that 0 < Ef3(1) := ¢ < 1 by the assumptions in
Theorem 2. Then, evidently,

g [[ = P(Xi € da, m € dys) (31)

=1

n
=

is a law of a random vector {fl G 1< <L n}, say, with n independent and
identically distributed pairs (€1,¢1),..-; (€n,¢n) in R X (0, 00). Clearly,

E¢ = g_1/°° P(X, €dz) ze® = g_llEfé(l)logfé(l) <0 (32)

(under (a) or (b)). Recalling notation (27), (26), (18), (19), and (31), one can
see that

EU.(n—m,l) = g" EM,(m,l), 0<m<n, 1>1, (33)
where
(1—1— Y G e£i+---+£n)( Y G e§i+'"+§n) -
n-m+1<i<n 1<i<n-m
M, (m,l) := < 1. (34)

NS
(1+ 5 Geborotte)

1<i<n

It will be more convenient to introduce the random variables

Bi = —€n—jt1, Vi = Cn—jt1, 1<j<n (35)
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Substituting ¢ = n — j 4 1, formula (34) turns into

-1
(1_|_ 3 yje—m—---—uj)( ooy e—m—---—#;‘)

1<j<m m+1<j<n

M, (m,l) = == T < 1. (36)
(1 + 3 oy e—m—---—uj)
1<j<n
Next we use the random walk
Y, = Z Wi, n >0, (37)
1<i<n

and, for 0 < m < n, the quantities

Amyin = eXp[— > m}, Briin = 3. ViAmyii, (38)
m+1<i<n m+1<i<n
and
An = Al,na Bn = Bl,n- (39)

Note that A1, > 0and Bpj1,n > 0, except Byy1, = 0. Then we can rewrite
formula (36) as

(14 Bu) (AmBmi1,n)
(14 B,)™!

M,(m,l) = 1, 0<m<mn, [>1. (40)

2° (convergence and positivity under positive drift) First we consider the case
Ep = —g " Efy(1)log fy(1) > 0 (41)

(that is the strongly subcritical case (5)). Applying arguments as in the standard
proof of strong law of large numbers, by the additional moment condition (6),

0 < lim M,(m,l) = Ms,(m,l) <1, P-as, m>0, [>1.

n—r 00

Hence, recalling notation (22), identity (33), and assumption (41), by the asymp-
totics Lemma 11 (i) we get

lim Q@ '(n) EU,(n—m,l) = ¢1 EMy(m,1) € (0,00).

n—r 00

By the representation formula (29), this proves (9) in the strongly subcritical
case (a).

3° (driftless case) To demonstrate (9) for the case [Ep; = 0 (that is in the
intermediate subcritical case (7)) we introduce the weak lower ladder epochs

75 =0, 77 := min {t >l Vi < YT;—l}’ j>1, (42)
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and set
I (n) = I{T;_l <n< T;}, 07 (n) = I{T; <n}. (43)

(Here and below the symbol I{E} is used to denote the indicator of an event
E.) By Lemma 11 (ii), for (9) it suffices to establish that the limit

lim /n EM,(m,l), m>0, 1>1, (44)

n—r 00
exists and is positive.
4° (convergence in the driftless case) For any J > 1, we represent

EM,(m, 1) = 12_1 EM;(m,1) I} (n) + EMy(m, 1) ©%(n). (45)

7j=1

Because of IEug =0, it follows from [Koz76, (46)—-(49)] and conditions (7) and
(8) that
lim limsup v/n E (1 + B,.L)_1 ©%(n) = 0.
J=00 nseo
But from (40),
M,(m,l) < (1+B,)"".

Therefore it suffices to consider EMy,(m,!)I;(n) for a fixed j. Following the
pattern of [BV96, proof of Theorem 1] one can show that for each fixed j, m
and I, the limit

nli)n;o Vvn EM,(m,l) I7 (n)
exists and is finite. In view of the representations (33) and (29), and the asymp-
totics Lemma 11 (ii), this gives the existence of the finite limit (44).

5° (positivity in the driftless case) To complete the proof of (9), it remains to
show the positivity of (44), i.e.

liminf v/n EM,,(m,l) > 0, m>0, |>1. (46)

n—r 00

Clearly, from (40) and the multiplicativity of 4,

— -1 -1
M,(m,l) > (vmyre”¥mis)™ (Vmt1 Amy1)
n ) = (1 + B )l+1 I+1
" (1 + Bm+1 + Am+1Bm+2,n)
hence,
m1 Amyr) !
M(m,l) > (V41 Am) (47)

I+1 I+1
(1 =+ Bm+1 =+ Am+1) (1 + Bm+2,n)
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Taking expectations in this inequality, we use the fact that the second factor
in the denominator is independent of the remaining expressions. But from the
i.i.d. property of the sequence {(p;,v;):4> 1},

1 1 1
E—— = IEIE{— ‘Ymﬂ} - E— |
(1+Bm+2,n)l+1 (1+Bm+2,n)l+1 (1+Bn—m—1)l+1

thus

-1

E(1+4 Bmyan) " > E(14+Bp_m 1) " I{rf >n—m—1}.  (48)

By the arguments used in proving [Koz76, Lemma 2] one can demonstrate that
the limit
77 > n}

exists and is positive. By Jensen’s inequality we conclude that

lim IE{ (14 B,)™"

n—r 00

liminf E{ (1 + B,)™"* ‘Tf >n}

n—r 00

I+1 (49)
> lim (IE{(l—i—Bn)_l ‘Tf > n}) > 0.
n— oo
Finally, see, for example, [Fel71, Ch. XII, Sec. 7],
P(rF >n) ~cn 2 as n— oo (50)

Applying (48), (49), and (50) to the expectation of (47) shows that

liminf +/n [EM,(m,!)

n—r 00

- Am -1
> (| Vmi1Ami1) rr | liminf /m P (17 > n—m — 1)
(1 + Bm+1 + Am+1) noheo

X IE{(l—l—Bn_m_l)_l_1 ‘Tf >n—m-— 1} > 0.

Summarizing, (46) is established and therefore (9) holds also in the intermediate
subcritical case (b).

6° (no loss of mass and degeneration under positive drift) Now we turn to the
proof of (10) and (11). From the representation (30), and similarly to (33),

Q~1(n) EVy(n—m,l)

P{Zn_m,n Zl‘Zn>0} (51)
Q7 (n) g" EN,(m,1),
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where

(AmBm+1,n)l_1
(1+B,)

Let first again (41) be valid (positive drift). Then, as in step 2°,

Np(m,l) = < 1, 0<m<mn, I>1.

1 m -1
lim Ny(m,l) = (“’ +1) \ 0 (52)
n—00 1 —|— Wi 1 —|— Wi 00
with IP-probability 1, where
Wy = Zyie_y" < oo, IP-as., r> 1.
Hence, by Lemma 11 (i),
lim P{Zy >l ‘ Zn>0} N\ 0, (53)
n—+o0o =00

and therefore l
i 1 Somim) o
j=1
proving (10). Finally, since w,, | 0 as m 1 oo, from (51) and (52),

m pi(m) = 1.

li
m— 00

o0
mh_?éo ij(m) = 0, thatis,
j=2

This yields (11) under (41), that is in the strongly subcritical case (a).

7° (degeneration in the driftless case) The proof of (11) in the case [Epu; = 0
needs more delicate estimates. Analogously to (45), for any J > 1,

EN,(m,l) = Jz_:l ENy, (m,1) I] (n) + EN,(m,1) ©5(n). (54)

Since N, (m,l) < (1+B,)~!, asin step 4° it suffices to consider the expectation
EN,(m,!) I7(n), for a fixed j. Start with j = 1. By (50), and according to
[Koz76, Lemma 1] (whose correct proof can be found in [BV96]), for each [ > 2,

limsup limsup 4/n EN,(m,!) IT(n)

m— 00 n—r 00

= c limsup limsup [E {Nn(m,l) ‘ T > n} (55)
< c¢limsup limsup IE{AmBm+1,n

m— 00 n—r 00

Tf>n}:0.
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Hence, it remains to look at a fixed j > 2. For T > 1 (and 7,1 > 2) fixed,
EN,(m,1) I (n) < IP {T <77_1<n< T;}
(56)
+ EN,(m, )T {T;_l <T, 77> n}

Evidently,
P(T<t,<n<7)=> P ,=k)P(f>n—k).
k=T

Distinguishing additionally between k < 5 and k > 7, we may estimate above

by

S PR 2T)P(ri>5)+ Y P >n—k) max P(rj_, =k).
<k<n =32

Nl

Therefore, in view of

x ., —3/2
|P(Tj_1—n) ~c;n as n— oo

(see, for example, [Koz76, (17)]), we have
vnP (T <T1/1<n< T;) <ec IP (7';_1 > T) +ean 2, (57)

Letting first n — oo, and then T — oo, these terms will disappear. It remains
to deal with the second term at the r.h.s. of (56), for T' > 1 and 7,1 > 2 fixed.
For m > T,

EN,(m, 1) I {7';_1 < T, T; > n} < EAnBmyinl {7';_1 < T, T; > n} .

Distinguishing between different values k of 7;_,, using that m > T, and ap-
plying a renewal argument, the r.h.s. can be written as

Z IE{e_Y"; 7';—1 = k} IE( Z Vitk e_Yi’:fl(n—k)) . (58)

j-1<k<T mtl-k<i<n—k

Here Y’ denotes an independent copy of Y (but keeping the dependence struc-
ture with the v;), and :fl(n) is the indicator of the event that the Y, are positive
for 1 <1 < n. Multiplying the latter expectation expression with v/n — k, by
(55) and (57) (case j = 2 there), we see that (58) will vanish as first n — oo
and then m — oo. This finishes the proof of (11).

8° (no loss of mass in the driftless case) It remains to prove that the limiting
measure has total mass 1 if [E u; = 0. From the results of [Koz76, Section 3] it
follows that

limsup limsup Q™ *(n) g~ ™ EN,(m,1) ©%(n) = 0,

J— o0 n— oo
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and that for each fixed j > 1,

lim n=Y2Q~Y(n)g " E {Nn(m,l) ‘ 71 <n< TT*}

n-o0 J

C e L (fnaaa )
T e \T 16y,

where the laws of the non-negative random variables 8, ;, » > 1, are specified

by

J

n
i=r

Combining these facts with Lemma 11 (ii), it follows that (53) is valid for the
case |Epq = 0 as well. Summarizing, we verified (10) also in the intermediate
subcritical case, finishing the proof of Theorem 2. |

4 Hybrid behavior

In this section we will provide the Proof of Theorem 3. To this aim, analogously
to step 3° (p.9) in the proof of Theorem 2, for the random walk S with negative
drift we introduce weak lower ladder epochs

7:=0, 7, := min {t >Ti_1: 8¢ < S,rj_l}, j>1. (59)

According to the conditions of Theorem 3 the function ¢ () := [Ee*:,
0 <t <1, possesses the following properties:

¢(0) =1, ¢’ (0) = |E10gf6(1) <0, (60)
9(1) = Efg(1) < oo,  ¢'(1) = Efg(1)log fo(1) > o. (61)

Therefore, ming<¢<1 @ (t) < 1 is attained at an interior point ¢ of the interval

[0,1]. Recall that in Lemma 11 (iii) this minimum is denoted by G. For the
following facts, see for example, [Afa90] and [VT76].

Lemma 12 (random walk asymptotics) Under the conditions (60)—(61), as
n — oo, for each j > 1, there are positive constants c;,d;, e; such that,

P(r; >n) ~ ¢j n-32Gg", (62)
P(r; =n) ~ d;n~%2G™, (63)
P(rj_1<n<T7) ~ ejn_?’/zG”, (64)

and a constant K satisfying

IP( min S, > —y) < Ke¥n32Gn, y > 0. (65)
1<p<n
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Introduce the events
Dj(n) i={r1<n<m}, 21, n>0, (66)
and the indicators
Ii(n) := I{D;(n)},  ©j(n) := I{r; <n}. (67)

Denote by IP,, (-) and IE;, (), respectively, the conditional probability and
conditional expectation given D; (n).

In the sequel we need the following result being a slight reformulation of
Lemma 10 from [Afa90].

Lemma 13 (general error estimate) Let {W,, = W,(S1,...,5.): n > 1} be
a sequence of random variables such that for each n,

W, < e, 1<t<n.
Then under the conditions (60)—(61),

lim sup limsup @~ *(n) EW,, ©;(n) = 0.

J— o0 n— oo

Now we are ready to describe the scheme of proving Theorem 3. For con-
venience, we introduce the symbol h = h(n,m) to denote (depending on the
situation) either m with 1 < m < n, or n—m with 0 < m < n. (Later we will
send n — oo for fixed m.) In view of (29) in Lemma 10, in order to demonstrate
Theorem 3 we first need to show that for each I > 1, the limit

lim P {zh,n .y ‘ Z, > 0} = lim Q 1(n) EU,(h,1) (68)
n— oo

n—r 00

exists. For this purpose, we use for J > 2 the representation
J-1
EU.(h,1) = Y P(D;(n)) EjnUn(h,l) + EUs(h,1) ©;(n) (69)
j=1

(compare with (45)). First we will show that

lim sup limsup @~ *(n) EU,(k,1)©(n) = 0, (70)
J— o0 n— oo
which then allows to deal with IP(D;(n)) E;j,Us(h,l) for a fixed j > 1 to
establish the existence of the limit (68). But in view of Lemma 12 and Lemma
11 (iii), the limit
lim Q™ (n)P(D;(n)) € (0, 00) (71)

n—r 00
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exists. Thus it then only remains to show the existence and positivity of the
limit
lim E;, U,(h,l). (72)

n—r 00

To demonstrate this, we will proceed as follows. Recalling definitions (26) and
(27), we see that

(a'n + bn - bh) blh_l
(@n + bn)

and therefore we will finish the proof if we show that the conditional distribution
of the three-dimensional vector

g(n,h) := (an,bn,bn) (74)

conditioned on the event D;(n), weakly converges as n — oo to a law of a vector
whose coordinates are positive a.s. However, b, (and by, if h = n—m) depend on
a growing number of summands, which are difficult to handle with. To bypass
this obstacle we fix a sufficiently large v and write for n > u,

Un(h,1) =

—_

(73)

b, = by + @ubutin-u+t Gnoubn_uiin (75)
and,if h=n—m>u>m,

b = but aubutin—ut Gnoubn_uyin. (76)
Then we show that the conditional distribution of the three-dimensional vector

(a'n ’ bm ’ bn — Ay bu+1,n—u) lf h =m,

gu(n,h) := { (77)

(a'n ) br, —ay bu+1,n—u ) bn — ay bu+1,n—u) if h= n—m,

conditioned on the event D;(n) weakly converges as n — oo to a law of a
vector whose coordinates are positive a.s. To return to the vector g(n,h) we
demonstrate that for sufficiently large v one can neglect the contribution given
by @y byt1,n—n to (75) and (76) (conditioned on Dj;(n)).

Let us proceed to fulfill this scheme. Recall the symbol k = h(n, m) intro-
duced after Lemma 13.

Lemma 14 (an error estimate) Under the conditions (60)—(61), assertion

(70) holds.
Proof In view of (27), for t < n,
Un(hyl) < gn <gq: < €. (78)

To complete the proof it remains to recall Lemma 13. (Note that it is not
disturbing that U,(hk,l) depends on further random variables than those from
the sequence Si,S2,...) |
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For fixed 1 < u < n— v < n, we introduce the (2u + 2v 4+ 1)-dimensional
vector

Lu,u(n) = (Xl sy M1y ey Xu y Ny Sn—u ) Xn—u+1 yMn—v41y .oy Xn ’ nn) (79)

and denote by L, the vector consisting of the first 2u coordinates of Ly ,(n).
Let L, ,(n) be a vector whose distribution coincides with that of Ly, ,(n) condi-
tioned on Dj(n), and let E{;’U (n) denote a vector whose law coincides with the
distribution of L, ,(n) conditioned on 7; = n.

We use the symbol — for convergence in distribution.

Lemma 15 (convergence of conditioned auxiliary vectors) Under the
conditions of Theorem 3, for fized 7 > 1, and u,v > 1,

L . (n) = some LI (o0), (80)
’ n— 00 ’

LI (n) = some LI (o). (81)
! n— 00 !

Proof As summarized in [Afa90], for fixed u and v, the distribution of the
(u+ v+ 1)-dimensional vector (X1, ..., Xu, Sn—v, Xn—vt1,--, Xn), conditioned
on the event {m > n}, converges weakly as n — co. We know that 7; depends
on X; only. With this in mind, following the same lines of arguments, one
can demonstrate that the distribution of the (2u + 2v + 1)-dimensional vector
L}M (n) also converges weakly as n — oo. This proves (80) for j = 1.

To verify (81) for j = 1, we fix a vector z:= (21, ..., Z2u120+1) and write
IP{Lu on)<z|m = n}
P(r>n—1)
_ P{Luu < 1}—————————
Z|TL>n— P (r = n) (82)
P
IP{LuU <z|T1>n M
P(r =n)

Since on the event {71 > n — 1} the pair (X, ,n,) is independent of the remain-
ing coordinates of L, ,(n), we have

P{Luu <z

T >Nn— 1}
== IP {Lu,u—l(n - 1) S z(l) ‘ T1 >n— 1} IP (Xn S Z2u+2v 4 Tin S z2u+2u+1)

where z(1) is obtained from z by dropping the two last coordinates. From
this identity, Lemma 12, and (80) with j = 1, it follows that the conditional
distribution at the L.h.s. of (82) has a weak limit as n — oo, proving (81) for
j=1.



18 K. Fleischmann and V.A. Vatutin

Now we proceed by induction on j and assume that (80) and (81) are true
for some j — 1 > 1. First we note that by Lemma 12, for 1 < 2T < n and 7 > 2,

n—T
IP{T<Tj—1Sn_T; 75 >n} = Z |P(Tj_1:i) |P(T1>n—i)
1=T+1 83
n—T oo ( )
< cG™ N (n—i)T¥2iT¥2 < gn2Gn Y i3,
1=T+1 1=T+1

Hence, in view of (64), for large T, the event {T' < 7,_1 < n —T, 7; > n} gives
a negligible contribution to the probability IP {r;_1 < n < 7;}. This fact allows
us in analyzing the asymptotic behavior of IP {Luﬂ,(n) <z | D; (n)} to deal
only with the sum

1
—_ PiLy,.(n) <z, Tj_1=1; 7, >n;. (84)
P (Dj(n)) i<T or;TSiSn { ’ ’ }

Let us study the :~th summand. Given 7;_; and S,,_, , the random walk S, =
Sri_y4r — Sr,_y, 7 > 0, is an independent copy of S. Therefore, if we first
consider the case n —v < ¢ < n, and write 2 = n — k for k to be independent
of n,

IP{Lu,U(n) <z|Tj_1=4, 75> n}

- IP{Lu,U_(n_i)(i) < z() ‘ o= 1,} IP{Ln_i < 22 ‘ > n— z} (85)

IP{Lu,u—k(n k) <z ‘ Tioi=n— k} IP{Lk < 2(2) ‘ > k}

where z(1) consists of the first 2u + 2(v — k) + 1 coordinates of z, and z(2) of
the remaining 2k ones. By the induction hypothesis a weak limit (as n — o0)
of the right most term in (85) exists.

In the case n — T < i< n—v we again write : = n — k for k fixed, and we
first consider simply the vector L, g(n) which, as we know, has a weak limit
(conditioned on the event {r,_1 =n —k, 7; > n}) as n — 00, and then return
to the vector L, ,(n). Thus, for all i € [n — T, n| a weak limit of the starting
conditional probability in (85) exists.

Assume now that 1 < ¢ < u. Then, instead of L, ,(n) we first consider the
vector L;ﬂ,(n) which is obtained from L, ,(n) by substituting S,_, — S; for
Sp_» . Clearly,

IP{L;,U(n) <z|Tji_1=4, ;> n}

(86)
= IP{Li < z(1) ‘ Tj—1= z} |P{Lu—i,u(n —3) < z(2) ‘ L>n— z}
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where now z(1) consists of the first 2i coordinates of z, and z(?) of the remaining
ones. By the induction hypothesis, (86) has a weak limit as n — oco. From here
it follows easily that (for such ¢) IP (Luﬂ, (n) <z | Ti—1 =1, T > n) has a weak
limit as n — co.

In order to consider the case u < ¢ < T, we first add additional coordinates
Xut1,Mut1, -, Xiy Wi 0 Ly ,(n) and then proceed as in the previous case.

Thus we have established, the starting conditional probability in (85) has a
weak limit for all ¢ in question. From here, (84), and Lemma 12 we deduce the
validity of (80).

To establish (81), one should use the same arguments replacing 7; > n by
7; = n (where needed). This then finishes the proof by induction. |

Recalling definitions (74) and (77), denote by g7 (n, k) (and g(n,h)) a vec-
tor whose distribution coincides with the law of g, (n, k) (respectively g(n,h))
conditioned on D;(n).

Lemma 16 (existence of a positive limit) Under the conditions of Theo-
rem 3, for ficed m,j and u > m,

gl(n,h) = some gl(co0,m) (87)

n—r 00

where gl (0o, m) is a vector whose coordinates are positive a.s.

(Note that the limit g7 (oo, m) is different for the two choices of the symbol
h = h(n,m) introduced after Lemma 13.)

Proof The coordinates of the vector g, (n, k) depend on the coordinates of
L,,(n) in a simple way. Therefore the limit in (87) exists. The first component
of gu(n,h)is a, = e 5. Moreover, according to Lemma 15, S, = S,_, +
Xn—vt1+ -+ X, conditioned on D;(n) has a limit in law. Therefore, the first
coordinate of gJ (oo, m) is positive with probability one. The a.s.—positivity of
the remaining coordinates follows easily from the preceding fact. |

The next lemma is a crucial step in proving the existence of the limit in (72)
forj=1.Let I<u<n—v<n.

Lemma 17 (intermediate part, case j = 1) Under the conditions of Theo-
rem 3,

limsup limsup Q_l(n) IE{au buti,n—v; T > n} = 0. (88)

min(u,v)—o00 N—>00

Proof By definition,

n—uv

Ay, bu+1,n—u = Z Niai—1. (89)
1=u-+1
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We want to estimate the expectation of the ¢-th term restricted to 71 > n, which
implies that 7 > 7 — 1. We distinguish between the different values = of S;_;
and y of S;. Write F for the distribution function of X; = log f§(1) (with
respect to IP). Then

E{niai-1; 1 >n} = / IP{Si_l cede; 74 >1— 1}e_m
0

X /0°° F(dy—=2) E {m

By (65)

X, = y— }|P{ in S 0‘51-: }
y—x i+1n5“}15n j > Y

)
IP{ min  S5; >0 ‘ S; :y} = IP( min S; > —y)
i+1<j<n 1<t<n—i

< e1e¥ (n— i)_3/2 Gnt

with G < 1 from Lemma 11 (iii). Therefore,

IE{mai_l; > n} < c (n—i)_3/2G”_i/ IP{Si_l c€de; 71 >1— 1}
0

X /°° F(dz)e’ [E {m | X; = z}

< e(n-— i)_3/2 G P (ry >i— 1) Eme’ < co.
Applying (62) we see that
|E{77i ai_1; T > n} < cg(n—i) %32 g, (90)

Hence, in view of Lemma 11 (iii),

Q}(n) E{aubuti,n-v;i 71 > 1}

an & (o1)
< canB/? Z (n—1) i73/2 < g Z i—8/2
u+1<i<n—v i =min(u,v)
that proves (88). |

Lemma 18 (intermediate part, general j) Under the conditions of Theo-
rem 3, for any € > 0, and 7 > 1,

limsup limsuplP;, (au butin—v > 5) =0, (92)
min(u,v)—200 N—00
limsup limsuplP {au butin_u >€|Tj = n} = 0. (93)

min(u,v)—200 N—00
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Proof By Chebyshev’s inequality,
IPl,n (a'u bu+1,n—u > 5) S 5_1 IEl,n [n bu+1,n—u

which, in view of Lemmas 17, 12, and 11 (iii), proves (92) for j = 1. To demon-
strate (93) it suffices to note that

P(r1 > n—1)
P(r1 =n)

P {a'ubu+1,n—u >€E|T1= ’I’L} < IPl,n—l(aubu+1,n—1—(u—1) > E)-
Now we apply induction on j. Assume the statement is true for j — 1 > 1, and

consider IP; , (@y byt1,n—v > €). By (83) it suffices to show that for a fixed T,

1
—_ IP{au butin-u > € Tj_1=1; Tj > n} (94)
P (D;(n)) i<T or;TSiSn ’ ’

vanishes as first n — oo and then min(u,v) — oo.
Let n — T < 4 < n. In this case the respective summand in (94) can be
estimated from above:

1
—— P vy bu n—v ) 1= 1
< P (Dj (n)) {a +1, > € Ti-1 1,}
P (Tj_l = 7,) .
= ———————Pyaybutin_v j—1 —
P (Dj (n)) {a +1, > €| Tj-1 1,}

where the latter term tends to 0 under the required limit transition, by the
induction hypothesis.

If 1 <4< T (and without loss of generality T' < u), we write a, = a; Git1,u
and consider separately the events {S; < —L} and {S; > —L}, for L > 0. In
view of a; = e~ 5%, we have

IP{au butin—v>e Ti_1=1; T; > n}

< IP{Si <—-L, j_1=1; 75> n}
+ Ip{a'i+1,u bu+1,n—u > Ee_La Tj—1= 15 Ty > ’I’L}
< P (SZ' < —L) P (Tl >n— 1,) + |P{ai+1,u bu+1,n—u > EC_L; ™ >n— 7,}

From this estimate, letting n, » and v tend to infinite in the needed order, one
can show, using the induction hypothesis, that for the ¢ in question

IP{au butin—v>e Ti_1=1; T; > n}
limsup limsup

< clP Si S —L).
min(u,v)—200 n—00 P (D](n)) o ( )
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Of course, the latter probability vanishes as L — oo. Summarizing, the first
statement of the lemma is proved.

To deduce the second statement from this fact, it remains to repeat the
arguments used for j = 1. |

Lemma 19 (convergence of conditioned vectors) Under the conditions of
Theorem 3, for ficed m and j,

g’(n,h) = some g’(co,m)

n—r 00

where g’ (0o, m) is a vector whose coordinates are positive a.s.
Proof Combine Lemmas 18 and 16. |

Remark 20 Using Lemmas 18 and 16 one can show also that for each 57 > 1
and admissible m, the vector (an,an + b, — by, bs,b,) conditioned on D;(n)
weakly converges as n — oo to a vector whose coordinates are positive a.s. <

Lemma 19 is the last preliminary result we need to prove (72), that is (68),
and now the desired statement follows relatively easily:

Lemma 21 (general case) Under the conditions of Theorem 3, for each fized
Jj > 1, admissible m, and l > 1, the limit in (72) ezists and is positive.

Proof Multiplying both sides of (69) by @~*(n), applying Lemmas 14, 19, and
appealing to (71), we establish the existence of the limit in (72). To prove that
it is positive, we use Remark 20. This completes the proof of Lemma 21. |

Lemma 22 (no loss of mass) Under the conditions of Theorem 3, the total
mass statement (15) holds.

Proof First we note that Z,, < Z, for any ¢t < n (given Z, > 0) and so it
suffices to show that

lim lim P{Z, >1 ‘ Z.>0} = 0. (95)

=300 n—00

To this end we recall that by Lemma 10,
P{Z, > 1 ‘ Zn >0} = Q7}(n) EVa(n,1),
Now

EV,.(n,l) = EJ: P (D;(n)) EjnVn(n,l) + EV,(n,l)©5(n). (96)

Since
V(1) < (an +b,)"" < a7t =™
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for t < n,
limsup limsup Q™ (n) E V,(n,1)©(n) = 0 (97)

J—soo n—oo

by Lemma 13. On the other hand, by Lemma 19 for each fixed j,
)\l'—l
lim [E;,V,(n,l) = IEjil
e (k5 + A7)

where k; and A; are positive random variables. Therefore, by the dominated
convergence theorem

)\l'—l
lim E—~L—— = 0. (98)
oo (k54 )
Relations (96)—-(98) imply (95) and the proof of the lemma is finished. |
Completion of proof of Theorem 3 Combine Lemmas 21 and 22. |

5 Branchless intermediate period

In this section we will provide the Proof of Theorem 4. This is mainly based on
ideas exploited in the previous section.
For l<u<n—v<nandl>1, set

Ae(liun—v) = Pe{Zun =1, Zun# ooy Zn >0} (99)

Lemma 23 (sufficient condition) Let u, and v, satisfy (16). If under the
conditions of Theorem 4,

lim Q@ '(n)EAs (l;un,n —v,) = 0, 1>1, (100)

n—r 00

holds, then claim (17) is true.

Proof By Theorem 3, the conditioned laws of Z, given Z, > 0 are rela-
tively compact. Because of Z, ,Z,_,, < Z, (under Z, > 0), this implies
the relative compactness of the conditioned laws of both {Zun | I > 0} and
{Zn_un | Zp > 0}. Then (100) gives

lim P{Zy. n# Znv,m

n—r 00

that is the claim. [ |

Zn>0}:0,

We continue with a calculation of some reduced process probabilities. For
l<u<n—v<nand l>1, set
a -
To(u,n—v) := utln—vdun (101)
Ayt1,n—v + bu+1,n—u dn—v,n
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and
a, b=t

)l-l—]. °

) = T

(102)

Lemma 24 (some reduced process probabilities) The following identities

hold:

!
Pf{zu,n = Tnum =L; Zn > o} = 3, (1, u) (I‘n(u,,n— v)) , (103)
Pe{Zupn =15 2, >0} = ®o(Lu)d, . (104)
Proof First we note that in view of (23)
17} Ay +1,n—v
—Fun—v = :
2 Faneals)

2
(a'u+1,n—u + bu+1,n—u(1 - 3))
and therefore

Pr{Znvn=1,20>0| 2, =1}

S Pe{Zny =5 | Zu=1} G F)a(0) anovin
7j=1

a
= Qnov,niFun—v
Gn—v,n - Fun—u(s)

Gyt+1l,n—vGn—-v,n

2
5=Fp_4,n(0) (a,u+1,n_u + bu+1,n—u Qn—u,n)

By (23), this chain of identities can be continued with

_ Ayt1,n—v ( )
- 1_Fun—u Fn—u,n 0
Ayt1,n—v + bu+1,n—u dn—v,n ' ( ( ))

Au+1,n—v Qu,
— u+l,n—v Yu,n — I‘n(u,,n—v).
Ayt1,n—v + bu+1,n—u dn—v,n

Hence,

Pf{Zu,n = dnpn—yn = la Zn > 0}

= i’: Pe(Z, = 7) (;) FJ;LZ(O) (I‘n (u,n— v)) l.
In view of (24), "
i Pe(,=5) (D) B70) = 1 2R

1 It ay b1

W (aw + (1= 5)bu)™

(105)

s:Fu,n(O)

== (I>n (la ’U,),
s:Fu,n(O)
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that combined with (105) gives identity (103). Claim (104) is still simpler to
verify. |

Recall notations (99) and (67). For fixed I > 1 and J > 2 we write
E Af (15w, n— vp)

J (106)

= Z EAs (Liun,n—v,)Li(n) + EAf (L un,n—vp) ©5(n).
7j=1

It follows from this representation and Lemma 23 above that in order to prove
Theorem 4 it suffices to show that

lim sup limsup Q™Y (n) E Af (I; un ,n — v,) ©5(n) = 0, (107)

J— o0 n— oo

and that for each fixed j > 1,
nli)n;o Q™Y (n) E Af (un ,n — v,) Ij(n) = 0. (108)
To prove these two statements, we first estimate Ag (l;u,n — v).
Lemma 25 (simplification) For 1 <u<n—v < n,
Ar(lu,n—v) < laybusin-v, [>1.
Proof From the definition (101) of I',(u,n — v) and Lemma 9 it follows that

bu+1,n—u dn—v,n

Quim — Tt 7 = ¥) = qum = @byt

Ayt1,n—v + bu+1,n—u dn—v,n
In view of the elementary inequality

-y <lz-y)2™!, z2>y>0,
we have, by the formulas in Lemma 24,

Ag(lu,n—v)

Pf{Zu,n =l Zn> 0} B Pf{Zu’” =Zn-vn =4 Zn> 0}
< 1®n(hu) it bugimo-

By the definition (102) of ®,, and identity (24), we may continue with

lay bﬁfl qmﬁ bu+1,n—v lay qg,n bu+1m—v

(@ + b qun) ™t 7 (@u+ by Gun)’

— la'u qq%,, bu+1,n—u S la'u bu+1,n—u

finishing the proof. |
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Lemma 26 (estimation of the J—term) Under the conditions of Theorem
4, statement (107) holds.

Proof From (99) and (78),
As(lhiuyn—v) < Py (Zn >0) = gn < €™, 1<,

which according to Lemma 13 implies (107). |

Lemma 27 (estimation of the j—terms) For j > 1, and u, and v, satis-
fying (16), statement (108) holds.

Proof From Lemma 25 and definition (99), it follows that

Ar(lu,n—v) [T (aubuyinv <€) +1(aubutin_o > 6)}
<le+I(aubuyin_u>c¢).
Hence,
EAr(u,n— ) [;(n) < 1eP (D;(n)) + P{aubuin-u > & D;(n)},
or, in view of Lemma 12,
Q7 (n) EAf (lun,n— vn) Ij(n) < ce4c1Pjp(ay, by, t1,n-v, > €)-

Now, letting n — oo, and taking into account (92) and the fact that, by identity
(89), @y byt1,n—v is monotonously non-increasing in u and v, we obtain

limsup Q@ '(n) E A¢ (l; un,n — v,) I;(n) < ce.

n—»o0 -

This proves (108) since ¢ > 0 is arbitrary. |

Proof of Theorem 4 Lemmas 26-27 establish (108) and (107). This, in view
of (106), implies (100), and therefore the validity of Theorem 4. |
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