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Optimal stopping with randomly arriving opportunities to stop
Josha A. Dekker, Roger J.A. Laeven, John G. M. Schoenmakers, Michel H. Vellekoop

Abstract

We develop methods to solve general optimal stopping problems with opportunities to stop that arrive
randomly. Such problems occur naturally in applications with market frictions. Pivotal to our approach is
that our methods operate on random rather than deterministic time scales. This enables us to convert
the original problem into an equivalent discrete-time optimal stopping problem with N0-valued stopping
times and a possibly infinite horizon. To numerically solve this problem, we design a random times least
squares Monte Carlo method. We also analyze an iterative policy improvement procedure in this setting.
We illustrate the efficiency of our methods and the relevance of randomly arriving opportunities in a few
examples.

1 Introduction

Since the early work of Wald [25] and Snell [24], a vast literature has contributed to the theory of optimal
stopping and stochastic control. Applications of this theory have been analyzed in a wide variety of fields
including statistics, operations research, and financial and insurance mathematics.

A standard assumption in this literature is that opportunities to stop arise deterministically — either at pre-
specified time instances in a discrete-time (Bermudan) setting or at any time within a pre-specified time
interval in a continuous-time (American) setting. In recent years, motivated by market frictions, a few papers
have studied optimal stopping problems in which the stopping times are restricted to take values in a random
set, typically generated by an independent Poisson process ([8, 18, 17, 12, 13]). The development of numer-
ical methods to solve general optimal stopping problems with randomly arriving opportunities may, however,
be considered in its infancy.

In this paper, we develop methods to solve, theoretically and numerically, general optimal stopping problems
in which opportunities to stop arrive randomly. The key to our approach is to consider random rather than
deterministic time scales on which our methods operate. That is, instead of working on a possibly fine
deterministic time grid, our approach consists of proceeding over random time scales from one stochastic
opportunity to the next, which brings significant computational advantages.

More specifically, on the new, random time scale that we consider, the order of the arrivals is encoded in
the set of natural numbers, rather than designated by the actual arrival times on the positive real line. This
enables us to convert the problem into a discrete-time optimal stopping problem with respect to N0-valued
stopping times with filtration generated by the consecutively arriving random times, on a possibly infinite
horizon. We establish the theoretical properties of this problem. In order to numerically solve this problem,
we adapt the well-known Longstaff-Schwartz [19] method via a suitable truncation of the horizon if necessary.
Furthermore, we revisit the policy improvement procedure in [15], which was developed in a finite horizon
setting. Since the theory in [15] is entirely based on backward induction from a finite horizon, we generalize
their main statements to an infinite horizon setting and give new (essentially different) proofs. In fact, this
generalization may be considered of interest in its own right.

This paper is organized as follows. In Section 2, we introduce the setting and notation, and establish pivotal
equivalence results. In Section 3, we develop random times least squares Monte Carlo. In Section 4, we
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analyze iterative policy improvement in an infinite horizon setting. Section 5 provides extensive numerical
illustrations to assess the accuracy and efficiency of our algorithms and to illustrate the relevance of randomly
arriving opportunities for optimal stopping. Conclusions are in Section 6.

2 Optimal Stopping on Random Times

2.1 Setting and notation

We consider a filtered probability space (Ω,F ,F,P) with filtration F := (Ft)0≤t≤∞ satisfying “the usual
conditions”. We denote by N the (strictly positive) natural numbers and by N0 the natural numbers including
zero.

We suppose that we are given a random sequence of F-stopping times

τ0 = 0, τi < τi+1 <∞ for i ∈ N0, and lim
i→∞

τi =∞ a.s. (2.1)

We are also given a nonnegative F-adapted càdlàg (on [0, T ]) reward process (Zt)0≤t<∞. We assume that
Zt = 0 a.s. for t > T , for a given finite time horizon T > 0, and that

E
[

sup
i∈N0

Z2
τi

]
≤ B2, for some B > 0. (2.2)

We now consider the problem of optimal stopping of Z on the first K stopping times in the sequence (2.1),
where K ∈ N ∪ {∞}. That is, we consider the stopping problem

Y
(K)

0 := sup
F-stopping time t, t∈TK

E [Zt] , (2.3)

where on each event ω, TK (ω) := {τi (ω) : i ∈ N0, i ≤ K} denotes the set of realized stopping times
(2.1) up to and including number K ≤ ∞.

2.2 An equivalent discrete-time problem with infinite horizon

We next recast problem (2.3) into an infinite horizon discrete-time stopping problem in which the opportunities
to stop emerge as discrete stopping times in the set N0. Due to the order of the stopping times (2.1), the
corresponding stop σ-algebras

Fτi := {A ∈ F∞ : A ∩ {τi ≤ t} ∈ Ft, t ≥ 0} , (2.4)

are analogously ordered,
Fτ0 ⊂ Fτ1 ⊂ Fτ2 ⊂ . . . .

We thus obtain, with Gi := Fτi ⊂ F , i ∈ N0, a discrete filtration G := (Gi)i∈N0
. Furthermore, the discrete

reward process (Zτn)n∈N0 is G-adapted (see, e.g., [21, Thm. 6] or [9]). Now let N be the set of discrete
G-stopping times, i.e.,

N := {n : Ω→ N0 such that {n = i} ∈ Gi for all i ∈ N0} .

We then state the following proposition:
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Proposition 2.1 Recall (2.3). We have that

Y
(K)

0 = sup
n∈N , n≤K

E [Zτn ] . (2.5)

Proof. (i) It holds that supn∈N , n≤K E [Zτn ] ≤ Y
(K)

0 since, for every fixed n ∈ N with n ≤ K a.s., we
have that t := τn is an F-stopping time with t ∈ TK . Indeed, one trivially has that τn(ω)(ω) ∈ TK (ω), and
moreover,

{t ≤ t} = {τn ≤ t} =
K⋃
i=0

{τi ≤ t} ∩ {n = i} ∈ Ft,

since, for any i ∈ N0, {τi ≤ t} ∈ Ft and {n = i} ∈ Fτi , and so {τi ≤ t} ∩ {n = i} ∈ Ft, due to (2.4).

(ii) Now let t be any F-stopping time with a.s. t (ω) ∈ TK (ω). Define n : Ω→ N0 by

n (ω) =
K∑
i=0

i1{t(ω)=τi(ω)}.

Then, for any j, since both t and τj are F-stopping times, it holds that

{t (ω) = τj (ω)} ∈ Ft ∩ Fτj ;

see e.g., [14, Lemma 2.16]. Hence,

{n (ω) = j} = {t (ω) = τj (ω)} ∈ Fτj = Gj,

i.e., n is a discrete G-stopping time with n ≤ K a.s., and moreover

E [Zt] = E

[
K∑
i=1

Zτi1{t=τi}

]
= E

[
K∑
i=1

Zτi1{n=i}

]
= E [Zτn ] .

Thus, Y (K)
0 ≤ supn∈N , n≤K E [Zτn ].

In order to study the stopping problem (2.3), we introduce, in view of Proposition 2.1, the discrete-time reward
process (Ui)i∈N0

with
Ui := Zτi , i ∈ N0, (2.6)

which is G-adapted and satisfies

E
[

sup
i∈N0

U2
i

]
≤ B2, (2.7)

due to (2.2). We now consider the discrete stopping problem as seen from a generic point in discrete time
i ∈ N0,

Y
(K)
i := ess sup

n∈N , i≤n≤K
EGi [Un] , i ∈ N0. (2.8)

Remark 2.2 In practice, the bound (2.2), hence (2.7), may be determined by simulation. For an analytic
alternative, let us observe that condition (2.2) is implied by the somewhat stronger condition

E
[

sup
0≤t≤T

Z2
t

]
≤ B2, for some B > 0.
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In the case in which the reward can be written in the form Zt = g(t,Mt) for some d-dimensional martingale
M , and the function g satisfies

|g(t,Mt)| ≤ c1 ‖Mt‖q∞ + c2, 0 ≤ t ≤ T, q ≥ 1,

it follows that

E
[

sup
0≤t≤T

Z2
t

]
≤ E

[
sup

0≤t≤T
(c1 ‖Mt‖q∞ + c2)

2

]
≤ E

[(
c1 sup

0≤t≤T
‖Mt‖q∞ + c2

)2
]

≤ 2c2
1E
[

sup
0≤t≤T

‖Mt‖2q
∞

]
+ 2c2

2

(with M = (M i)i=1,...,d) ≤ 2c2
1

d∑
i=1

E
[

sup
0≤t≤T

∣∣M i
t

∣∣2q]+ 2c2
2

≤ 2c2
1C

BDG
2q

d∑
i=1

E
[
〈M i

T ,M
i
T 〉q
]

+ 2c2
2,

using the Burkholder-Davis-Gundy inequality. The constant CBDG
2q is universal and explicitly known for con-

tinuous martingales and jump martingales, respectively. Further, if q = 1 for example, E [〈M i
T ,M

i
T 〉] may

usually be estimated explicitly for a given specific model.

2.3 Bellman principle and optimal stopping time

The ultimate goal in problem (2.8) is finding the value of Y (K)
0 . For running i, Y (K)

i is called the Snell
envelope for the reward process (Ui)i∈N0

. By

C
(K)
i := ess sup

n∈N , i+1≤n≤K
EGi [Un] , i ∈ N0, 0 ≤ i < K, (2.9)

C
(K)
K = 0 if K <∞,

we denote the discrete-time continuation value process. The following proposition collects a few facts about
optimal stopping in discrete time with finite time horizon K <∞, or with infinite time horizon K =∞.

Proposition 2.3 In our present setting, in particular under assumption (2.2), we have for K ∈ N ∪ {∞}
and for all i ∈ N0 with 0 ≤ i ≤ K that:

(i) The continuation value process (2.9) is connected with (2.8) via the Bellman principle

Y
(K)
i = max

(
Ui, C

(K)
i

)
.

(ii) The process Y (K) is a G-supermartingale, i.e.,

Y
(K)
i ≥ EGi

[
Y

(K)
i+1

]
, (2.10)

and it is the smallest supermartingale that dominates U .

DOI 10.20347/WIAS.PREPRINT.3056 Berlin 2023
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(iii) The random time nK,∗i , defined by

nK,∗i := inf
{
i ≤ j ≤ K : Y

(K)
j = Uj

}
,

is an optimal stopping time for G, that is,

Y
(K)
i = EGi

[
UnK,∗i

]
.

Proof. We note that (2.7), which follows from assumption (2.2), implies that condition [20, Ch. 1, (1.1.3))] is
satisfied and as a consequence for details and proof of the stated results one may consult [20, Ch. 1].

Corollary 2.4 There also exists an optimal stopping time for Problem (2.3), which moreover may be obtained
by taking t∗ := tK,∗0 := τn∗ := τnK,∗0

.

Proof. Indeed, from item (i) in the proof of Proposition 2.1, we see that t∗ is an F-stopping time which
satisfies t∗ ∈ TK and which moreover satisfies

Y
(K)

0 = sup
n∈N , n≤K

E [Zτn ] = E [Zτn∗ ] = E [Zt∗ ] .

2.4 Duality

In this subsection, we concisely recall the dual representation of the discrete optimal stopping problem in
our present setting, which essentially goes back to [22] and [11] (see also the early [7]). We consider here
the infinite horizon case, i.e., we take K =∞ in Proposition 2.1. The case K <∞ goes analogously, and
moreover does not require an extra uniform integrability argument (see Remark 2.6 below).

Proposition 2.5 LetMUI
0 be the collection of uniformly integrable G-martingales (Mi)i∈N0

with M0 = 0.
In addition, assume that (2.2) holds and that there exists some 0 < α < 1/2 such that

∞∑
j=1

P (τj ≤ T )α <∞. (2.11)

We then have the following duality results.

(i) Weak duality: It holds that

Y0 ≡ Y
(∞)

0 = inf
M∈MUI

0

E
[
sup
i≥0

(Zτi −Mi)

]
.

(ii) Strong duality: Let us consider, for Yi ≡ Y
(∞)
i given in (2.8), the G-martingale, a.k.a. the Doob martingale

of the Snell envelope,

M◦
i :=

i∑
j=1

Yj − EGj−1
[Yj] , i ≥ 1, M◦

0 = 0.

Then it holds that M◦ ∈MUI
0 and that

Y0 = sup
i≥0

(Ui −M◦
i ) , almost surely.
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Proof. By Proposition 2.1 and Doob’s sampling theorem we have, for any M ∈MUI
0 ,

Y0 = sup
n∈N

E [Un] = sup
n∈N

E [Un −Mn]

≤ E
[
sup
i≥0

(Ui −Mi)

]
= E

[
sup
i≥0

(Zτi −Mi)

]
. (2.12)

Note that for any i ≥ 0 (empty sums being zero),

Ui −M◦
i = Ui −

i∑
j=1

Yj +
i∑

j=1

EGj−1
[Yj] (2.13)

= Y0 + Ui − Yi −
i−1∑
j=0

Yj +
i−1∑
j=0

EGj [Yj+1]

≤ Y0,

due to (2.10). Hence, we have
sup
i≥0

(Ui −M◦
i ) ≤ Y0, (2.14)

by (2.13). We now only need to show that M◦ ∈MUI
0 . Indeed, if M◦ ∈MUI

0 , we have

Y0 ≤ E
[
sup
i≥0

(Ui −M◦
i )

]
,

by inequality (2.12), and then by (2.14) we obtain statement (ii) due to the sandwich property. Finally, (ii)
combined with (2.12) yields statement (i). Let us show that M◦ ∈ MUI

0 . By the well-known lemma of de la
Vallée-Poussin, it is enough to show that

sup
i≥0

E [|M◦
i |
p] <∞,

for some p > 1. Let us take p = 2/(2α + 1), hence 1 < p < 2. Since Zt ≥ 0 for t ≥ 0, and Zt = 0 for
t > T , we have that

M◦
i =

i∑
j=1

(
Yj − EGj−1

[Yj]
)

1{τj<T}, hence

(Minkowski) E [|M◦
i |
p]

1/p ≤
i∑

j=1

E
[(
Yj + EGj−1

[Yj]
)p

1{τj<T}
]1/p

. (2.15)

Furthermore, we have, since also 1 < 2/p < 2,

E
[(
Yj + EGj−1

[Yj]
)p

1{τj≤T}
]

(convexity) ≤ 2p−1E
[(
Y p
j + EGj−1

[Yj]
p) 1{τj≤T}

]
(Jensen) ≤ 2p−1E

[(
Y p
j + EGj−1

[
Y p
j

])
1{τj≤T}

]
(Hölder) ≤ 2p−1E

[(
Y p
j + EGj−1

[
Y p
j

])2/p
]p/2

E
[
1{τj≤T}

]1−p/2
, (2.16)

and

E
[(
Y p
j + EGj−1

[
Y p
j

])2/p
]
≤ 22/p−1E

[(
Y 2
j + EGj−1

[
Y p
j

]2/p)]
≤ 22/pE

[
Y 2
j

]
≤ 22/pE

[
sup
i∈N0

Z2
τi

]
≤ 22/pB2, (2.17)
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due to (2.2). With (2.15), (2.16), (2.17) it follows that for any i ≥ 0,

E [|M◦
i |
p]

1/p ≤
i∑

j=1

2BP (τj ≤ T )
1
p
− 1

2 =
i∑

j=1

2BP (τj ≤ T )α ≤ 2B
∞∑
j=1

P (τj ≤ T )α .

Remark 2.6 (a) ForK <∞ and Yi ≡ Y
(K)
i , we may replace in the statements (i) and (ii) of Proposition 2.5,

supi≥0 with max0≤i≤K . Moreover, the condition (2.11) can be removed, since any integrable martingale
(Mi)1≤i≤K is uniformly integrable.

(b) If K = ∞ but one has for some L ∈ N that P (τL > T ) = 1, condition (2.11) is trivially fulfilled.
However, we are then dealing with problem (2.3) for K = L in fact.

(c) It should be noted that the condition (2.11) for uniform integrability of M◦ is a sufficient condition. It
requires that, loosely speaking, the probability that τj did (still) not pass T at the stopping time with rank j
converges to zero fast enough, when j tends to infinity.

(d) More formally, condition (2.11) holds if and only if the distribution of N ≡ NT := sup{j : τj ≤ T} has
tails that decay faster than j−2. Indeed, the series

∞∑
j=1

P (τj ≤ T )α =
∞∑
j=1

P (N ≥ j)α ∼
∞∑
j=1

j−γα,

with γ being the tail exponent, converges for γα > 1 and diverges for γα ≤ 1. Hence, when γ > 2, we
may consider 1/γ < α < 1/2. Conversely, for 0 < α < 1/2, we must have γ > 2.

2.5 Structural assumption to facilitate numerical approaches

To develop feasible simulation-based numerical approaches, we consider a basic structural assumption on
our setup. Recall that the (augmented) filtration F describes the information flow and that Z determines the
reward upon stopping at one of the F-stopping times (τk)k∈N0

, with τ0 = 0 and limk→∞ τk = ∞ a.s.
Henceforth, we assume that there is an underlying process X such that Z = Z(·, X·). The dynamics of X
may also depend on another, auxiliary process Θ that does not directly influence the reward process Z .

Assumption 2.7 There exists an auxiliary càdlàg process Θ in Rq such that the process (X,Θ) in Rd×Rq

is adapted to the (augmented) filtration F and is such that the G-adapted discrete-time process

(τk, Xτk ,Θτk)k∈N0 , (τ0, Xτ0 ,Θτ0) = (0, X0,Θ0) ,

is a Markov chain in the state space R≥0 × Rd × Rq.

The interpretation of Assumption 2.7 is as follows. We think of (X,Θ) as an observable process that may
generate the filtration F, whereasX is the underlying process that determines the reward Zτi upon stopping
at time τi. Assumption 2.7 paves the way for simulation-based numerical approaches. The following results
are readily obtained.

Lemma 2.8 If Assumption 2.7 is fulfilled, then for any non-negative Borel measurable g : (t, x, θ) ∈ R ×
Rd × Rq → g(t, x, θ), we have that

EFτk
[
g(τk+1, Xτk+1

,Θτk+1
)
]

= E(τk,Xτk ,Θτk )

[
g(τk+1, Xτk+1

,Θτk+1
)
]

= c(τk, Xτk ,Θτk),

for some non-negative Borel function c(·, ·, ·).

DOI 10.20347/WIAS.PREPRINT.3056 Berlin 2023



J.A. Dekker, R.J.A. Laeven, J.G.M. Schoenmakers, M.H. Vellekoop 8

Lemma 2.9 Suppose that Assumption 2.7 applies,X and Θ are independent, and τk+1−τk is independent
of Θτk . Then we have that

EFτk
[
g(τk+1, Xτk+1

)
]

= c(τk, Xτk),

for some non-negative Borel function c(·, ·).

Proof. By Assumption 2.7,

EFτk
[
g(τk+1, Xτk+1

)
]

= E(τk,Xτk ,Θτk)
[
g(τk + τk+1 − τk, Xτk+τk+1−τk)

]
= E(τk,Xτk)

[
g(τk+1, Xτk+1

)
]

=: c(τk, Xτk).

Example 2.10 Take X independent of Θ, where Θ is a continuous-time Markov chain with state space N0,
generator 

−λ1 λ1 0 . . .
0 −λ2 λ2 . . .
0 0 −λ3 . . .
. . . . . . . . . . . .

 , λi > 0, i = 1, 2, . . . ,

and Θ0 = 0. One thus has that τk = inf {s ≥ 0 : Θs = k}.

Example 2.11 As a more general example, consider (X,Θ) to be given by a jump-diffusion, more specifi-
cally, a strong Markov process of the form

dXt = σ(t,Xt)Xt dW, X0 = x0,

dΘt =

∫
Rq
zN (Xt, dt, dz) , Θ0 = 0,

whereN (x, dt, dz, ω) is some Poisson random measure on N0, independent of W , with

P (N (x, (s, t], B) = k) := exp(−v(x,B) (t− s))v(x,B)k (t− s)k

k!
, k ∈ N0,

where for simplicity v(x,B) is of finite activity in the sense that

v(x, {0}) = 0 and

∫
v(x, dz) <∞, x ∈ Rd.

The stopping times are determined by τ0 = 0 and τk = inf {s > 0 : Θs = k}, k > 0.

(i): Simple case with d = q = 1 and v(x,B) = λδ1(B) := λ1B(1): We then have that

P (N (x, (0, t], B) = k) = exp (−λtδ1(B))
λktkδ1(B)k

k!
,

with 00 := 1, and hence we get

Θt =

∫
(0,t]

∫
R
zN ( ds, dz) = N ((0, t], {1}) , where

P (N ((0, t], {1}) = k) = exp (−λt) λ
ktk

k!
,

DOI 10.20347/WIAS.PREPRINT.3056 Berlin 2023
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i.e., Θt = ] jumps in the interval (0, t] observed by the agent. With τ0 = 0 and τk = inf {s > 0 : Θs = k},
k > 0, one has that τk − τk−1, k ≥ 1, is exp(λ) distributed and independent of τk−1. In particular, the
conclusion of Lemma 2.8 applies.

(ii): Suppose d = q = 1 and that the Poisson random measure is only active during times that the process
X is visiting a certain interval I± := [c−, c+] with 0 < c− < c+. That is, we consider

v(x,B) := λ1[c−,c+](x)δ1(B), hence

P (N (x, (0, t], B) = k) = exp
(
−λt1[c−,c+](x)δ1(B)

) λktk1[c−,c+](x)kδ1(B)k

k!

with 00 := 1, and

Θt =

∫
(0,t]

1[c−,c+](Xs−)

∫
R
zN (Xs−, ds, dz)

=

∫
(0,t]

1[c−,c+](Xs)N0 ( ds, {1}) ,

with N0 as in (i). Note that X is continuous. So Θt = ] jumps in the interval (0, t] while X is in the interval
[c−, c+], which is observable by the agent. Let τ0 = 0, and τk = inf {s > 0 : Θs = k} , k > 0. Then,
obviously, Θτk = k, k ≥ 0, and

τk+1 − τk ∈ σ
{

(Xs,N0 ((τk, s] , {1})) 1{s≥τk}
}

⊂ σ
{

(Xs,Θs) 1{s≥τk}
}
.

Hence, in particular Assumption 2.7 applies, i.e., by the Markov property,

EFτk
[
g(τk+1, Xτk+1

,Θτk+1
)
]

= EFτk
[
g(τk + τk+1 − τk, Xτk+τk+1−τk ,Θτk+τk+1−τk)

]
= EFτk

[
g(τk + τk+1 − τk, Xτk+τk+1−τk ,Θτk+τk+1−τk)

]
= E(τk,Xτk ,Θτk)

[
g(τk + τk+1 − τk, Xτk+τk+1−τk ,Θτk+τk+1−τk)

]
= E(τk,Xτk ,Θτk)

[
g(τk+1, Xτk+1

,Θτk+1
)
]

=: c(τk, Xτk ,Θτk),

and so this is a simple example in which the continuation functions are dependent on the evaluation of both
X and Θ.

3 Least Squares Monte Carlo over Random Times

3.1 Finite horizon approximation

Any backward recursive approach such as the Longstaff-Schwartz (LS, [19]) method is initialized at some
(discrete) finite time horizon. In case K = ∞, we have an infinite horizon problem due to Proposition 2.1.
Thus, in this case, a backward recursive approach is not directly applicable. However, as we show below,
we may approximate the infinite horizon problem by a finite horizon counterpart with arbitrary accuracy, and
then, if additional structural assumptions are fulfilled (see Section 2.5), apply the LS method to the finite
horizon problem.
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Since, by (2.1), τk →∞ a.s. if k →∞, we have by dominated convergence that

P (τK ≤ T )→ 0, K →∞, for K ∈ N.

Let us fix some tolerance level ε > 0 and choose K such that P (τK ≤ T ) < ε2/B2 with B specified

in (2.2). The value of the infinite horizon stopping problem is denoted by Y (∞)
0 , and the value of the corre-

sponding “truncated” stopping problem is given by

Y
(K)

0 = sup
n∈N , 0≤n≤K

E [Un] .

Obviously, one has Y (K)
0 ≤ Y

(∞)
0 . On the other hand,

Y
(∞)

0 = sup
n∈N

E
[
Un1{n≤K} + Un1{n>K}

]
≤ sup

n∈N
E
[
Un∧K1{n≤K}

]
+ sup

n∈N
E
[
Un∨K1{n>K}

]
≤ sup

n∈N , 0≤n≤K
E [Un] + sup

n∈N , n>K
E [Un]

≤ Y
(K)

0 + ε,

since for any n with n > K one has,

E [Un] = E
[
Zτn1{τn≤T}

]
+ E

[
Zτn1{τn>T}

]
≤ E

[
Zτn1{τK≤T}

]
+ 0

≤ E
[
1{τK≤T} sup

i∈N0

Zτi

]
≤ BP (τK ≤ T )1/2 < ε, (3.1)

using (2.2). Thus, for any pre-specified accuracy ε, Y (K)
0 yields a lower bound that is “ε-close” to Y (∞)

0 .

3.2 Pseudo-algorithm

Let us suppose we are in a Markovian environment (Xt,Θt)t≥0 , under Assumption 2.7, with a reward of
the form

Zt := Z(t,Xt).

Then, Y (K)
0 may be numerically approximated by regression, based on a given set of measurable basis

functions

ψl : R≥0 × Rd×Rq → R, l ∈ N. (3.2)

We propose the following pseudo-algorithm for n = 1, . . . , N :

(i) Simulate

(
X

(n)

τ
(n)
1

,Θ
(n)

τ
(n)
1

)
, . . . ,

(
X

(n)

τ
(n)
K

,Θ
(n)

τ
(n)
K

)
.

(ii) Initialize Ŷ K,n
K = U

(n)
K = Z(τ

(n)
K , X

(n)

τ
(n)
K

), n̂
(n)
K = K .

(iii) If, for 0 < k ≤ K , the values Ŷ K,n
k and n̂

(n)
k have been constructed, then solve the regression

problem

(α̂k−1,l)l=1,...,L := arg min
α∈RL

N∑
n=1

(
Ŷ K,n
k −

L∑
l=1

αlψl

(
τ

(n)
k−1, X

(n)

τ
(n)
k−1

,Θ
(n)

τ
(n)
k−1

))2

,
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and define

Ĉk−1(t, x, θ) :=
L∑
l=1

α̂k−1,lψl (t, x, θ) .

Next, set

n̂
(n)
k−1 =

{
k − 1 if Z(τ

(n)
k−1, X

(n)

τ
(n)
k−1

) > Ĉk−1(τ
(n)
k−1, X

(n)

τ
(n)
k−1

,Θ
(n)

τ
(n)
k−1

)

n̂
(n)
k else.

Having thus constructed the functions Ĉ0(t, x, θ), . . . , ĈK−1(t, x, θ) (with ĈK ≡ 0), one may generate an
independent simulation(

τ̃
(n)
1 , X̃

(n)

τ̃
(n)
1

, Θ̃
(n)

τ̃
(n)
1

)
, . . . ,

(
τ̃

(n)
K , X̃

(n)

τ̃
(n)
K

, Θ̃
(n)

τ̃
(n)
K

)
, for n = 1, . . . , Ñ ,

and construct a lower biased estimate Ỹ0 for Y0 due to the (path-wise) policy

ñ(n) := min

{
k : Z(τ̃

(n)
k , X̃

(n)

τ̃
(n)
k

) ≥ Ĉk(τ̃
(n)
k , X̃

(n)

τ̃
(n)
k

, Θ̃
(n)

τ̃
(n)
k

)

}
, (3.3)

by defining

Ỹ0 :=
1

Ñ

Ñ∑
n=1

Z(τ̃
(n)

ñ(n) , X̃
(n)

τ̃
(n)

ñ(n)

).

The policy (3.3) can and will be used (in Section 5) as input policy for the well-known Andersen-Broadie
algorithm [2], in order to obtain a dual estimate of an upper bound on Y0 (in mean). As the Andersen-
Broadie method for computing dual upper bounds is widely known, we refrain from a description here and
refer to [2], and also [10], for further details.

3.3 Convergence

To obtain convergence results for the algorithm we propose, we need to formulate assumptions for the set of
basis functions that are used in our regression, in addition to the structural assumption on the state dynamics
formulated in Assumption 2.7.

Assumption 3.1 For the collection of measurable functions in (3.2), let PL
k denote the L2-projection of

σ {(τk, Xτk ,Θτk)}-measurable random variables onto the subspace

SL = span {ψl (τk, Xτk ,Θτk) , l = 1, . . . , L}.

We assume the following. For each k = 1, . . . , K − 1:

1. The sequence (ψl (τk, Xτk ,Θτk))l∈N is total in L2 (Ω, σ {(τk, Xτk ,Θτk)} ,P), i.e., S∞ =
L2 (Ω, σ {(τk, Xτk ,Θτk)} ,P).

2. For L ∈ N, if
∑L

l=1 λlψl (τk, Xτk ,Θτk) = 0 a.s., then λl = 0 for l = 1, . . . L.
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3. We have

P

(
L∑
l=1

αk,lψl (τk, Xτk ,Θτk) = Z (τk, Xτk)

)
= 0,

where
L∑
l=1

αk,lψl (τk, Xτk ,Θτk) = PL
k

(
Z(τnLk , Xτ

nL
k

)
)
,

and
(
nLk
)
k=0,...,K

is a sequence of discrete stopping times with values in {1, . . . , K} solving the

recursion nLK = K ,

nLk =

 k if Z (τk, Xτk) ≥ PL
k

(
Z(τnLk , Xτ

nL
k

)
)

nLk+1 if Zk < PL
k

(
Z(τnLk , Xτ

nL
k

)
) , 1 ≤ k < K.

Under Assumptions 2.7 and 3.1, we have the following convergence result.

Theorem 3.2 ([6, Theorem 3.2]) Let n∗k be an optimal stopping index after the (physical) times τ1, . . . , τk−1

have passed. It then holds almost surely that

lim
L→∞

lim
N→∞

1

N

N∑
n=1

Z(τ̂
(n)

n̂L,nk
, X

(n)

τ̂
(n)

n̂
L,n
k

) = E
[
Z(τn∗k , Xτn∗

k
)
]
.

[6] further implies that one may obtain a sequence Ĉ(r)
k (t, x, θ), r ∈ N, of approximative continuation

functions from a sequence of LS-training procedures due to Lr basis functions and Nr training trajectories,
such that

Ĉ
(r)
k (τk, Xτk ,Θτk)

P−→ C∗k(τk, Xτk ,Θτk), k = 1, . . . , K, (3.4)

for r → ∞, where C∗k denotes the optimal continuation function at time k, and the process
(τk, Xτk ,Θτk)k=1,...,K is independent of the training procedures. One next has the following convergence
result on stopping times.

Theorem 3.3 For each r ∈ N there exists an optimal stopping time (n∗,r) such that

P(n(r) 6= n∗,r)→ 0 for r →∞,

where

n(r) := min
{
k ≥ 0 : Z(τk, Xτk) ≥ Ĉ

(r)
k (τk, Xτk ,Θτk)

}
, r ∈ N.

If in particular n∗ is unique, one has that n(r) P−→ n∗.

Proof. Follows, in principle, from the convergence (3.4) of the continuation values. For a detailed proof in the
context of robust optimal stopping we refer to [16, Section 6].
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4 Optimal Stopping via Policy Improvement

In this section, we revisit the iterative policy improvement procedure for optimal stopping, which was devel-
oped in [15] and extended to multiple stopping in [3]. In these works a deterministic, fixed and finite number of
opportunities to stop was assumed, and all proofs exploited the backward recursive nature with initialization
at the last opportunity to stop.

In this paper, we convert our initial problem with randomly arriving opportunities into a discrete-time optimal
stopping problem with N0-valued stopping times and an infinite horizon. The infinite horizon entails that the
results in [15] are not applicable in the present context. However, we will show that, by applying Theorem 3.1
of that paper to a truncated setting with horizon N , and next letting N tend to infinity, a similar improvement
result for an infinite horizon can be established. Subsequently, in an infinite horizon setting, we will prove
results similar to Propositions 4.1, 4.3 and 4.4 in [15].

4.1 Iterative construction of the optimal stopping time

Consider a family of stopping times (σi)i∈N0
with respect to the discrete filtration (Gi)i∈N0

that satisfies the
consistency condition

i ≤ σi <∞, (4.1)

σi > i =⇒ σi = σi+1, i ∈ N0,

and define the process

Y σ
i := EGi [Uσi ] .

We now fix a window parameter κ ∈ N∪{∞} and introduce a new stopping family (σ̂i)i∈N0
by

σ̂i := inf
{
j ≥ i : Uj ≥ Ỹ σ

j

}
, (4.2)

with

Ỹ σ
j = max

j≤k≤j+κ
EGj [Uσk ] .

Obviously, the family (σ̂i) also satisfies (4.1). In view of the next proposition, (σ̂i) may be considered an
improvement of (σi).

Proposition 4.1 Let (σi) satisfy (4.1) and (σ̂i) be given by (4.2). Then it holds that

Y σ
i ≤ Ỹ σ

i ≤ Y σ̂
i ≤ Yi.

Proof. Consider for N ∈ N the truncated reward UN
i := Ui1i≤N and the stopped policy σNi := σi ∧N . It

is easy to see that, for 0 ≤ i ≤ N ,

i ≤ σNi ≤ N, and σNi > i =⇒ σNi = σNi+1,

i.e., σNi is consistent in the sense of (4.1). We next consider the iteration step

σ̂Ni := inf

{
j ≥ i : UN

j ≥ max
j≤k≤j+κ

EGj
[
UN
σNk

]}
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and define

Y σN

i := EGi
[
UN
σNi

]
,

Ỹ σN

i := max
i≤k≤i+κ

EGi
[
UN
σNk

]
,

Y σ̂N

i := EGi
[
UN
σ̂Ni

]
.

Note that i ≤ σ̂Ni ≤ N . Due to [15, Theorem 3.1], it holds that

Y σN

i ≤ Ỹ σN

i ≤ Y σ̂N

i ≤ Y
(N)
i , for 0 ≤ i ≤ N, (4.3)

where
(
Y

(N)
i

)
is the Snell envelope for the truncated reward

(
UN
i

)
. We now fix i and show that for N →

∞, a.s.,

(i) Y σN

i → Y σ
i ,

(ii) Ỹ σN

i → Ỹ σ
i ,

(iii) Y σ̂N

i → Y σ̂
i ,

from which the statement follows by (4.3) and the obvious fact that Y (N)
i ≤ Yi.

Ad (i)+(ii): For any fixed k one has σNk → σk <∞ a.s. for N →∞, hence

UN
σNk

= UσNk 1{σNk ≤N} = Uσk1{σk≤N} → Uσk a.s.

It then follows by conditional dominated convergence that

Y σN

i = EGi
[
UN
σNi

]
→ EGi [Uσk ] = Y σ

i , and

Ỹ σN

i = max
i≤k≤i+κ

EGi
[
UN
σNk

]
→ max

i≤k≤i+κ
EGi [Uσk ] = Ỹ σ

i .

Ad (iii): Note that by the definition of UN
i ,

σ̂Ni := inf

{
j ≥ i : Uj1{j≤N} ≥ max

j≤k≤j+κ
EGj

[
Uσk1{σk≤N}

]}
.

Let us suppose that we are on the set {ω : σ̂i (ω) = l} . For N ≥ l, one then has

Ul (ω) 1{l≤N} = Ul (ω) ≥ max
l≤k≤l+κ

EGl [Uσk ] (ω) ≥ max
l≤k≤l+κ

EGl
[
Uσk1{σk≤N}

]
(ω)

(recall that by assumption U· ≥ 0). Hence, for N ≥ l, one has σ̂Ni (ω) ≤ l. Since l was arbitrary, we
conclude that

σ̂Ni ≤ σ̂i a.s. for N ≥ N (ω) say.

Now assume that σ̂Ni 9 σ̂i with positive probability. Then with positive probability, there must exist numbers
r and l with 0 ≤ r < l and a sequence (Nm)m∈N with Nm ↑ ∞ for m ↑ ∞, such that σ̂i = l and
σ̂Nmi = r < l for m ∈ N. This implies

Ur1{r≤Nm} ≥ max
r≤k≤r+κ

EGr
[
Uσk1{σk≤Nm}

]
for all m ∈ N,

on a set of positive probability. By conditional dominated convergence it then follows that

Ur ≥ max
r≤k≤r+κ

EGr [Uσk ]

on this set, which contradicts the definition of σ̂i. That is, σ̂Ni → σ̂i a.s., and then (iii) follows by conditional
dominated convergence.

The next corollary states simple implications of Proposition 4.1.

DOI 10.20347/WIAS.PREPRINT.3056 Berlin 2023



Optimal stopping with randomly arriving opportunities to stop 15

Corollary 4.2

(i) It holds that Y σ̂
i ≥ Ui for all i ∈ N0.

(ii) Let σ̂i and σ̂′i be improvements of σi due to Proposition 4.1 that correspond to κ′ and κ, respectively.
Then, if κ′ > κ, one has Y σ̂′

i ≥ Y σ̂
i .

Proof. Ad (i): By Proposition 4.1 we may write

1{Y σ̂i <Ui}Y
σ̂
i = 1{Y σ̂i <Ui}1{Ỹ σi ≤Ui}EGi [Uσ̂i ]

(definition of σ̂i) = 1{Y σ̂i <Ui}1{Ỹ σi ≤Ui}Ui = 1{Y σ̂i <Ui}Ui a.s.

That is, on the set
{
Y σ̂
i < Ui

}
one has Y σ̂

i = Ui, a.s., which implies P(Y σ̂
i < Ui) = 0.

Ad (ii): First note that σ̂i
′ ≥ σ̂i by construction. Hence, we may write

Y σ̂′

i = EGi
[
Uσ̂′i
]

=
∞∑
l=i

EGi
[
1{σ̂i=l}Uσ̂′i

]
(using (4.1)) =

∞∑
l=i

EGi
[
1{σ̂i=l}Uσ̂′l

]
=
∞∑
l=i

EGi
[
1{σ̂i=l}Y

σ̂′

l

]
≥

∞∑
l=i

EGi
[
1{σ̂i=l}Ul

]
= EGi [Uσ̂i ] = Y σ̂

i ,

where the already proved statement (i) is used.

Corollary 4.2-(ii) thus explains the role of κ: the larger κ, the better the improvement. Proposition 4.1 sug-

gests the following iterative procedure. Define, for m ∈ N0, the G-stopping family
(
σ

(m)
i

)
i∈N0

as follows:

Initialize σ(0)
i = i, i ∈ N0. Suppose

(
σ

(m)
i

)
i∈N0

has been defined. Then,

σ
(m+1)
i := inf

{
j ≥ i : Uj ≥ max

j≤k≤j+κ
EGj

[
U
σ

(m)
k

]}
. (4.4)

Proposition 4.3 Let (σ∗i ) denote the family of (first) optimal stopping times. That is,

σ∗i := inf
{
j ≥ i : Uj ≥ EGj [Yj+1]

}
.

For the sequence
(
σ

(m)
i

)
defined in (4.4), we have

σ
(m)
i ≤ σ

(m+1)
i ≤ σ∗i <∞, m ∈ N0, (4.5)

and moreover it holds that

σ∗i =↑ lim
m→∞

σ
(m)
i and Yi =↑ lim

m→∞
Y

(m)
i , (4.6)

with Y (m)
i ≡ Y σ(m)

i . The up-arrows indicate that the respective sequences are non-decreasing.

DOI 10.20347/WIAS.PREPRINT.3056 Berlin 2023



J.A. Dekker, R.J.A. Laeven, J.G.M. Schoenmakers, M.H. Vellekoop 16

Proof. The fact that σ∗i < ∞ follows from Proposition 2.3. Suppose that σ(m)
i > σ∗i for some m ∈ N0.

Then we have

Uσ∗i < max
σ∗i≤k≤σ∗i +κ

EGσ∗
i

[
U
σ

(m)
k

]
=
∞∑
j=i

1{σ∗i =j} max
j≤k≤j+κ

EGj
[
U
σ

(m)
k

]
(by Proposition (4.1)) ≤

∞∑
j=i

1{σ∗i =j}Yj = Yσ∗i ,

which contradicts the optimality of σ∗i . Suppose next that σ(m+1)
i < σ

(m)
i for some m ∈ N0. Then, since

σ
(0)
i = i, we must have that m ≥ 1, and due to the definition of σ(m)

i that

U
σ

(m+1)
i

< max
σ

(m+1)
i ≤k≤σ(m+1)

i +κ

EG
σ

(m+1)
i

[
U
σ

(m−1)
k

]
=
∞∑
j=i

1{
σ

(m+1)
i =j

} max
j≤k≤j+κ

EGj
[
U
σ

(m−1)
k

]
.

On the other hand, due to the definition of σ(m+1)
i we must have that

U
σ

(m+1)
i

≥ max
σ

(m+1)
i ≤k≤σ(m+1)

i +κ

EG
σ

(m+1)
i

[
U
σ

(m)
k

]
=
∞∑
j=i

1{
σ

(m+1)
i =j

} max
j≤k≤j+κ

EGj
[
U
σ

(m)
k

]
,

which in turn yields

∞∑
j=i

1{
σ

(m+1)
i =j

} max
j≤k≤j+κ

EGj
[
U
σ

(m)
k

]
<
∞∑
j=i

1{
σ

(m+1)
i =j

} max
j≤k≤j+κ

EGj
[
U
σ

(m−1)
k

]
.

However, since for all j ≥ i,

max
j≤k≤j+κ

EGj
[
U
σ

(m)
k

]
≥ EGj

[
U
σ

(m)
j

]
= Y

(m)
j ≥ max

j≤k≤j+κ
EGj

[
U
σ

(m−1)
k

]
a.s.,

by Proposition (4.1), we get a contradiction. Thus, (4.5) is proved.

Due to (4.5) and Proposition 4.1 we may define

σ∞i =↑ lim
m→∞

σ
(m)
i and Y ∞i =↑ lim

m→∞
Y

(m)
i a.s.

Note that σ∞i ≤ σ∗i < ∞, and that, since σ(m)
i is integer valued, one must have σ(m)

i (ω) = σ
(∞)
i (ω) for

m > N (i, ω) say. Hence, U
σ

(m)
i
→ Uσ∞i a.s., and then by dominated convergence we get

Y ∞i =↑ lim
m→∞

Y
(m)
i =↑ lim

m→∞
EGi
[
U
σ

(m)
i

]
= EGi

[
Uσ∞i

]
.

Obviously, we have that Yi ≥ Y ∞i ≥ Ui a.s. Since (Yi) is the smallest supermartingale that dominates the
reward (Ui) by Proposition 2.3, we can prove that σ∞i = σ∗i and Y ∞i = Yi, and hence (4.6), by showing
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that (Y ∞i ) is a supermartingale. It is easy to see that (σ∞i ) is a consistent G-stopping family, i.e., (σ∞i )
satisfies (4.1). So for any i ≥ 0 one has

EGi
[
Y ∞i+1

]
= EGi

[
Uσ∞i+1

]
= Y ∞i + EGi

[(
Uσ∞i+1

− Uσ∞i
)]

= Y ∞i + EGi
[
1{σ∞i =i}

(
Uσ∞i+1

− Uσ∞i
)]

(by (4.1)) = Y ∞i + 1{σ∞i =i}EGi
[
Uσ∞i+1

]
− 1{σ∞i =i}Ui. (4.7)

Note that by (4.5) and the definition of σ∞i one has {σ∞i = i} =
∞⋂
m=0

{
σ

(m)
i = i

}
. Hence, by the definition of σ(m′)

i , for all m′ ≥ 1,

1{σ∞i =i}Ui ≥ 1{σ∞i =i} max
i≤k≤i+κ

EGi
[
U
σ

(m′−1)
k

]
≥ 1{σ∞i =i}EGi

[
U
σ

(m′−1)
i

]
Since ↑ limm′↑∞ EGi

[
U
σ

(m′−1)
i

]
= EGi

[
Uσ∞i

]
a.s., it then follows that

1{σ∞i =i}Ui ≥ 1{σ∞i =i}EGi
[
Uσ∞i

]
,

hence by (4.7) we get EGi
[
Y ∞i+1

]
≤ Y ∞i . That is, (Y ∞i ) is a supermartingale.

4.2 Pseudo-algorithm

Let us assume we are in a Markovian setting in which Assumption 2.7 is satisfied. Further assume that we
are given an input stopping family (σi) satisfying (4.1). Such a family may be obtained, for example, by the
least squares method in Section 3 choosing some truncation level K if need be. That is, (σi) may be given
by

σi := inf
{
j ≥ i : Z(τj, Xτj) ≥ Ĉj(τj, Xτj ,Θτj)

}
. (4.8)

We then choose some window parameter κ ≥ 1 and improve this policy due to Proposition 4.1. We thus
have to compute on a particular trajectory at time τj in Xτj , j ≥ 0,

EGj [Uσk ] = EXτj
[
Z(τσk , Xτσk

)
]
, j ≤ k ≤ j + κ,

which can be done by sub-simulations: Starting at τ (n)
j in Xn,j ≡ X

(n)

τ
(n)
j

on an outer trajectory with number

n, n = 1, . . . , N, simulate, for m = 1, . . . ,M, sub-trajectories(
Xn,m,Xn,j

s

)
s≥τ (n)

j

,

and stopping times σn,mk , j ≤ k ≤ j + κ, according to (4.8). Then construct

σ̂
(n)
0 := inf

{
j ≥ 0 : Z(τ

(n)
j , Xn,j) ≥ max

j≤k≤j+κ

1

M

M∑
m=1

Z(τσn,mk , Xn,m,Xn,j

τ
σ
n,m
k

)

}
,

and compute

1

N

N∑
n=1

Z(σ̂
(n)
0 , X

(n)

σ̂
(n)
0

) ≈ E [Uσ̂0 ] = Y σ̂
0 ≥ Y σ

0 .
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5 Numerical Test Cases and Illustrations

In this section, we analyze our numerical methods in several examples. In our numerical analyses based on
random times LSMC, we consider only the first K̄ random times for each problem, where K̄ may depend on
the initial values and parameters chosen. From Section 3.1, we know that for the finite horizon approximation
to be ε-close, we need to ensure that

√
P(τK̄ ≤ T )B < ε, where E[supi∈N0

Z2
τi

] ≤ B2. We would like to
choose K̄ as small as possible. From (3.1) one easily verifies that, for any n with n > K ,

E [Un] = E
[
Zτn1{τn≤T}

]
+ E

[
Zτn1{τn>T}

]
≤ E

[
Zτn1{τK≤T}

]
≤ E

[
1{τK≤T} sup

i>K
Zτi

]
≤ E

[
1{τK≤T} sup

i∈N0

Zτi

]
≤
√

P (τK ≤ T )B < ε.

Hence, when relying on numerical simulation (rather than analytic computation), we observe that it suffices
to pick K̄ such that E[1{τK̄≤T} supi>K̄ Zτi ] < ε, which can lead to values of K̄ that are substantially

smaller than would be selected from
√

P(τK̄ ≤ T )B < ε. To this end, we obtain a simulation estimate
of E[1{τK̄≤T} supi>K̄ Zτi ] by using 100,000 paths (50,000 antithetic) and add two standard errors on top
of the estimated mean to be on the safe side. We then pick the smallest K̄ for which the resulting value
is smaller than ε = 0.001. In our numerical analysis using policy iteration, we take the window parameter
equal to K̄ in view of Corollary 4.2-(ii). Using the same value of K̄ across the different methods (primal,
dual, policy iteration) within the same example and the same parameter combination aids in ensuring a fair
comparison.

5.1 A benchmark example

For our first example, we consider a geometric Brownian motion with jumps, given for all t ≥ 0 by

Xt = X0e
(µ− 1

2
σ2)t+σWt+Nt ln(1+j),

with X0 > 0, µ ∈ R, σ > 0 and j > −1 known constants. The process W is a standard Brownian
motion and N is an (independent) Poisson process with intensity λ̃. To illustrate the approach proposed in
this paper, we will analyze an optimal stopping problem with payoff e−r(s−t)(Xs)

η at time s ∈ [t, T ], for a
given power parameter η > 0 and discount rate r > 0. We suppose that stopping is only allowed at the first
K jump times of N , i.e., at times s ∈ ]t, T ] that satisfy Ns− < Ns ≤ K .

To investigate the performance of our method, we first derive the optimal strategy in closed form. In this
example, for ease of exposition the value function for the problem is denoted by vK(t, x, d) since the current
time t and x, the current value of X , are both components of Zt and it turns out to be convenient to express
the value in terms ofK , the (remaining) number of opportunities to stop. This includes the current opportunity
if stopping is allowed at the current time; the value of d indicates whether we can stop at a particular moment
(d = 1) or not (d = 0). The value at time zero, Y (K)

0 , is then given by vK(0, x, 0).

These definitions imply that v0 ≡ 0, since the value function is equal to zero when there are no opportunities
to stop left. We have for all K ≥ 1 that

vK(t, x, 1) = xη1{t≤T} ∨ vK−1(t, x, 0), (5.1)

because at a point in time where it is possible to stop, we either choose to receive the payoff at that time or
choose not to, in which case there will be one opportunity to stop less going forward. At moments where it is
not possible to stop, the value function will equal the discounted version of the value at the following possible
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stopping time, provided this next opportunity occurs before the time of maturity T , so for K ≥ 1,

vK(t, x, 0)

=

∫ T−t

0

λ̃e−(r+λ̃)uE
[
vK

(
t+ u, x(1 + j)e(µ−1

2
σ2)u+ξσ

√
u, 1

)]
du, (5.2)

with ξ ∼ N(0, 1). To solve equations (5.1)–(5.2), we substitute vK(t, x, 0) = xηeα(T−t)fK(T − t) with
α = µη+ 1

2
σ2η(η− 1)− (r+ λ̃). We impose that α > 0, which is assumed from now on. The substitution

implies that we have found a solution for the value function if for all K ≥ 0

fK+1(s) = λ

∫ s

0

(e−αu ∨ fK(u)) du,

with λ = λ̃(1 + j)η and f0 ≡ 0, which immediately gives that f1(s) = λ
α

(1− e−αs). Let s∗ be the solution
to f1(s) = e−αs so s∗ = ln(1 +α/λ)/α and define ζ := f1(s∗) = e−αs

∗
= λ/(λ+α). We use a further

Ansatz fK+1(s) = f1(s)1{s≤s∗} + zK+1(s− s∗)1{s>s∗} and conclude that this is a solution for K > 0 if

∂szK+1(s) = ∂sfK+1(s+ s∗) = λfK(s+ s∗) = λzK(s), zK+1(0) = ζ,

while for K = 0 we have

z1(s) = f1(s+ s∗) = λ
α

(1− e−αse−αs∗) = λ
α

(1− ζe−αs) = ζ + ζ λ
α

(1− e−αs).

A power series expansion gives

zK+1(s) = ζ
K∑
m=0

(λs)m

m!
+ ζ(−λ

α
)K+1

∞∑
m=K+1

(−αs)m
m!

= ζ ΓK+1(λs)

K!
eλs + ζ γK+1(−αs)

K!
(−λ
α

)K+1e−αs,

with ΓK+1 and γK+1 the upper and lower Gamma functions of orderK+ 1, respectively. The value function
must therefore be, for K ≥ 1,

vK(t, x, 0) = 1{t>T−s∗}x
η λ
α

(eα(T−t) − 1) (5.3)

+ 1{t≤T−s∗}x
η λ
α+λ

eα(T−t) ΓK+1(λ(T−t−s∗))
K!

eλ(T−t−s∗)

+ 1{t≤T−s∗}x
η λ
α+λ

eα(T−t) γK+1(−α(T−t−s∗))
K!

(−λ
α

)K+1e−α(T−t−s∗).

Since vK(t, x, 1) = xη1{t<T} ∨ vK−1(t, x, 0) stopping is optimal whenever t ≥ T − s∗ =: t∗ or when we
reach the last possible moment on which a payoff can be received (K = 1). The optimal stopping strategy
does not depend on K for K ≥ 2 but the value function does, since the number of exercise times we can
ignore before t∗ matters.

For K →∞, we find the value function for the case where we may exercise as often as we want:

v∞(t, x, 0) = 1{t>t∗}x
η λ
α

(eα(T−t) − 1) + 1{t≤t∗}x
η λ
α+λ

eα(T−t)eλ(T−t−s∗)

= 1{t>t∗}x
η λ
α

((1 + α
λ
)e−α(t−t∗) − 1) + 1{t≤t∗}x

ηe(λ+α)(t∗−t). (5.4)

Figure 1 shows scaled versions of the value function vK(t, x, 0)/xη for different characteristics of the arrival
process for exercise opportunities and different parameters of the geometric Brownian motion with jumps. We
notice that for the parameter values used here, the effect of allowing for at most 1, 3 or an unlimited number of
randomly arriving exercise opportunities is much smaller than the effect of changing the size of the downward
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T λ̃ µ K j True Primal (s.e.) Dual (s.e.)
3 1 0.2 1 -0.05 1.3112 1.3103 0.0007 1.3103 0.0007
3 1 0.2 3 -0.05 1.5250 1.5263 0.0010 1.5265 0.0010
3 1 0.2 ∞ -0.05 1.5448 1.5443 0.0010 1.5448 0.0010
1 1 0.2 ∞ -0.05 0.6910 0.6911 0.0004 0.6911 0.0004
3 2 0.5 ∞ -0.05 6.4685 6.4686 0.0048 6.4728 0.0052
3 1 0.2 ∞ 0.00 1.9639 1.9644 0.0013 1.9658 0.0014

Table 1: Randomized stopping of geometric Brownian motion with jumps.
Notes. This table displays the value of Y (K)

0 for the square of a geometric Brownian motion with jumps stopped at random times.

We suppose that random stopping opportunities for the payoff (Xt)
η with η = 2 coincide with jump times for X , which arrive

according to a homogeneous Poisson process with rate λ̃. The process X starts in X0 = 1 and has drift parameter µ, volatility

parameter σ = 20% and relative jump size j. Exercising is restricted to the first K Poisson events and to times before the

maturity T . If K = ∞, we restrict our attention to the first K̄ random times for each of the algorithms, where K̄ is chosen to

ensure that the truncation error ε is at most 0.001. The sixth column (marked “True”) shows the value function vK(0, x, 0) as

calculated in (5.3)–(5.4). The next two columns contain the value and standard error for the lower bound based on our random

times LSMC algorithm. The regression coefficients for the exercise policy are estimated using 200,000 paths. The primal, lower

bound estimate is then determined by evaluating this policy along 2,000,000 (new) paths. The last two columns display the value

and standard error for the upper bound, which is based on the dual algorithm, using the policy from the primal method. We use

1,500 paths and 10,000 sub-simulations along each path for this algorithm. The continuation values are estimated by regressing

on the variables φi(t)(xt)j , where φi denotes the i-th Laguerre polynomial, with i ∈ {0, 1, 2, 3, 4, 5}, j ∈ {0, 1, 2, 3}.

jumps or the expected number of exercise opportunities before maturity. The optimal stopping times in terms
of the remaining time to maturity, s∗, have been indicated by circles in Figure 1. They correspond to the
point in time at which the scaled value function equals one. As expected, stopping tends to take place later
(hence, s∗ is smaller) when the expected number of remaining exercise opportunities is larger and/or when
future values of the geometric Brownian motion with jumps have a higher expected value.

The explicit form of the value function makes this optimal stopping problem a suitable benchmark to test our
random times LSMC approach. Table 1 displays numerical results for Y (K)

0 = vK(0, x, 0) using different
values of the maturity T , jump intensity λ̃, drift parameter of the geometric Brownian motion µ, the allowed
number of moments to stop K and the relative jump size j. To facilitate comparison with examples in [2],
we take the same number of paths (200,000 from 100,000 antithetic samples) to estimate regression coef-
ficients and then estimate a lower bound for the value function by applying the stopping strategy based on
these coefficients to 2,000,000 (new) paths (1,000,000 antithetic). For our version of the dual method we
use 1,500 paths (750 antithetic) and 10,000 sub-simulations per path (5,000 antithetic). This is one tenth
of the number of sub-simulations in [2], since we found that this reduces the time for our computations by a
factor five, whereas standard errors are hardly effected by this modification.

We use 24 basis functions in the regression and the results in Table 1 show that for this benchmark example
with known theoretical values, this leads to lower and upper bound estimates that generate quite narrow
confidence intervals. They coincide in the first row of the table, since stopping at the earliest opportunity is
optimal.

We note that the standard errors are mainly determined by the lower bound computations since we take the
regression coefficients, and hence our approximated optimal policy, fixed when calculating the upper bound
estimates. The computation times are dominated by the calculations for the upper bound, since these require
many sub-simulations.
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Figure 1: Randomized stopping of geometric Brownian motions with jumps.
Notes. The scaled value function vK(t, x, 0)/xη is displayed for different remaining times to maturity T − t. The different lines

correspond to the cases shown in Table 1; see there for a description of the numerical procedure and assumptions. The black

circles indicate the remaining time to maturities s∗ = T − t∗ where it becomes optimal to stop, i.e., the times where vK(T −
s∗, x, 0) = xη . We notice that the second and third cases (the red and yellow lines) are almost indistinguishable.

5.2 A max-call on random times

In view of the good performance of our random times LSMC primal-dual algorithm in the benchmark exam-
ple, we now analyze the algorithm in a more complex example for which analytic reference values are no
longer available. We consider M jump-diffusions, interpreted as underlying asset prices driving the value of
potential investment projects, with dynamics governed by the following stochastic differential equations:

dXm
t = (r − δm − µmJ λmJ )Xm

t dt+ σmXm
t dWm

t + µmJ X
m
t− dNm

t , m = 1, . . . ,M,

where the Wm
t are independent standard Brownian motions, the Nm

t are independent homogeneous Pois-
son processes with arrival rates λmJ ≥ 0 and r, δm, µmJ ∈ (−1,∞) and σm ≥ 0 are deterministic
constants. The processes Wm

t and Nm
t are assumed to be mutually independent.

We consider the payoff of a max-call:

Zt =

{
e−rt (maxm=1,...,M Xm

t −K)+ , 0 < t ≤ T

0, otherwise
.

We suppose that the opportunities to stop are generated by a Poisson process over the interval [0, T ]. As
such, this example can be seen as (a multi-dimensional extension of) the finite horizon counterpart of the
perpetual call as considered e.g., in [8].

We start by considering opportunities to stop generated by a homogeneous Poisson process with rate λ
that is independent of all other processes described above. Following [2], we set r = 5%, δm = 10% and
σm = 0.2, for m = 1, . . . ,M .
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X0 λ Primal (s.e.) Dual (s.e.)
90 1 3.0870 0.0058 3.0917 0.0064
90 2 3.7346 0.0061 3.7392 0.0062
90 5 4.1626 0.0063 4.1854 0.0073

100 1 6.0708 0.0079 6.0726 0.0080
100 2 7.1100 0.0082 7.1151 0.0082
100 5 7.7242 0.0082 7.7520 0.0088
110 1 10.6437 0.0099 10.6462 0.0099
110 2 12.1099 0.0097 12.1164 0.0098
110 5 12.9234 0.0095 12.9535 0.0100

Table 2: Value of a call option on random times (M = 1).
Notes. This table displays the value of a call option with stochastic exercise opportunities. The payoff of this contract is max(Xt−
K, 0) with K = 100. The parameters are r = 5%, δ = 10%, σ = 20% and T = 3. Exercise opportunities arrive according

to a homogeneous Poisson process with rate λ that is independent of the asset price dynamics. The truncation error, numbers of

simulations and specification of the regression variables are identical to those in Table 1.

An appropriate choice of the basis functions that we employ in the LSMC regressions is crucial. Denote the
ordered asset prices byX(1)

t , . . . , X
(M)
t , where (1) refers to the largest and (M) to the smallest asset price

at time t. For M = 1, we use the 24 variables φi(t)xj , where i ∈ {0, 1, 2, 3, 4, 5} and j ∈ {0, 1, 2, 3}.
Here, φi denotes the i-th Laguerre polynomial. For M ≥ 2, we use the 51 variables φi(t)(x

(m)
t )j and

(x
(1)
t )j(x

(2)
t )k, where i ∈ {0, 1, 2, 3, 4, 5}, j, k ∈ {0, 1, 2, 3} and m ∈ {1, 2}.

Just like in the previous subsection, we use 200,000 simulated paths (100,000 antithetic) to estimate the
regression functions and 2,000,000 (1,000,000 antithetic) simulated paths to obtain a primal estimate for
the value function based on the random times LSMC policy. We then use 1,500 simulated trajectories (750
antithetic) to obtain dual estimates, where we use the random times LSMC policy to determine the martingale
increments. We use 10,000 sub-simulations (5,000 antithetic) along each of these trajectories to estimate
the conditional expectations required for the dual method.

We report the primal and dual estimates obtained using random times LSMC when λmJ ≡ µmJ ≡ 0 and
M ≡ 1 in Table 2. We observe that the differences between the primal and dual estimates, i.e., the duality
gaps, are typically (very) small and are generally increasing in the arrival rate of the opportunities to stop, λ.
The sizes of the duality gaps are typically substantially smaller than 1% of the price of the option, whereas
the relative standard errors are in the range 0.1% to 0.2%.

Next, we consider the case of multiple underlying assets in Table 3 (for M = 2) and Table 4 (for M = 5),
ceteris paribus. We find that the performance of our algorithm is robust when increasing the number of
underlying assets.

The results in Tables 3–4 may be viewed as the random times counterpart of Table 2 in [2], which considers
a Bermudan max-call option on the same underlying assets. More specifically, let us consider the case
M = 2 in Table 3 and compare our results to those in Table 2 of [2]. They consider 9 equidistant exercise
opportunities on the interval [0, 3], whereas in our setting there are in expectation λT = {3, 6, 15} times
at which the contract may be exercised. It is remarkable that, even for the case λ = 5, i.e., when there are
15 exercise opportunities in expectation, our estimated values are substantially lower than those in [2]: the
difference is about 0.50$, which amounts to 2.5% of the asset price. For λ = 2, this difference is even larger
than 1 dollar. This entails that there is a substantial premium on “market frictions”.

Finally, we analyze the performance of our algorithm when the underlying asset price dynamics includes
jumps. We report in Table 5 the primal and dual estimates obtained using random times LSMC when λmJ = 1
and µmJ = 0.06, for m = 1, . . . ,M , ceteris paribus. The results illustrate that the differences between the
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X0 λ Primal (s.e.) Dual (s.e.)
90 1 5.6876 0.0076 5.6950 0.0081
90 2 6.8617 0.0080 6.8754 0.0084
90 5 7.6772 0.0083 7.7168 0.0094

100 1 10.5710 0.0101 10.5769 0.0102
100 2 12.3455 0.0104 12.3607 0.0108
100 5 13.4558 0.0105 13.5195 0.0184
110 1 17.1219 0.0123 17.1269 0.0123
110 2 19.5328 0.0123 19.5600 0.0151
110 5 20.8970 0.0123 20.9724 0.0208

Table 3: Value of a max-call option on random times (M = 2).
Notes. This table displays the value of a max-call option with stochastic exercise opportunities on 2 independent geometric Brow-

nian motions X1
t , X

2
t . The payoff of this contract is max(maxm=1,2X

m
t − K, 0) with K = 100, where the dynamics of the

individual processes and exercise opportunities are as in Table 2. The truncation error and numbers of simulations are identical to

those in Table 2. For the specification of the regression variables, consider the ordered price processes where X(1)
t denotes the

largest price at time t and X(M)
t denotes the smallest price at time t. We then use the regression variables φi(t)(x

(m)
t )j and

(x
(1)
t )j(x

(2)
t )k, where i ∈ {0, 1, 2, 3, 4, 5}, j, k ∈ {0, 1, 2, 3} and m ∈ {1, 2}.

X0 λ Primal (s.e.) Dual (s.e.)
90 1 11.6716 0.0103 11.6791 0.0104
90 2 14.0658 0.0108 14.0987 0.0118
90 5 15.7416 0.0111 15.8176 0.0132

100 1 19.5441 0.0129 19.5669 0.0135
100 2 22.8863 0.0131 22.9397 0.0144
100 5 25.0735 0.0134 25.1935 0.0155
110 1 28.6483 0.0151 28.6904 0.0161
110 2 32.9037 0.0150 32.9806 0.0167
110 5 35.5506 0.0152 35.7108 0.0177

Table 4: Value of a max-call option on random times (M = 5).
Notes. This table displays the value of a max-call option with stochastic exercise opportunities on 5 independent geometric Brow-

nian motions X1
t , . . . , X

5
t . The payoff of this contract is max(maxm=1,...,5X

m
t −K, 0) with K = 100, where the dynamics of

the individual processes and exercise opportunities are as in Table 2. The truncation error, numbers of simulations and specifica-

tion of the regression variables are identical to those in Table 3.

primal and the dual estimates remain small, even in the presence of jumps in the asset price dynamics. The
standard errors are generally only slightly larger.

5.3 A max-call on asset price dependent random times

We now analyze the performance of our random times LSMC algorithm when the occurrence of exercise
opportunities is dependent on the evolution of the underlying asset price, in the spirit of Example 2.11(ii). In
particular, exercise opportunities are generated by a homogeneous Poisson process that is active only when
the lowest underlying asset price, X(M), lies above a certain threshold value, which we specify to be 80.
The remaining parameters are chosen as in the previous subsection. The numbers of simulated trajectories
are also identical to those in the previous subsection.

For M ≥ 2, we now use the following basis functions: φi(t)(x
(m)
t )j and (x

(m)
t )j(x

(n)
t )k, where i ∈

{0, 1, 2, 3, 4, 5}, j, k ∈ {0, 1, 2, 3} and m 6= n ∈ {1, . . . ,M}.
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X0 λ Primal (s.e.) Dual (s.e.)
90 1 6.2414 0.0083 6.2480 0.0085
90 2 7.5256 0.0087 7.5413 0.0107
90 5 8.3956 0.0090 8.4617 0.0168

100 1 11.2297 0.0108 11.2353 0.0109
100 2 13.1204 0.0111 13.1394 0.0133
100 5 14.2867 0.0113 14.4018 0.0608
110 1 17.7946 0.0130 17.8030 0.0131
110 2 20.3377 0.0131 20.3695 0.0157
110 5 21.7476 0.0131 21.8834 0.0592

Table 5: Value of a max-call option on random times with jumps in the underlying (M = 2).
Notes. This table displays the value of a max-call option with stochastic exercise opportunities on 2 independent geometric Brow-

nian motions with jumps X1
t , X

2
t . The payoff, dynamics of exercise opportunities and Brownian components of the processes

X1
t , X

2
t are identical to those in Table 3; for the jump components of X1

t , X
2
t , we take λmJ = 1, µmJ = 0.06, for m = 1, 2. The

truncation error, numbers of simulations and specification of the regression variables are identical to those in Table 3.

As is apparent from the left panels in Tables 6–8, the duality gaps remain small, confirming the good perfor-
mance of our algorithm.

X0 λ Primal (s.e.) Dual (s.e.) Andersen (s.e.) PI (s.e.)
90 2 3.7298 0.0061 3.7361 0.0064 3.6341 0.0059 3.7295 0.0103
90 4 4.0989 0.0063 4.1219 0.0074 3.9925 0.0059 4.0952 0.0109

100 2 7.0937 0.0082 7.1013 0.0083 6.9797 0.0078 7.0892 0.0136
100 4 7.6307 0.0082 7.6545 0.0090 7.5141 0.0078 7.6145 0.0139
110 2 12.1033 0.0097 12.1092 0.0098 11.9888 0.0095 12.0641 0.0160
110 4 12.7935 0.0095 12.8159 0.0099 12.6985 0.0092 12.8023 0.0168

Table 6: Value of a call option on asset price dependent random times (M = 1).
Notes. This table displays the value of a call option with stochastic exercise opportunities of which the arrival depend on the

underlying asset price Xt. The payoff and dynamics of the process Xt are identical to those in Table 2. Exercise opportunities

arrive according to a homogeneous Poisson process with rate λ ∈ {2, 4} as long as Xt ≥ 80. The left panel provides results

for random times LSMC. The truncation error, numbers of simulations and specification of the regression variables are identical

to those in Table 2. The right panel describes the results of the random times Andersen policy as described in Section 5.4.

Subsequently, one step of policy iteration is performed with a window parameter equal to K̄ .

X0 λ Primal (s.e.) Dual (s.e.) Andersen (s.e.) PI (s.e.)
90 2 3.9446 0.0064 3.9488 0.0065 3.8006 0.0061 3.9407 0.0115
90 4 4.5826 0.0067 4.6098 0.0101 4.3296 0.0062 4.5681 0.0138

100 2 9.4180 0.0093 9.4283 0.0096 9.0255 0.0086 9.4097 0.0198
100 4 10.5569 0.0095 10.5846 0.0105 9.9252 0.0086 10.5426 0.0222
110 2 17.2964 0.0116 17.3122 0.0121 16.5340 0.0107 17.2817 0.0277
110 4 18.8159 0.0116 18.8605 0.0134 17.7089 0.0105 18.6733 0.0301

Table 7: Value of a max-call option on asset price dependent random times (M = 2).
Notes. This table displays the value of a max-call option with stochastic exercise opportunities of which the arrival depend on the

underlying asset prices X1
t , X

2
t . The payoff and dynamics of the processes X1

t , X
2
t are identical to those in Table 3. Exercise

opportunities arrive according to a homogeneous Poisson process with rate λ ∈ {2, 4} as long as min{X1
t , X

2
t } ≥ 80. The left

panel provides results for random times LSMC. The truncation error, numbers of simulations and specification of the regression

variables are identical to those in Table 3. In the right panel, the algorithms are the same as those in Table 6.
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X0 λ Primal (s.e.) Dual (s.e.) Andersen (s.e.) PI (s.e.)
90 2 2.0032 0.0043 2.0454 0.0333 1.9804 0.0043 2.0106 0.0062
90 4 2.6713 0.0048 2.6823 0.0063 2.5971 0.0046 2.6945 0.0083

100 2 9.7759 0.0086 9.7793 0.0087 9.4475 0.0082 9.7932 0.0173
100 4 11.8653 0.0088 11.8826 0.0096 11.1532 0.0081 11.8678 0.0221
110 2 21.7111 0.0122 21.7313 0.0138 20.6577 0.0113 21.7473 0.0303
110 4 24.8285 0.0118 24.8642 0.0133 22.9580 0.0107 24.7423 0.0348

Table 8: Value of a max-call option on asset price dependent random times (M = 5).
Notes. This table displays the value of a max-call option with stochastic exercise opportunities of which the arrival depend on the

underlying asset prices X1
t , . . . , X

5
t . The payoff and dynamics of the processes X1

t , . . . , X
5
t are identical to those in Table 4.

Exercise opportunities arrive according to a homogeneous Poisson process with rate λ ∈ {2, 4} as long as minm=1,...,5X
m
t ≥

80. The left panel provides results for random times LSMC. The truncation error and numbers of simulations are identical to those

in Table 4. As regression variables, we use φi(t)(x
(m)
t )j and (x

(m)
t )j(x

(n)
t )k, where i ∈ {0, 1, 2, 3, 4, 5}, j, k ∈ {0, 1, 2, 3}

and m, n ∈ {1, . . . , 5}, m 6= n. In the right panel, the algorithms are the same as those in Table 6.

5.4 Policy Iteration

In this subsection, we analyze the performance of the policy iteration method developed in Section 4. For
comparison purposes, we consider the same problem as in Section 5.3, where the occurrence of exercise
opportunities is dependent on the evolution of the underlying asset price.

In Section 5.3, we saw that random times LSMC typically already leads to lower and upper bound estimates
that generate quite narrow confidence intervals for this example. That is, the random times LSMC approach
leaves little room for improvement in this example. To illustrate how policy iteration may improve upon a
sub-optimal initial policy, we will therefore consider policy iteration using a random times version of the policy
of Andersen [1] as initial policy. To determine this initial policy, we make use of the same truncation as that
outlined at the start of Section 5, i.e., we truncate after K̄ opportunities to stop. Formally, the Andersen
method aims at constructing an optimal “threshold policy” (σk) due to thresholds h0, . . . , hK̄ ≥ 0 of the
form

σk = inf
{
k ≤ j ≤ K̄ : Zτj ≥ hj

}
, k = 0, . . . , K̄,

which is initialized by hK̄ = 0 and σK̄ = K̄ . Then, given hk+1, . . . , hK̄ and σk+1, one defines recursively,

hk := arg max
h≥0

E
[
Zτk1{Zτk≥h} + Zτσk+1

1{Zτk<h}

]
, and

σk := k1{Zτk≥hk} + σk+11{Zτk<hk}.

The Monte Carlo analogue of this method due to sample trajectories n = 1, . . . , N is obtained as
follows. Initialize hK̄,N = 0 and σK̄,n = K̄, n = 1, . . . , N . Then, given hk+1,N , . . . , hK̄,N and
σk+1,n ∈

{
k + 1, . . . , K̄

}
, n = 1, . . . , N , set

hk,N := arg max
h≥0

1

N

N∑
n=1

(
Z(n)
τk

1{Z(n)
τk
≥h} + Z(n)

τσk+1,n
1{Z(n)

τk
<h}

)
, and

σk,n := k1{Z(n)
τk
≥hk,N}

+ σk+1,n1{Z(n)
τk

<hk,N}
for n = 1, . . . , N.

We implement the Andersen policy as follows. We generate N = 200,000 simulated paths (100,000 anti-
thetic) to estimate the sequence of constant thresholds h0, . . . , hK̄ . We then simulate 2,000,000 (1,000,000
antithetic) new paths, along which we follow this policy, to obtain a primal estimate of the value based on this
random times Andersen policy; this ensures comparability with the LSMC policy.
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For the policy iteration step, we then use 100,000 simulated outer paths (50,000 antithetic). The random
times Andersen policy gives us the initial stopping times (σi) required in Section 4.2. (Note that these follow
from the above construction of the random times Andersen policy and thus do not follow from the definition
in Eqn. 4.8, as we do not use an LSMC initial policy.) We set the policy iteration window parameter equal to
κ = K̄ . We now perform one step of policy iteration with 500 sub-simulations to obtain σ̂0 and subsequently
the expected payoff of following the iterated policy.

Tables 6–8 show that a one step improvement, by the method developed in Section 4, of the very simple
Andersen policy based on a threshold boundary, may lead to an improved policy that is qualitatively com-
parable with a policy constructed by random times LSMC using a large enough set of basis functions. If
the dimension of the underlying process is relatively low, the LSMC method will usually be faster, since the
simulation due to the iterated policy requires one degree of nesting. However, it is known that the LSMC
method suffers from the curse of dimensionality, in contrast to the policy iteration method. For instance, in
[4] it was demonstrated for an exotic cancelable coupon swap due to 20 underlying assets that the classical
Longstaff-Schwartz algorithm with even a huge number of basis functions did not give satisfactory results
(duality gaps of around 5% in relative terms). On the other hand, in [4] it was shown, for this example, that
a one step improvement of an input policy, obtained via the classical Longstaff-Schwartz algorithm with a
low number of basis functions, yields duality gaps of under 1.5% in relative terms, and moreover is up to
8 times faster. Undoubtedly, in the present context of randomly arriving opportunities, similar results can be
obtained. That is, for very high dimensional underlying processes, a combination of random times LSMC
with policy improvement may be much more efficient than running the LSMC algorithm alone. We consider
this an interesting issue for further study, but beyond the scope of the present paper.

6 Concluding Remarks and Outlook

In this paper, we have studied optimal stopping with randomly arriving opportunities. As solution approach,
we have recast the problem into a discrete-time infinite horizon problem. In this context, we have extended
the least squares method, the dual martingale method, and the policy improvement approach to optimal
stopping problems with infinite horizon. Naturally, in order to deal with multiple stopping with randomly arriving
opportunities, one may follow a similar path. In particular, the corresponding approaches for multiple stopping
with finite horizon in the literature, see for example [5] for regression methods, [23] for the dual martingale
representation, and [3] for policy iteration, may be extended to infinite horizon problems in the spirit of this
paper.
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