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Convergence for 2-dimensional catalytic SBM 1

Abstract

In contrast to the classical super-Brownian motion (SBM), the SBM

(X
%

t
)t�0 in a super-Brownian medium % (constructed in [DF96a]) is known

to be persistent in all three dimensions of its non-trivial existence: The

full intensity is carried also by all longtime limit points ([DF96a, DF96b,

EF96]). Uniqueness of the accumulation point, however, has been shown

so far only in dimensions d = 1 and d = 3 ([DF96a, DF96b]). Here we �ll

this gap and show that convergence also holds in the critical dimension

d = 2. We identify the limit as a random multiple of Lebesgue measure.

Our main tools are a self-similarity of X% in d = 2 and the fact that the

medium has \gaps" in the space-time picture. The self-similarity implies

that persistent convergence of X
%

t
as t!1 is equivalent to the absolute

continuity of X
%

t
at a �xed time t > 0. Absolute continuity however will

be obtained via the fact that in absence of the catalytic medium, X% is

smoothed according to the heat 
ow.
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1 Introduction

Consider continuous super-Brownian motion (%t)t�0 in Rd. Roughly speaking,

the super-Brownian motion X%
in the super-Brownian medium% is a continuous

super-Brownian motion in Rd with local branching rate \proportional to" %. A

construction can be found in [DF96a].

As a rule, both the catalyst process % and the reactant process X% will be

started at time zero from multiples `c = ic`, ic > 0, and `r = ir`, ir > 0,

respectively, of the normed Lebesgue measure ` on Rd.

In [DF96a] also the study of longtime behavior of X% was initiated, and

then continued in [DF96b] and [EF96]. From these papers it is known that

X% is persistent in all three dimensions d � 3 of its non-trivial existence. (In

d = 3 the catalyst process % was actually started from its stationary distribution
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rather than from `c at time zero; this simpli�cation is of course not possible in

lower dimensions where % clusters in the longtime limit, hence dies out locally.)

Here persistence means that all weak limit points of X
%

T as T ! 1 have the

full intensity measure `r again. In dimensions one and three the stronger result

of persistent convergence has been shown in ([DF96a, DF96b]). For dimension

d = 2 persistence of X% has been shown in ([EF96]). The approach of Etheridge

and Fleischmann is to show the relative compactness of the set

n
IP̀

c

�
(P

%

0;`r
(X

%

T )
2) 2 (�)

�
: T > 0

o

of laws of random second moments by p.d.e. methods. However, the uniqueness

of the limit point, and hence convergence, has not been established yet. The

main purpose of this paper is to show (persistent) convergence in dimension

d = 2 (Theorem 6 on p.14) with a proof that is independent of [EF96]. We do

so by �rst showing that for �xed time T > 0, the random measure X
%

T has a.s.

a density �
%

T w.r.t. the Lebesgue measure (Theorem 5). We make use of the

self-similarity of X% in dimension d = 2 to infer the convergence of X
%

T to a

random multiple of Lebesgue measure as T !1.

Heuristically, the catalyst process % can be thought of as a large number

of small particles, all moving around in Rd according to independent Brownian

motions. The particles die with a high rate and are replaced (independently) at

the location of their death by zero or two o�spring, each possibility occurring

with probability 1
2 (critical binary branching). The o�spring continue to evolve

in the same manner as their parent. In this \classical" setting, the rate at which

a particle dies is proportional to some positive constant 
 called the branching

rate. In other words, % arises as a di�usion approximation to a critical binary

branching Brownian motion with constant branching rate.

Concerning the reactant X%, the heuristic picture is the same except that the

reactant particles die only when they are in contact with a catalyst. Compare

with a chemical reaction di�usion system where the catalyst itself may vary

in time and space and may only be present in some localized regions such as

networks of �laments. Here we are interested in the case when the catalyst itself

is a super-Brownian motion (SBM) % with constant branching rate 
 > 0. As

mentioned above, we will take both initial states %0 and X
%
0 to be multiples of

the Lebesgue measure, `c and `r ; respectively.

A strong approach to this \one-way interaction" model can be made by

means of Dynkin's additive functional approach to superprocesses ([Dyn91]).

In fact, given the medium %, an intrinsic X%{particle (reactant) following a

Brownian path W branches according to the clock given by the collision local

time, L[W;%](ds), of W with % ([BEP91]). Somewhat more formally:

L[W;%](ds) := ds

Z
%s(dy) �y (Ws): (1)
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These collision local times L[W;%] make sense non-trivially in dimensions d � 3

([EP94]), although the measures %s(dy) are singular for d � 2 ([DH79]). For

this reason, in dimensions d � 3 the catalytic SBM X% could successfully be

constructed in [DF96a] as a continuous measure-valued (time-inhomogeneous)

Markov process (X%; P %
r;�), given the catalyst process % (quenched approach).

In particular, P
%

0;`r
denotes the law of the process X% (for % �xed) and IP̀

c
the

distribution of % if at time zero we start X% in `r and % in `c a.s. Averaging

the random laws P
%

0;`r
by means of IP̀

c
gives the annealed distribution

P`c;`r := IP̀
c
P
%

0;`r

of X%: (In d > 3; the model X% can be thought of as being only the heat 
ow.)

We are interested mainly in the critical dimension d = 2: Here the catalyst

%T dies out locally as T ! 1; and in the large regions without catalyst only

the smoothing heat 
ow acts on the reactant X%. On the other hand, a �nite

window of observation will be visited by increasingly large catalytic clumps at

arbitrarily large times (recall that the time averaged two-dimensional catalyst

% has a proper random limit despite local extinction, see, e.g., [FG86]). These

clumpsmainly act as killers for the reactant (recall that critical binary branching

with in�nite rate degenerates to a pure killing). But according to the main

result of [EF96, Theorem 1], the smoothing e�ect in catalyst free regions wins

this competition with the killing, leading to persistence: The intensity measure

`r of X
%

T is preserved also for all accumulation points (in law) as T !1:

The main result (Theorem 6) of the present note is that, in this critical

dimension two,X
%

T has a unique limit law as T !1;which moreover is given by

the distribution of some random multiple �
%
1` of Lebesgue measure `, where �

%
1

has non-zero variance. (Note that by persistence the expectation of �
%
1 is given

by the intensity ir of the reactant X
%

T
at any �nite time T .) This convergence

statement is in fact true with respect to the annealed law P`c;`r = IP̀ cP
%

0;`r
:

But concerning the quenched model, the convergence also holds formulated in

terms of convergence in distribution of the random laws P
%

0;`r
: However, for

�xed medium % one cannot expect convergence (since the mentioned random

ergodic limit theorem for % is not an almost sure statement).

Recall that in dimension one

X
%

T ��!
T"1

`r ; in P
%

0;`r
�probability; for IP̀ c�almost all %; (2)

([DF96a, Theorem 51]). Thus in dimension two we have additionally some

randomness in the limit and the convergence type, caused by the fact that the

catalyst process % dies out locally only in probability (opposed to dimension

one where with IP̀ c{probability one any �nite window is eventually vacant). In

particular, the limit law of X
%

T is not spatially ergodic.

Our proof is based on the self-similarity of the two-dimensional catalytic
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SBM X = X% :

K�1XKT (K
1=2 � ) L

= XT ; T;K > 0; (3)

with respect to the annealed distribution P`c;`r and also w.r.t. the random

laws P
%

0;`r
([DF96b, Proposition 13]). Here coincidence w.r.t. the random laws

P
%

0;`r
formally means that

IP̀
c

h
P
%

0;`r

h
K�1XKT (K

1=2 � ) 2 (�)
i
2 (�)

i
= IP̀

c

h
P
%

0;`r
[XT 2 (�)] 2 (�)

i
:

In particular, the self-similarity implies that

XT
L
= TX1(T

�1=2 � ): (4)

But as T ! 1; the r.h.s. is heuristically the asymptotic density �
%
1(0) of the

random measure X1 at the origin 0; times the Lebesgue measure `. Hence, as

noted in [DF96b, Remark 14], the self-similarity of X relates the question of

persistent convergence of XT as T !1 and absolute continuity of X1 .

The key to our results is indeed the fact (Proposition 3) that in dimensions

two and three, for IP̀
c
{almost all % and Lebesgue almost all space points z;

there is an (in�nitely divisible) element �
%
1(z) � 0 in the Lebesgue space L2 :=

L2(P
%

0;`r
) satisfying P

%

0;`r
�
%
1 (z) � ir and such that the L2{convergence

D
T d=2X

%
1

�
z + T�1=2 �

�
; '
E
��!
T"1

�
%
1(z)k'k1; ' 2 Ccomp

+ ; (5)

takes place. Here Ccomp
+ is the cone of all non-negative continuous functions

on Rd with compact support, h�; 'i abbreviates the integral R �(dx)'(x); and
k � k1 denotes the L1(`){norm. The reason behind this is that in dimensions

d � 2; for IP̀
c
{almost all % and almost all z we �nd a � = �(%; z) > 0 such that

%s (B�(z)) = 0; 1� � � s � 1; (6)

(Proposition 1), where B�(z) denotes an open ball in Rd of radius � centered at

z: Consequently, in a \backward neighborhood" of the time-space point [1; z];

the catalyst is absent. Roughly speaking, this implies that in this region only

the heat 
ow acts on the reactant X%. The smoothing e�ect of the heat 
ow

makes sure that the asymptotic density �
%
1(z) of the random measure X

%
1 at z

exists and that it has full expectation ir :

Now the L2{convergence (5) implies convergence in P
%

0;`r
{law of the ran-

dom measures T d=2X
%
1 (z + T�1=2 � ) towards the random multiple �

%
1(z) ` of

Lebesgue measure. Since �
%
1 (z) carries the full expectation, the random mea-

sure X
%
1 is absolutely continuous with P

%

0;`r
{probability one (see [DF95, Basic

Lemma 2.7.1]). This is our second result (Theorem 5).



Convergence for 2-dimensional catalytic SBM 5

Finally, we show in Theorem 9 that for IP̀
c
{a.a. % there exists an open

set Z
%
t � Rd such that the �eld f�%t (z) : z 2 Z

%
t g is locally L2(P

%

0;`r
){Lipschitz

continuous.

The rest of the note is laid out as follows. In Section 2 we recall the formal

characterization of the catalytic SBM X%, establish the fact that around \most"

time space point [t; z] there is no catalytic mass, and provide our key step, the

existence of an asymptotic spatial density at those [t; z]: Our main results are

formulated and proved in the �nal section.

For background on SBM we recommend [Daw93].

2 Preparations

2.1 Catalytic SBM

First we want to recall the formal characterization of the catalytic SBM in terms

of its Laplace transition functional.

Fix a number p > d with d the dimension of Rd; and introduce the reference

function

�p(x) :=
1

(1 + jxj2)p=2
; x 2 Rd: (7)

Write Bp+ for the set of all functions ' on Rd such that 0 � ' � c' �p for some

(�nite) constant c' : Let Mp denote the set of all (non-negative) measures �

de�ned on Rd such that h�; �pi =
R
�(dx)�p(x) < 1 (p{tempered measures).

Mp is endowed with the weakest topology such that the map � 7! h�; 'i is

continuous for ' = �p and for each ' 2 Ccomp
+ .

Fix a constant 
 > 0: By de�nition, the catalyst process % with branching

rate 
 is a continuous Mp{valued time-homogeneous Markov process (%; IP�)

with Laplace transition functional

IP� exp h%t ;�'i = exp h�;�u(t)i ; t � 0; � 2Mp ; ' 2 B p
+ : (8)

Here u = fu(t) : t � 0g = �
u(t; x) : t � 0; x 2 Rd

	
is the unique non-negative

solution to the basic cumulant equation

@

@t
u =

1

2
�u� 
 u2 on (0;1)� Rd (9)

with initial condition u(0; x) = '(x); x 2 Rd: (Where needed, `solution' has to

be understood in a mild sense.) In other words, % is a continuous (critical) SBM

with constant branching rate 
: It serves as our random medium (catalyst). From

now on assume %0 = ic ` = `c where ic > 0 is a �xed constant, the catalyst's

initial density. Note that under IP̀ c the expectation

IP̀ c %s � `c (10)
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of % is constant in time.

In order to characterize the catalytic SBM we have, roughly speaking, to

replace the constant rate 
 in (9) by the (randomly) varying rate %t(x); where

%t(x) is the generalized derivative
%t(dx)
dx (x) of the measure %t(dx): Because of

time-inhomogeneity, it is convenient to write the related formal equation in a

backward setting:

� @

@r
v
%
t (r; x) =

1

2
�v

%
t (r; x)� %r(x) v

%
t (r; x)

2; (11)

0 � r � t; x 2 Rd: Now the initial condition becomes a terminal condition:

v
%
t (t) = ': After a formal integration, we can rewrite (11) rigorously and prob-

abilistically as

v
%
t (r; x) = �r;x

�
'(Wt)� 


Z t

r

L[W;%](ds) v
%
t (s;Ws)

2

�
; (12)

0 � r � t; x 2 Rd; where �r;x is the law of (standard) Brownian motion W

starting at time r from x; and L[W;%] denotes the collision local time of W with %;

formally introduced in (1). Based on the �nite measure case [EP94], in [DF96a,

Theorem 42] it was demonstrated that this collision local time L[W;%] makes

non-trivially sense for IP̀ c{a.a. %; namely as a continuous additive functional of

Brownian motion W; provided that d � 3: Moreover ([DF96a, Proposition 6]),

for t; ' �xed, and IP̀ c{almost all %, there is a unique non-negative solution v
%
t

to (12). Finally ([DF96a, x 5.4]), for IP̀ c{a.a. %, there exists a continuous Mp{

valued time-inhomogeneous Markov process (X%; P %
r;�) with Laplace transition

functional

P %
r;� exp hX%

t ;�'i = exp h�;�v%t (r)i ; (13)

0 � r � t; � 2Mp ; ' 2 B p
+ ; and v

%
t the solution to (12). This is the catalytic

SBM X% with catalyst %; which was intuitively introduced in Section 1. As

a rule, we will start X% at time 0 from X
%
0 = ir ` = `r with ir > 0 a �xed

constant, the reactant's initial density.

Since the branching mechanism is critical, X% has expectation

P %
r;� hX%

t ;  i � h�; St�r i ;  2 B p; (14)

independent of the catalytic medium %: Here S = fSt : t � 0g is the semigroup

of Brownian motion. In particular,

P %

0;`r
X%
t � `r ; IP̀ c�a:a: %; (15)

independently of time. The variances (given %) related to (14) can be expressed

by

Var%r;� hX%
t ;  i = 2

Z
�(dx)

Z t

r

ds

Z
%s(dy) ps�r(y � x) (St�s )

2
(y) ; (16)
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see [DF96a, formula (95)] (the extension to signed functions  is easy to justify).

Here p denotes the Brownian transition density function:

ps(x) := (2�s)�d=2 exp
h
� jxj2

2s

i
; s > 0; x 2 R

d: (17)

In particular,

Var
%

0;` hX%
t ;  i = 2 ir

Z t

0

ds
D
%s ; (St�s )

2
E
: (18)

2.2 Catalyst free regions close to time-space points

The starting point for our development is the following observation:

Proposition 1 (catalyst free regions close to time-space points) Let

d � 2, and �x t > 0. Denote by Z
%
t the open set of all those z 2 Rd such that

there exists a � = �(%; z) 2 (0; t) with

sup
s2[t��;t]

%s (B�(z)) = 0: (19)

Then

IP̀ c

�
`
�
R
d n Z%t

�
= 0

�
= 1: (20)

In particular, by spatial translation invariance of IP̀ c , for �xed z 2 Rd; there

is a � = �(%; z) such that (19) holds for IP̀ c{almost all %.

Proof By a well-known scaling property of SBM (see, e.g., [FK94, Lemma

4.5.1]) we may take 
 = 1
2 for the catalyst's branching rate. Also, since the

IP̀ c{distribution of % is translation invariant in the space variable, it su�ces to

show

IP̀ c

�
` ((Z

%
t )

c \B1(0)) = 0
�
= 1: (21)

We may reformulate this as

IP̀ c

�
sup

s2[t��;t]
%s (B�(z)) > 0 for `�a:a: jzj < 1 and all � 2 (0; t)

�
= 0: (22)

We want to distinguish between the contributions to X
%
t from di�erent initial

regions.

1� (decomposition) For n;N � 1; write

An;N :=
n
x 2 Rd : N (n� 1) � jxj < Nn

o
;

and `n;Nc for the `restriction' 1An;N `c of `c to the ring An;N : Then, for N

�xed, % can be represented as the sum of independent SBM %n;N ; n � 1; on

Rd, where %n;N starts from the �nite measure `n;Nc :
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2� (negligible contribution from outside) Fix t > 0: First we want to show that

for each � > 0; X
n�2

IP̀ n;N
c

�
sup
s�t

%s
�
B�(0)

�
> 0

�
��!
N"1

0: (23)

For this purpose, we may assume that � > 2
p
t: Applying [DIP89, Theorem

3.3 (a)] (with R there replaced by �), we �nd a constant c = c(d; t) such that

for n � 2 and N > (� + 2) ;

IP̀ n;N
c

�
sup
s�t

%s
�
B�(0)

�
> 0

�

� c

Z
`n;Nc (dx)

�
jxj � (� + 1)

�d�2
exp

�
�
�
jxj � (� + 1)

�2
2t

�
:

Hence, for the sum in (23) we get the upper bound

c

Z
jxj�N

`(dx)
�
jxj � (� + 1)

�d�2
exp

�
�
�
jxj � (� + 1)

�2
2t

�
�!
N"1

0;

proving (23).

3� (main term) By the previous step, it su�ces to show that for N � 1 �xed,

(21) holds with IP̀ c replaced by IP̀ 1;N
c

:

Recall that t > 0 is �xed. From [Per89, Corollary 1.3] we know that the

closed support St (say) of the measure %t is a Lebesgue zero set, with IP̀ 1;N
c

{

probability one. Therefore almost every point of Rd does, with probability one,

not belong to the closed support St of %t :

If now % is a sample such that %t = 0; then IP̀ 1;N
c

{almost surely, %s = 0 for

all s < t su�ciently close to t; since the extinction time of Feller's branching

di�usion has a continuous law. Hence it remains to deal with the case %t 6= 0:

Now let z 2 B1(0) \ (St)
c and let �0 = �0(%; z) be such that B�0 (z) \ St = ;.

Fix 0 < " < 1=2. By Theorem 9.3.2.2 of [Daw93] there is a constant c = c(d; t)

such that IP̀ 1;N
c

{a.s. there exists a �00 = �00(%) 2 (0; t) such that for s 2 [t��00; t];

Ss � St + Bc(t�s)"(0) (24)

on the event f%t 6= 0g. We can reduce �00 > 0 such that even c (�00)" � �0

2 holds.

Then (19) is true with � :=
�
�0

2 ^ �00
�
; �nishing the proof.

Remark 2 (dimension one) A property as in Proposition 1 is not valid in

dimension one since there % has a jointly continuous density �eld (see, e.g.,

[KS88]). 3
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2.3 Key step: asymptotic density of X
%

t
at points in Z

%

t

Recall the open set Z
%
t of `full' Lebesgue measure introduced in Proposition 1.

Here we want to prove the following result.

Proposition 3 (asymptotic density at points in Z
%
t ) Let d = 2 or 3; and

�x t > 0: For IP̀ c{almost all % the following holds. For each z 2 Z
%
t ; there is

an element �
%
t (z) � 0 in the Lebesgue space L2 = L2(P

%

0;`r
) with expectation

P
%

0;`r
�
%
t (z) � ir > 0 (25)

and variance

0 < Var
%

0;` �
%
t (z) = 2 ir

Z t

0

ds

Z
%s(dy) p

2
t�s(z � y) < 1 (26)

and such that the L2{convergenceD
Kd=2X%

t

�
z +K�1=2( � )

�
; '
E
��!
K"1

�%t (z) k'k1; ' 2 Ccomp
+ ; (27)

takes place. In particular, for z 2 Rd �xed, �
%
t (z) exists with those properties,

for IP̀ c{a.a. %:

The idea of proof of Proposition 3 is to de�ne �
%
t (z) as the L2{limit of

S"Xt�"(z) as " ! 0, where, by an abuse of notation, the continuous density

function of the absolutely continuous measure S"Xt�" is denoted by the same

symbol S"Xt�" : However we �rst have to show the existence of the L2{limit,

more precisely, of the L2{limit in (27).

For ' 2 Ccomp
+ ; de�ne the contractions

'K(y) := Kd=2'(K1=2y); y 2 R
d; K � 1; (28)

and shifts

�z'(y) := '(y � z); y; z 2 R
d: (29)

Lemma 4 (existence of theL2{limit) For d = 2; 3; and t > 0 �xed, for

IP̀ c{almost all % the following holds. For each ' 2 Ccomp
+ and z 2 Z

%
t ; there

exists an element Y %
t;z(') in L2 = L2(P %

0;`r
) such that

hX%
t ; �z'Ki ��!

K"1
Y
%
t;z(') in L2

holds. Y
%
t;z(') has expectation

P
%

0;`r
Y
%
t;z(') = ir k'k1 (30)

and variance

Var
%

0;`Y
%
t;z(') = 2 ir k'k21

Z t

0

ds


%s ; �zp

2
t�s

�
< 1: (31)
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Proof By the expectation and variance formulas (15) and (18), respectively,

P
%

0;`r
hX%

t ;  i2 =: khX%
t ;  ik22 = h`r ;  i2 + 2 ir

Z t

0

ds
D
%s ; (St�s )

2
E
; (32)

 2 Ccomp: Later we want to apply this to  = �z('K � 'L); for K;L � 1 and

z 2 Z
%
t , in which case h`r ;  i = 0:

1� (choice of samples %) Fix t > 0: First we want to specify a set R = R(t) of

samples % for which the lemma holds. Set

R0 :=
n
% :

Z t

0

ds h%s; p16(t�s)i <1
o
; R00n :=

n
% :

Z t

0

ds %s(Bn(0)) <1
o
;

n � 1: Note that IP̀
c
(R0) = 1 = IP̀

c
(R00n), n � 1, since

IP̀
c

Z t

0

ds h%s; p16(t�s)i = t ic ; IP̀
c

Z t

0

ds %s(Bn(0)) = t `c(Bn(0));

where we used (10). Now let

R :=
n
% : `

�
(Z

%
t )
c�

= 0
o
\ R0 \

1\
n=1

R00n (33)

with Z
%
t from Proposition 1. Clearly IP̀

c
(R) = 1. We will show that the

assertions of the lemma hold for % 2 R.
2� (preliminary estimates) For the moment, �x N � 1: For � > 0 and K >

4N2=�2, there is a constant c(�) such that

ps

�
K�1=2y + z � x

�
� (2�s)�d=2 exp

h
� �2

8s

i
� c(�); (34)

s > 0; jz � xj � �; jyj � N: This implies for K > 4N2=�2 that

sup
jz�xj� �

Ss�z'K (x) � c(�) k'k1 ; s > 0: (35)

On the other hand, for jz � xj � �, K > 4N2=�2; and s > 0,

(Ss�z'K ) (x) � k'k1 sup
n
ps(y + z � x) : jyj < �=2

o

� k'k1 2d p4s(z � x);

(36)

since for x and y in that range

jy + z � xj � jz � xj � �

2
� jz � xj

2
:
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3� (an "{error term) Now �x % 2 R; z 2 Z
%
t ; and � = �(%; z) according

to Proposition 1 such that (19) holds. Take " = "(%) 2 (0; �); and assume

K > 4N2=�2: Write A%
" for the closed support of the measure ds

��
[t�";t]

%s(dx)

on [t�"; t]�Rd: Note that [t�"; t]�B�(z) and A%
" are disjoint. By Proposition

1, (35), and (36), for (s; x) 2 A%
" ,

St�s�z'K (x) �
h
c(�) k'k1

i
^
h
2d k'k1 p4(t�s)(z � x)1fjz � xj � �g

i
: (37)

Therefore, using both parts of the r.h.s.,

Z t

t�"

ds


%s ; (St�s�z'K)

2
�

� 2d c(�) k'k21
Z t

t�"

ds

Z
jz�xj� �

%s(dx) p4(t�s)(z � x):

(38)

In the interior integral we distinguish between jz � xj � jxj

2 and the opposite.

In the �rst case, the (restricted) double integral can be estimated from above

by Z t

0

ds

Z
%s(dx) p4(t�s)(x=2): (39)

In the other case, using that jz � xj < jxj

2 implies jxj < 2jzj; we get the upper
bound

Z t

0

ds

Z
jxj� 2jzj

%s(dx) (8�(t � s))
�d=2

exp

�
� �2

8(t� s)

�

� c(�)

Z t

0

ds

Z
jxj �2jzj

%s(dx);

(40)

where we used the second inequality in (34). By the assumption % 2 R, the

double integrals in (39) and in the second line of (40) are �nite. Hence, the

second line in (38) is �nite which implies that

lim
"#0

lim sup
K"1

Z t

t�"

ds


%s ; (St�s�z'K)

2
�
= 0; % 2 R: (41)

Therefore it su�ces to deal with the remaining part of the integral in (32), for

the originally chosen " = "(%).

4� (further preliminary estimates) Let x; y; z 2 Rd; and 0 � s � t � " with

" > 0: If jy + z � xj � jxj

2 ; then

pt�s(y + z � x) � 2d p4(t�s)(x): (42)
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In the opposite case we get jxj � 2jy + zj implying

jy + z � xj2 � jxj2� 2 jxj jy+ zj � jxj2 � 4 jy + zj2;

hence

pt�s(y + z � x) � 2d p4(t�s)(y + z � x) � exp
h jy + zj2
2(t� s)

i
2d p4(t�s)(x): (43)

If we additionally assume that jyj � N; then we can (42) and (43) combine to

pt�s(y + z � x) � exp
hN2 + jzj2

"

i
4d p16(t�s)(x); (44)

0 � s � t � "; " > 0:

5� (domination for the main term) Let ' 2 Ccomp
+ and choose N � 1 such

that supp ('K) � BN (0); K � 1: Then, for x; z 2 Rd; 0 � s � t � "; and

" > 0; from (44) and the trivial estimate pt�s(x) � (2�")�d=2 we infer that for

K � 1,

(St�s�z'K)
2 (x) � k'k21 (2�")�d=2 exp

hN2 + jzj2
"

i
4d p16(t�s)(x):

Note that for % 2 R this upper bound is integrable w.r.t. ds
��
[0;t�"]

%s(dx):

6� (Cauchy sequence) From the pointwise convergence

St�s�z('K � 'L) (x) ���!
K;L"1

0; t� s > 0; x; z 2 R
d;

by dominated convergence we conclude that for t� " > 0; % 2 R; and z 2 Rd;

Z t�"

0

ds
D
%s; (St�s�z('K � 'L))

2
E
���!
K;L"1

0: (45)

Together with (41), k hX%
t ; �z('K � 'L)i k22 ! 0 as K;L ! 1; for the �xed

t > 0; % 2 R; and z 2 Z
%
t : That is, there exists the L

2{limit of hX%
t ; �z'Ki as

K !1; denoted by Y
%
t;z(').

7� (moment formulas) By (32) (with  = �z'K ), and again dominated con-

vergence,

kY %
t;z(')k22 = h`r ; 'i2 + 2 ir

Z t

0

ds
D
%s ; lim

K!1
(St�s�z'K)

2
E

= i2r k'k21 + 2 ir k'k21
Z t

0

ds


%s ; �zp

2
t�s

�
< 1:
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Since L2{convergence implies L1(P
%

0;`r
){convergence, from (15) we conclude for

the claimed expectation (30) of Y
%
t;z('): Combined with the just derived second

moment formula, the variance formula (31) follows too, �nishing the proof.

Proof of Proposition 3 Let t > 0; and �x % such that the assertions in

Lemma 4 hold. Take z 2 Z
%
t ; ' 2 Ccomp

+ ; and recall the notation 'K of (28). It

is easy to see that for 0 < " < t;



S"X

%
t�" ; �z'K

� ��!
K"1

(S"X
%
t�")(z) k'k1 in L2: (46)

By the Markov property (applied at time t�"); and the expectation and variance
formulas (14) and (16), respectively,




S"X%
t�" ; �z'K

�
� hX%

t ; �z'Ki


2
2

= P
%

0;`r
2

Z
X
%
t�"(dx)

Z t

t�"

ds

Z
%s(dy) ps�(t�")(y � x) (St�s�z'K)

2(y)

= 2 ir

Z t

t�"

ds


%s; (St�s�z'K)

2
�
:

But the latter integral converges to 0 as �rst K " 1 and then " ! 0 (recall

(41)). Hence, by (46), k'k1S"X%
t�"(z) is a Cauchy sequence in L2 as " ! 0

with the limit denoted by k'k1 �%t (z): Clearly k'k1�%t (z) = Y
%
t;z(') a.s., with

Y %
t;z(') from Lemma 4. Thus the moment formulas (25) and (26) follow from

(30) and (31), respectively. This �nishes the proof.

3 Main results

3.1 Absolutely continuous states

According to the results in [DFR91], the one-dimensional catalytic SBM X% has

absolutely continuous states (recall that the one-dimensional % has IP̀
c
{almost

surely a jointly continuous density �eld). In contrast to the classical higher-

dimensional SBM, the catalytic SBM X% shares this property also in the other

dimensions:

Theorem 5 (absolutely continuous states) In dimensions d = 2; 3; for

t > 0 �xed and IP̀ c{almost all %; the random measure X
%
t is absolutely contin-

uous, P
%

0;`r
{a.s. Hence, X

%
t is absolutely continuous P`c;`r{a.s.

Proof Fix t > 0: According to Propositions 1 and 3, IP̀ c{almost surely the

asymptotic density �
%
t (z) exists for all z in the complement Z

%
t of a Lebesgue

zero set:

hX%
t ; �z'Ki ��!

K"1
�
%
t (z) in P

%

0;`r
�law; z 2 Z

%
t ; (47)
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for a �xed ' 2 Ccomp
+ with k'k1 = 1: Moreover, P

%

0;`r
�
%
t (z) � ir . Hence

with Lemma 2.7.1 from [DF95], it follows that X
%
t is absolutely continuous

with P
%

0;`r
{probability one (note that the �niteness assumption on the initial

measure imposed in [DF95] can easily be removed).

The second claim follows immediately by mixing the random laws P
%

0;`r
by

means of IP̀ c .

3.2 Persistent convergence in dimension two

Recalling Proposition 3, for convenience, we set �% := �
%
1(0):

Theorem 6 (persistent convergence in d = 2) In dimension d = 2; the

convergence

X%

T
��!
T"1

�%` (48)

holds in law with respect to both the annealed distribution P`c;`r and with respect

to the random laws P
%

0;`r
: Moreover, IP̀ c{almost surely, �% has expectation

P
%

0;`r
�% � ir (49)

(persistence) and variance

0 < V ar
%

0;`r
�% = 2 ir

Z 1

0

ds


%s ; p

2
1�s

�
< 1; (50)

whereas the P`c;`r{variance of � = �% is in�nite.

Here the phrase

X
%

T ��!
T"1

�%` with respect to the random laws P
%

0;`r
(51)

can be expressed more formally as follows. Given %; let Q
%

T and Q%
1 denote

the laws of the random measures X
%

T and �%`; respectively. Let QT and Q1

refer to the distributions of the random laws Q
%

T and Q%
1 ; respectively, (the

randomness coming from the medium % distributed by IP̀ c): Then the desired

more formal expression for (51) is

QT converges weakly to Q1 as T !1: (52)

Convergence in law w.r.t. the annealed law instead means the weak conver-

gence

IP̀ cQ
%

T ��!
T"1

IP̀ cQ
%
1 :

Remark 7 (convergence concepts) Whereas in Proposition 3 the conver-

gence claim (27) is true for almost all %; this strong convergence concept is lost

in establishing (48) by the transition in law during exploiting self-similarity. 3
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Proof of Theorem 6 By Proposition 3, for IP̀
c
{almost all %,

hX%
1 ; 'Ki ��!

K"1
�% k'k1 ; ' 2 Ccomp

+ ; (53)

in P
%

0;`r
{law, where �% has expectation (49) and P

%

0;`r
{variance (50). Hence (53)

holds in P`c;`r{law. By self-similarity in the variant (4),

hX%

T
; 'i ��!

T"1
�%k'k1 ; ' 2 Ccomp

+ ;

in P`c;`r{law and with respect to the random laws P
%

0;`r
: (Recall that the latter

statement can more formally expressed in the spirit of the reformulation of (51)

to (52).) Since Ccomp
+ is convergence determining, and the exceptional set of %

concerning (53) is independent of '; statement (48) holds.

We still have to show that the P`c;`r{variance of �% is in�nite. By de�nition,

it is given by

P`c;`r(�%)2 � (P`c;`r�%)2 = IP̀ cP
%

0;`r
(�%)2 � (IP̀ cP

%

0;`r
�%)2: (54)

But by (49), the second term at the r.h.s. can be written as IP̀
c
(P

%

0;`r
�%)2:

Therefore (54) can be continued with

= IP̀ cVar
%

0;`r
�% = 2 ir

Z 1

0

ds h`c; p21�si

where we exploited (50) and (10). Using the identity p2r =
1

4�r pr=2 ; we arrive

at

=
ir

2�

Z 1

0
ds

1

1� s



`c; p(1�s)=2

�
=

iric

2�

Z 1

0
ds

1

1� s
= 1:

This completes the proof.

Remark 8 (lattice model) It can be expected that in the two-dimensional

simple branching random walk in the simple branching random medium the

analogous statement to Theorem 6 holds with the limit population �%` replaced

by a mixed Poisson system (homogeneous Poisson point process with random

intensity). 3

3.3 Local L2{Lipschitz continuity of �
%

t

In this �nal subsection we establish the following L2{continuity property of

the asymptotic densities �
%
t (z) (from Proposition 3) in the space coordinate z

running in Z
%
t (from Proposition 1).

Theorem 9 (Local L2{Lipschitz continuity of �
%
t ) Let d = 2 or 3: Fix

t > 0: For IP̀ c{a.a. %; the �eld f�%t (z) : z 2 Z
%
t g of asymptotic densities is
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locally L2(P
%

0;`r
){Lipschitz continuous: For IP̀

c
{a.a. % and any compact set

D � Z
%
t there exists a constant c = c(%;D) such that

k�%t (z2)� �
%
t (z1)k2 � c jz2 � z1j; z1; z2 2 D: (55)

Proof 1� (reduction) Note that by compactness it su�ces to show that for

IP̀
c
{a.a. % and each z0 2 Z

%
t there exists an " = "(%; z0) > 0 and a constant

c = c(%; z0 ; ") such that

k�%t (z2)� �
%
t (z1)k2 � c jz2 � z1j; z1; z2 2 B"(z0): (56)

2� (estimates for grad ps) For s > 0 and x 2 Rd;

jgrad ps(x)j =
jxj
s
ps(x);

hence

jgrad ps(x)j � 2 ps(x); if jxj � 2s: (57)

On the other hand, for jxj � s=2 (that is 1 � 2jxj=s);

jgrad ps(x)j � 4s�1
jxj2
2s

ps(x) � 4s�12d=2 p2s(x); (58)

since re�r � e�r=2 for r � 0:

3� (a heat kernel estimate) We will also need the following simple estimate.

Consider x 2 Rd and s > 0: Let 0 < � � jxj _ s and y 2 B�=2(0): If jxj � �

then jx+ yj � jxj � jyj � jxj � �
2 �

jxj

2 ; hence

ps(x+ y) � 2d p4s(x):

In the opposite case, jxj < � (hence s � �) ,

jx+ yj2 �
�
jxj � �

2

�2
� jxj2 � jxj � � jxj2 � �2;

which together with s � � implies (as in (43))

ps(x+ y) � 2d e�=8 p4s(x): (59)

Therefore (59) holds for s; �; x; y satisfying 0 < � < jxj _ s and y 2 B�=2(0):

4� (suitable catalyst samples) Denote by Q the set of rational numbers, and

put Q++ := fq 2 Q : q > 0g : Fix t > 0: For q 2 Q++ and z 2 Qd; set

Rq;z :=
n
% :

Z t

0
ds



%s ; �zpq(t�s)

�
<1

o
; R :=

\
z2Qd; q2Q++

Rq;z :
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Since IP̀
c

R t
0 ds



%s ; �zpq(t�s)

�
= t ic <1; each Rq;z has the full IP̀ c

{measure,

hence IP̀
c
(R) = 1: From now on in this proof, we restrict to % 2 R:

Note that Z
%
t is open in Rd and Qd dense in Rd. Hence by (59) we get that

for % 2 R; z0 2 Z
%
t ; and q 2 Q++ ,

Z t

0

ds


%s; �z0pq(t�s)

�
< 1: (60)

In fact, for z0 2 Z
%
t ; let �0 be as in Proposition 1 and choose z 2 Qd with

jz � z0j < �0=3: Hence z ful�lls (19) with � := 2
3�
0. Thus by (59) for % 2 R,

C(%; z0; q) :=

Z t

0

ds


%s; �z0pq(t�s)

�
(61)

=

Z t

0

ds

Z
%s(dx) �zpq(t�s)(x + (z � z0))1f� � s _ jxjg

� 2d e�=8
Z t

0

ds


%s; �zp4q(t�s)

�
< 1:

5� (an estimate away from z0) Fix % and z0 2 Z
%
t as well as � = �(%; z0)

according to Proposition 1. De�ne " = "(%; z0) :=
1
4�(%; z0). For the rest of this

proof we will consider z1; z2 2 B"(z0).

Take ' 2 Ccomp
+ with k'k1 = 1; and closed support contained in B1(0):

Recall the notation 'K of (28). We want to estimate jSs (�z2'K � �z1'K)j for
K > 16=�2 (implying supp('K ) � B�=4(0)).

Start with���Ss (�z2'K � �z1'K)
��� (x)

� sup
n���ps(y + z2 � x)� ps(y + z1 � x)

��� : y 2 B�=4(0)
o
;

(62)

s 2 [0; t]; x 2 Rd: By the mean value theorem, this inequality can be continued

with

� jz2 � z1j sup
n
jgrad ps(y)j : y 2 B�=2(x� z0)

o
: (63)

If our consideration is now restricted to jx� z0j � �; we arrive at

� jz2 � z1j sup
n
jgrad ps(y)j : jyj �

jx� z0j
2

o
;

and, by using (58), an additional restriction to jx� z0j � s gives

� jz2 � z1j 4s�12d=2 p2s
�x� z0

2

�
= jz2 � z1j 4s�18d=2 p8s(x� z0):

Set

c1(�) := 16 � 8d sup
n
s�2 p8s(y) : s > 0; jyj � �

o
:
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Note that c1(�) <1: Then, altogether, for s 2 [0; t] and jx� z0j � (� _ s),
���Ss (�z2'K � �z1'K)

���2(x) � jz2 � z1j2 c1(�) p8s(x� z0): (64)

6� (an estimate close to z0) Recall that by (62) and (63),

���Ss (�z2'K � �z1'K)

��� (x) � jz2 � z1j sup
n
jgrad ps(y)j : y 2 B�=2(x� z0)

o
:

Further, by (57), for s 2 [�; t] and jx� z0j � s (note that jyj � 2s); the r.h.s.

of this expression is dominated by

jz2 � z1j 2 sup
n
ps(y) : y 2 B�=2(x� z0)

o
:

From here we get the trivial estimate

���Ss (�z2'K � �z1'K)

��� (x) � jz2 � z1j ��d=2:

Further, by (59) we get the inequality

exp
h
� jyj2

2s

i
� e�=8 exp

h
� jx� z0j2

8s

i
:

Hence ���Ss (�z2'K � �z1'K)
��� (x) � jz2 � z1j 2d e�=8 p4s(x� z0):

If we let c2(�) := 2d ��d=2e�=8; we can combine both estimates to

���Ss (�z2'K � �z1'K)

���2(x) � jz2 � z1j2 c2(�) p4s(x� z1); (65)

s 2 [�; t]; jx� z0j � s.

7� (�nal steps) Recall C(%; z0; q) from (61). Set

c(%; z0; ") :=
�
c1(�)C(%; z0; 8) + c2(�)C(%; z0; 4)

�1=2
: (66)

By the expectation and variance formulas (15) and (18), respectively,




DX%
t ; �z2'K � �z1'K

E


2
2
= 2 ir

Z t

0

ds
D
%s;

�
St�s (�z2'K � �z1'K)

�2E
:

We distinguish between jx � z1j � (t � s) _ � and the opposite. In the latter

case we additionally distinguish between s 2 [t � �; t] and the remaining case.
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Then we obtain

= 2 ir

Z t

0

ds

�
%s;

�
St�s (�z2'K � �z1'K)

�2
1(B(t�s)_�(z0))

c

�

+ 2 ir

Z t��

0

ds

�
%s;

�
St�s (�z2'K � �z1'K)

�2
1Bt�s(z0)

�

� jz2 � z1j2 c(%; z1; ")2:

Hence

k�t(z2)� �t(z1)k2 � lim sup
K!1




DX%
t ; �z2'K � �z1'K

E



2

� jz2 � z1j c(%; z1; "):

This �nishes the proof.
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