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Square waves and Bykov T-points in a delay algebraic model for
the Kerr-Gires-Tournois interferometer

Mina Stöhr , Elias R. Koch , Julien Javaloyes , Svetlana V. Gurevich, Matthias Wolfrum

Abstract

We study theoretically the mechanisms of square wave formation of a vertically emitting micro-
cavity operated in the Gires-Tournois regime that contains a Kerr medium and that is subjected to
strong time-delayed optical feedback and detuned optical injection. We show that in the limit of
large delay, square wave solutions of the time-delayed system can be treated as relative homoclinic
solutions of an equation with an advanced argument. Based on this, we use concepts of classical
homoclinic bifurcation theory to study different types of square wave solutions. In particular, we
unveil the mechanisms behind the collapsed snaking scenario of square waves and explain the
formation of complex-shaped multistable square wave solutions through a Bykov T-point. Finally
we relate the position of the T-point to the position of the Maxwell point in the original time-delayed
system.

The formation of complex patterns can be observed in a huge variety of nonlinear
systems. Usually, they are described as spatial patterns in systems of partial differential
equations. However, also in certain time delay systems, for example modeling optical
and optoelectronic systems with a feedback loop, similar phenomena can be observed
in a purely temporal evolution without any spatial variables. This analogy of time-delay
systems in the regime of large delay and spatially extended system has been discussed in
many aspects and dynamical phenomena as for example solitons and localized structures,
weakly interacting pulses, or coexisting wave patterns have been studied. Here, we
present another example of this analogy: a delay-algebraic equation modeling a vertical
external-cavity Kerr-Gires-Tournois interferometers in presence of anti-resonant injection.
In this system we observe the formation of complex coexisting square-wave patterns
that are organized in a structure of snaking branches around a Maxwell point. We will
elaborate a methodology how they can be systematically studied. As in the case of similar
spatial patterns, it is based on homoclinic bifurcation theory and numerical path following
methods.

1 Introduction

Real-world complex systems can be strongly influenced by time delays due to unavoidable finite signal
propagation speeds and time-delayed systems have proven to be a fertile framework for the modeling of
the resulting nonlinear dynamical phenomena [1, 2]. A typical delay induced dynamical phenomenon is
the formation of square wave (SW) oscillations if the delay time is sufficiently large. These are periodic
solutions consisting of sharp transitions between two (or more) alternating plateaus. SWs have been
studied extensively from a mathematical point of view [3, 4, 5, 6] and also found applications such as
optical clocks in signal processing, communication systems [7, 8] or optical sensing [9]. They have
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been observed experimentally and analyzed theoretically in several optical and opto-electronic systems,
e.g., vertical-cavity surface-emitting lasers [10, 11], edge-emitting diode lasers [12, 13], semiconductor
ring lasers [14, 15], and quantum dot lasers[16], to name just a few. In the framework of time-delayed
systems, SWs typically appear in the regime of large delay via a supercritical Andronov-Hopf (AH)
bifurcation with a 50% duty cycle and a period of approximately twice the delay [17, 15]. Additionally,
asymmetrical SWs as well as SWs with a period close to once the delay have been observed in e.g., a
broadband bandpass optoelectronic oscillator [18].

However, another mechanism of SW formation was reported recently in nonlinear vertical external-
cavity-Gires-Tournois interferometers [19] enclosed into a long external feedback cavity in the presence
of anti-resonant injection. There, it was demonstrated that in the normal dispersion regime SWs can
appear via a collapsed snaking scenario [20, 21], when either Kerr [22] or semiconductor quantum
well [23] nonlinearities are employed. This leads to the formation of complex-shaped multistable SW
solutions. Indeed, due to the oscillatory tails induced by the dispersive microcavity [24], moving fronts
between different plateau solutions can lock at several positions in the vicinity of the so-called Maxwell
point, where the two fronts have the same speed and their dynamics is arrested. In the same optical
system but with resonant optical feedback, dark and bright temporal localized states (TLSs) are shown to
appear via the locking of domain walls between bistable continuous wave background states [25, 26, 27].
TLSs possess a period close to the round-trip in the external cavity, and, like in the case of SWs, they
can interlock at multiple equilibrium distances resulting in a collapsed snaking bifurcation scenario.
Note that the collapsed snaking has been observed in many different physical systems, ranging from
the dynamics of thin liquid films and flame propagation to the vegetation patterns and optical pulses,
see e.g. [28, 29, 30, 31, 32, 33].

Recently, it was shown that in the framework of time-delayed systems and in the long delay limit, TLSs
can be treated as homoclinic solutions of an equation with an advanced argument which determines
the TLS profile [34]. This so-called profile equation allowed to apply the tools of classical homoclinic
bifurcation theory [35] to study different types of solutions, their bifurcations and instabilities [36]. In this
paper we extend the homoclinic bifurcation theory tools introduced in [34, 36] to the SW solutions and
apply them to a time-delayed model of Kerr-Gires-Tournois (KGTI) interferometers. Using a combination
of analytical, numerical and path-continuation methods, we demonstrate that SWs can be treated as
relative homoclinic orbits with respect to a mirror symmetry. Further, we shall show that the snaking
scenario and the corresponding Maxwell point can be analyzed as a Bykov T-point [37, 38, 39]. This
is a bifurcation of homoclinic orbits and can also be tracked in parameter space using numerical
path-continuation techniques [36].

2 Model Equations

The schematic setup is depicted in Fig. 1 (a), see also [25, 26, 22] for more details. It is composed of
a monomode micro-cavity with round-trip time τc. The micro-cavity is of a few micrometers in length
and has a radius up to 100 µm. It contains a thin layer of the Kerr material acting as a nonlinear
medium that is situated at the anti-node of the field. The micro-cavity is closed by two distributed Bragg
mirrors with reflectivities r1,2, whereas the long external cavity of a few centimeters and round trip time
τ � τc is closed by a mirror with reflectivity η and the feedback phase φ . The system is driven by
continious wave (CW) injection with amplitude Y0 and frequency ω0. The total external cavity phase
ϕ = φ +ω0τ is the sum of the propagation phase in the external cavity and of the phase shift induced
by the feedback mirror. It describes the detuning with respect to the nearest external cavity mode and
ϕ = π corresponds to the situation where the injection frequency is set exactly inbetween two external
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Figure 1: (a) Schematic of a micro-cavity containing a Kerr medium coupled to a long external cavity
which is closed by a mirror with reflectivity η and phase φ , and driven by a CW beam with amplitude
Y0. (b) An exemplary SW solution obtained from a direct numerical simulation of Eqs. (1), (2). The gray
dashed lines correspond to the period-two orbit of the singular map (6). The inset shows the dynamics
over several round-trips.

cavity modes. In this case trains of SWs with periodicity & 2τ , as shown in the inset of Fig. 1 (b), can be
generated for a range of Y0 and of the detuning δ = ωc−ω0, where ωc is the micro-cavity resonance.

To analyze the dynamics of the SWs of the system depicted in Fig. 1, we employ the first-principles
model obtained by solving exactly the field equations in the linear parts of the micro-cavity and
connecting the fields at the interface with the nonlinear medium as a boundary condition [40]. Then the
evolution of the (normalized) slowly varying field envelopes in the micro-cavity E and the external cavity
Y is governed by [25, 26, 22]

Ė =
[
i
(
|E|2−δ

)
−1
]

E +hY, (1)

Y = ηeiϕ (E (t− τ)−Y (t− τ))+
√

1−η2Y0. (2)

Here, the coupling between the intra- and external cavity fields is given by a delay algebraic equa-
tion (DAE) (2) which takes into account all the multiple reflections in the external cavity. Further,
h = h(r1,r2) = (1+ |r2|)(1−|r1|)/(1−|r1||r2|) is the light coupling efficiency. Note that for a per-
fectly reflective bottom mirror one obtains h(r1,1) = 2 corresponding to the so-called Gires-Tournois
interferometer regime [19]. Hence, second- and third-order dispersions are naturally captured by
Eqs. (1), (2). Notice, that due to third-order dispersion becoming the leading term around resonance,
the resulting SW solutions can possess strong oscillatory tails, see Fig. 1 (b), where the typical time
trace of an SW obtained from numerically integrating Eqs. (1), (2) is presented.

We used a recently developed extension of DDE-BIFTOOL [41, 42] that allows for the bifurcation
analysis of delay-algebraic systems and delay equations of neutral type. We present in Fig. 2 (a) a
resulting bifurcation diagram for varying Y0 and other parameters as in Fig. 1 (b), cf. also Ref. [22]. The
exemplary profiles of the solutions along the branch are presented in panels (b)–(d), respectively (the
solution in panel (b) is the same as in Fig. 1 (b)). We notice that for the high injection values, a branch
of periodic solutions (green) emerges from the CW state (black) at a supercritical AH-bifurcation point
H2. The resulting upper arc of the branch consists of stable SWs, see Fig. 2 (b). Then, in the regime of
bistability between the SWs and the stable CW state, it enters into a region of collapsed snaking around
a vertical Maxwell point Y0 = Y0,MP, experiencing a sequence of fold bifurcations, before it terminates
in a subcritical AH-bifurcation point H1, see the inset in Fig. 2 (a). Note that in the snaking region
around the Maxwell point, there are multiple coexisting stable solutions consisting of fronts not only
between two SW plateaus but also fronts connecting the CW state with one of the plateaus, creating
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Figure 2: (a) Branch of periodic solutions (green) and CW states (black) for varying Y0 obtained by
path-continuation of Eqs. (1), (2). Stable (unstable) solutions are depicted in solid (dashed), respectively.
H1,2 are a subcritical and a supercritical AH-bifurcation of the CW state. The branch consists of SW
solutions (b) in the upper part, mixed-type solutions (c) around the Maxwell point Y0,MP ≈ 0.54625
(dotted grey), and unstable alternating pulse solutions (d) close to the subcritical AH-bifurcation point H1.
Exemplary profiles (b)–(d) are marked in (a). Parameters are (τ,δ ,h,η ,ϕ) = (300,0.2,2,0.9,π).

stable mixed type solutions as shown in Fig. 2 (c). On the lower part of the branch, the SWs have
transformed into unstable alternating pulse solutions hosting two localized pulses on the background of
the CW state, cf. Fig. 2 (d).

3 Treating square waves as localized states

Recently, Yanchuk et al. [34] introduced a new approach to analyze TLSs in time-delayed systems
in the long delay limit. We start our analysis by first recalling some general concepts of this method,
and then show how it can be extended to the case of SWs, using the approach from the earlier work
by Mallet-Paret and Nussbaum [3]. For a time-delayed system given by a general delay differential
equation of the form

ẋ(t) = f (x(t), x(t− τ)) , x ∈ Rn (3)

with large delay τ , a TLS is a time periodic solution that can be found for all sufficiently large values
of the delay τ and has a period T (τ), which is slightly larger than the delay. Hence, we can define a
response time

ρ(τ) := T (τ)− τ, (4)

which is positive and remains bounded, while both, τ and T (τ), can become arbitrarily large. Such
TLSs are localized in time because they spend most of the time close to a stable equilibrium solution,
called background, from which they deviate only during a fixed short time interval. Equilibria that are
stable for all positive values of the delay are called absolutely stable, see Ref. [43].

We employ now the reappearance property [44] of periodic solutions of delay equations: Any T -periodic
solution x∗(t) of Eq. (3) at delay τ is also a solution of Eq. (3) replacing τ by

τk := τ + kT, for all k ∈ Z,
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i.e., periodic solutions reappear when adding integer multiples of their period to the delay. In this way,
the profiles of the TLS solutions can be found as periodic solutions of Eq. (3) with τ replaced by
τ−1 =−ρ . This equation, referred to as profile equation, is a differential equation with an advanced
argument and can be solved as an initial value problem only in backward time. In this equation, the
large delay τ has disappeared and the whole family of large-period periodic solutions can be found
at finite values of ρ with a limit ρ(τ)→ ρ∞ for τ → ∞. At ρ = ρ∞, the family of large-period periodic
orbits ends in a homoclinic orbit, i.e., a trajectory xh(t), t ∈ R with

lim
t→±∞

xh(t) = x0, (5)

where x0 is background equilibrium, which is assumed to be absolutely stable in the original equation (3).
Note that the profiles are exactly preserved under the reappearance map, but their stability is changed.
In particular, the stable background equilibrium, that is trivially reappearing for all positive and negative
delays, turns for the negative delay τ =−ρ into an equilibrium of saddle type, such that it can serve
as the limiting equilibrium (5) of a homoclinic orbit in the profile equation. In this way, localized solutions
of delay-differential equations with large delay can be studied as homoclinic solutions of an advanced
equation where the large delay has disappeared and the newly introduced advanced time shift ρ

corresponds to the response time (4) and remains small.

Now we show how this method can be extended to SW solutions. First, note that by rescaling time in
Eq. (3) by t ′ = t/τ the resulting equation

1
τ

dx(t ′)
dt ′

= f
(
x(t ′),x(t ′−1)

)
in formal limit τ → ∞ provides

0 = f (x(t ′),x(t ′−1)) =: f (xk+1,xk), (6)

which can be interpreted as an implicitly given iterated map for discrete time k ∈ Z determining xk+1
as a function of xk, called singular map. A stable fixed point x0 of Eq. (6) is also a stable equilibrium of
Eq. (3) and can serve as a background for TLSs. Suppose the equilibrium solution x0 undergoes a flip
bifurcation and a stable period-two solution (x1,x2) satisfying

0 = f (x1,x2) = f (x2,x1) (7)

is created. Then, these two values x1,2 can serve as plateaus of an SW of Eq. (3) (cf. dashed gray lines
in Fig. 1 (b) and Fig. 2 (b)-(d)), i.e., a periodic solution x∗(t) with a period T slightly bigger than 2τ and
two plateaus x1,2 of length approximately τ each. Note that for the system

ẋ(t) = f (x(t),y(t−σ)) , (8)

ẏ(t) = f (y(t),x(t−σ)) (9)

the period-two orbit (x1,x2) of the singular map provides two different equilibria (x,y) = (x1,x2) and
(x,y) = (x2,x1). Moreover, a straightforward calculation shows that also the SW solution x∗(t) of
Eq. (3) provides by

(x(t),y(t)) := (x∗(t),x∗(t−T/2))

a solution of Eqs. (8), (9) whenever

σ = σk := τ +

(
k− 1

2

)
T, for all k ∈ Z .
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Hence, using σ = σ0 =:−ρ , we can find the profile of the SW x∗(t) as a solution of system (8), (9)
with an advanced argument. Note that the definition (4) of the response time, which we introduced
above, has to be replaced here by

ρ(τ) :=
1
2

T (τ)− τ . (10)

Again, ρ is positive and has a bounded limit ρ∞ for a family of SWs of (3) where both τ and T are
tending to infinity. The system (8), (9) with σ =−ρ extends the properties of the profile equation [34]
to SWs and we will refer to it as the alternated profile equation (APE).

Note that the APE-system (8), (9) is equivariant with respect to the mirror symmetry

γ : (x,y) 7→ (y,x) . (11)

The subspace of fixed points of the symmetry γ is given by

Fix(γ) := {(x,y) | γ(x,y) = (x,y)}= {(x,y) | x = y}. (12)

Obviously, the solutions in the symmetry subspace Fix(γ) correspond to solutions of the original
system (3) with τ = σ . The equilibria (x1, x2) and (x2, x1) given by the period-two orbit of the singular
map are symmetry twins with respect to γ and are for σ = −ρ both of saddle type. For ρ → ρ∞

the period of the SW grows to infinity and the corresponding family of periodic solutions limits to a
heteroclinic cycle, where the corresponding saddles are (x1, x2) and (x2, x1). Note that also the two
heteroclinics in this cycle are related by γ . Hence, it is sufficient to calculate one of them and we can
describe the SW by a single connecting orbit xh(t), x ∈ R with

lim
t→±∞

(xh(t),yh(t)) = (x1,2,x2,1) . (13)

This orbit is connecting (x1, x2) with its symmetry twin (x2, x1) and can be called a relative homoclinic
with respect to γ , since its source and target equilibrium are identical up to symmetry. All together,
this allows us to treat SWs in a similar manner as the TLSs described above. As for TLSs, we can
derive equation with an advanced argument, in which they are given as a family of large-period periodic
solutions that approach a relative homoclinic orbit corresponding to the limit of infinite delay.

Similar as in the profile equation for TLSs also in the APE-system (8), (9), the response time ρ appears
as an additional parameter. This corresponds to the fact that connecting orbits satisfying Eq. (13) are
objects of codimension one, i.e., they can be found only after adjusting one parameter. Hence, solving
the APE for a homoclinic solution representing an SW, one needs to solve for the connecting orbit
(13) together with its response time ρ∞. In the original system (3) the response time ρ is determined
according to Eq. (10) as the difference of the delay and half of the period. Studying bifurcations of TLSs
induced by homoclinic bifurcations in the corresponding profile equation, one always has to also adjust
the parameter ρ∞, which increases the codimension of the bifurcation by one. In the remaining sections
of this paper, we will use this approach to study the SWs in the DAE-system (1), (2).
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Square waves and Bykov T-points 7

Figure 3: Black curve: branch of fixed points of the singular map of the DAE-system (1), (2). Grey
curve: Branch of period-two orbits of the singular map bifurcating in flip bifurcations at H1,2. Solid
and dash-dotted parts indicate stable and unstable solutions, respectively. Green curves: branches of
periodic solutions of the APE-system (14)–(17) with fixed periods T = (603.76,123.87) and varying
ρ . Other parameters cf. Fig. 2.

4 Finding square waves in the KGTI as connecting orbits

Following the previous discussion, we introduce the alternated profile equation of the model for the
Kerr-Gires-Tournois interferometer (KGTI) (1), (2) as

Ė =
[
i
(
|E|2−δ

)
−1
]

E +hY, (14)

Y = ηeiϕ (F (t +ρ)−Z (t +ρ))+
√

1−η2Y0, (15)

Ḟ =
[
i
(
|F |2−δ

)
−1
]

F +hZ, (16)

Z = ηeiϕ (E (t +ρ)−Y (t +ρ))+
√

1−η2Y0 . (17)

Note that the theory developed in Sec. 3 for delay-differential equations works similarly for a system
of delay-algebraic equations, which in general are obtained by multiplying the left hand side of (3)
with a singular mass matrix M. As before, we will study the resulting system using the continuation
package DDE-BIFTOOL. It provides tools for a numerical computation of periodic solutions as boundary
value problems with periodic boundary conditions. A path-continuation of periodic solutions can be
performed by varying one parameter and adapting the period. For a continuation of a periodic solution
with fixed period, yet another parameter has to be varied. Beyond that, the computation of connecting
orbits is possible. They are implemented as a boundary value problem on a finite time domain, using
boundary conditions projecting into the spectral eigenspaces of the corresponding saddle equilibria,
see Refs. [45, 46] for more details. Generic homoclinics are objects of codimension one, i.e. one has to
solve for one parameter and their continuation requires to treat two parameters as additional unknowns.
In many cases it is also possible to approximate homoclinic orbits by nearby periodic solutions with
fixed large period. However, using spectral projection boundary conditions is often more robust and
efficient.

Before we study the different types of periodic solutions and connecting orbits, we shortly describe
the stationary solutions of the DAE-system (1), (2). First, it has a branch of stationary solutions
xcw = (Ecw,Ycw) representing CW states, see Fig. 3. They can also be found as fixed points of the
corresponding singular map. These fixed points are unstable in a region between the two flip bifurcations
located at H1,2, where a branch of period-two orbits (x1,x2) = ((E1,Y1),(E2,Y2)) of the singular map
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Figure 4: Branches of SWs in the (a) APE-system (14)–(17), and (b) DAE-system (1), (2). In (b) the
branch approaches the line 2τ +2ρ∞ (dashed), for τ,T → ∞. In (a) the branch approaches a vertical
line (dashed) at ρ = ρ∞ with T → ∞ in a homoclinic bifurcation. (c)–(e) show profiles for the periods
T ≈ 60,120,600, respectively. For ρ → ρ∞ the SWs approximate the relative homoclinic given in (f).
Parameters as in Fig. 2 and Y0 = 0.7.

appears (grey line in Fig. 3). Note that in the regime shown in Fig. 3 the flip bifurcation at the point H2
is supercritical, while the other at H1 is subcritical and the branch of period-two orbits has a fold (red
point). In the APE-system (14)–(17) the CW state gives rise to an equilibrium solution

(E,Y,F,Z) = (Ecw,Ycw,Ecw,Ycw) ∈ Fix(γ),

while the period-two orbit of the singular map corresponds to symmetry related equilibrium solutions

(E,Y,F,Z) = (E1,Y1,E2,Y2), (E,Y,F,Z) = (E2,Y2,E1,Y1).

As pointed out above, their stability properties in the APE differ from the stability in the DAE-system
(1), (2). Indeed, all these equilibria of the APE-system (14)–(17) are of saddle type with two complex
conjugate pairs of leading eigenvalues (double focus). Close to the flip bifurcations of the singular map
at H1,2 we find in the APE-system AH-bifurcations. Fixing the period T and solving simultaneously
for the corresponding value of ρ , we obtain the emanating branches of different periodic solutions (cf.
green curves in Fig. 3). Close to the point H2, the branches of periodic solutions have the shape of
SWs and follow the stable branch of the period-two orbit of the singular map, approaching it for large
T . The corresponding SW solutions of system (1), (2) inherit the stability from the period-two orbit of
the singular map. This behavior close to a supercritical flip bifurcation of the singular map has been
studied extensively from a mathematical point of view, see e.g. Refs. [3, 4, 5]. Figure 4 illustrates the
SW solutions, which can be found numerically for a fixed value of Y0 close to H2. Panel (a) shows a
branch of SW solutions in the APE-system (14)–(17) with varying parameter ρ and resulting period
T . This branch of periodic solutions of the APE limits to a relative homoclinic orbit (13) with ρ → ρ∞

and T → ∞. The branch reappears in the DAE-system (1), (2) as a branch of stable SW solutions
with T,τ → ∞, as shown in panel (b). Panels (c)–(e) show the intensity profiles of selected periodic
solutions for the fields E (red) and F (grey) of the APE-system along this branch with increasing period.
Panel (f) depicts a numerical representation of the limiting connecting orbit (13), where we employed
spectral projection boundary conditions to the stable and unstable manifolds of the saddle equilibria
(x1,2,x2,1) at the endpoints of a sufficiently long computational interval. The snaking shape of the
branch of periodic solutions in the panel (a) is a consequence of the complex conjugated leading
eigenvalues at the saddle equilibria (x1,2,x2,1), which induce also the oscillatory tails of the localized
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Square waves and Bykov T-points 9

Figure 5: Branches of alternating pulse solutions in the (a) APE-system (14)–(17), and (b) DAE-system
(1), (2). In (b) the branch approaches the line 2τ + 2ρ∞ (dashed), for τ,T → ∞. In (a) the branch
approaches a vertical line (dashed) at ρ = ρ∞ with T → ∞ in a homoclinic bifurcation. (c)–(e) show
profiles for the periods T = 20,100,320. For ρ→ ρ∞ the periodic solutions approximate the homoclinic
given in (f). Parameters as in Fig. 2 and Y0 = 0.58.

structure in the panel (f), see e.g., Ref. [47] for details. Note that the frequency of these damped
oscillations in the tails remains unchanged for the different values of T and the corresponding delay
times τ such that the plateaus of different lengths of the SW solutions in Fig. 4 (c)–(f) carry different
numbers of such oscillations. Close to the bifurcation point H1, the period-two orbit of the singular map
is unstable and the branches of periodic solutions follow instead the stable branch of CW states and
approach it for large T . The corresponding solutions in the DAE-system (1), (2) are unstable alternating
pulse solutions, which spend most of the time between the pulses close to the stable CW state. The
emergence of such solutions close to a subcritical flip bifurcation of the singular map has also been
studied from a mathematical point of view [4, 5]. Figure 5 illustrates these solutions, which can be found
numerically for a fixed value of Y0 close to H1. Panel (a) shows a branch of alternating pulse solutions
in the APE-system (14)–(17) with varying parameter ρ and resulting period T , limiting to a homoclinic
orbit with ρ → ρ∞ and T → ∞. Again this branch reappears in the DAE-system (1), (2) with increasing
τ → ∞ as depicted in panel (b). Panels (c)–(e) represent the intensity profiles of the fields E (blue)
and F (grey) from (14)–(17) of selected periodic solutions, while panel (f) demonstrates the limiting
orbit, which is a homoclinc to (xcw,xcw). Note that the limiting saddle equilibrium of this homoclinic
orbit is in the symmetry subspace Fix(γ) while the homoclinc orbit itself is not: The pulse shapes in the
two components of the APE are different, which leads to the alternating behavior of the corresponding
periodic solutions in the DAE-system (1), (2).

Figure 3 shows that the branches of periodic SW solutions emanating from H2 follow the branch of
stable period-two solutions of the singular map only up to a certain region where they detach and enter
a complicated snaking structure. In the same parameter region also the branches of alternating pulse
solutions emanating from H1 detach from the CW states and enter the same snaking structure from
the other side. For larger delay and correspondingly larger periods the number of folds in this snaking
region increases. This leads to multiple coexisting stable solutions of mixed type, i.e. a combination of
square waves and alternating pulses. We will study this dynamical phenomenon in detail in the following
section.
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Figure 6: Branches of connecting orbits for the APE-system (14)–(17) with varying parameters Y0 and
ρ∞. Red curve in (a): relative homoclinic orbits connecting the equilibria (x1,2,x2,1) corresponding to
the period-two orbit of the singular map. Panel (b) shows selected profiles (red points in (a)) from this
branch (red: |E(t)|2, grey: |F(t)|2). Blue curve in (a): homoclinic orbits to the equilibrium (xcw,xcw)
corresponding to the CW state. Panel (c) shows selected profiles from this branch (blue points in (a)).
Both branches are spiraling into a Bykov T-point (black dot). Other parameters as in Fig. 2.

5 Appearance of mixed type solutions through a Bykov T-point

We will now use the limiting (relative) homoclinic orbits introduced before as an approximation of their
nearby periodic solutions, which, at the same time, provide a qualitative understanding of the shape
of their profiles and how their branches are organized in parameter space. Figure 6 shows the two
branches of solutions starting from the points H1,2, respectively, and entering into the snaking region.
They are now calculated as connecting orbits for the APE-system (14)–(17) with varying parameters Y0
and ρ∞. Panel (a) in Fig. 6 shows only a small region in Y0 chosen in the vicinity of the snaking region
(compare the range of Y0 in Fig. 3).

The solutions on the red branch are relative homoclinic orbits (13) with limiting equilibria (x1,2,x2,1),
which correspond to the period-two orbit of the singular map. In the representation in the (Y0, ρ∞)-plane
the branch when entering the snaking region starts spiraling and ends after infinitely many folds at the
point (Y ?

0 ,ρ
?
∞)≈ (0.546,1.926) (black dot). Panel (b) shows the intensity profiles of E (red) and F

(grey) fields of selected solutions along the red branch (cf. corresponding points in shades of red in
Fig. 6 (a)). Note that the numerically calculated profiles extend over time intervals of different lengths.
This results from the fact that the solutions are calculated only outside a certain distance from the
limiting equilibria. For the different solutions it takes different time spans to pass over this distance.
Before the first fold on the red branch the solutions are of SW type corresponding to stable solutions in
the DAE-system (1), (2). After the first fold they become unstable, but restabilize after a second fold,
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Figure 7: Sketch of connecting orbits involved in the unfolding of a Bykov T-point. A homoclinic switches
its saddle by transitioning through a heteroclinic cycle (orange). The homoclinic solutions involved in
the unfolding are a relative homoclinic to (x1,2,x2,1) (red) and to (xcw,xcw) (purple), representing the
SW solutions and alternating pulse solutions respectively.

and we obtain solutions that do not directly switch from (x1,x2) to (x2,x1) but in between perform a
single oscillation around the CW state (xcw,xcw) in the corresponding APE-system. All such solutions
coexist as stable solutions of the DAE-system (1), (2) with the solutions of SW type before the first
fold. Moving further along the spiraling branch we get further solutions showing an increasing number
of damped oscillations around the CW state and spending a longer time there. At the same time the
interval of parameter Y0 where they exist gets smaller and smaller. These mixed-type solutions are
connecting orbits from (x1,x2) to (x2,x1) that develop a plateau of increasing length at the CW state.

The blue branch of homoclinic orbits to the equilibrium (xcw, xcw) shown in Fig. 6 (a) has a similar
spiraling shape and also ends after infinitely many folds at the point (Y ?

0 ,ρ
?
∞). The solutions along this

branch behave in a complementary manner, see Fig. 6 (c). Before the first fold they provide alternating
pulse solutions, which correspond to unstable solutions in the DAE-system (1), (2). Then, after the first
fold, they become stable. This happens when the two pulses come close to the levels x1 and x2 of the
stable period-two orbit of the singular map and the solution stays there for some time. Moving further
into the spiral we get further stable solutions showing an increasing number of damped oscillations
around the levels of the SW and spending a longer time there, i.e., we obtain mixed-type solutions being
homoclinic orbits to (xcw,xcw) that develop a plateau of increasing length at the equilibrium (x1,x2).
Again, with the increasing length of the plateau the parameter intervals of their existence becomes
smaller.

At the endpoint (Y ?
0 ,ρ

?
∞) of the two branches we find a so-called Bykov T-point [38, 37, 39]. Such

points arise as homoclinic bifurcations of codimension two when a homoclinic orbit collides with another
saddle equilibrium. In this way we obtain a family of homoclinic orbits that switches at the T-point its
limiting saddle to another saddle. A schematic representation of this procedure is shown in Fig. 7. The
bifurcation point itself is characterized as a heteroclinic cycle connecting two different saddle equilibria
(orange arrows). In a neighborhood in the parameter space there can be found homoclinic orbits to each
of the two equilibria (cf. red and blue lines in Fig. 7). Note that the situation in the APE-system (14)–(17)
fits to this general scenario when we identify the equilibrium (x1,x2) with its symmetry twin (x2,x1).
Such Bykov T-points can have different types depending on the leading eigenvalues of the saddles
being real or complex conjugate pairs. Figure 7 depicts the situation with only real leading eigenvalues,
which actually can be realized for a planar ordinary differential equation. For the APE-system here, both
saddle equilibria (xcw,xcw) and (x1,x2) are of double focus type i.e, having two complex conjugate
pairs as leading eigenvalues. This leads to the spiraling shape of the two branches in Fig. 6 (a). In all
cases there are two branches of homoclinic orbits emanating from the T-point, each of them to one of
the two equilibria.

In Ref. [36] it has been shown that branches of stable TLSs can terminate at Bykov T-points where
the corresponding homoclinic orbit of the profile equation collides with another equilibrium. Indeed,
when the second equilibrium is unstable in the original DDE the T-point leads to a delocalization and
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Figure 8: Profiles of the two heteroclinic solutions at the Bykov T-point: (a)–heteroclinic solution
connecting (xcw,xcw) to (x1,x2); (b)–heteroclinic solution connecting (x1,x2) to (xcw,xcw); (c)–profile
of a periodic solution of mixed type with T = 600, composed by the heteroclinc solutions and plateaus
at the equilibria. Intensity profiles of the fields E (orange) and F (grey) are shown. Parameters as in
Fig. 2.

destabilization of the solution. Here, both equilibria involved in the T-point are stable in the singular map.
Hence, in the DAE-system (1), (2) the collision of the SW with the stable CW state and, likewise, the
collision of the alternating pulses with the stable period-two orbit leads to stable solutions of mixed
type. They are given as the periodic orbits in the vicinity of the branches of homoclinic orbits ending
at the T-Point in the corresponding APE-system. Indeed, it is known that in the vicinity of a T-point
there are periodic orbits that can spend arbitrarily long times close to each saddle equilibrium. In Fig. 8
we demonstrate how the profiles of these periodic orbits corresponding to the different mixed-type
solutions can be put together using the heteroclinic solutions at the T-point. Panels (a) and (b) depict
the two heteroclinic solutions connecting (xcw,xcw) and (x1,x2) and vice versa. A periodic solution
with T ≈ 600 close to the heteroclinic cycle for the same parameters is given in Fig. 8 (c). Such a
periodic solution can be well-approximated by using the segments of the heteroclinic solutions from the
panels (a) and (b) at the transition layers (red and yellow shaded regions, respectively) and in-between
them inserting plateaus at (xcw,xcw) and (x1,2,x2,1), which can have arbitrary length (white regions).

The snaking branches in the vicinity of the Bykov T-point can be found numerically both by path-
continuation of periodic solutions with large fixed period, which are close to the connecting orbit, or
by continuation of the connecting orbit itself. The continuation of the T-point itself is only possible as a
connecting orbit. In general, a Bykov T-point is a bifurcation of codimension two. In the APE-system (14)–
(17) both saddle equilibria have the same saddle index, i.e. the same number of unstable eigenvalues.
Hence, a single heteroclinic solution connecting them is of codimension one. For the T-point we have
to find parameter values where both heteroclinic connections, back and forth, exist simultaneously,
which implies the codimension two. For a continuation of such a codimension-two object one has to
vary three parameters. However, in the APE-system (14)–(17) one has the additional parameter ρ ,
which is absent in the DAE-system (1), (2). Hence, we can represent the curve of Bykov T-points in
the parameter plane (Y0,δ ), keeping in mind that at each point on the branch our calculations have
provided also a response time ρ∞.

Figure 9 shows a bifurcation diagram of the system (1), (2), cf. Fig. 3 in Ref. [22]. It shows the curve of
Bykov T-points (orange) in the (Y0,δ ) plane together with the AH-bifurcations of the CW state (solid
and dotted black for supercritical and subcritical points, respectively), the fold of the period-two orbit of
the singular map (grey), and the two first fold bifurcations along the branch of SWs (red) and alternating
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Figure 9: Bifurcation diagram for system (1), (2) in the (Y0,δ )-plane: continuation of the Bykov T-point
(orange), branch of supercritical (solid black) and subcritical (dotted black) AH-points, first two folds
along the branch of SWs (red), first two folds along the branch of alternating pulse solutions (blue). Fold
of the equilibrium period-two orbit of the singular map (grey). All lines terminate in the point P0 of the
branch of AH-points. Green line corresponds to the onset of the period-doubling bifurcation of SWs.
Other parameters as in Fig. 2.

pulse solutions (blue). Note, that the position of the Bykov T-point provides the position of the Maxwell
point at the center of the snaking region. The first fold of the SWs F t

1 together with the AH-line H
provides the border of the region of stable SW solutions (blue shaded region). The other border is given
by a period-doubling of the singular map (green line PD), which appears for larger values of δ and Y0.

Between the fold of the period-two orbit of the singular map (x1,x2), which is also a fold of the
corresponding equilibrium of the APE-system (grey line Fm), and the fold F t

1 of the SW there is a gap
region with stable period-two orbits of the singular map but no stable SW solutions. This is related
to the fact that the stable period-two orbit coexists with the stable CW state, which obstructs in this
region from passing from one level of the period-two orbit to the other. The curve of T-points necessarily
has to lie in the region of bistability of the singular map, localized between the curve Fm and the
subcritical part of the AH-curve (black dotted). Note that all the bifurcation curves emanate from the
point P0 ≈ (0.500,0.105). This is where the flip bifurcation of the singular map changes from sub-
to supercritical. In the APE-system this corresponds to some type of degenerate Bykov T-point – a
codimension three homoclinic bifurcation, which we are not going to study in more detail in this work. For
values of δ below the point P0 the scenario for varying Y0 is much simpler. There are two supercritical
Hopf bifurcations and between them a branch of stable SWs without any bistability.

6 Multiple T-points

We started our study with a single branch of periodic solutions, which connects the two AH-bifurcations
H1,2 as shown in Fig. 2. Calculating the corresponding homoclinic orbits in the APE-system, we found
that along this branch there is a single Bykov T-point, which explains the snaking behavior of the
branch and the emergence of mixed-type solutions in the snaking region. However, it is known that
saddle-focus or double-focus homoclinic orbits, i.e., with complex conjugate leading eigenvalues, under
certain conditions can induce in their neighborhood in phase space and for nearby parameter values
an extremely complicated structure of chaotic motion, including further periodic orbits and so-called
N-homoclinic orbits, see Refs. [47, 48]. For T-points involving saddles of saddle-focus or double-focus
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Figure 10: a) For δ = 0.29 the branches of periodic solutions have reconnected, creating a complex
structure of multiple T-points along a single branch. b) For the lower value δ = 0.25 this structure is
detached and fully unstable (red). It contains another unstable SW regime which has the unstable
period-two orbit of the singular map as its background. Other parameters as in Fig. 2.

type it is also known that their unfolding can induce infinitely many other T-points involving infinitely
many N-homoclinics for all N ∈ N. So far, we did not pay attention to these additional solutions since
the corresponding solutions of the original system (1), (2) all turn out to be unstable.

Another feature of the given system (14)–(17) is that in the region of bistability of the CW state and the
period-two orbit (x1,x2) of the singular map there are also additional equilibria of system (14)–(17),
which correspond to the unstable branch of period-two orbits of the singular map. These equilibria can
also be involved in homoclinic orbits and T-points. In the case of an unstable background, given by
such an unstable period-two orbit, an SW has to be unstable as well. But there can be T-points where
one of the saddle equilibria corresponds to a stable background, while the other saddle corresponds to
an unstable background (see also Ref. [36]). We will show now that for larger values of the detuning
parameter δ the additional branches of homoclinic orbits and further T-points, involving also the unstable
period-two orbit, can come into the play.

Figure 10 (a) shows an exemplary SW branch calculated from the DAE-system (1), (2) for δ = 0.29. In
contrast to the scenarios studied in the preceding sections, this branch features four T-points, one of
them lies near the AH-bifurcation point and is not visible in the figure here. Along this branch we find
also unstable SWs with an unstable background given by the unstable period-two orbit of the singular
map (dash-dotted grey curve in Fig. 10) as predicted analytically in Ref. [22]. Moreover, two of the
four T-points involve equilibria corresponding to such unstable backgrounds. Among the remaining two
T-points that involve the two stable backgrounds there is only one (middle curve of the three vertical
green snaking curves in Fig. 10 (a)) that displays also stable regions, whereas the snaking branch
from the other such T-point caries only unstable solutions (see the inset in Fig. 10 (a)). Decreasing the
detuning parameter δ one can observe a recombination of the branches (see the inset of Fig. 10 (b)).
As a result we obtain two separate branches, see Fig. 10 (b). The red branch is now a closed loop not
connected to H1,2 and carries only unstable solutions and T-points involving the unstable background.
It is detached from the primary branch (green) connecting to H1,2 and carrying the stable SWs, the
single T-point, and the stable mixed-type solutions. Note that this reconnection of the branches does
not substantially change the scenario of stable solutions. There is still a branch of stable SWs close to
the stable period-two orbit of the singular map, which ends close to the Maxwell point indicated by the
primary Bykov T-point. In the vicinity of this T-point we find the nested intervals of stable mixed-type
solutions. For the continuation of the T-point it is not relevant whether the emanating branches of
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homoclinics connect directly to the AH-points H1,2. Continuating the primary T-point as in Fig. 9, we
stay with the branches carrying the stable mixed-type solutions also for higher values of δ .

7 Conclusion

In conclusion, in this paper we unveiled the mechanisms responsible for the formation of collapsed
snaking of square waves in vertical external-cavity Kerr-GiresâTournois interferometers from the point
of view of homoclinic bifurcation theory. Starting from a delay algebraic equations model in the long
delay limit, we introduced the so called alternated profile equation, which allows to find the SW’s time
profiles. In this equation the large delay has disappeared and SWs with arbitrarily high periods can
be found close to connecting orbits at finite parameter values. These connecting orbits can be seen
as relative homoclinic orbits with respect to a mirror symmetry. In this way, we can exploit the limit of
large delay to obtain a qualitative understanding of the shape of the profiles and how their branches are
organized in parameter space. In particular, we demonstrated that the position of the limiting Bykov
T-point, arising as homoclinic bifurcations of codimension two when a homoclinic orbit collides with
another saddle equilibrium, corresponds to the position of the Maxwell point in the center of the snaking
region.

This introduces a new tool in the analysis of temporally localized solutions in time-delayed systems and
their bifurcations. Certain types of T-points can indicate a region with collapsed snaking, which can
induce multistability of periodic solutions with complicated multiple localized structures. This approach
can be applied to explain a wide range of different scenarios. An example is the observation of
coexistence regions of dark and bright temporal localized states in the DAE-system (1), (2) that evolve
in a collapsed snaking scenario around a Maxwell point as shown in Refs. [25, 26, 27]. Additionally,
the derivation of an alternated profile equation for periodic alternating plateau solutions with a period
close to twice the delay could be extended to Nτ periodic solutions with multiple plateaus. Especially
for the second example the results of this work could possibly help to reveal and to understand the
involved complex bifurcation scenarios. Finally, the alternated profile equation can also be used to
calculate period-doublings of the periodic soluions of time-delayed systems and to find branches of
period-doubled solutions. This is out of the scope of the current paper and is a subject of the ongoing
work.
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