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Time-reversible dynamics in a system of two coupled active
rotators

Oleksandr Burylko ,

Matthias Wolfrum, Serhiy Yanchuk, Jürgen Kurths

Abstract

We study two coupled active rotators with Kuramoto-type coupling and focus our attention to
specific transitional regimes where the coupling is neither attractive nor repulsive. We show that
certain such situations at the edge of synchronization can be characterized by the existence of a
time-reversal symmetry of the system. We identify two different cases with such a time-reversal
symmetry. The first case is characterized by a non-reciprocal attractive/repulsive coupling. The
second case is a reciprocal coupling exactly at the edge between attraction and repulsion. We
give a detailed description of possible different types of dynamics and bifurcations for both cases.
In particular, we show how the time-reversible coupling can induce both oscillation death and
oscillation birth to the active rotators. Moreover, we analyse the coexistence of conservative and
dissipative regions in phase space, which is a typical feature of systems with a time-reversal
symmetry. We show also, how perturbations breaking the time-reversal symmetry and destroying
the conservative regions can lead to complicated types of dissipative dynamics such as the
emergence of long-period cycles showing a bursting-like behavior.

1 Introduction

Collective dynamics of weakly interacting oscillatory systems can be effectively described by coupled
phase oscillators [1, 2, 3]. The classical Kuramoto system of coupled phase oscillators is based on the
assumption that without coupling each subsystem has oscillatory (periodic) dynamics and hence, for
weak coupling, can be reduced to the simple phase equation φ̇j = ωj with some internal frequency ωj .
In particular, it has been used extensively for the study of various forms of synchronization [4, 5, 6].
Systems of coupled active rotators have already been introduced by Shinomoto and Kuramoto in
1986 [7] to study a more general class of interacting units, where each unit is governed by a non-
homogeneous oscillator φ̇j = ωj − aj cosφj . In particular such units undergo for |aj| = |ωj| a
so-called SNIC (saddle-node on invariant circle) bifurcation such that the oscillator is transformed
into an excitable unit. In this sense, coupled active rotators provide a substantial extension compared
to the classical Kuramoto system of phase oscillators and are suitable for the modeling of collective
dynamics of neuronal and, in general, excitable systems. The active rotator of this form is also known
as the theta-neuron model [8, 9, 10, 11, 12], and it is equivalent to the quadratic integrate-and-fire
neuron [13, 14]. Systems of coupled active rotators and their extensions have been also studied
in [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

The onset of various forms of synchronization and collective dynamics is usually studied in the context
of attractive global or non-local coupling. However, many interesting and unexpected dynamical effects
can be observed close to the transition from attractive to repulsive coupling [33] and also units with
different types of non-reciprocal coupling can lead to new dynamical phenomena [34, 35]. In this work,
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we consider a minimal network motif of two coupled active rotators with Kuramoto-type coupling and
focus our attention to specific transitional regimes where the coupling is neither attractive nor repulsive.
It turns out that certain situations at the edge of synchronization can be characterized by an additional
structural property of the system, the existence of a time-reversal symmetry. Systems with this property
are known to exhibit rich and unexpected dynamical behavior and have been studied extensively from a
mathematical point of view [36, 37, 38, 39, 40, 41]. A specific feature of such systems is the possibility
of a coexistence of regions with conservative dynamics (e.g. families of neutrally stable closed orbits)
with dissipative regions in phase space.

In our setting of two coupled rotators we identify two different cases with such a time-reversal symmetry.
The first case is characterized by a non-reciprocal coupling where one oscillator couples attractive
and the other repulsive. The second case is a reciprocal coupling with a Kuramoto type coupling
exactly at the edge between attractive and repulsive coupling. For both cases we describe in detail
the different dynamical scenarios and the bifurcation transitions between them. In particular, we show
how the coupling can lead to coexistence of rotations in opposite directions, to the birth and death
of oscillations, and to the coexistence of a dissipatively stable synchronous equilibrium with regions
of conservative oscillatory motions in the form of both rotations and librations. In section 4, we also
consider the influence of generic perturbations. Such perturbations can induce a drift along the families
of periodic solutions in the conservative regions of the reversible regime. We show that in some cases
this can lead to long-period limit cycles with a bursting-like dynamics. Additionally, we study the effects
of the higher Fourier modes that can lead to even higher multistablity of conservative and dissipative
regions.

A general system of two coupled rotators has the form

φ̇1 = f1(φ1) + g1(φ1 − φ2), (1)

φ̇2 = f2(φ2) + g2(φ2 − φ1), (2)

where φ1, φ2 ∈ T1 = R/2πZ are phase variables, and the local dynamics f1,2 as well as the coupling
functions g1,2 are smooth and 2π-periodic. We mainly restrict ourselves to the case

φ̇1 = ω1 + a1 cosφ1 + κ1 sin(φ2 − φ1 + α), (3)

φ̇2 = ω2 + a2 cosφ2 + κ2 sin(φ1 − φ2 + α), (4)

where both the local dynamics and the coupling functions contain only the leading Fourier component.
In this way we get the natural frequencies ωi, the phase inhomogeneities ai the coupling strengths
κi and the phase shift α as parameters. More complicated functions fi and gi will be also shortly
discussed, and they will be specified at the corresponding places.

The inhomogeneity ai is an important ingredient of the system, since otherwise the dynamics is very
simple. Indeed, if a1 = a2 = 0, we obtain two coupled oscillators of Kuramoto-Sakaguchi type [42],
which have a phase-shift symmetry (φ1, φ2) 7→ (φ1 + δ, φ2 + δ) for any δ ∈ T1. As a result, the
system can be reduced to a single equation for the phase difference ψ = φ1 − φ2

ψ̇ = ∆− A cos(ψ − σ),

where ∆ = ω1 − ω2, tanσ = κ1+κ2
κ2−κ1 cotα, and

A =

√
(κ2 − κ1)2 sin2 σ + (κ1 + κ2)

2 cos2 σ.

This is again an active rotator with stable and unstable equilibria for |∆/A| < 1 and the SNIC bifurcation
for ∆/A = ±1. The stable and unstable equilibria for the system in the phase differences correspond
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Time-reversible dynamics in a system of two coupled active rotators 3

to stable and unstable phase-locked limit cycles for the original two-dimensional Kuramoto-Sakaguchi
system. For |∆/A| > 1, the phase-locking is lost, and the system of two coupled Kuramoto-Sakaguchi
oscillators possesses families of neutral periodic or quasi-periodic orbits depending on the relationship
between ω1 and ω2.

The dynamics of system (3)–(4) becomes more complicated when the inhomogeneity ai is present. The
phase-shift symmetry is broken and the transition to the excitable regime of the single unit induces new
dynamical regimes. As we will see, the dynamics are particularly rich are in the cases of time-reversible
coupling. In Section 2 we will recall the definition and basic properties of systems with a time-reversal
symmetry and identify two different cases of time-reversible coupling for system (3)–(4). In Section 3
we study in detail the dynamics and bifurcations for these two cases. Finally, in Section 4 we study
examples of generic perturbations of the reversible cases. In particular, we show how orbits with a
bursting-like behavior can emerge from perturbing a certain reversible scenario.

2 Time-reversible dynamics of two coupled oscillators

2.1 What is time-reversibility?

A system ẋ = F (x) has a time-reversal symmetry [36, 37, 38, 39, 43] if there exists an involutionR of
the phase space X satisfying

F (R(x)) = −R(F (x)) (5)

and R2 = Id, with Id being the identity transformation. The existence of such a time-reversing
symmetry actionR, which is typically linear or affine, implies that for a solution x(t) alsoR(x(−t)) is
a solution. The subspace

FixR = {x ∈ X : R(x) = x} . (6)

plays an important role in characterizing the dynamics of reversible systems. In contrast to invariant
subspaces of symmetries without time reversal, this subspace is not dynamically invariant. Instead, a
trajectory can cross FixR, which then implies that the whole trajectory is mapped byR onto a time
reversed copy of itself. In this way one can distinguish between intersecting trajectories connecting
an attractor-repellor pair related by R, and trajectories intersecting more than once, which induces
locally conservative dynamics. This coexistence of conservative and dissipative dynamics in different
regions of the phase space is a typical property of systems with time-reversibility [39, 44, 45, 38] that
distinguishes them from generic dissipative dynamical systems.

In systems with time-reversal symmetry one has to distinguish between equilibria within and outside
FixR. In the first case, an equilibrium has to have the same number of stable and unstable directions,
since these are related byR. In the second case equilibria come in pairs, related byR, with opposite
stability properties. Moreover, there can be bifurcations with a spontaneous symmetry breaking, where
from a branch of equilibria within FixR a branch containing pairs of equilibria outside FixR bifurcates,
see e.g. [46, 47, 48]. Due to the possibility of locally conservative dynamics, reversible systems can
have structurally stable homoclinic orbits and heteroclinic cycles, which together with their specific
bifurcations have been studied extensively, see [49, 50, 51].
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2.2 Reversible cases in the system of coupled rotators

We identify two cases, for which system (1)–(2) is time-reversible. First, note that the single rotator has
a time reversal symmetry

(φ, t) 7−→ (−φ, − t)
as soon as f is an even function. A coupled system of two identical such units, i.e. with

f1(φ) = f2(φ) = f(φ), f(φ) = f(−φ),

can become time-reversible in two different ways. Case (I) is characterized by an anti-reciprocal coupling
with an odd coupling function

g1(φ) = −g2(φ) = g(φ), g(−φ) = −g(φ). (7)

The second time-reversible case (II) appears for if the coupling functions are identical and even.

g1(φ) = g2(φ) = g(φ), g(φ) = g(−φ), (8)

which corresponds to a conservative coupling at the edge between attraction and repulsion. In both
cases, the time-reversible symmetry is given by the action

R : (φ1, φ2, t) 7−→ (−φ2, −φ1, −t) (9)

with the subspace
FixR = {(φ1, φ2) : φ1 = −φ2} . (10)

For the system (3)–(4) of active rotators with Kuramoto-Sakaguchi type coupling we obtain for case (I)
with anti-reciprocal and odd coupling the system

φ̇1 = ω + a cosφ1 − κ sin(φ1 − φ2), (11)

φ̇2 = ω + a cosφ2 + κ sin(φ2 − φ1), (12)

while in case (II) with even and reciprocal coupling we get

φ̇1 = ω + a cosφ1 − κ cos(φ1 − φ2), (13)

φ̇2 = ω + a cosφ2 − κ cos(φ2 − φ1). (14)

In the following Sec. 3, we describe the dynamics and bifurcations in the above two cases.

3 Time-reversible dynamics of the coupled rotator model

3.1 Case (I): coupled rotators with anti-reciprocal coupling

We first consider the case (I) reversible system (11)–(12). This system possesses additional symmetries
that involve parameters; these symmetries are generated by the actions

γ1 : (φ1, φ2, ω, t) 7−→ (φ2 + π, φ1 + π, −ω, −t), (15)

γ2 : (φ1, φ2, κ, t) 7−→ (φ2 + π, φ1 + π, −κ, t), (16)

γ3 : (φ1, φ2, a, t) 7−→ (φ1 + π, φ2 + π, −a, t). (17)
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Figure 1: Bifurcation diagrams for system (11)–(12). (a) – parameter plane (κ, ω) with fixed a = 1. (b)
– parameter plane (κ, a) with fixed ω = 1. Bifurcation curves: red/magenta – saddle-center bifurcation,
green – reversible pitchfork bifurcation, orange/black – heteroclinic saddle-saddle connections. Global
bifurcations induced by a second time-reversal symmetry (blue) and by the phase shift invariance
(brown). Structurally stable phase portraits from the different parameter regions with labels (a)–(h)
are given in Fig. 2, phase portraits at the bifurcation curves with labels (i)–(p) are given in Fig. 3 and
phase portraits of the codimension-two points with labels (q)–(t) in Fig. 4. The colors of the regions
indicate purely dissipative dynamics (white), mixed type with a dissipative and a libration region (yellow),
different types without libration regions (blue), different types with librations and rotations (green).

Note that γ1 induces for ω = 0 a second time-reversing symmetry action, while γ2,3 for κ = 0
and a = 0, respectively, induce Z2-symmetries without time reversal. As a result of the parametric
symmetries γ1,2,3 the resulting bifurcation diagrams will be mirror symmetric with respect all the
parameters ω, κ, a. Also the synchrony subspace φ1 = φ2 is flow invariant for system (11)–(12).
However, this invariance is not induced by a symmetry of the system, but the diffusive nature of the
coupling.

The regions in the bifurcation diagrams in Fig. 1 correspond to qualitatively different structurally stable
phase portraits. Panel (a) shows the parameter plane (κ, ω) with fixed a = 1 and panel (b) the
plane (κ, a) with fixed ω = 1. Note that by a rescaling of time, one can achieve a = 1 as soon
as a > 0. Indeed, a phase portrait for some parameters (κ0, a0, ω0) will be found equivalently at
(κ, a, ω) = (κ0/a0, 1, ω0/a0). Similarly, if ω0 > 0, we get the same phase portrait at (κ, a, ω) =
(κ0/ω0, a0/ω0, 1). In this case, we can study the region a ≈ 0, which shows small perturbations of the
Kuramoto system with its phase shift symmetry to a rotator system with inhomogeneous rotation speed,
see panel (b). Note that the black and brown bifurcation curves are present only in panel (b), since in
panel (a) they are outside the plotted region or even at infinity. Similarly, the blue curve is present only
in panel (a).

Examples of the different generic phase portraits are depicted in Fig. 2. In Fig. 3 we show examples
of structurally unstable phase portraits on the different bifurcation curves and Fig. 4 gives the phase
portraits at the codimension-two points. The different dynamical regimes are distinguished by the
number and type of the fixed points and also by homoclinic and heteroclinic connections that organize
the dissipative and conservative regions.

The fixed points have the following general properties:

� Depending on the parameter values, the system has up to six fixed points.
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Figure 2: Different types of structurally stable phase portraits of system (11)–(12) in case (I) of
time reversibility with anti-reciprocal coupling. The squared regions show the torus (φ1, φ2) ∈
[−π/2, 3π/2] × [−3π/2, π/2]. Parameters in panels (a)–(h) are chosen from the correspondingly
marked regions from the bifurcation diagrams in Fig. 1. Conservative regions are colored as follows:
Orange – librations with clockwise motion, yellow – librations with anti-clockwise motion, blue/cyan –
rotations. Dissipative regions are white. Fixed points are colored as follows: red — source, blue — sink,
green — saddle, magenta — center. The dotted line in (a) indicates FixR.

� There can be up to four fixed points in FixR; they are saddles, centers or, at bifurcations,
degenerate saddles.

� Outside of FixR, there can be only one pair of sink and source. They are always located in the
synchrony subspace and therefore do not depend on the coupling strength κ. They are related
byR, which on the synchrony subspace induces also a time-reversal symmetry of the single
uncoupled rotator.

The bifurcations of the equilibria will be discussed in detail below. The local bifurcations of the equilibria
also induce changes in the configuration of the dissipative and conservative regions. Note that the
regions can change also by global bifurcations given by a reconnection of the saddle separatrices. The
regions have the following general properties:

� Each conservative region is filled with one-parametric family of neutral periodic orbits.

� Periodic orbits can have two different topological types: Rotations, where the curve closes after
a full round trip of both oscillators such that both phases increase unboundedly, and librations,
where both oscillators perform a small oscillatory motion whithout a full round trip in one of the
phases.

� The conservative regions are bounded by homoclinics or heteroclinic cycles, which can also be
of rotation or libration type.

� Each dissipative region consists of heteroclinic orbits, connecting a source and a sink equilibrium.

DOI 10.20347/WIAS.PREPRINT.3042 Berlin 2023
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Figure 3: Examples of structurally unstable phase portraits of system (11)–(12). Parameters are
chosen from the correspondingly marked bifurcation curves in Fig. 1. Degenerate equilibria (orange
hexagons): (k) – saddle-center bifurcation, (n), (o) – reversible pitchfork. Structurally unstable saddle-
saddle connections are marked in green in panels (i), (j), (l), (m), and (p). Colors of invariant regions
and fixed points as in Fig. 2.

Figure 4: Phase portraits at the correspondingly marked codimension-two points of system (11)–(12),
shown in Fig. 1. Degenerate equilibria are marked with hexagons (orange). Structurally unstable
saddle-saddle connections are marked in green. Colors of invariant regions and fixed points as in Fig. 2.

The yellow and orange areas in Figs. 2–4 indicate conservative regions filled with librations (different
colors correspond to clockwise and counter-clockwise motion), cyan and blue regions are filled with
rotations. Dissipative regions can exist only in the presence of a source/sink pair of equilibria related by
R (white regions in Figs. 2–4). We give now a detailed description of the different types of local and
global bifurcations occuring in this system.

Saddle-center bifurcation. The red and magenta curves in the bifurcation diagram in Fig. 1 indicate a
saddle-center bifurcation. At this bifurcation a saddle and a center equilibrium, both in FixR, merge and
disappear, see also Refs. [47, 52, 48]. The Jacobian at the degenerate equilibrium has an algebraically
double zero eigenvalue. The resulting bifurcation condition for a = 1 is given by

ω = ±

(√
1 + 32κ2 ± 3

)√
2
(
16κ2 − 1−

√
1 + 32κ2

)
32|κ|
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and provides the red and magenta curves in Fig. 1(a). An example of a phase portrait with such a
degenerate equilibrium is given in Fig. 3(k). Together with the new equilibrium of center type there
emerges also a conservative region, in this case filled with a family of periodic orbits of librations around
this point. Also, a structurally stable homoclinic to the new saddle equilibrium emerges, giving the
boundary of the conservative region, see e.g. the phase portrait in Fig. 2(b). In Fig. 2 there are several
pairs of structurally stable phase portraits related by this type of bifurcation: (b)–(a), (c)–(d), (e)–(f),
(g)–h).

Reversible pitchfork (sink/source) bifurcation. The green curves in Fig. 1 indicate a reversible
pitchfork bifurcation, where in a spontaneous symmetry breaking a pair of a sink and a source
equilibrium outside FixR bifurcate from an equilibrium within FixR that, at the same time, changes its
type from a saddle to a center [53, 48]. The bifurcation condition is here a geometrically double zero
eigenvalue. This bifurcation happens at the bifurcation of the single uncoupled oscillator at ω = ±a,
where we have degenerate equilibria at (φ1, φ2) = (−π/2, π/2) and (π/2,−π/2), respectively,
that are independent on κ. Corresponding degenerate phase portraits are given in Figs. 3(n),(o). The
bifurcation of the equilibria induces also a reorganization of the homoclinic and heteroclinc connections
and the conservative and dissipative regions. With the transformation of the center equilibrium in
FixR into a saddle, the corresponding conservative region with periodic orbits surrounding the center
vanishes. As for the usual pitchfork bifurcation, the bifurcating pair of a source and sink equilibrium
emerges with heteroclinic connections to the primary saddle equilibrium in FixR. Moreover, as a
consequence of the phase space being here the compact manifold T2, the source and sink equilibrium
inherit global heteroclinic connections to another saddle in FixR, which, before the bifurcation, was
carrying the homoclinic loop defining the boundary of the vanishing conservative region. Note that,
obstructed by the new heteroclinic connections, also a conservative region of rotations vanishes. The
pairs of structurally stable phase portraits related by this type of bifurcation in Fig. 2 are (c)–(e) and
(d)–(f).

Heteroclinic saddle-saddle connections. We have two instances of structurally unstable heteroclinic
connections between saddle equilibria in FixR, given by the orange and black curves in the bifurcation
diagrams in Fig. 1. The orange curves indicate such a global bifurcation shown by the degenerate
phase portraits in Figs. 3(l),(m). This bifurcation induces the appearance/disappearance of conservative
regions with rotations in between dissipative regions. Pairs of structurally stable phase portraits related
by this type of bifurcation in Fig. 2 are (b)–(c) and (a)–(d).

The black curves in Fig. 1(b) correspond to heteroclinic saddle-saddle connections with a degenerate
phase portrait as shown in Fig. 3(p) and connects the two structurally stable phase portraits (e) and
(h) in Fig. 2. The mechanism how this global bifurcation leads to restructuring of the invariant regions
is schematically shown in Fig. 5. A region of undulating rotations (panel (a)) disappears and a new
region of straight rotations in opposite direction appears (panel (c)). In the degenerate situation in
between we see how two structurally stable homoclinics, which delineate the region of the rotations
form two libration regions with opposite direction of motion, are reconnected through two heteroclinic
saddle-saddle connections forming a heteroclinic cycle of rotational type.

The bifurcation curves of such global bifurcation curves can typically be found only numerically. In our
case of a planar flow this can be done by a simple shooting method. For the numerical treatment of
more general cases, see [54].
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Time-reversible dynamics in a system of two coupled active rotators 9

Figure 5: Schematic phase portraits of a heteroclinic saddle-saddle connection (cf. black curve in
Fig. 1(b)). The panels show the flow in a stripe along a non-trivial closed curve on the torus. Panel (a):
structurally stable situation before the bifurcation (topologically equivalent to Fig. 2(e) and Fig. 8(c)).
Panel (b): degenerate situation at the bifurcation with structurally unstable saddle-saddle connection
(topologically equivalent to Fig. 3(p) and Fig. 9(j)). Panel (c): structurally stable situation after the
bifurcation (topologically equivalent to Fig. 2(h) and Fig. 8(d). Colors of invariant regions and fixed
points as in Fig. 2.

Second time-reversal symmetry. As already mentioned above, for ω = 0 the parametric symmetry
γ1 turns into a second time reversal symmetryR2 with fixed space

FixR2 = {(φ1, φ2) : φ1 = φ2 + π} . (18)

This enables a homoclinic orbit to a saddle equilibrium in FixR to turn into a heteroclinic connection
between two saddle equilibria in FixR as soon as both saddles are related byR2 and happens along
the blue line in Fig. 1(a). There are two qualitatively different degenerate phase portraits of this type
given in Figs. 3(i),(j), corresponding to the case of a bifurcating homoclinc orbit of libration and rotation
type, respectively. Note that in the case of the rotation, there appears also a homoclinic to a saddle in
FixR2, which is structurally unstable with respect to perturbations that break the reversibilityR2. This
type of global bifurcation mediates the transition of the structurally stable phase portraits (b) and (c) in
Fig. 2 to their respective images underR2.

For ω = 0 we find also two codimension-two bifurcations. For a = ±2κ one of the two equilibria in

FixR ∩ FixR2 = {(π/2,−π/2), (−π/2, π/2)}

has a fully degenerate Jacobian, see phase portrait in Figs. 4(q). At this point, two curves of saddle-
center bifurcations that exist for ω 6= 0 meet in a cusp point. Also the blue curve, indicating the
heteroclinic connection between two saddle equilibria in FixR, ends at this codimension-two point
since the two saddles merge with the center in between them and vanish together with the enclosed
conservative region.

The second codimension-two bifurcation, with a degenerate phase portrait shown in Figs. 4(r), is a pair
of saddle-saddle connections between a saddle in FixR ∩ FixR2 and a pair of saddles in FixR
which are related byR2. At this point meet two curves of saddle-saddle connections, which exist for
ω 6= 0.

DOI 10.20347/WIAS.PREPRINT.3042 Berlin 2023
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Figure 6: Schematic phase portraits illustrating how locally the degenerate situation with rotational
symmetry, occuring for a = 0 (brown line in Fig. 1(b)), is unfolded for positive (panel(a)) and negative
(panel (b)) values of a. The purple line in (b) consists of degenerate neutral fixed points. Colors of
invariant regions and fixed points as in Fig. 2.

Rotational symmetry. In the case of a = 0 we have two coupled Kuramoto oscillators with phase
shift symmetry, which can be reduced to a single equation for the phase difference. However, due to
the special form of the coupling in the case (I) time-reversible system (11)–(12), the phase difference
ψ = φ1 − φ2 stays always constant such that all trajectories are straight diagonal lines φ1(t) =
φ2(t) + ψ(0) with constant velocity φ̇i = ω + κ sin(ψ(0)). For |κ| > |ω| there are two diagonal
lines φ2 = φ1 ± arcsin(ω/κ) with velocity zero. These lines of equilibria, existing along the brown
bifurcation line in Fig. 1(b), give rise to a global bifurcation in the following way. Breaking the phase shift
symmetry with small a 6= 0, from each of the two lines of equilibria remains only a saddle and a center
equilibrium while two narrow conservative regions of librations emerge, as shown in Fig. 6. All other
trajectories still form two regions of rotations with opposite directions, which are no straight lines any
more but slightly modulated.

The brown line ends in a codimension-two situation where the two lines of equilibria disappear together
with region of rotations in opposite direction. The corresponding phase portrait is shown in Fig. 4(t). Note
that at this codimension two bifurcation points there emerge also curves of saddle-center bifurcations
and heteroclinic saddle-saddle connections, see Fig. 1(b). This bifurcation is described in more detail in
Ref. [55].

The uncoupled case. For κ = 0 the two rotators are decoupled. In this case the only bifurcation
happens at a = ±ω, where both rotators simultaneously undergo the SNIC from excitable to rotating
behavior. Note that the unfolding of this codimension-two point (see degenerate phase portrait in
Fig. 4(s) for κ 6= 0 gives rise to the reversible pitchfork bifurcation, where the stable synchronous
equilibrium emerges, and, additionally, to curves of heteroclinic saddle-saddle connections and saddle-
center bifurcations.

Summary of case (I). Having clarified all the details of the bifurcation scenario in the time-reversible
case (I) of two rotators with anti-reciprocal coupling (11)–(12) we can interpret the bifurcation scenario
as follows. The transition of the single rotator from excitable to oscillatory motion at |κ/ω| = 1 plays
the main role. If the single rotator is in the oscillatory regime, the coupled system has only conservative
behavior. For weak coupling it consists of unidirectional rotation of both units. Stronger coupling leads
to the coexistence of bidirectional rotation and also to regions of libration, which can be seen as a
conservative version of a partial oscillation death, i.e. for certain initial conditions the coupling prevents
the rotating units from rotation or even reverses their rotation.

For coupled rotators in the excitable regime we have always a pair of source/sink equilibria that induces
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Figure 7: Bifurcation diagrams for case (II) time-reversible system (13)–(14). (a) – parameter plane
(κ, ω) with fixed a = 1. (b) – parameter plane (κ, a) with fixed ω = 1. Bifurcation curves: red – saddle-
center bifurcation, green – reversible equivariant sink/source bifurcation , blue/black – heteroclinic
saddle-saddle connections. Moreover, there is a global bifurcation induced by the phase shift invariance
(brown). Structurally stable phase portraits from the different parameter regions with labels (a)–(f) are
given in Fig. 8, phase portraits at the bifurcation curves and codimension-two points (labels (g)–(p)) in
Fig. 9. Colors of regions as in Fig. 1.

a dissipative region, which is identical to the basin of the sink. But only for small coupling this basin
covers a set of full measure in phase space. For strong coupling there appear step by step conservative
regions with both rotation and libration. In contrast to the oscillation death in the oscillatory regime, this
can be seen as a partial oscillation birth, where – again only for a certain open set of initial conditions –
non-oscillatory units start to oscillate as a consequence of the coupling.

3.2 Case (II): coupled rotators with reciprocal coupling

We consider now the case (II) of time reversibility given by system (13)–(14). As above, we show in
Fig. 7 two bifurcation diagrams with respect to (κ, ω) with fixed a = 1 (panel (a)) and with respect
to (κ, a) with fixed ω = 1 (panel (b)). In addition to the time-reversal symmetryR, given by (9), the
system (13)–(14) possesses the following Z2-equivariance

γm : (φ1, φ2) 7−→ (φ2, φ1),

which is a mirror symmetry with the invariant subspace

Fixγm = {(φ1, φ2) : φ1 = φ2} ,

corresponding to complete synchronization. Note that the composition

Rγm = γmR : (φ1, φ2, t) 7−→ (−φ1, −φ2,−t)

of the time-reversal symmetry and the Z2-equivariance provides another time-reversal symmetry.
This map has two invariant points {(0, 0), (π, π)}, which will become important for the sink/source
bifurcation discussed below. Moreover, system (13)–(14) has a time-reversal symmetry involving the
parameters ω and κ:

γ4 : (φ1, φ2, κ, ω, t) 7−→ (φ1 + π, φ2 + π, −κ, −ω, −t).
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Figure 8: Different types of structurally stable phase portraits in case (II) of time reversibility (13)–
(14) on the torus (φ1, φ2) ∈ [0, 2π) × [0, 2π). Parameters in panels (a)–(f) are chosen from the
correspondingly marked parameter regions in the bifurcation diagram Fig. 7. Colors of invariant regions
and fixed points as Fig. 2.

According to this symmetry the bifurcation diagram in Fig. 7(a) is invariant under the reflection of both κ
and ω together. The parametric symmetry

γ3 : (φ1, φ2, a, t) 7−→ (φ1 + π, φ2 + π, −a, t)

that was already present in case (I) induces the reflection symmetry of the bifurcation diagram in
Fig. 7(b) with respect to a, while there is no reflection with respect to κ alone, as in case (I). The system
can have up to four fixed points, either two pairs of a saddle and a center, all in FixR, or two saddles
in FixR and a sink/source pair in the synchronization subspace Fixγm. We encounter here the similar
types of reversible bifurcations as in the case (I) scenario described above. However, some of them are
modified by the additional Z2-equivariance γm.

Saddle-center bifurcation. The red line of the saddle-center bifurcation in Fig. 7(a) is given by

ω = − 1

8κ
− κ, |κ| > 1

4
.

This expession is derived from the condition that there is an equilibrium in FixR with two zero
eigenvalues. This is equivalent to finding a double root of the condition for an equilibrium in FixR.
According to the mirror symmetry, we have now a pair of symmetry related degenerate equilibria
(φ∗

1,−φ∗
1) and (−φ∗

1, φ
∗
1), as seen in the degenerate phase portrait Fig. 9(m). Recall that together

with the centers there appear also conservative regions of libration type, see Fig. 8(c). However, in
contrast to case (I) where this bifurcation may induce the coexistence of conservative and dissipative
regions, we find it here only in the purely conservative region, where it induces regions librations in a
fully rotating scenario Fig. 8(f).

Reversible equivariant sink/source bifurcation. Similar as the reversible pitchfork bifurcation
discussed in case (I), this bifurcation gives rise to a pair of sink/source equilibria outside FixR.
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Figure 9: Examples of structurally unstable phase portraits in case (II) of time reversibility (13)–(14) on
the torus (φ1, φ2) ∈ [0, 2π)× [0, 2π). Panels (g)–(m): codimension-one; (n)–(p): codimension-two.
Parameters are chosen from the correspondingly marked parameter regions in the bifurcation diagram
Fig. 7. Colors of invariant regions and fixed points as Fig. 2.

However, in case (II) it includes an interplay of the time reversal symmetryR with the Z2-equivariance
γm and is given by a degenerate equilibrium with double zero eigenvalue that lies in

FixR∩ Fixγm = {(0, 0), (π, π)}.

The corresponding bifurcation condition ω ± a = κ provides the green lines in Fig. 7. This bifurcation
comes here in two different versions that can not be distinguished on the linear level. The first type has
a degenerate phase portrait as given in Fig. 9(g). The degenerate equilibrium connects a folded branch
with two center equilibria in FixR, which are related by γm, with another folded branch in Fix γm
containing a source and a sink equilibrium, which are related byR. The branches are organized as in
a complex fold of the form z2 + µ = 0, z ∈ C. The structurally stable phase portraits related by this
type of bifurcation are Fig. 8(b) and (c). Note that this bifurcation connects a fully dissipative phase
portrait with a fully conservative one. In the conservative phase portrait there are two further saddle
equilibria in FixR, which each have gained in the conservative situation a structurally stable homoclinic
orbit, delineating two regions of librations around the center equilibria from two regions of rotation.
In the second type has a degenerate phase portrait as given in Fig. 9(l). The degenerate fixed point
connects a pair of branches with saddle equilibria in FixR, which are related by γm, with the branch of
the sink/source pair. In this situation both folded branches extend to the same side of the bifurcation
such that all four involved equilibria coexist on one side of the bifurcation and have all disappeared on
the other side (Fig. 9(f)). The two types change at a codimension-two point on the green curve where
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the curve of saddle-center bifurcations (red) ends and the corresponding degenerate phase portrait
is given in Fig. 9(p). Note that there is a second codimension-two point along the green curve where
another curve of global bifurcations (heteroclinic saddle-saddle connections) ends. This induces global
change in the dissipative phase portraits emerging at the green line, showing beyond this point also a
coexisting conservative region with rotations.

Heteroclinic saddle-saddle connections We have two instances of structurally unstable heteroclinic
saddle-saddle connections, given by the blue and black curves in the bifurcation diagrams in Fig. 7. At
the blue curve a conservative region of backward rotations appears. Fig. 8(h) shows how this happens
from a purely dissipative situation (Fig. 8(b)) where it leads to mixed-type dynamics (Fig. 8(e)). After the
codimension-two point (Fig. 9(o)), the transition happens from a fully conservative situation (Fig. 8(c)),
where the heteroclinic saddle-saddle connection (Fig. 9(j)) induces a second region of rotations in
opposite direction (Fig. 8(d). This type of transition occurs also along the black curve and has been
described schematically in Fig. 5. Note that this bifurcation occurs for a = 1 only at very large values
of ω such that it is out of the range of Fig. 7(a).

Rotational symmetry. As in case (I), for a = 0 we obtain two Kuramoto oscillators with a rotational
symmetry. The two intervals of the straight magenta line a = 0, |κ| ≥ 1 in the bifurcation diagram
in Fig. 7(b) correspond to the situation shown schematically in Fig. 6, where the forced breaking of
the rotational symmetry induces a global bifurcation and small libration regions emerge from a line of
equilibria (Fig. 9(k)).

Summary of case (II). Similar to case (I), the dynamics in the synchronization subspace plays a
central role for the dynamics. The SNIC bifurcation in this subspace, which comes here in the full
system as the reversible equivariant sink/source bifurcation, induces together with the sink/source
pair the dissipative dynamics. However, this bifurcation depends here also on the coupling strength,
i.e. it does not coincide with the SNIC of the uncoupled unit. In the dissipative regime large values of
ω can lead to rotations coexisting with the dissipative region. But in contrast to case (I) there are no
librations coexisting with a dissipative region.In the fully conservative regime we have again situations
with rotations, librations, and additional rotations in opposite directions. Comparing the dynamics with
and without coupling, we find again both situations, where the coupling enables rotations of excitable
units (oscillation birth) or prevents rotations of rotating units (oscillation death). While this happens
in most cases only for a part of the phase space, we have here also a case, where for increasing
coupling two non-oscillating but excitable units make transition from a fully dissipative regime without
any oscillations to a fully rotating regime.

4 Generic perturbations of the reversible cases

For the general system (3)–(4) of two coupled rotators, the reversible regimes studied above represent
degenerate situations, which can be perturbed in different ways. Already for identical oscillators, i.e.
a1 = a2, ω1 = ω2, and anti-reciprocal or reciprocal coupling κ1 = ±κ2 a phase lag parameter
α 6= 0 or α 6= π/2, corresponding to case (I) and case (II), respectively, will destroy the time-reversal
symmetry. Other types of generic perturbations are non-identical oscillators or identical oscillators with
different coupling strengths κ1 6= ±κ2.
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Figure 10: Phase portraits of two coupled oscillators (3)–(4) for different choices of the
parameters ω1, ω2, a1, a2, κ1, κ2: (a) (0.2, 1,−1, 0.5, 3, 2); (b) (0.5, 0.5, 0.21, 0.2, 1.1, 1); (c)
(0.7, 0.7, 0.1, 0.1, 1.06, 1); (d) (0.3, 0.2, 0.9, 0.9, 1.22, 1.2). Colors: red — unstable, blue — sta-
ble, green — saddle.

Only the purely dissipative regimes close to the uncoupled non-oscillatory situation have phase portraits
that are structurally stable also under all such generic perturbations. As soon as there are conservative
regions, all perturbations that break the time-reversal symmetry will lead to structural changes in the
dynamics.

� Center equilibria will turn into stable or unstable foci.

� There will be a slow drift along families of neutrally stable periodic orbits in the conservative
regions.

� Structurally stable homoclinic orbits, which constitute the boundaries of the conservative regions,
will break.

In this way, there can appear isolated stable and unstable periodic orbits from the families in the
conservative regions. They can be both of rotation and libration type, see Fig. 10. In particular, in the
cases of perturbations of conservative dynamics with dissipative and conservative regions, this can lead
to multistability, where new stable objects of different type emerge in addition to the structurally stable
attracting equilibrium in the dissipative region as in panel (d). Note that for non-identical oscillators,
there can be additional topologial types of periodic orbits, where both units perform a different number
of round trips during one period. Such an example will be discussed in detail in the next section.

4.1 Bursting-like orbits

A specific example of non-trivial dynamics emerging from a small perturbation of the reversible dynamics
in case (I), Fig. 2(f) is shown in Figs. 11–13. In the time reversible case we have two conservative
regions, one with librations and the other with rotations. A small perturbation to non-identical oscillators
with slightly detuned frequencies ω1 6= ω2 induces a slow drift across the conservative region of
rotations without stabilizing any of these rotations. At the same time, the center equilibrium within the
other conservative region of librations is transformed into an unstable focus. The resulting dynamics
are shown in the phase portrait in Fig. 11. We observe a stable periodic solution (blue) that performs a
bursting-like behavior with many rotations during the slow passage through the conservative region
of rotations until it comes close to the saddle equilibrium, where it can stay for an arbitrary long time
interval. For varying detuning of the frequencies the globally stable periodic orbits of this type are
organized in a complicated bifurcation scenario, where close to the conservative situation periodic
solutions with arbitrarily long period and an increasing number of rotations within one burst appear.
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Figure 11: Phase portrait for system (3)–(4) with a1,2 = 1, κ1,2 = ∓1 , α = 0 as in the reversible
case (I), and ω1 = 1.07, ω1 = 1.13. Stable periodic orbit (blue), saddle (green) and unstable focus
(red). Stable and unstable manifolds of saddle equilibrium (thin red and blue curves, respectively).
Conservative regions of librations (yellow) and rotations (blue) from the reversible case with ω1 = ω2 =
1.1

In Fig. 12 we show how the branches of periodic solutions are organized for varying the detuning ε
from the reversible case at ε = 0. Panel (a) shows a self-similar sequence of branches with increasing
winding number (n, n+ 1), n = 1, . . . ,∞. Each of these branches ends at a homoclinic bifurcation,
where the period grows unboundedly. However, at each of these transitions, we observe another
self-similar cascade of transitions to orbits of more complicated structure existing only in increasingly
small parameter windows. Panel (b) shows the parameter region around the first transition in panel
(a), where the branch with winding numbers (1, 2) disappears and a new branch with (2, 3) appears.
On the zoomed scale in panel (b) in between these two major branches a new branch with winding
numbers (3, 5) becomes visible. Zooming into the transition between this branch and the (2, 3) branch,
we find a branch with winding numbers (5, 8), see panel (c). Zooming in yet another time, we find a
branch with winding numbers (7, 11), see panel (d). Examples of time traces of bursting orbits with
different detuning values ε and resulting winding numbers are given in Fig. 13.

Figure 12: Maximimum inter spike intervals for bursting solutions with varying detuning from the time
reversible case for system (3)–(4) with a1,2 = 1, κ1,2 = ±1, ω1,2 = 1.1∓ ε, α = 0.
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Figure 13: Time traces of periodic solutions for system (3)–(4); φ1–blue, φ2–red. For the indicated
choices of the detuning value ε we find the following winding numbers: (a)–(9, 10), (b)–(4, 5), (c)–
(9, 11), (d)–(5, 8). Other parameters as in Fig. 12.

4.2 Nonlinearities with higher harmonics

As explained in subsection 2.2, the general system (1)–(2) has a time-reversal symmetry in two different
cases, where the functions f1,2(φ), governing the local dynamics are identical and even, while the
coupling functions g1,2(φ) have to be also identical but can be either odd and have opposite signs
(case (I)) or even and identical (case (II)). In section 3 we investigated the case where both functions
are restricted to the leading term in the Fourier expansion. In the general case where both functions
contain higher-order harmonics, the system can possess more fixed points and, as a result, a much
more complex structure of the invariant manifolds of the saddles, which provide the global structure of
the dissipative and conservative regions in the regimes of mixed-type dynamics.

We will now briefly indicate how in the case (I) of a system with anti-reciprocal coupling the presence of
higher-order harmonics in the local function of the local dynamics f(φ) = f1,2(φ) and in the coupling
function g(φ) = g1(φ) = −g2(φ) can lead to more complex time-reversible dynamics. First, note that
already a single rotator φ̇ = f(φ) with an even function f(φ) containing the n-th harmonic cos(nφ)
can have up to 2n different fixed points. For a system of two such units with small coupling this gives rise
to 4n2 fixed points, which are sinks, sources, and saddles outside FixR and also saddles inside FixR.
At the other hand, for two Kuramoto oscillators, i.e. f(φ) = ω, a coupling function g(φ) containing
the m-th harmonic sin(mφ) can induce up to 2m lines of equilibria ψj = φ1 − φ2, j = 1, . . . , 2m,
where g(ψj)− ω = 0. Breaking the rotational symmetry by a slightly non-constant f(φ), this leads to
2m saddle/center pairs in FixR and corresponding conservative regions of rotations and librations,
compare Fig. 6. Hence, we can say that in a general system (1)–(2) with case(I) time reversibility, the
higher harmonics of f(φ) can induce multiple equilibria outside FixR and hence a more complex
structure in the dissipative part, while functions higher harmonics of g(φ) are responsible for the
emergence of multiple equilibria inside FixR, leading to multiple conservative regions.

We illustrate this in Fig. 14 by two examples of functions of the form

f(φ) =ω − cosφ− p cos(nφ) (19)

g(φ) =κ(sinφ+ r sin(mφ)). (20)

Note that in panel (a) and (c) we have chosen ω = 0 such that we have the second time reversibility
R2, such that there are heteroclinic saddle-saddle connections, compare corresponding phase portraits
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Figure 14: Examples of phase portraits for the general system of two coupled active rotators (1), (2)
with higher harmonics (19), (20). Parameters: (a): ω = 0, p = 0, κ = 1.2, r = 0.7, n = 15; (b):
ω = 0.1, p = 0.2, m = 3, κ = 1.2, r = 0.7, n = 5; (c): ω = 0, p = 1, n = 2, κ = 4, r = 0.
Colors of regions and fixed points as in Fig. 2.

in Figs. 3(i),(j). In panel (b), where we have chosen ω 6= 0, all saddles in FixR have structurally stable
homoclinics. Moreover, there are saddle equlibria outside FixR. They come in pairs related by R
and can have structurally stable heteroclinic connections between them. They can be involved in a
second type of reversible pitchfork bifurcation (saddle-saddle type), where an equilibrium inside FixR
changes from saddle to center, while a branch with two saddles outside FixR emerges, cf Fig. 14(b).
Fig. 14(c) shows also the result of a third type (center-center) of the reversible pitchfork bifurcations: the
emergence of two centers outside FixR from a center inside FixR that, at the same time, transforms
from a center into a saddle.

We see that some of the structural restrictions, which we encountered in the system (11)–(12) of case (I)
time-reversibility with only first harmonics are no more present for higher order harmonics. In particular,

� there can be a large number of equilibria, in particular pairs of saddle equilibria outside FixR
and sink/source pairs outside the synchrony subspace.

� there can appear multiple nested regions of conservative regions of different type and nested
regions of conservative and dissipative dynamics.

However, the general observation remain true: The anti-reciprocal coupling of case (I) can induce a
partial oscillation death, i.e. for certain initial conditions the coupling prevents the rotating units from
rotation or even reverses their rotation. Also the effect of partial oscillation birth, where non-oscillatory
units start to oscillate as a consequence of the coupling.

5 Discussion and Outlook

We have demonstrated that already for a fairly simple two-dimensional system of two coupled rotators
in the transitional regimes between attractive and repulsive coupling there can arise quite complex
dynamics. Particularly rich dynamics occur for parameter choices where the system has a time-reversal
symmetry. In this case we also encounter the somewhat unusual types of bifurcations of time-reversible
systems. Additionally, such systems can switch between dissipative and conservative dynamics, and
also display the coexistence of different regions with such dynamics in phase space, which are governed
by complex heteroclinic and homoclinic structures connecting the fixed points within and outside the
symmetry subspace.
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Note that certain interesting regimes and properties described in this work for the system of two
connected active rotators also exist for more complex networks of rotators. In particular, a system of 2N
globally connected active rotators φ̇k = fk(φk) +

∑2N
j=1 gkj(φk − φj), where fk(x) = fk(−x) =

fk+N(x), gkj(x) = ±gkj(−x) = ±gk+N,j+N(x), can display a time-reversal symmetry similar
to the cases given here, e.g. with a symmetry action of the form φi 7→ −φi+N , i = 1, . . . , N . A
system of 2N + 1 globally coupled active rotators with even coupling functions can have a time-
reversal symmetry with symmetry action φi 7→ −φi+N+1, i = 1, . . . , N , φN+1 7→ −φN+1. Also
other symmetry actions, based on other permutations or phase shift symmetries, are possible. In all
these cases, the system can have a coexistence of conservative and dissipative dynamics over wide
regions in the parameter. Our preliminary numerical investigation indicates quite complex structures in
a 4-dimensional system. We observe there conservative regions of multi-parameter families of neutral
periodic orbits are bounded by sets of homo/heteroclinic cycles. Despite the apparent complexity of
global bifurcations in multidimensional systems, certain of their properties are similar to the bifurcations
described above. Also the destruction of conservative regions by small symmetry breaking perturbations
and the emergence of trajectories slowly drifting along the families of former neutral periodic orbits
occurs in a somewhat similar way.
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[30] Iva Bačić, Serhiy Yanchuk, Matthias Wolfrum, and Igor Franović. Noise-induced switching in two
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