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Abstract 

Consider the nonlinear equation ( *) x = Tx + f with a strictly contrac-
tive operator Tin some real separable Hilbert space. A well-known procedure 
to approximate the unique solution x* (!) of ( *) is the projection-iteration 
method which can be characterized as a method of diagonalization. In case 
that ( *) is a large system which can be represented as a system of weakly 
coupled subsystems, an efficient method to approximate x* (!) is the decom-
position method which is a block iteration scheme. One realization of this 
method is the waveform relaxation method. In this note we combine the diag-
onalization technique with the decomposition method and derive conditions 
for the convergence of the resulting iteration scheme. 

1 Introduction 

Let X be a Banach space, let T be a strictly contractive operator mapping X into 
X. To given f E X we consider the nonlinear equation 

x = Tx + f. (1.1) 

Well-known "procedures to approximate the unique solution x*(f) of (1.1) are itera-
tion, projection and projection-iteration schemes [7]. The basic idea of a projection-
iteration scheme is to approximate the underlying infinite dimensional problem by a 
finite dimensional one where the dimension of which increases during each iteration 
step. This method was developed in the late sixties and can be characterized as a 
diagonalization procedure [3, 7] . 

. In this paper we additionally assume that X can be represented as the product 
space X = X1 x X2 x ... x Xn where Xi is a Banach space with the norm I I· I Ii for 
i = 1,.,. n. Thus, (1.1) can be rewritten in the form 

X1 = Ti(x1, ... , Xn) +Ji, 
X2 = T2(xi, ... , Xn) + f2, 

(1.2) 

The representation (1.2) means that (1.1) can be considered as a system of inter-
acting subsystems where the behavior of the subsystems can be quite different, that 
is, (1.1) is a large scale system. 
An iteration scheme which approximates the unique solution x* and takes into ac-
count the different nature of the subsystems is the decomposition method [6, 11]. 
There are different levels on which decomposition can be taken into consideration: 
the level of approximating linear systems, the level of approximating nonlinear sys-
tems, and the level of the original system. In case that (1.1) is equivalent to a 
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system of differential algebraic equations the latter decomposition is called wave-
form relaxation. This approach was proposed by Lelarasmee et al [ 4] for the time-
domain analysis of large scale integrated circuits, recently there is a large interest for 
such procedures (see [1] and references therein), also in dynamic process simulation 
[12, 13). The efficiency of the waveform relaxation method strongly depends on a 
suitable decomposition of (1.1) into weakly interacting subsystems. 
The goal of this paper is to combine, the idea of waveform relaxation technique 
(decomposition) with the projection-iteration scheme (diagonalization). We derive 
conditions under which the resulting procedure converges. 

2 The Method of Diagonalization 

In case X is a real separable Hilbert space H and T is strictly contractive on H, 
projection-iteration methods represent an important tool to solve (1.1) [3, 7, 8]. Let 
w1 ... Wn be linearly independent elements of H, let Hn be the linear hull spanned 
by these elements. Let Pn : H --+ Hn be a projection, Tn :== PnTPn, f n :== Pnf. Let 
x~ be the unique solution of 

(2.1) 

Under the assumptions above, the sequence { x~} strongly converges to x*. In general, 
the solution of (2.1) requires an iterative procedure, that is, for n == 1, 2, ... we get 
the following sequences 

(2.2) 

Considering this scheme it is obvious to ask for the convergence of the sequence 

Xn == TnXn-1 + f n, n == 1, 2, .... (2.3) 

which can be interpreted as a diagonalization of the sequences (2.2). The following 
general theorem yields a sufficient condition for an affirmative answer to this question 
[3]. 

Propositio~ 2.1 Let {7i} be a sequence of strictly contractive operators mapping 
X into itself, let xi be the fixed point of 1i, let ki be the contraction constant of 1i. 
Assume the following hypotheses are valid 
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{i) xi -t y* as i -t oo. 

{ii) ki ~ k < 1 v i. 

Then the iteration scheme (2.3) strongly converges to y*. 

In case Tn is generated by means of a projection, the property T;, -t T immediately 
implies xi -t x* == Tx*. · 
In what follows we construct an iterative procedure of the type (2.3) to solve (1.1) 
which however cannot be interpreted as a projection-iteration method. 

3 The Waveform-Relaxation-Method 

Another iterative scheme which can be used under some conditions to solve equation 
(1.2) is the so-called waveform relaxation method. Its main features are the following 
[1, 4, 5, 9, 14]: 

1. Decomposition of a given large system into subsystems. 

2. Independent solution of the subsystems taking into account inputs from other 
subsystems. 

The application of this method exhibits the following advantages: the decomposed 
systems are smaller, each subsystem can be solved by an appropriate method, the 
method is highly parallelizable. Its efficiency depends on the fact how weak the 
subsystems are coupled. To formulate a sufficient condition for its convergence we 
consider only a decomposition into two subsystems, the extension to the general 
case can be easily done. 

Let us suppose that the Banach space X can be represented as X · X1 x X2 where 
X1 and X 2 are Banach spaces with the norms II.Iii and II.lb resp. such that equation 
(1.1) can be rewritten in the form 

X1 T1(x1, x2) +Ji, 
X2 - T2(xi, x2) + /2. (3.1) 

The problem how to determine an appropriate norm in X will be trated later. 
Concerning the operators T1 and T2 we assume 

(Hi)· T1 : X1 x X2 -t X1 and T2 : X1 x X2 -t X2 are globally Lipschitz continuous, 
that is, there are nonnegative constants kij, 1 ~ i, j ~ 2, such that V x1x1 E X1, 
v X2X2 E X2 
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llT1(x1, X2) - T1(x1, X2)ll1 < knllx1 - x1ll1 - kdlx2 - x2ll2, 
llT2(x1,x2) -T2(x1,x2)ll2 < k21llx1 - x11!1 - k22llx2 - x2ll2 

where the Lipschitz constants kij satisfy 

k21k12 
kn < 1, k22 + k < 1. 1- 11 

(3.2) 

(3.3) 

Theorem 3.1 Assume the hypothesis (H1) is valid. Then the equation (1.1) has for 
any f E X a unique solution. 

We give a proof of this theorem since it suggests several iteration schemes to solve 
(3.1). 

Proof. k11 < 1 implies the existence of a function g1 : X2 ~ X1 such that the 
first equation in (3.1) is equivalent to 

(3.4) 

It is easy to show that BJ satisfies V x2, x2 E X2 

(3.5) 

Substituting (3.4) into the second equation of (3.1) we get 

X2 = T2(B1(x2), x2) + f2. 

By (3.2) and (3.5) we have V x 2 , x2 E X2 

From (3.3) we can conclude that 'fl (x2) := T2(g(x2), x2) + h is stricly contractive. 
Therefore, to given f, by Banach's fixed point theorem, 'fl has a unique fixed point 
x?.(f). Hence, x*(f) = (g1(x2(J), x?.(f)) is the unique solution of (1.1), q.e.d. D 

From the proof of Theorem 3.1 we get that the following (nonlinear) waveform 
iteration scheme is convergent 

x~ T1(x~, x~-1 ) + f 1 , 

x~ T2(x~, x~) + h 
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In general, this scheme requires at each step to solve a nonlinear equation in some 
Banach space. Under our conditions, this can be done by an iterative procedure 

start: k := 0, choose any initial guess (x~, x~). 

loop: k := k + 1, determine xt and x~ as limits of 

k T ( k k-1) f · 1 2 · h k k-1 
X1,j 1 X1,j-1iX2 + li J = ' ' ... ' wit X1,o = X1 ' 

xL T1 ( x~-1 , x~,i-l' ) + h, j == 1, 2, ... , with x~,o = x~-1 . 

In correspondence with the idea of diagonalization in the frame of projection-
iteration methods we can ask for the convergence of the diagonalized procedure 

x~ - T1 ( x~- l, x~-l) + Ji, 
x~ T2 (x~, x~-1 ) + f2. (3.6) 

Another essential feature of the projection-iteration method is to approximate the 
underlying operator and the given element, and to improve this approximation in 
each iteration step. In our case this means to ask for the convergence of the iteration 
scheme 

(3.7) 

where T~k) ,.TJk), f~k), JJk) are approximations of Ti, T2 , f 1 , h respectively. The fol-
lowing section is devoted to the convergence of the iteration schemes (3.6) and (3.7). 

4 Convergence of the Diagonalized Procedures 

The question for the convergence of the iteration scheme (3.6) is equivalent to the 
convergence of the procedure 

(4.1) 

where the operator T2,k : X2 -+ X2 is defined by 

(4.2) 

The iteration scheme (4.1) has the same structure as the procedure (2.3). 
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Under the validity of hypothesis (H1) it is easy to prove that the operators T2,k 

are contractions with a uniform contraction constant. Since the operators T2 k are 
' not generated by means of projections, the convergence of their fixed points are 

not so obvious. From that reason we prove the convergence of the diagonalization 
procedure (3.7) in a straightforward manner without using Proposition 2.1. 

Theorem 4.1 Assume that hypothesis (H1 ) hold. Then the diagonalized procedure 
(3.6) converges. 

Proof. From (3.6) and (3.2) we get 

Uptil now we have not fixed a norm in X. We define a norm 111-111 in X by 

(4.5) 

where a and bare positive numbers which will be choosen in the sequel. From ( 4.3) 
- ( 4.5) we obtain 

lll(x~, x~) - (x~-1, x~- 1 )111 < (a1k11 + a2k11k21)llx~ - x~-1 111 + 
+(a1k12 + a2(k21k12 + k22))llx~·- x~-1 112· 

Let K be the matrix 

(4.6) 

Without loss of generality we may assume that all entries of K are positive. We 
denote by /'i, the spectral radius of K. A simple calculation shows that the relations 
(3.3) imply 

0</'i,<:L (4.7) 

Accoording to the Perron-Frobenius theory, /'i, is a simple eigenvalue with a strictly 
positive eigenfunction e := ( e1 , e2f. Therefore we have 

eikn + e2k11k21 - K,e1 
eik12 + e2(k21k12 + k22) - /'i,e2. 
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Setting 

(4.9) 

we obtain from ( 4.6) and (4.8) 

lll(x~,x~) - (x~- 1 ,x~- 1 )111 ~ Klll(x~- 1 ,x~- 1 ) - (x~-2 ,x~-2 )111 

Thus, by (4.7) the sequence (3.7) converges in the norm Ill.Ill defined in (4.5) where 
a1 and a2 satisfy ( 4.9) , q.e.d. o 

Remark 4.2 It is easy to see that hypothesis (H1 ) also implies the convergence of 
the procedure 

T ( k-1 k-1) + f 1 X1 'X2 1, 
rp ( k-1 k-1) + f 
.L 2 X1 'X2 2· 

(4.10) 

which can be used for parallel computing technique. 

To prove the convergence of the scheme (3.7) let us assume 

(H2)· For j = 1, 2 there exists a sequence of operators TY), i = 1, 2, ... mapping 
X1 x X2 into Xi such that the following properties hold 

{i) Tl) is globally lipschitzian Vi, i.e., there are nonnegative constants kW, j, l = 
1, 2 such that Vxk, Xk E Xk, k = 1, 2 

2 

llTY)(x1, x2) -TY)(x1, x2) ~ L k)~)llxz - xzllz. 
l=l 

{ii) To the matrix K(i) defined by 

( 
k(i) k(i) k(i) ) 

K (i) - 11 21 11 
- (i) k(i)k(i) + k(i) 

k12 12 21 22 

there is a strictly positive matrix K such that 

K(i) ~ K 

where "~ " denotes the usial partial ordering, and 

u(K) = K < 1. 

( 4.11) 

( 4.12) 

( 4.13) 

Let e := (el' e2) be a strictly positive eigenvector of K to the eigenvalue K. In what 
follows we introduce the norm 111·111 in X = X1 x X2 by (4.5) where ai = ei. 
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Let y(i) := (Tii), TJi)). From Theorem 4.1 it follows that under the hypothesis (H2 ) 

each operator y(i) is strictly contractive in X with respect to the norm 111-111 . Let 
di) be the corresponding fixed point. Concerning the sequence di) of fixed points 
of y(i) we suppose 

(H3). There is a y* E X such that " 

Theorem 4.3 Assume the hypotheses (H2 ) and (H3 ) to be valid. Then the sequence 
xk defined by (3. 7) satisfies 

( 4.14) 

Proof. By the inequality 

( 4.15) 

and by hypothesis (H3 ) it sufficies to prove 

I llxk - x~i) 111 --+ as k --+ oo. ( 4.16) 

From (3.7) and ( 4.11) we get 

( 4.17) 

( 4.18) 

Introducing the notation 

and taking.into account ( 4.12) we may rewrite the inequalities ( 4.17), ( 4.18) in the 
form 

8k:::;; K8k-i + 8!. (4.19) 

From ( 4.19) and ( 4.13) we obtain 

k-1 
lll8klll:::;; ~1115k-1 111+1118!111::; ~k-1 11181 111 +I: ~k-vlll8~111- (4.20) 

v=l 
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According to ( 4.13), to given c > 0 there is a ko(c) such that 

~k-1 11181 111::; c/3 fork::; ko(c). ( 4.21) 

From hypothesis (H3) it follows that 1118! 111 is uniformly bounded, that is, there is 
a positive constant c such that 

1118!111::; c for all k, 

moreover, there is a k1 ( c) 2:: k0 ( c) such that 

1118~111 ::::; c: (3 ~ kµ )-l fork::::; k1(c:). 

Therefore, for k > k1 ( c) we have 

v-1 v=l v=k+l 

::::; klcKk-kl + c: I: Kk-v (3 f kµ)-l :s; 
v=k+l µ=l 

::; k1 c~k-kl + c/3. 

Consequently, there is a k2 ( e) 2:: k1 ( e) such that 

k1c~k-kl ::; c/3. 

Finally, fork 2:: k21 (c) we get from (4.20)- (4.23) 

1Il8kl11 ::; e. 
Hence, ( 4.14) is valid, q.e.d. 

5 Applications 

As a first application we consider the integral-algebraic system 

x1(t) - fo1 K(s, t) f(x1(s), x2(s ), s), 

x2(t) - g(x1(t), x2(t), t) 

assuming the following assumptions: 

(V1 ). K: [O, l] x [O, 1]-+ L(Rn, Rk) is measurable and fulfills 

m2 := sup f
1 
llK(s, t)ll2dt < oo 

sE[O,l] lo 
where 11 ·I I is the induced matrix norm to any norm I· I in Rk. 
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(V 2). f : Rn X Rm X [O, 1] -+ Rk and g : Rn X Rm X [O, 1] -+ Rm satisfy the 
Caratheodory condition. 

(V 3). There are nonnegative constants ci, c2 and functions µi, µ2 E L2([0, l], R) such 
that V (xi, x2) E Rn x Rm and f.a.a. t E [O, l] 

IJ(xi, x2, t)I < µi(t) + ci(lxil + lx2I) 
jg( xi, x2, t)I < µ2(t) + c2(lxil + lx21). 

(V 4). There are nonnegative constants ki, k2, li, l2 such that V xi, x2 E Rn, Yi, y2 E 
Rm, t E [O, 1] 

lf(xi, x2, t) - f(x2, x2, t)I < kilxi - xii+ k2lx2 - x2I, 
Jg( xi, x2, t) - g(xi, x2, t)I < lilxi - xii+ l2lx2 - x2I 

Using Theorem 3.1 we can establish the following result. 

(5.2) 

Theorem 5.1 Assume the hypotheses (Vi) - (Vs) hold. Thewsystem (5.1) has a 
unique solution. 

Proof. Let Xi := L2 ([0, l], Rn), Xi := L2([0, 1], Rm) equipped with the usual 
norm 

I lx;I I• := fo11x,(t)l2dt, i = 1, 2. 

The hypotheses (V2) and (V3) imply that the Nemyzkii operators F and G defined 
by . 

F(xi, x2)(t) .- f(xi(t), x2(t), t), 
G(xi, x2)(t) .- g(xi(t), x2(t), t) 

are continuous mappings from Xi x X2 into Xi and X2 resp. [2]. Let us introduce 
the operator H by 

Then the system (5.1) can be represented in the form 

Xi H(xi, x2), 
X2 G{xi, x2). 

From (Vi) and from the property of F mentioned above we get H: Xix X2 -+ Xi. 
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After some straightforward calculations we have 

IJH(x1, X2) - H(x1, f2)ll1 < 2mk1Jlx1 - x1ll1 + 2mk2llx2 - x2ll2, 
I IG(x1, X2} - G(x1, X2) 112 < 2li I lx1 - X1111 + 2l2 I lx2 - x2 ll2· 

It is easy to verify that under the assumptions (Vi) - (Vs) the hypothesis (Hi) of 
Theorem 3.1 holds. Thus, system (5.1) has a unique solution under the hypotheses 
above, q.e.d. D 

Concerning the approximation of (xi, x2) we obtain from Theorem 4.1 

Theorem 5.2 Assume the hypothese of Theorem 5.1 hold. Then the diagonalized 
iterative scheme 

x~ H(x~-1 , x~-1 ), 

x~ G(x~, x~-1 ) 

converges to (xi, x2) E X1 x X2 for any initial guess (x0 , y0 ) E X1 x X2. 

The following application shows that under some additional conditions the global 
lipschitz condition (3.2) can be relaxed. We consider the nonautonomous differential 
system 

under the following assumptions 

(A1). For i = 1, 2, Ai: R---+ L(Rni, Rni) is continuous and 27r - periodic. 

Let Xi(t) be the fundamental matrix of the system 

satisfying Xi(O) = Ini where Ini represents the ni x ni unit matrix. 

(5.3) 

(A2). For i = 1, 2, Xi(27r) - Ini is invertible, i.e., 1 is not an eigenvalue of the 
monodromy matrix Xi(27r). 

Hypothesis (A2) implies the existence of the Green's matrix 

Let D1 and D2 are open bounded regions in Rn1 and Rn2 resp., D := D1 x D2. 
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(A3). For i == 1, 2, fi : D x R--+ Di is continuous, 2?T - periodic int and such that 
the initial problem to (1.1) has a unique solution. 

For i == 1, 2, let e;-rr be the metric space of 2?T-periodic continuous functions mapping 
R into Gi where the metric is defined by means of the usual maximum norm I I· I Ii· 
We define e2rr by e2rr :== er x C?rr, in the sequel we will define an appropriate 
metric in e2rr. For x E e2rr we define for i == 1, 2 the operator ~ by 

r2rr 
~x(t) :==lo Gi(t, s)fi(x(s), s)ds, i == 1, 2. 

According to the assumptions (Ai) - (A3 ) we have ~ : c2rr --+ er for i == 1, 2. Let 
T :== (Ti, T2). Then, the problem of the existence of a harmonic solution of (1.1) is 
equivalent to the existence of a fixed point of the operator T in e2rr. If we know an 
approximation q of some 2?T-periodiC solution of (5.3) then ·we can derive a result on 
the existence of a 27r-periodic solution which yields at the same time an information 
about the location of this solution. From that reason we assume 

(A4). There is a function q E e2rr and a positive number r such that 

(i). Tq E C2rr. 

(ii). Vt E [O, 21T], the ball K; defined by K; :== {x E Rn1+n2 : Ix - Tq(t)I ::::; r} 
belongs to D, Let Kr :== UtK;. Vx, x E Kr f :==(Ji, h) satisfies 

l!i(xi, x2, t) - fi(xi, x2, t)I < lulxi - xii+ li2lx2 - x2I 
lh(xi, x2, t) - h(xi, x2, t)I < l2ilxi - xii+ l22lx2 - x2I 

(5.5) 

where I· I is the euclidian norm and all lij are assumed to be strictly positive. 

(iii). Let mi, m 2 be positive numbers such that fort E [O, 1] 

I IGi(t, s) 11 :== max 
sE[O,i~ 

ni 

I: gf,ik(t, s) ::::; mi. 
j,k=i 

The spectral radius g of the matrix 

is less than 1. 

L-:- ( lumi l2imi ) 
l2im2 l22m2 

(iv). We denote by C2rr(Kr) the subset of all functions in e2rr mapping into Kr and 
introduce in c2rr (Kr) a norm 111 ·I I I by 

111.111:=77ill·lli + 7]211.112 

where ( 'T/i, 772) is the eigenvector of L to the eigenvalue g. 

lllTq- qlll::::; l - gr. 
f2 
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Theorem 5.3 Assume the hypotheses (A1) - (A4) are valid. Let Sr :== { x E C 2rr : 

11lx-Tql11 ::; r }. Then (5.3) has a unique harmonic solution pin Sr and the iteration 
scheme (4.10) with x 0 E Sr converges to p. 

Proof. Let x E Sr. Then we can prove under the assumptions above 

lllTx -Tqlll::; ell Ix - qlll::; e(lllx -Tqlll + lllTq- qlll)::; r, 

that is, T maps Sr into itself. Analogously we can prove that T is strictly contractive, 
in Sr. D 

Remark 5.4 If we replace L by the matrix L where 

L _ ( l11m1 l21l11m1 ) 
- l21m2 (l22 + l21li2)m2 

then the iteration scheme {3. 6) converges to the harmonic solution p. 

Remark 5.5 If we represent p as a trigonometric series and approximate p by a 
truncated series (projection to a finite sum), then we can use the iteration scheme 
(3. 7) to approximate p. The realization of that procedure consists in solving systems 
of nonlinear equations (computation of Fourier coefficients) of increasing order. 
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