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Influence of scattering effects on the interaction between
longitudinal modes in laser diodes

Eduard Kuhn, Angela Thränhardt

Abstract

A predictive model of scattering processes in semiconductor lasers is derived, enabling us to
model relaxation processes starting from well-known parameters such as the dielectric constant.
The resulting effective mode interaction terms are explicitly calculated for an (InGa)N quantum
well using Coulomb scattering. In contrast to the method used so far to model mode competi-
tion phenomena in Fabry-Pérot type laser diodes, the model correctly includes e.g. accelerated
scattering at higher densities or temperatures and eliminates the scattering rate as an unknown
parameter. The effective mode interaction term derived in this work can be used for the simulation
of the mode dynamics in various laser diode types, for example broad area laser diodes, where
multiple transversal and longitudinal modes are active. Thus, our model offers an increased pre-
dictability and improved modelling of switch-on behavior.

1 Introduction

Fabry-Pérot type laser diodes are used for various applications such as laser displays [1–4] and pro-
jection [5–7], showing mode-competition phenomena [8, 9]. For example, these lasers show mode
hopping, where the level of activity of different longitudinal modes changes over time due to an anti-
symmetric interaction of the modes. In a more recent development, a similar effect has been observed
in broad area laser diodes, specifically in the presence of multiple lateral modes [10]. This kind of
mode interaction can be explained by beating vibrations of the carrier densities in the quantum well
that appear when multiple longitudinal modes are active at the same time [11].

The most common way to simulate the mode dynamics is to use rate equations, i.e. to formulate
equations of motion for the photon numbers of all relevant modes and the carrier density. An alternative
method is the traveling wave method, where a partial differential equation for the electrical field is
solved [12–18]. However, up to this point, no mode dynamics simulations using the traveling wave
method have been able to qualitatively replicate the experimental results.

When using rate equations, the state of the charge carriers is usually described by the total number
of carriers in the quantum well not specifying their spatial momentum or energy distribution. In order
to describe effects such as spatial or spectral hole burning a more detailed description is needed.
One possibility is to use a spatially varying carrier density or even to use electron and hole distribution
functions that determine the average occupation of the different energy levels [19].

The direct treatment of the beating vibrations of the quantum well carriers is computationally expen-
sive, as the period of the vibrations is typically in the region of a few picoseconds [20] but the mode
competition effects occur on the timescale of 100ns [21]. The computation time can be significantly
reduced by using an effective mode interaction term in the rate equations instead. This effective term
describes the interaction between different optical modes and it is no longer necessary to consider
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the beating vibrations of the quantum well carriers in the calculations. The equations of motion of the
photon numbers in each mode are expanded by adding an additional mode interaction term where
the strength of the interaction is determined by the frequency difference of two modes. This effective
interaction term was derived for maser devices by Lamb et al. [22] and for Fabry-Pérot laser diodes
with a single lateral mode by Yamada et al. using a constant scattering time [11, 23–27].

In section 2 of this publication we derive these effective mode interaction terms using ab initio scat-
tering terms, e.g. Coulomb scattering. This kind of scattering term has been used extensively in the
literature to calculate optical properties such as the refractive index and absorption/gain spectra for dif-
ferent materials, e.g. for gallium arsenide [28–35] and also gallium nitride [36] based material systems.
The derived effective mode interaction term is valid not only for narrow ridge laser diodes but also ex-
tends to broad ridge laser diodes exhibiting multiple lateral modes. This may be used to understand
the streak camera observation as shown in Ref.[10]

In section 3 the effective mode interaction term is calculated for an (InGa)N quantum well using
Coulomb scattering. Differences to a “traditional” calculation using a constant scattering time occur
in particular for small frequency differences of the participating modes (∆ω < 1 ps−1). The interac-
tion term also depends strongly on the field strength at the quantum well or alternatively the photon
density. The effect of the scattering terms on the mode dynamics using an effective mode interaction
term is also studied for a simple example where the carrier densities were assumed to be constant.

2 Theory

2.1 Basic Theory

In order to simulate the mode dynamics of laser diodes we need to consider the equations of motion
for the photon numbers Sp. These photon numbers are the absolute squares of the coefficients Bp in
the expansion of the optical field E(r), Sp = |Bp|2, and

E(r) =
∑
p

i

√
~ωp

2ε0

[
Bpup(r)−B∗

pu
∗
p(r)

]
,

where up(r) are the respective photon mode functions, ωp are the mode frequencies and ε0 is the
vacuum permittivity. The mode functions typically depend on the device geometry. For example, for
Fabry-Pérot laser diodes they can be written as

upm = gp(y)tm(x, z),

where the index p is used for the longitudinal mode function gp(y) and m is used for the transversal
mode function tm(x, z). In the following these two indices are combined into a single index p. Here z
is the growth direction, x is the lateral coordinate and y is the longitudinal coordinate.

The equation of motion for the coefficients Bp can be derived using the Heisenberg picture and is
given by an integral of the mode function with the polarization P of the quantum well [37]:

d

dt
Bp = −iωpBp +

√
ωp

2~ε0

∫
d3r u∗

p(r)P(r, ωp)

⇒ d

dt
Sp =

d

dt
|Bp|2 =

√
2ωp

~ε0

∫
d3rRe

{
B∗

pu
∗
p(r) ·P(r, ωp)

}
(1)
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Influence of scattering effects on the interaction between longitudinal modes in laser diodes 3

For the actual simulation of a laser device, additional terms are needed. For example terms that
describe spontaneous emission and photon losses inside the cavity.

In the present model we also require a description of the carriers in the quantum well in order to
calculate the polarization P. For this purpose we use the Semiconductor Bloch equations [19, 38, 39],
which are equations of motion for the carrier distribution functions f e

k, f
λ
k and microscopic polarizations

ψλ
k. These polarizations are used to describe optical transitions between the conduction and valence

band and therefore indirectly couple the distribution functions with the optical field. A derivation of
these equations for the space-dependent case is given in Ref. [19].

In order to calculate the changes of the distribution functions, the equations of motion for the micro-
scopic polarizations ψλ

k need to be solved. These are given by [19, 38, 39]

d

dt
ψλ
k = iΩλ

k

(
1− fλ

k − f e
k

)
− i

~
(
ε̃ek + ε̃λk

)
ψλ
k +

d

dt
ψλ
k

∣∣∣∣
Scatter

, (2)

where the index λ is used to index the different hole bands and fλ
k are the hole distribution functions.

Here only one conduction band with the distribution function f e
k is considered. Although all the quan-

tities are dependent on x, y, and t, we have omitted these dependencies for brevity’s sake. In this
equation ε̃λk are the Hartree-Fock energies

ε̃λk = ελk −
1

A

∑
q

V λλ
q fλ

k+q,

where A is the quantization area of the quantum well and V λλ′
q are the Coulomb matrix elements. In

the rotating wave approximation (RWA) the Rabi frequency Ωλ
k is given by [37]:

~Ωλ
k = − e

m0

∑
p

√
~

2ωpε0
Bpp

∗
λ · up(r‖, zQW) +

1

A

∑
q

V eλ
q ψλ

k+q,

where m0 is the electron mass, r‖ is a shorthand logogram for the x and y coordinates and the
quantum well is located at zQW. The strength of the interaction with an optical field is determined by
the momentum matrix element pλ and for a quantum well the Coulomb matrix element V λλ′

q is given
by

V λλ′

q =
e2

2ε0εb

1

q

∫
dz

∫
dz′ |ξλ(z)|2 |ξλ′(z′)|2 e−|q(z−z′)|,

where ξλ(z) are the envelope functions of the different bands and εb is the dielectric function of the
background. For the dephasing of the polarization due to carrier scattering, the term

d

dt
ψλ
k

∣∣∣∣
Scatter

= −
∑
k′

Γλ
kk′

~
ψλ
k′ , (3)

is used. The exact form of the dephasing matrix Γλ
kk′ depends on the scattering processes that are

considered. An example is given in the appendix for Coulomb scattering. The macroscopic polarization
in Eq. (1) is parallel to the field and given by [37]

u∗
p(r) ·P(r, ωp) = −δ (z − zQW)u∗p(r‖)

iepλ
ωpm0

2

A

∑
λk

ψλ
k(r‖), (4)
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where up(r) is the mode function at the position of the quantum well:

pλ · u∗
p(r‖, zQW) = pλu

∗
p(r‖). (5)

The equations of motion for the electron and hole distribution functions are

d

dt
f e
k = 2

∑
λ

Im
{
ψλ
k

(
Ωλ

k

)∗}− f e
k

τnr
+

d

dt
f e
k

∣∣∣∣
Scatter

,

d

dt
fλ
k = 2Im

{
ψλ
k

(
Ωλ

k

)∗}− fλ
k

τnr
+

d

dt
fλ
k

∣∣∣∣
Scatter

. (6)

Here, only terms that are relevant for the mode interaction are considered. The constant τnr is used
to account for nonradiative losses. Further terms that are relevant in a laser simulation include the
pumping of the quantum wells and losses due to spontaneous emission and Auger recombination.

The scattering term plays a crucial role in the relaxation of the system towards an equilibrium state,
where the distribution functions can be described by Fermi-Dirac distributions. When the deviations of
the distribution functions from the Fermi-Dirac form are small, the scattering term can be linearized as
follows:

d

dt
fλ
k

∣∣∣∣
Scatter

= −
∑
k′

Jλ
kk′

(
fλ
k′ − fλ,FD

k′

)
. (7)

Here, fλ,FD
k represents the Fermi-Dirac distributions at a fixed temperature, which yield the same den-

sity as fλ
k . The scattering matrix Jλ

kk′ , similar to the dephasing matrix Γλ
kk′ , depends on the specific

scattering processes being considered. In the appendix, the scattering matrix for Coulomb scattering
is provided. The simplest approximation for the scattering matrix assumes a constant scattering time
τs:

Jλ
kk′ =

1

τs
δkk′ . (8)

Using this approximation, the deviations from the Fermi-Dirac distributions decay exponentially:

d

dt
fλ
k

∣∣∣∣
Scatter

= −f
λ
k − fλ,FD

k

τs
.

2.2 Mode interaction term for a single lateral mode

Yamada et al. have provided a theoretical description of mode-competition phenomena in Fabry-Pérot
laser diodes for narrow-ridge laser diodes with a single lateral mode [23]. In their rate equation model,
they incorporate a mode interaction term expressed in terms of two matrices [26]:

d

dt
Sp

∣∣∣∣
Interaction

= −
∑
q 6=p

(Dpq +Hpq)SqSp.

This mode interaction arises due to the beating vibrations of carrier densities in the longitudinal direc-
tion, as illustrated in Fig. 1. The symmetric interaction matrixDpq, which accounts for mode interaction,
is given by:

Dpq =
4

3

B(
2πcτin
λ2
p

)2
(λp − λq)

2 + 1
, (9)
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Influence of scattering effects on the interaction between longitudinal modes in laser diodes 5

up(y) up+1(y)

δn(y), δfk(y)up(y) · up+1(y)

Longitudinal direction y

δg(y)

1Figure 1: Illustration of the interaction of two active modes. When two longitudinal modes up(y) and
up+1(y) are active at the same time, they produce vibrations of the carrier densities δn(y) and the
distribution functions δfk(y) which in turn change the optical gain g(y). Contributions to δn(y) and
δfk(y) with a strong spatial dependence are quickly dampened due to carrier diffusion, therefore
only the contributions with a weak spatial dependence need to be considered. In the derivation, the
equations of motion for the charge carriers are solved approximately and the resulting deviations δfk
are substituted into the equations of motion for the photon numbers in order to obtain an effective
mode interaction term.

where λp represents the vacuum wavelength of mode p, c is the speed of light in vacuum, τin is
denoted as the intraband relaxation time, and B is the self-saturation coefficient which depends on
various other parameters. For a large mode spacing, the antisymmetric mode interaction matrix Hpq

can be expressed as:

Hpq =
3λ2p
8πc

(
aξ

V

)2
α (N −Ng)

λq − λp
. (10)

Here, a denotes the slope coefficient to determine the local linear gain,Ng represents the transparent
electron number, V is the volume of the active region, ξ is the confinement factor, and α denotes the
linewidth enhancement factor. It is worth noting that in this model, the scattering and dephasing effects
are incorporated into a single parameter τin, which corresponds to the scattering time τs in Eq. (8). In
the subsequent section, we derive a mode interaction term that allows for a more detailed description
of the scattering processes.

2.3 Derivation of the mode interaction terms

The mode interaction term derived in this section has the form

d

dt
Sp

∣∣∣∣
Interaction

≈
∑
q

SpSq

ωpωq

∫
d2r‖

∣∣up(r‖)
∣∣2 ∣∣uq(r‖)

∣∣2G(ωq − ωp, r‖). (11)

This expression can be easily incorporated into rate equations for the photon numbers Sp as an
additional term and can also be used for multiple lateral modes. In the case of multiple quantum wells
the same formula can be used, the integral just needs to be evaluated for every quantum well.

Thus, the strength of the mode interaction between two modes p and q is determined by a function
G(∆ω, r‖) that depends on the frequency difference ∆ω = ωq−ωp, the temperature and the carrier
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E. Kuhn, A. Thränhardt 6

densities at the point r‖. In the following we present a microscopic derivation of the mode interaction
strength G(∆ω, r‖).

In a laser diode, the photon numbers and distribution functions generally exhibit a relatively slow
change over a time scale of nanoseconds, particularly once the turn-on process is complete. However,
the dephasing times for semiconductors are on the order of 100 fs [39], therefore Eq. (2) can be
approximately solved for the polarization:

ψλ
k =

∑
p

ep∗λ
m0

√
~

2ωpε0
up(r‖)Bp

∑
k′

Λλ,−1
kk′ (ωp)

(
1− f e

k′ − fλ
k′

)
= −

∑
p

ep∗λ
m0

√
~

2ωpε0
up(r‖)Bpχ

λ
k(ωp), (12)

where Λλ,−1
kk′ denotes the inverse of the matrix

Λλ
kk′(ω) = δkk′

(
~ω − ε̃ek − ε̃λk

)
+ iΓλ

kk′ +
1

A

(
1− f e

k − fλ
k

)
V eλ
k′−k.

Here χλ
k(ω) denotes contributions for wavevector k and hole band λ to the electrical susceptibility

χ(ω) =
2

A

∑
λk

e2|pλ|2

ε0m2
0ω

2
χλ
k(ω). (13)

While the real part of the susceptibility determines changes in the refractive index, the imaginary part
of the susceptibility is strongly related to the absorption and therefore the optical gain [40]

g(ω) = − ω

n(ω)cdQW

Imχ(ω),

where n(ω) is the refractive index, c is the speed of light in vacuum and dQW is the quantum well
thickness. The equations of motion for the photon numbers can be obtained by substituting Eqs. (4)
and (12) into Eq. (1):

d

dt
Sp =

∑
q

Im

{
B∗

pBq
Cλ√
ωpωq

∫
d2r‖ u

∗
p(r‖)uq(r‖)

2

A

∑
λk

χλ
k(ωq)

}
, (14)

with the abbreviationCλ = e2|pλ|2/m2
0ε0. The initial step involves isolating the highly time-dependent

contributions of the distribution functions that are induced by two distinct active optical modes, distin-
guishing them from the remaining terms:

fk(r‖) = f 0
k(r‖) + δfk(r‖).

Here the contributions with a strong time dependence are given by δfk(r‖). For example, the fre-
quency difference of two neighbouring longitudinal modes is given approximately by 0.5 ps−1 for the
structure discussed in section 3, where as the term f 0

k(r‖) is assumed to change on a nanosec-
ond timescale. For the current discussion we assume that the distribution functions f 0

k are given by
Fermi-Dirac distributions. Substituting the solution from Eq. (12) for the microscopic polarization into
the equations of motion for the distribution functions in Eqs. (6) yields

d

dt
f e
k =

∑
λ

∑
pq

Cλ
1

√
ωqωp

Im
{
BpB

∗
qχ

λ
k(ωp)up(r‖)u

∗
q(r‖)

}
− f e

k

τnr
−
∑
k′

Je
kk′

(
f e
k′ − f e,FD

k′

)
,

d

dt
fλ
k =

∑
pq

Cλ
1

√
ωqωp

Im
{
BpB

∗
qχ

λ
k(ωp)up(r‖)u

∗
q(r‖)

}
− fλ

k

τnr
−
∑
k′

Jλ
kk′

(
fλ
k′ − fλ,FD

k′

)
.

(15)
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Influence of scattering effects on the interaction between longitudinal modes in laser diodes 7

The equation of motion for the spatial deviations of the hole distribution functions is then given by

d

dt
δfλ

k ≈
∑
p 6=q

Cλ
1

√
ωqωp

Im
{
BpB

∗
qχ

λ
k(ωp)up(r‖)u

∗
q(r‖)

}
−
∑
k′

Jλ
kk′

(
δfλ

k′ − δnh

∂fλ,FD
k′

∂n0
h

)
− δfλ

k

τnr
,

where
∂fλ,FD

k′
∂n0

h
denotes the derivative of the Fermi-Dirac distributions with respect to the density and

δnh =
2

A

∑
λk

δfλ
k

is the deviation of the hole density. An analogous equation of motion can be derived for the electrons.
When the densities and photon numbers change slowly compared to the typical scattering times, it is
possible to solve these equations of motion approximately and we obtain for the spatial deviations of
the hole distribution functions:

δfλ
k ≈

∑
λ′pq,p>q

Cλ′

√
1

ωqωp

Re

{
BpB

∗
qup(r‖)u

∗
q(r‖)

×
(
δλλ′

∑
k′

J̃λ
kk′(ωq − ωp)(Imχλ,0

k′ (ωp) + Imχλ,0
k′ (ωq))

− i

ωq − ωp

(Imχ0
λ′(ωp) + Imχ0

λ′(ωq))
∑
k′k′′

J̃λ,−1
kk′ (ωq − ωp)J

λ
k′k′′

∂fλ,FD
k′′

∂n0
h

)}
. (16)

A similar expression can be derived for the electron distribution functions. Here χλ denotes the contri-
bution of the valence band with index λ to the susceptibility in Eq. (13):

χλ(ω) =
2

A

∑
k

χλ
k(ω).

The corrected scattering matrix J̃λ
kk′ is defined as

J̃λ
kk′(∆ω) = Jλ

kk′ + i∆ωδkk′ − Cλ

∑
p

Sp

ωp

∣∣up(r‖)∣∣2 ImΛλ,−1
kk′ (ωp). (17)

In the case of a vanishing frequency difference (∆ω → 0) and no photons (Sp = 0) the corrected
scattering matrix is given by the scattering matrix in Eq. (7). The approximation from Eq. (16) can be
inserted into the equation of motion of the photon numbers (14) to obtain an effective mode interaction
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term:

d

dt
Sp

∣∣∣∣
Interaction

=

−
∑
λλ′qrs
r>s,q 6=p

CλCλ′
√
ωpωqωrωs

Im

{
B∗

pBq

∫
d2r‖ u

∗
p(r‖)uq(r‖)

2

A

∑
kk′

Λλ,−1
kk′ (ωq)

× Re

{
BrB

∗
sur(r‖)u

∗
s(r‖)

×
(∑

k′′

[J̃e,−1
k′k′′(ωs − ωr) + δλλ′ J̃λ,−1

k′k′′ (ωs − ωr)]
(
Imχλ′,0

k′′ (ωr) + Imχλ′,0
k′′ (ωs)

)
− i

Imχ0
λ′(ωr) + Imχ0

λ′(ωs)

ωs − ωr

×
∑
k′′k′′′

[
J̃e,−1
k′k′′(ωs − ωr)J

e
k′′k′′′

∂f e,FD
k′′′

∂n0
e

+ J̃λ,−1
k′k′′ (ωs − ωr)J

λ
k′′k′′′

∂fλ,FD
k′′′

∂n0
h

])}}
.

This effective interaction is initially rather complicated and can be simplified further by assuming that
only the dominant contributions with r = p, s = q or r = q, s = p contribute. In comparison, the other
contributions oscillate with the frequency differences of the form ωp − ωq and are almost negligible
when averaged over time, see also Ref. [20]. We also assume that all relevant modes are close to the
gain maximum in terms of frequency. This can be used to approximately replace all the frequencies
with the frequency ω0 of the gain maximum, except in places where the frequency difference ωp−ωq is
calculated. This results in a mode interaction term as in Eq. (11), where the strength of the interaction
only depends on the frequency difference of the modes and the state of the carriers in the quantum
well, and is given by

G(∆ω) =−
∑
λλ′

CλCλ′Im

{
2

A

∑
kk′

Λλ,−1
kk′ (ω0)

(∑
k′′

[J̃e,−1
k′k′′(∆ω) + δλλ′ J̃λ,−1

k′k′′ (∆ω)]Imχλ′,0
k′′ (ω0)

− i
Imχ0

λ′(ω0)

∆ω

∑
k′′k′′′

[
J̃e,−1
k′k′′(∆ω)J

e
k′′k′′′

∂f e,FD
k′′′

∂n0
e

+ J̃λ,−1
k′k′′ (∆ω)J

λ
k′′k′′′

∂fλ,FD
k′′′

∂n0
h

])}
.

(18)
The matrix J̃λ

kk′ is now determined by

J̃λ
kk′(∆ω) = Jλ

kk′ + i∆ωδkk′ − Cλ
s

ωp

ImΛλ,−1
kk′ (ω0), (19)

with the photon density s =
∑

p Sp

∣∣up(r‖)∣∣2. Like any other function, the mode interaction can be
separated into symmetric and antisymmetric contributions with respect to the frequency difference
∆ω:

G(∆ω) = GS(∆ω) +GA(∆ω).

2.4 Analysis for a constant scattering time

For a general scattering matrix the mode interaction term in equation (18) needs to be evaluated
numerically. However, for the special case of a constant scattering time τs the mode interaction can be
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Influence of scattering effects on the interaction between longitudinal modes in laser diodes 9

simplified. In this case the scattering matrix is given by

Jλ
kk′ =

1

τs
δkk′ .

As a scattering term of this form was used by Yamada et al. the resulting mode interaction terms
should agree with equations (9) and (10). In the limit of a small scattering time τs � 1/∆ω and a
vanishing photon density s = 0 we obtain the symmetric interaction term

GS(∆ω) =
G(∆ω) +G(−∆ω)

2
=−

∑
λλ′

CλCλ′
τs(1 + δλλ′)

∆ω2τ 2s + 1

2

A

∑
kk′

ImΛλ,−1
kk′ (ω0)Imχλ′,0

k′ (ω0)

+ ω4
0Imχ(ω0)Imχ′(ω0)

τs
∆ω2τ 2s + 1

(20)

and the antisymmetric interaction term

GA(∆ω) =
G(∆ω)−G(−∆ω)

2
= ω4

0

Imχ(ω0)Reχ
′(ω0)

∆ω
. (21)

Here χ′(ω) denotes the derivative of the susceptibility with respect to the carrier densities:

χ′(ω) =
∂χ(ω)

∂ne

+
∂χ(ω)

∂nh

.

In order to see how Eq. (21) relates to Eq. (10) from Yamada et al., we can use the antiguiding factor or
linewidth-enhancement factor α to express the derivative of the real part of the susceptibility in terms
of the derivative of the imaginary part [39]:

α =
Reχ′(ω)

Imχ′(ω)
.

Under the assumption of linear gain

Imχ(ω) ∝ ξa

V
(N −Ng) ⇒ Imχ′(ω) ∝ ξa

V

and replacing the frequency difference ∆ω ≈ −2πc∆λ/λ20, Eq. (21) becomes

GA(∆λ) ∝
(
ξa

V

)2
α(N −Ng)

∆λ
.

The remaining prefactor in Eq. (11) can be determined by evaluating the integral using a lateral mode
of the form sin(πx/wr), wherewr represents the ridge width, and assuming constant carrier densities.
The only difference is an additional factor of 2, which can be attributed to carrier diffusion and will be
discussed in the subsequent section. In equations (9) and (20), the symmetric mode interaction term
exhibits a frequency dependence of ((∆ωτs)2 + 1)−1 in both cases.

2.5 Influence of carrier diffusion

One aspect that is yet to be considered is the diffusion of carriers in the quantum well, which can
dampen the beating vibrations of the carrier densities and therefore reduce the mode interaction. If

DOI 10.20347/WIAS.PREPRINT.3038 Berlin 2023



E. Kuhn, A. Thränhardt 10

we consider as an example longitudinal modes described by standing waves (up(y) ∝ sin(pπy/L)),
then the beating vibrations will be of the form

d

dt
δn(y) ∝ up(y)uq(y) ∝ sin

(pπy
L

)
sin
(qπy
L

)
∝ cos

(
(p− q)πy

L

)
− cos

(
(p+ q)πy

L

)
(22)

For a green nitride laser diode we might have a resonator length L = 600 ţm, a refractive index of
2.4 and a laser wavelength of 500 nm, which results in p ≈ q ≈ 5760. Using the diffusion equation
and a diffusion constant of 10 cm2s−1 the second term in Eq. (22) is dampened with a time constant
of τ ≈ 0.3 ps and therefore should not contribute to the mode dynamics. For two neighbouring modes
(q = p + 1) the time constant for the first term is given by τ ≈ 37 ţs and the dampening due to
diffusion can be neglected. As both terms in Eq. (22) contribute equally to the mode interaction in
Eq. (11) we can include the effect of carrier diffusion using an additional factor of 1/2:

d

dt
Sp

∣∣∣∣
Interaction

≈ 1

2

∑
q

SpSq

ωpωq

∫
d2r‖

∣∣up(r‖)∣∣2 ∣∣uq(r‖)∣∣2G(ωq − ωp, r‖). (23)

3 Results

To compute the mode interaction terms, it is necessary to have knowledge of the quantum well’s band
structure, optical matrix elements, and Coulomb matrix elements. To achieve this, the k · p method
is employed for an InGaN quantum well encapsulated by GaN, utilizing the Hamiltonian proposed by
Chuang et al. [41]. The equations that were used in the calculations can be found in the appendix and
the parameters are provided in Ref. [42]. The quantum well is composed of 28% indium, and it has a
thickness of 2nm. The refractive index of GaN is known to be 2.4 for wavelengths near 550nm [42].
The Coulomb interaction uses the static dielectric constant of the surrounding GaN material, with a
value of 9.7 [43]. During the numerical computation of the scattering terms, the delta functions are
substituted with Lorentzian functions with a broadening of 5meV. Additionally, the broadening in the
Lindhard formula [39, 44] is set to 10meV. In the calculations the Piezo effect is included [42, 45] with
a fixed carrier density of 1013cm−2 in the quantum well and a temperature of 300K. In the solution of
the Poisson equation a vanishing electrical field at the boundaries of the simulation cell is assumed.
In the following calculation of the mode interaction terms, different scattering terms are used, but the
dephasing of the microscopic polarization is always determined by Coulomb scattering with dynamic
screening. The resulting susceptibility is shown in Fig. 2.

In Fig. 3 a) and c) a microscopic analysis of the symmetric and antisymmetric mode interaction terms is
shown using a constant scattering time for different carrier densities. The interaction term is evaluated
at the gain maximum, therefore only carrier densities above transparency are used in the calculations.
The photon density in Eq. (17) is set to zero, as it has a small effect on the mode interaction for a con-
stant scattering time (see the appendix). For the largest carrier density the approximations of Eq. (20)
and Eq. (21) are also shown and agree reasonably with the calculation using Eq. (18). While the anti-
symmetric contribution diverges as the frequency difference goes to zero, the symmetric contribution
has the form of a Lorentzian function, where the broadening is determined by the scattering time. A
larger carrier density leads to a stronger mode interaction, especially for the symmetric contribution.

In Fig. 3 b) and d) Coulomb scattering was used to calculate the mode interaction terms for different
carrier densities and a vanishing photon density. The antisymmetric term shows a behavior similar to
the calculation with the constant scattering time, but does not quite agree with the approximation of
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1Figure 2: Electronic susceptibility from Eq. (13) calculated using the k ·p bandstructure and Coulomb
scattering. The carrier density was systematically varied from 2 × 1012 cm−2 to 16 × 1012 cm−2 in
increments of 2 × 1012 cm−2. Due to the large energy difference between the second and the third
hole band in the k · p calculations, only the first two hole bands are considered in the simulations.
This results in two peaks in the imaginary part of the susceptibility, which is nearly proportional to the
absorption spectrum. The lower wavelength peak belongs to transitions between the conduction band
and the first light hole band (LH) and the higher wavelength peak is due to transitions between the
conduction band and the first heavy hole band (HH).

Eq. (21). More interestingly, the symmetric term shows a very different behavior in comparison and
diverges for ∆ω → 0. In both cases the interaction strength increases for higher carrier densities.

The effect of the photon density in Eq. (19) is investigated in Fig. 4 for a constant scattering time and
Coulomb scattering. For a constant scattering time the photon density only causes a small reduction
of the mode interaction strength and has no influence on the qualitative behavior. For nonzero photon
densities and Coulomb scattering the symmetric term no longer diverges for ∆ω → 0 and shows a
similar behavior compared to the calculation with a constant scattering time. While a higher photon
density decreases the strength of the mode interaction for small frequency differences, there is an
increase in the interaction for large ∆ω. Interestingly enough the divergence of the antisymmetric
interaction is also lifted for nonzero photon densities while the behavior for larger frequency differences
remains unaffected.

An example for the mode dynamics of a Fabry-Pérot laser diode using these effective mode interaction
terms is shown in Fig. 5 for different current densities. For these calculations the equations of motion
from Ref. [9] are used, with the difference that all the third order effects are replaced by the effective
mode interaction terms. The resulting set of equations is also shown in the appendix. For this example
a resonator length of 600 ţm, a ridge width of 2 ţm, an injection efficiency of 0.75, a group refractive
index of 2.8, a photon lifetime of 16ps and a nonradiative recombination time of 1000ns are used. The
broadening of the gain spectrum due to Coulomb scattering is not sufficient to obtain realistic results,
therefore an additional inhomogeneous broadening of 30meV is included in the calculation. In both
cases the effect of mode hopping can be seen, where the currently active mode changes from smaller
to higher wavelengths, which can be observed experimentally [8, 20]. Once the gain for the active
mode is not sufficient anymore this process restarts at the gain maximum. The mode rolling frequency
is determined by the period of this process and increases with increasing current densities. For a
scattering time of 100 fs the mode rolling frequencies are too large compared to the calculation with
Coulomb scattering, therefore the scattering time is increased to 300 fs in Fig. 5 in order to produce
very similar mode rolling frequencies. In this case the resulting mode dynamics are comparable and
only show major differences at the beginning of the simulations. Here the calculation using Coulomb
scattering shows a better qualitative behavior compared to experimental results [8, 20].
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1Figure 3: Mode interaction of Eq. (18) as a function of the frequency difference of the two modes. In
the two figures on the left a constant scattering time τs = 100 fs was used, and Coulomb scattering
in the two figures on the right. The symmetric contributions to the mode interaction are shown in a)
and b) where as the antisymmetric contributions are shown in c) and d). The mode interaction is
depicted for various carrier densities, ranging from 8×1012 cm−2 to 16×1012 cm−2, with increments
of 2 × 1012 cm−2. The calculations were performed with zero photon density. For comparison the
approximations from Eq. (20) and Eq. (21) are also shown for the highest carrier density.
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left a constant scattering time τs = 100 fs was used, and Coulomb scattering in the two figures on the
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1Figure 5: The longitudinal mode dynamics of a Fabry-Pérot laser diode for two different currents.
Here the output of the laser is shown as a function of wavelength and time. The data for this figure
is calculated by multiplying the time-dependent photon numbers from the simulation with Gaussian
functions that are centered at their respective vacuum wavelengths with a width of 0.02nm. On the
left the mode interaction terms were calculated using a constant scattering time of 300 fs and on the
right the Coulomb scattering term was used.

4 Summary

Fabry-Pérot type laser diodes show mode competition effects that can be simulated with rate equations
using an effective mode interaction term. In this paper, a mode interaction term was derived that can
be used for different scattering mechanisms and when more than one lateral mode is relevant. While
the mode interaction terms have no impact on the output power of the laser diode, they determine
the level of activity of individual modes. For a constant scattering time the results agree with mode
interaction terms found in literature. In comparison, the mode interaction terms for Coulomb scatter-
ing show a very different behavior, especially for ∆ω → 0, where ∆ω is the frequency difference of
the two interacting modes. While the form of the mode interaction terms is more complex, in typical
simulations they can be calculated for different carrier densities before the actual mode dynamics sim-
ulation and thus have a negligible impact on the performance. While all the calculations in this paper
have been performed using Coulomb scattering, it is possible to include other scattering mechanisms
such as electron–phonon scattering. In this paper the influence of the photon density on the strength
of mode interaction is also discussed. While a nonzero photon density has a small effect on the mode
interaction for a constant scattering time, for Coulomb scattering qualitative changes can be observed.
For example the mode interaction term no longer diverges for ∆ω → 0 for nonzero photon densities.
Therefore the dependence of the mode interaction on the field intensity should be considered in rate
equation simulations, when a realistic scattering term is used. The effect of the scattering terms on
the mode dynamics using an effective mode interaction term was also studied for a simple example
where the carrier densities were assumed to be constant in the quantum well. If the scattering time is
chosen appropriately the mode dynamics are very similar, but using Coulomb scattering results in a
more realistic behavior at the beginning of the simulation. In conclusion, the mode interaction terms
derived in this paper offer a way to simulate the mode dynamics in different kinds of laser diodes.
They are especially important for laser diodes with a small mode spacing, for example Fabry-Pérot
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laser diodes with broad and narrow ridge widths. Compared to using a constant scattering time, more
complex scattering times offer an increased predictability due to better known parameters and also
improve the behavior of the mode dynamics at the beginning of the simulation.
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A k · p Hamiltonian

For the calculation of the band structure of an InGaN quantum well, we employ the Hamiltonian pro-
posed by Chuang et al. [41]. This Hamiltonian is expressed as follows:

Ĥ =


F −H∗ −K∗ 0 0 0
−H λ H∗ ∆ 0 0
−K H G 0 ∆ 0
0 ∆ 0 G −H∗ −K∗

0 0 ∆ −H λ H∗

0 0 0 −K H F

 (24)

and is valid only for the valence bands. The matrix elements are given by

F = ∆1 +∆2 + λ+ θ, K =
~2

2m0

A5 (kx + iky)
2 +D5ε+,

G = ∆1 −∆2 + λ+ θ, H =
~2

2m0

A6kz (kx + iky) +D6εz+,

λ = Ev +
~2

2m0

[
A1k

2
z + A2(k

2
x + k2y)

]
+ λε, ∆ =

√
2∆3,

λε = D1εzz +D2(εxx + εyy), ∆1 =
√
2∆cr,

θ =
~2

2m0

[
A3k

2
z + A4(k

2
x + k2y)

]
+ θε, ε± = εxx ± 2iεxy − εyy,

θε = D3εzz +D4 (εxx + εyy) , εz± = εzx ± iεyz.

Here, kx, ky, and kz are the corresponding components of the three-dimensional wave vector, εij are
the components of the strain tensor, and the rest are material parameters. In the cubic approximation,
the parameters satisfy the relations

A1 − A2 = −A3 = 2A4, A3 + 4A5 =
√
2A6, ∆2 = ∆3 =

1

3
∆so,

D1 −D2 = −D3 = 2D4, D3 + 4D5 =
√
2D6.

For a quantum well the component kz is replaced by the derivative −i ∂
∂z

and the resulting one-
dimensional Schrödinger equation is solved for every two-dimensional wavevector k = (kx, ky). The
nonvanishing components of the strain tensor inside the quantum well are given by [41]

εxx = εyy =
a0 − a

a
, εzz = −2C13

C33

εxx,

where Cij are the components of the elasticity tensor, a0 is the lattice constant of the surrounding
material and a is the lattice constant of the quantum well. Since the band gap of the quantum film
material is smaller than that of the surrounding materials, the question of aligning the band edges for
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electrons and holes remains. If E0
G is the band gap of the substrate and EG is the band gap of the

quantum film material, the energies at the Γ-point are modified as follows:

Ec = E0
c − (E0

G − EG)η,

Ev = E0
v + (E0

G − EG)(1− η).

The parameter η is set to 2
3

[41]. For the conduction band the Hamiltonian is given by

Ĥe = Ec +∆1 +∆2 + Pcε +
~2

2mz
e

k2z +
~2

2mp
e

(
k2x + k2y

)
, (25)

Pcε = aczεzz + act (εxx + εyy) . (26)

The material parametersmz
e andmp

e are the effective masses of the conduction band in the z-direction
and perpendicular directions, respectively. The parameters acz and act determine the shift of the band
edge due to material strain. In comparison to many other crystal structures, such as the zinc blende
structure, the effect of piezoelectricity must be additionally considered in wurtzite crystals [45]. Due to
the strain of the material within the quantum film, a polarization is generated, which is determined by
the corresponding piezoelectric constants [42]:

P (z) = Psp + 2d13

(
C11 + C12 −

2C13

C33

)
εxx.

In addition to the components of the elasticity tensor, two other material parameters, Psp and d13,
come into play. The polarization within the quantum film differs from that of the surrounding material,
resulting in charges at the interfaces between the materials:

ρ(z) =
∂

∂z
P (z).

A solution of the Poisson equation [46] given by:

∂

∂z

(
εs(z)

∂

∂z
φ(z)

)
= −ρ(z)

ε0

provides an electrostatic potential that modifies the band edges as follows:

E ′
c(z) = Ec − eφ(z)

E ′
v(z) = Ev − eφ(z).

The charge carriers in the quantum film align accordingly, thereby weakening the field within the quan-
tum film. To account for this effect, an assumption regarding the distribution function of the charge
carriers is required. Here, a Fermi-Dirac distribution is used, where the temperature and the charge
carrier density n0 are given. The chemical potential must be chosen such that the following holds:

ne = n0 =
2

A

∑
k

1

eβ(ε
e
k−µe) +1

=
2

A

∑
k

f e,FD
k ,

nh = n0 =
1

A

∑
λk

1

eβ(ε
λ
k−µh) +1

=
2

A

∑
λk

fλ,FD
k .

The double degeneracy due to spin has been taken into account by the factor of 2 for the conduction
band electrons. In the Poisson equation, the additional charge density ρQW(z) needs to be consid-
ered, which satisfies:

ρQW(z) = ρe(z) + ρh(z), ρe(z) = −2e

A

∑
k

|ξek(z)|
2 f e,FD

k , ρh(z) =
e

A

∑
λαk

∣∣ξhλαk(z)∣∣2 fλ,FD
k .
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Here, ξek and ξhλαk are eigenfunctions of the Hamiltonian operators from equations (24) and (26),
and εek and ελk correspond to their respective eigenvalues. However, since the Hamiltonian operator
depends on the electrostatic potential, the entire problem must be solved self-consistently.

Regarding the boundary conditions, in the Schrödinger equation, the condition ξ(z = 0) = ξ(z =
LZ) = 0 is simply assumed, where LZ is the length of the simulation cell. For the Poisson equation,
the Neumann boundary conditions ∂φ(z=0)

∂z
= ∂φ(z=LZ)

∂z
= 0 are used. By imposing these conditions,

the solution of the Poisson equation becomes independent of the length of the simulation cell.

For the TE polarized modes the optical matrix elements are given by

Sλα =

∫
dz (ξek(z))

∗ ξhλαk(z),∣∣pTE
λ

∣∣2 = |px|2

2

[
|Sλ1|2 + |Sλ2|2 + |Sλ4|2 + |Sλ5|2

]
.

All the parameters used in the k ·p calculations are given in table 1 and are taken from Ref. [43]. The
temperature dependent band gap is calculated using

EG = E0
G − α

T 2

T + β

The k · p wavefunctions and bandstructure are shown in Fig. 6 for the parameters used in the mode
dynamics calculations.
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1Figure 6: Calculation of the band structure of an InGaN quantum with a thickness of 2nm and an
indium concentration of 28%. The wavefunctions of the conduction band and the first two valence
bands at the Γ point are shown in the figure on the left together with the potential. The grey area
illustrates the position of the quantum well. The k ·p band structure is presented on the right for these
three bands.
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B Scattering terms for the Coulomb Interaction

The contribution due to Coulomb scattering to the equations of motion of the distribution function is
given by [39, 47]

d

dt
fλ
k

∣∣∣∣
Coulomb

=
4π

A2~
∑
λ′qk′

∣∣∣W λλ′

q

((
ελk+q − ελk

)
/~
)∣∣∣2 δ (ελk+q − ελk − ελ

′

k′+q + ελ
′

k′

)
×
[
(1− fλ

k )f
λ
k+q(1− fλ′

k′+q)f
λ′

k′ − fλ
k (1− fλ

k+q)f
λ′

k′+q(1− fλ′

k′ )
]
, (27)

where W λλ′
q (ω) is the screened Coulomb interaction

W λλ′

q (ω) = V λλ′

q +
∑
λ′′

V λλ′′

q P λ′′

q (ω)W λ′′λ′

q (ω).

The polarization is given by the Lindhard formula [39, 44]:

P λ
q (ω) =

2

A

∑
k

fλ
k+q − fλ

k

~ω − ελk + ελk+q + iδW
.

Substituting fλ
k = fλ,FD

k + δfλ
k into Eq. (27) and only considering terms up to first order in δfλ

k yields
Eq. (7) with the scattering matrix

Jλ
k,k+q =− 4π

A2~
∑
λ′k′

∣∣∣W λλ′

q

((
ελk+q − ελk

)
/~
)∣∣∣2 δ (ελk+q − ελk − ελ

′

k′+q + ελ
′

k′

)
×
[
(1− fλ

k )(1− fλ′

k′+q)f
λ′

k′ + fλ
kf

λ′

k′+q(1− fλ′

k′ )
]

+ δk,k+q
4π

A2~
∑
λ′k′q′

∣∣∣W λλ′

q′

((
ελk+q′ − ελk

)
/~
)∣∣∣2 δ (ελk+q′ − ελk − ελ

′

k′+q′ + ελ
′

k′

)
×
[
fλ
k+q′(1− fλ′

k′+q′)fλ′

k′ + (1− fλ
k+q′)fλ′

k′+q′(1− fλ′

k′ )
]
.

For the microscopic polarizations the dephasing term is given by [39, 47]

d

dt
ψλ
k

∣∣∣∣
Coulomb

=
2

A2~
∑
qk′

λ′λ′′∈{e,λ}

∣∣∣W λ′λ′′

q

((
ελ

′′

k′+q − ελ
′′

k′

)
/~
)∣∣∣2

×
[
g
(
ελ

′

k+q − ελ
′

k − ελ
′′

k′+q + ελ
′′

k′

)
ψλ
k+q

×
[
(1− fλ′

k )(1− fλ′′

k′+q)f
λ′′

k′ + fλ′

k f
λ′′

k′+q(1− fλ′′

k′ )
]

− g
(
ελ

′

k − ελ
′

k+q − ελ
′′

k′ + ελ
′′

k′+q

)
ψλ
k

×
[
fλ′

k+q(1− fλ′′

k′+q)f
λ′′

k′ + (1− fλ′

k+q)f
λ′′

k′+q(1− fλ′′

k′ )
] ]
,

where

g(x) =
i

x+ iδ
.
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For Coulomb scattering the dephasing matrix in Eq. (3) is therefore given by

Γλ
k,k+q =− 2

A2

∑
k′

λ′λ′′∈{e,λ}

∣∣∣W λ′λ′′

q

((
ελ

′′

k′+q − ελ
′′

k′

)
/~
)∣∣∣2 [g (ελ′

k+q − ελ
′

k − ελ
′′

k′+q + ελ
′′

k′

)

×
[
(1− fλ′

k )(1− fλ′′

k′+q)f
λ′′

k′ + fλ′

k f
λ′′

k′+q(1− fλ′′

k′ )
] ]

+ δk,k+q
2

A2

∑
q′k′

λ′λ′′∈{e,λ}

∣∣∣W λ′λ′′

q′

((
ελ

′′

k′+q′ − ελ
′′

k′

)
/~
)∣∣∣2 [g (ελ′

k − ελ
′

k+q′ − ελ
′′

k′ + ελ
′′

k′+q′

)

×
[
fλ′

k+q′(1− fλ′′

k′+q′)fλ′′

k′ + (1− fλ′

k+q′)fλ′′

k′+q′(1− fλ′′

k′ )
] ]
.

C Equations of Motion

The equation of motion for the electron density is given by [20]

d

dt
ne =

d

dt

2

A

∑
k

f e
k =

∑
p

ωpSp

∣∣up(r‖)∣∣2 Imχ(ωp)−
ne

τnr
−
∑
λ

2

A

∑
k

Bλ
kf

e
kf

λ
k +

jηinj
e
,

analogous for the hole density. They can be derived from Eq. (15) assuming Fermi-Dirac distributions
for the carriers, except for the spontaneous emission term and the pump term. The quantum wells are
pumped by a current density j which is assumed to be the same for both electrons and holes. The
prefactor Bλ

k in the spontaneous emission term is given by

Bλ
k = Cλ

2n3
eff

3πc3~2
(
εek + ελk

)
and can also be found in Ref. [19] in a similar form. In the simulations the carrier density is assumed
to be constant directly under the ridge, therefore this equation is averaged over the ridge area:

d

dt
ne =

∑
p

ωpSpImχ(ωp)
1

Lwr

∫ wr

0

dx

∫ L

0

dy
∣∣up(r‖)∣∣2 − ne

τnr
−
∑
λ

2

A

∑
k

Bλ
kf

e
kf

λ
k +

Iηinj
eLwr

,

where I is the current and wr is the ridge width. The equation of motion for the photon numbers
is given by Eq. (11) and Eq. (14), with an additional spontaneous emission term and a loss term
determined by the photon lifetime τphoton:

d

dt
Sp = Spωp

∫ wr

0

dx

∫ L

0

dy
∣∣up(r‖)∣∣2 Imχ(ωp) +

∫
d2r‖

∣∣up(r‖)∣∣2 ISE(ωp, r‖)

+
∑
q 6=p

SpSq

ωpωq

∫
d2r‖

∣∣up(r‖)∣∣2 ∣∣uq(r‖)∣∣2A(ωq − ωp, r‖)−
Sp

τphoton
.

The spontaneous emission spectrum is calculated like the gain spectrum, except that the factor 1 −
f e
k − fλ

k is replaced by f e
kf

λ
k :

ISE(ω) = − 2

A

∑
λk

Cλ

ω
Im

{∑
k′

Λλ,−1
kk′ (ω)f e

k′fλ
k′

}
.
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In the simulation we consider different longitudinal modes as standing waves and only the fundamental
lateral TE mode, which is approximated by a sine function [11]:

up(r) = exZ(z)

√
2

L
sin
(πp
L
y
)√ 2

wr

sin

(
π

wr

x

)
.

In this case the equations of motion are given by

d

dt
ne =

∑
p

CωpSp

Lwr

Imχ(ωp)−
ne

τnr
−
∑
λ

2

A

∑
k

Bλ
kf

e
kf

λ
k +

Iηinj
eLwr

,

d

dt
Sp = SpωpCImχ(ωp) + CISE(ωp) +

∑
q 6=p

SpSq

ωpωq

3

2
C2A(ωq − ωp)−

Sp

τphoton
.

where the constant C is related to the confinement factor ξ:

C = |Z(zQW)|2 ≈ ξ

n2
effdQW

.

The spacing of the mode frequencies is determined by the refractive group index ngr and the frequency
of the mode with index p is given by

ωp =
πneff

Lc
p0 + (p− p0)

πngr

Lc
.

The integer p0 is determined by

p0 = round

(
ω0Lc

πneff

)
where the frequency ω0 is the gain maximum and c is the speed of light in vacuum.
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Table 1: k · p parameters for GaN and InN, taken from Ref. [43]. In addition there are bowing param-
eters for the band gap bE0

G
= 1400meV and the polarization bPsp = −0.037Cm−2, also taken from

Ref. [43].

GaN InN

a Lattice constant 0.3189nm 0.3545nm
c Lattice constant 0.5185nm 0.5703nm
mz

e Perpendicular electron effective mass 0.2m0 0.07m0

mp
e Parallel electron effective mass 0.21m0 0.07m0

A1 −7.21 −8.21
A2 −0.44 −0.68
A3 6.68 7.57
A4 −3.46 −5.23
A5 −3.4 −5.11
A6 −4.9 −5.96
∆cr 10meV 24meV
∆so 17meV 5meV
Epx = Epz = Ep Optical matrix element 19.8 eV 11.4 eV
E0

G Band gap 3510meV 690meV
α Band gap parameter 0.914meVK−1 0.414meVK−1

β Band gap parameter 825K 154K
εs Static dielectric constant 9.7 14.4
D1 −3.6 eV −3.6 eV
D2 1.7 eV 1.7 eV
D3 5.2 eV 5.2 eV
D4 −2.7 eV −2.7 eV
D5 −2.8 eV −2.8 eV
D6 −4.3 eV −4.3 eV
acz −7.1 eV −4.2 eV
act −9.9 eV −4.2 eV
d13 −1.0pmV−1 −3.5pmV−1

d33 1.9pmV−1 7.6pmV−1

Psp −0.034Cm−2 −0.042Cm−2

C11 390GPa 223GPa
C12 145GPa 115GPa
C13 106GPa 92GPa
C33 398GPa 224GPa
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