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Abstract 

In this paper we want to investigate the effects of forced symmetry break-
ing perturbations, see LAUTERBACH & ROBERTS [29], as well as [28, 31], on 
the heteroclinic cycle which was found in the£= 1, £ = 2 mode interaction by 
ARMBRUSTER & CHOSSAT [1, 12] and generalized by CHOSSAT and GUYARD 

[25, 14]. We show that this cycle is embedded in a larger class of cycles, which 
we call a generalized heteroclinic cycle (GHC). After describing the structure 
of this set we discuss its stability. The main problem is to find a selection 
principle, that is to give a mechanism which enables the physical system to 
select one particular heteroclinic cycle on this generalized heteroclinic cycle. 
After that the persistence under symmetry breaking perturbations is investi-
gated. We will discuss also the application to the spherical Benard problem, 
which was the initial motivation for this work. 

Introduction 

The idea that symmetry can induce intermittent-like behavior in dynamical sys-
tems, and more specifically in hydrodynamical systems, has been popularized in the 
late 80's by the papers of GUCKENHEIMER & HOLMES [24] in a problem related 
to thermal convection in a rotating domain and ARMBRUSTER, GUCKENHEIMER 
and HOLMES [2] in a problem of fluid flow near a wall. In each of these cases, the 
symmetries were simple enough that it was relatively easy to show the existence 
and stability of a heteroclinic cycle connecting nontrivial equilibria (in fact, a ho-
moclinic cycle since these equilibria belong to the same group orbit). Intermittency 
occurs because there are initial condition near the heteroclinic cycle such that the 
corresponding solution spends very long time near each of the equilibria in the cycle 
and "jumps'; to the next equilibrium in a short time. Other similar examples have 
been found, in particular in systems with spherical symmetry. This was observed 
by numerical simulations for the amplitude equations for the onset of convection in 
a spherical shell, by FRIEDRICH and HAKEN [19]. They pointed out the fact that 
intermittency occurs between axisymmetric steady-states with reversed flow direc-
tions. It was proved by ARMBRUSTER and CHOSSAT [1] that for this differential 
system, under certain conditions, a robust heteroclinic cycle exists. This example is 
of particular interest for several reasons : first, it is related to important questions in 
astrophysics (convection in celestial bodies); second, it deals with a highly nontrivial 
group action (spherical group 0(3)) and although a detailed description of possible 
heteroclinic cycles was made in [1], there were still various unsolved questions, like 
the asymptotic stability of these objects, or their perturbation when the domain is 
allowed to rotate around an axis. Moreover, a closer look at [19] reveals that the in-
termittent behavior observed by FRIEDRICH and HAKEN does not completely fit to 
the heteroclinic cycle of ARMBRUSTER and CHOSSAT. Is it possible to understand 
the discrepancy (see section 1 )? In the present paper we intend to study these ques-
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tions. We show that for asymptotic stability to be achieved, a list of conditions on 
the coefficients of the amplitude equations must be satisfied. These conditions are 
not generic for the bifurcation problem unless some coefficients are assumed to vary 
as free parameters (in other words, the problem is of high codimension). It turns out 
however, that for the model equations of the onset of convection (Benard problem), 
the range of coefficient values is consistent with such conditions. This, we thought, 
is enough to justify a further analysis of this problem. In our attempt to extend 
the validity of existence and stability of heteroclinic cycles, we have found that in 

·fact there exists a larger sets of connections between the equilibria. The heteroclinic 
cycles which were studied ·so far consisted of isolated connecting orbits. We found 
that higher dimensional sets of connections could also exist, extending therefore the 
domain of existence of heteroclinic cycles. However, since heteroclinic cycles usually 
designate cycles with isolated connecting orbits, we have given the name generalized 
heteroclinic cycle ( GHC) to any such higher dimensional heteroclinic cycle. This is 
consistent with the recent definition given in [3] to similar objects. The stability 
analysis of these GHCs does not follow from the "classical" results on the subject 
(see [26, 27]). We have performed this study by means of orbit space reduction. This 
technique, which consists in projecting the equivariant differential system onto the 
space of group orbits (each orbit being then identified with a point), proved to be 
useful in our case, although it is certainly not the single possible approach. Anyway, 
this allowed us to find sufficient conditions for the asymptotic stability of the GHC. 
We did not try to go further in the stability analysis (for example in proving neces-
sity of the condition), because that was going beyond the scope of our objectives. 
It is interesting to notice here that essential asymptotic stability of the heteroclinic 
cycle (see section 4) is strongly related to the stability condition of the GHC. The 
·next question is the forced symmetry-breaking of the (generalized) heteroclinic cycle 
when a perturbation is introduced into the equations, which only commutes with 
rotations around a given axis. In the Benard problem, this perturbation is due to 
the rotation of the domain which introduces the Coriolis force in the equation of 
motion. We are therefore more specifically interested in perturbations which reduce 
the symmetry to the group S0(2) x 7l~, where 7l~ stands for the antipodal symme-
try. Surprisingly enough, we found that· such a perturbation does not completely 
destroy the heteroclinic cycle, but replaces it with a cycle involving pure equilibria 
as well as rotating waves (relative equilibria). This shows that when the domain 
rotates "slowly", as it is the case for certain planets, an intermittent convection can 
exist, which shows reversals of the flow. This could also be of relevant interest in 
the case of the Earth's core convection, although it is generally believed that in this 
case, inertial effects dominate convection. 

The plan of the paper is as follows: in sections 1 we introduce our motivating 
example of spherical Benard convection; in section 2 we set up the differential system, 
we describe the group action and introduce notations; in section 3 we recall the basic 
results of [1] and specify the stability conditions of the heteroclinic cycle; in section 
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4 we show the existence of the heteroclinic set and we study its stability; in section 
5 we introduce the perturbation and show the persistence of a heteroclinic cycle in 
this case. 

Acknowledgement: We wish to thank Peter Ashwin and James Montaldi for many 
helpful discussions. This work was made possible by support from the Deutsche 
Forschungsgemeinschaft La 525/5-1 and from the Procope Program DAAD 312/pro-
bmft-gg. 

1 The motivation : thermal convection in a spher-
ical shell 

1.1 The physical model and bifurcation problem 

The problem of the onset of thermal convection for a fluid in a spherical shell with 
spherically symmetric buoyancy forces has been described by many authors (notably 
by [7] and [6]). Our framework will be the "classical" Benard problem with an 
incompressible fluid uniformly heated from the inner boundary (core) and/ or from 
distributed heat sources inside the fluid (radioactive material). Moreover, we shall 
allow for a slow rotation of the shell around a polar axis. We do not need to recall 
the model equations (Na vier-Stokes and heat in the Boussinesq approximation) here 
nor the functional frame and linear stability analysis for the basic, purely conductive 
solution (see [8] and [19] for details). Below we list all we need to know. 

• Assume first that the system does not rotate. Then the equations are invariant 
under the natural action of the group 0(3) on the state variables (velocity, 
pressure and temperature). 

• After a suitable non-dimensionalisation of the equation, the following numbers 
come up into the equation : 17 = R;./ R0 is the aspect ratio of the spherical 
shell; Ra is the Rayleigh number, proportional to the temperature difference 
across the domain and inverse proportional to the fluid viscosity v; Pr = ~ is \ x 
the Prandtl number (x is the coefficient of thermal diffusivity). If Ra exceeds 
a critical value Racrit, the basic state of rest is linearly unstable and convection 
sets in through a steady-state bifurcation. The Prandtl number is assumed to 
be fixed in the following. 

• To determine Racrit one relies on a numerical analysis of the eigenvalue problem 
for the linear system, which reduces to a differential system in· the radial 
coordin.ate r after an expansion in spherical harmonics Ylm (a' cp) has been 
performed. Here l > 0 and -£ ::; m ::; £. It can be shown that the critical 
modes (eigenvectors for the critical eigenvalue 0) are associated with a value 
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£0 of £, which tends to increase when r; is taken closer to 1. This means in 
particular that there exist values T/lo at which critical modes with spherical 
harmonics of degrees l 0 and £0 + 1 coexist. 

a Each value of l defines an irreducible representation of the group 0(3). The 
space V of the critical modes is a representation space of 0(3), and it is 
either irreducible or the sum of two irreducible representation spaces. Indeed, 
if r; = T/lo, this representation is the sum of the irreducible representations 
associated with l 0 and l 0 + 1. Hence dim(V) == 4l0 + 4. The interest to 
consider this situation is that it leads to much more interesting dynamics than 
a "pure mode" bifurcation (which is always "quasi-gradient" (17]). 

a Such situations, for general £0 , have been considered in [14]. The case when 
l 0 = 1 has been studied most, for at least two reasons : first, it is the "simplest" 
(apart from l 0 = 0 which is excluded in the Benard problem), still showing a 
lot of interesting phenomena; second, it is of some geophysical interest. In the 
following we focus on this case. 

• Assume now that the system rotates with constant angular speed n around 
the polar axis. This introduces a new external force in the Na vier-Stokes 
equations, namely the Coriolis force. After non-dimensionalisation, a new 
adimensional number appears, the Taylor number Ta, which is proportional 
to n. If Ta is taken from a neighborhood of 0, the problem can be treated as a 
perturbation of the completely 0(3) invariant one. This perturbation breaks 
the spherical symmetry, reducing it to S0(2) x 7l2, where S0(2) stands for 
the rotations around the polar axis and 7l2 is the notation for the 2-element 
group of the antipodal symmetry. This problem was considered by [5] and, 
from a symmetry-breaking bifurcation point of view in the case l 0 = 2, by 
[10]. 

1.2 The amplitude equations and their third order approx-
imation 

For the local bifurcation analysis of this problem, it is suitable to perform a center 
manifold reduction of the model equations for a perturbation of the basic state and 
parameters near their critical values. For convenience, let us set .A1 = Ra - Racrit, 
.A 2 = r; - T/lo and E =Ta. We also denote by X the projection of the state variable 
(velocity, pressure, temperature) onto the space V. The center manifold theorem 
(see [15] for a detailed exposition of this technique), allows to reduce the ·local 
dynamics and bifurcation problem to a differential equation for X: 
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The map F admits a Taylor expansion of any order, although it is not C 00
• Taking 

the Taylor expansion up to a given order and expressing X in coordinates, we obtain 
a system of polynomial ODE's which is called the "amplitude equations". These 
equations have been computed by several authors and in various cases, most of 
the time up to order 3 only. Below we write this Taylor expansion. The relevant 
coefficients were computed by [19] (compare also the unpublished work [32]). In 
the next section we shall derive the general equivariant structure of the amplitude 
equations (at any order), but of course this does not provide numerical values for 
the coefficients. We first need some notations. In V, let Xj be the coordinate of 
X along the eigenvector -associated with the spherical harmonic Yii (j = -1, O, 1) 
and let Ym be the coordinate along the eigenvector associated with the spherical 
harmonic Y2m (m = -2, -1, 0, 1, 2)~ Note that X-j = (-l)ixj and Y-m = (-l)mYm· 
We set x = (x-1, xo, x1) and y = (Y-2, Y-1, Yo, Y1, Y2). We also set 7r1 = x6 + 2x1x1 
and 7r2 = y~ + 2Y1Y1 + 2Y2Y2· At order three, the amplitude equations have the form 

x· J 

Ym 
Xj(a1 Aa + a2 Ab+/ 7r1+8 7r2) + {3 2jJ(x,y) + 8' 2jJ(x,y,y) ) 
Ym(a1 Aa + a2 Ab+ d 7r1 + f 7r2) + b T~(x,x) + c T~(y,y)+ 

f' T~(x, x, y) 
(1) 

The bi- and trilinear terms which enter into these equations are defined in the next 
section. As already mentioned, the various coefficients which appear in the equations 
have been computed numerically. Here we shall take the results of [19) who assumed 
rigid boundary conditions on the inner sphere (r == 77), free-type boundary conditions 
on the outer sphere ( r = 1), ideally cqnducting boundaries. They find a critical value 
771 ~ 0.2. The linear coefficients a1, a2, a1, a2 allow to perform a change of variables 

(2) 

Taking different physical conditions, e.g. different boundary conditions, would 
change the values of the coefficients in the amplitude equations, but we can ex-
pect that the main dynamical features would not be strongly affected. Another 
important property of this system is that c must be close to 0. In fact c depends on 
the assumption which is made about the distribution of heat sources and of mass. 
The general form of the temperature field and gravitational field for the fluid at rest 
IS 

t1 91 T(r) = 2 + t2r and g(r) = 2 + 92r, 
T T 

respectively, where ti and 9i are non-negative constants. If T(r) = g(r), then it can 
be shown that c = 0 (see [8]). Otherwise, calculations show that c remains close 
to 0 (positive or negative depending on the values of the coefficients ti and 9i ). In 
the table below we indicate approximate values of the coefficients for three different 
Prandtl numbers, extrapolated from figures 6 and 7 in [19). In these calculations, it 
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was assumed that t 2 = 0 but g2 =/= 0 (hence c need not be 0). Of course c can change 
sign under different choices of ti and 9i, while this will not affect significantly the 
value of the other coefficients. 

0 

Prandtl number 0.1 1 10 

f3 -0.3 -0.3 -0.25 

' -0.2 -0.4 -0.4 
5 -4.0 -1.0 -1.0 
5' 0.75 -0.23 -0.2 
b 0.23 0.23 0.2 
c -0.04 0.04 0.05 
d -1.0 -1.0 -1.0 
f -1.8 -1.2 -1.0 
f' 0.1 0.1 0.1 

Table 1: Coefficients in the amplitude equations (from [19]) 

Numerical simulations of the amplitude equations by [19] have shown an interest-
ing phenomenon: in certain regions in parameter space intermittent dynamics is 
observed, with "random" switching between two kinds of axisymmetric equilibria, 
called a-cells and (3-cells by these authors. The work of [1] allowed to understand 
how such behavior could occur, by establishing the existence of robust heteroclinic 
cycles, but it failed· to show asymptotic stability. This analysis is made in section 
3. However we find that the conditions for stability are not satisfied in the context 
described in [19]. Moreover, a careful look at [19] reveals that they do not observe 
a heteroclinic cycle of the type found in [1]. 

2 The 1-2 mode interaction 

To recall the basics of 0(3) representation theory, we mention, that there is up to 
equivalence precisely one irreducible representation of S0(3) on each real vector 
space of dimension 2£ + 1. This is referred to as the £-representation of S0(3). 
Since 0(3) = S0(3) EB 7l2, where 7l2 is the antipodal symmetry group (reflection 
through the origin in 1R.3 ), a given representation can be continued in two ways .to 
a representation of 0(3), either the nontrivial element in 7l~ acts as identity or as 
minus identity. One realization of the £-representation is given by the action of 
S0(3) ·on the spherical harmonics of degree l by 

(r, !) Ho !f, where (rf)(x) = J(r- 1x). (3) 
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0(3) 

I 
0(2) EB 7l~ {yo} 

~~ 
0(2)- D2 EB 7l~ {Yo, Y2 + Y-2} 

~~ r { Xo, Yo, Y2 + Y-2} 

7l2 {xo, X1 - X-1, Yo, Y1 - Y-1, Y2 + Y-2} 

I 
I 

Figure 1: The poset of isotropy subgroups for the 1-2 mode interaction 

The action of the antipodal symmetry on spherical harmonics is like the identity if f, 
is even and as minus identity if I. is odd. This is called the natural representation of 
0(3) on 21. + 1 dimensional space. We work with this representation, which occurs 
naturally in the spherical Benard problem. Let Vl denote the real vector space of 
dimension 2l + 1 with the natural 0(3) action. We denote sums of representations 
by 

(4) 
Let us now concentrate on Vi, 2 an eight dimensional real vector space. We use 
the notation of section 1 for coordinates on this space, i.e. x_1 , x 0 , x1 on Vi and 
Y-2, y_1, Yo, Y1, Y2 on V2, such that a general point is written as (x, y) with x E Vi, 
y E V2. The poset of isotropy subgroups for this representation can be found in [1], 
for future reference it is displayed in Figure 1. The terminology for the groups is 
based on (23]. We recall that 7l~ consists of plus/minus identity, 0(2) EB 7l~ is the 
group of all motions of an (infinite) cylinder, 0(2)- is the group of the cone and 
7lk stands for the group of rotations by 27r / k, while Dk is the group of all motions 
of the regular k - gan. The group 7l2 is generated by a reflection across a plane in 
JR3. 

2.1 Equivariant Maps 

Let us begin by describing invariant functions and equivariant maps. 

7 



Lemma 2 .1 The polynomials 

7r1(x,y) 
?r2(x,y) 

7r3(x,y) 

7rs(x,y) 

x; - 2x_1x1 

- Y~ - 2Y-1Y1 + 2Y-2Y2 

3 3y'6( 2 2) Yo - 3Y-1YoY1 - 6Y-2YoY2 + - 2- Y-1Y2 + Y-2Y1 

y'3 2 y'3 
-3X0Yo + XoX-1Y1 + XoX1Y-1 - 3x-1X1Yo -

v'2 2 y'2 2 
-2X-1Y2 - 2X1Y-2 

1 2 
-2x_1X1Y-2Y2 - 2,XoY-2Y2 

v'6 2 3v'2 v'6 2 
-2Y-2YoX1 + - 2-Y-2XoX1Y1 - 2X-1YoY2 

2 y'3 322 32 2 322 
-Y-1XoY1 - 2Y-1XoYoX1 + 4X0Yo + 4X-1Y1 + 4X1Y-1 

y'3 . 3y'2 1 
-2X-1XoYoY1 + -2-X-1XoY-1Y2 + 2X-1X1Y-1Y1 

are invariant under the action of 0(3) and linearly independent. They generate the 
ring of invariant functions. 

Proof: In the appendix we show that there are five generators, provided we find five 
algebraically independent elements. The elements given here are clearly algebraically 
independent. D 

Some of the generators of the module of polynomial equivariant mappings are given 
by [1], for the sake of convenience we recall them here and give a complete set. 

Lemma 2. 2 The module of equivariant polynomial mappings over the ring of in-
variant polynomial is generated by the following mappings, of the form (01 , 1'), 
yi = (1'~ 2 , •.• , Y~) or (E, 02 ), Ei = (E~ 1 , E~, E{), meaning that the equivariant 
has zero components in Vi and the components YJ in V2 in the first case and cor-
responding notation in the second case. We have for the equivariants, given in 
components (observe that it suffices to give the components with nonnegative upper 
indices only) 

Ei = 

XoYo - V:(x1Y-1 + X-1Y1), 
~ (-x1Yo + v'3xoY1 - v'6x-1Y2 
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:E3 

~x2 v 2 1 

Y5 - Y1Y-1 - ·2Y2Y-2 
YoY1 - V6Y-1Y2 

2 .j6 2 - YoY2 + 2Y1 

-x6yo - 4x1X-1Yo + VB(x:1Y2 + xiY-2) + J3(xoX1Y-1 + XoX-1Y1) 
-J3xoX1Yo - 3x1X-1Y1 + 3xiY-1 + 3v'2xoX-1Y2 
V6xiyo - 3v'2xoX1Y1 + 3x6y2 
~( 2 + 3 2 + 2 2 + s 2 2 + Yo XoY-2Y2 2XoY-1Y1 X1Y-1 5XoY2 
+x:1Yi - X1X-1Y1Y-1 + ~X1X-1Y6) - 5v'2(x-1XoYoY1 + XoX1Y-1Yo)-

- 2v'3(xoX1Y-2Y1 + XoX-1Y-1Y2) + 2(x:1YoY2 + xiY-2Yo) 
rs V6(xfo-1Yo + 2x1X-1YoY1 + ~x6YoY1) - 4J3x_1XoYoY2-

- 3v'2(x-1xoyr + xox1Y1Y-1 + ~xox1y5) + 6x:1Y1Y2 + 3x6Y-1Y2 
VBx6YoY2 - 2VJxoX1YoY1 - 6v'2x-1XoY1Y2+ 

+3 2 + 6 2 2 + 3 2 2 + 2 2 x1:i:-1Y1 x_1Y2 2XoY1 X1Yo· 

The general equivariant mapping has the form 

x Aix + A2:E2
( x, y) + A3 :E3

( ~, y) 
y B1Y + B2 Y 2(x) + B3 Y 3(y) + B4 r 4 + Bs rs. (5) 

with A1, Bk being functions of .A and 7r1 to 7rs. Third order truncation leads to 
equation (1). 

3 The basic heteroclinic cycles in the 1-2 repre-
sentation space 

3.1 The classification of Armbruster & Chossat 

In this section we shall essentially recall the results of Armbruster & Chossat [1] 
about the existence of heterocliniccycles in the l = 1-2 mode interaction with 0(3) 
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symmetry. We shall also fix some notations which will be used later. In addition 
we shall make some of the statements of [1] concerning existence and stability of 
heteroclinic cycles in \/i,2 more precise. 

It follows from the stratification of the space \/i,2 in orbit types that there is only 
one symmetry axis, up to conjugacy in 0(3), namely the axis L = Fix( 0(2) x 7l~). 
The equivariant bifurcation lemma applies to the equations restricted to L, and the 
bifurcation equation (after truncation at order 3) reads 

Of course, if c = 0 the bifurcation is supercritical : there are two branches of bifur-
cating solutions, namely y0 = ±y'X;°. If !cl is considered to be a small parameter, a·s 
it turns out to be the case for the Benard problem (see section 1), then the bifurca-
tion is transcritical but one of the branches admits a turning point in a neighborhood 
of 0 and again there are two "local" bifurcating equilibria, 

(6) 

In all of the following, lei will be considered such a small parameter. 

Definition 3.1 {i) P1 = Fix(D2 x 7l~), P2 = Fix(0(2)-) and S = Fix(D~) . {ii) a 
and f3 are the equilibria in L with components Y- and Y+ respectively. 

Note that L = P1 n P2 • However P2 contains no other invariant axis, while P1 

contains in addition two conjugates of L which are obtained by rotating this axis in 
P1 by angles 2; and ~71". This is due to the fact that the subgroup D3 of S0(3) acts 
faithfully in P1 • The rotations in P1 correspond to elements in S0(3) (rotational 
symmetries) which we shall not need to make explicit here. Therefore within P1 

there are two copies a' and a" of a, and two copies {3' and {3 11 f3. Also, remark that 
S = P1 EB P2. 
The eigenvalues of the linearized vector field at q: and f3 are extremely important 
for our analysis. The tables 2, 3 list these eigenvalues and eigenspaces at a and f3 
respectively. We define J = 5 + 3/25'. 

Let us look at the dynamics for the system (1) restricted to the two invariant planes, 
and then to the 3D space S. Assume that .A2 > 0 is fixed and c is close to 0. 

3.1.1 Phase portrait in P1 

One can easily see that the assumption of small lei leads to possible secondary 
equilibria in P1, bifurcating from ei'ther a or f3 off the invariant axis L. Their 
existence is subject to the condition. that c.g < 0, where g is the coefficient of 
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eigenvalue expression e1genspace 

ao .A1 - Y- + Jy:_ {xo} 
ai (double) .A1 + 1 /2y_ + 5y~ {x1,x-1} 
a2 (double) -3cy_ {y2, Y-2} 

ar cy_ - 2y:_ {Yo} 
0 (double) 0(3) invariance {y1, Y-1} 

Table 2: Eigenvalues at a 

eigenvalue expression e1genspace 

f3o .A1 - Y+ + Jyi {xo} 
(31 (double) .A1 + l/2Y+ + 5yi {x1, X-1} 
(32 (double) -3cy+ {y2, Y-2} 

f3r CY+ - 2y~ {Yo} 
0 (double) 0(3) invariance {yi, Y-1} 

Table 3: Eigenvalues at (3 

the fourth order term 7r2 i 3 in equations (5). The existence and stability of these 
solutions were first discussed by [22]. Numerical calculations by [13] and more 
recently by [21], have shown that g < 0 (always) for the Benard problem. Therefore 
in this case, the secondary solutions exist only if c > 0. 

If c < 0, there are no equilibria with isotropy D2 x 7l~. In this case, the phase 
portrait looks like figure (9). In particular heteroclinic orbits connect (3 to a' and 
a", and by symmetry identical connections exist between the other equilibria in P1. 

3.1.2 Phase portrait in P2 

We assume c < 0. The phase portrait in the "mixed-mode" plane P2 depends on 
the value of .A1 which we let vary monotonously from very negative values. 

• If .A< Aa, where Aa:::::: 1/2(c - Jc2 + 4.A2), then a is a sink in P1. Note that 
.A1 < 0. 

• As .A crosses Aa, a "mixed-mode" equilibrium I bifurcates off L (and -1). 
This of course means that a0 = 0 at .A = Aa. 
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• I is a sink in P2 , until it undergoes a Hopf bifurcation at .:\1 == Ab ~ 1 /3( c -vc2 + 3.:\2). 

• The new born limit cycle grows until it heteroclinises on a and the equilibrium 
at the origin. This occurs at a value Ab < Ac < 0. As .:\1 crosses Ac, the limit 
cycle disappears and a heteroclinic connection appears from a to f3. 

• When .A == 0, I vanishes in the trivial equilibrium and the a --+ f3 connection 
persists until a mixed mode equilibrium bifurcates from f3 at a value .:\1 == Ad, 
where .Ad~ 1/2(c + y'c2 + 4.:\2 ). 

It follows that if c < 0 (close to 0) and Ac < .:\1 < Ad, a heteroclinic cycle is realized 
between type a and type f3 equilibria. By symmetry there is an 0(3) group orbit 
of such objects. But each individual heteroclinic cycle involves three equilibria of 
each type (those in the plane P1 ). The connections out of P1 involve three invariant 
planes, which are P2 (a --+ [3), P~ (a'--+ {3') and P~' (a" --+ {3"). To be more precise, 
P2 = { Xo, Yo, Y2r }, P~ = { X1r, Yo, Y2r} and P~' = { X1i, Yo, Y2r }, with X1 = X1r + ix1i 
and Y2 = Y2r + iy2i· Notice that the symmetry group of such a heteroclinic cycle is 
D3 by construction. 

Definition 3.2 We denote by Type I the heteroclinic cycles connecting equilibria of 
type a and type f3 in P1 and P2. 

The eigenvalues of the linearized vector field at I are given in table 4. 

eigenvalue exp:r;ess1on eigenspace 

lo E <C Re(ro) ~ 1/2.:\2 + c.:\1 - 3/2.Ai {xo,Yo}· 
11 (double) .A2 + .A1(3/2 + c - .A1) {xi, x_1, Y1, Y-1} 
12 (double) .A2 - 2c.A1 - .Ai {y2, Y-2} 
0 (double) 0(3) invariance {x1, x_1, Y1, Y-1} 

Table 4: Eigenvalues at I 

3.1.3 Phase portrait in S 

As above we fix .:\2 and assume c < 0 and close to 0. The following succession of 
bifurcations was described in [1]. 

• At A1 = ~a ~ -c - V c2 + .:\2 , the equilibrium I undergoes a steady-state 
bifurcation off the plane P2 • This means that 1 2 = 0 at .:\1 = ~a. The new 
born equilibria, which we note 7, are then sinks in S. Note also that ja < Ab. 

12 



• At a value .X == ~b, 1 becomes unstable through a Hopf bifurcation. As .X1 
is further increased, this limit cycle in S heteroclinises to /3', a and ! , m a 
complicated way (occurrence of a strange attractor). 

• After this "crisis", a heteroclinic connection is realized from ! directly to cl 
(and a") which is a sink in S. This connection persists until a bifurcation 
occurs from a' off the plane P1 in S. This happens at a positive value of .X 1 . 

• r "disappears" into /3' when Ai == ~c ~ 1/4(-c - Jc2 + 4.X2 ). The ! --+ a' 
connection still exists at this value, and persists until a certain positive value 
of .X1 is reached (value at which a.1 ==0). 

If the heteroclinic connections from a to ! and from ! to a' coexist in a certain open 
domain of parameter values, then again a robust heteroclinic cycle is realized, but 
involving now the "mixed-mode" equilibria. However, because Ab < ~c, this does not 
immediately follow from the foregoing bifurcation scenarios. It must also be noticed 
that the existence of the r --+ a 1 connection could be proved only in the limit c == 0. 
Persistence of the connection for a "large" range of values of c is numerical evidence, 
as well as the existence of the heteroclinic cycle. On the other hand, suppose that! 
becomes unstable in P2 due to the Hopf bifurcation. The existence of the connection 
from! to a.1 in S leads to the existence of a connection from the limit cycle itself to 
a'. Then a robust heteroclinic cycle is realized between a and the limit cycle in P2 • 

Definition 3.3 We denote by Type II the heteroclinic cycles connecting equilibria 
of type a and type/ in P2 and in S, and type III those connecting type a with limit 
cycles in P2 and S. 

All three heteroclinic cycles have been observed numerically by [1], which indicates 
their asymptotic stability. The stability question turns out to be quite subtle how-
ever, and deserves some further analysis. In the next subsection we shall see under 
which conditions the heteroclinic cycle of type I can be stable. We shall not consider 
the stability of types II and III. 

3.2 Stability of the heteroclinic cycles of type I 

The asymptotic stability of a heteroclinic cycle, more generally the asymptotic be-
havior of trajectories starting in its vicinity, is an important question in view of 
applications. This behavior strongly depends upon the local dynamics near each 
equilibrium in the cycle, hence upon the eigenvalues at each equilibrium. KRUPA 
and MELBOURNE [26] have characterized the asymptotic stability in terms of these 
eigenvalues, under some assumptions concerning the global, geometric structure of 
the flow along the heteroclinic connections. Therefore the first question we can ask 
is whether our heteroclinic cycles belong to this class. 
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We denote by ei, ei+i any two equilibria in the cycle such that the unstable manifold 
Wu(ei) intersects nontriviallythe stable manifold ws(ei+i)· Then a basic hypothesis 
in [26] is the following 

(Hl) for each j there is a flow invariant subspace Pi such that Wu(ei) c Pi and 
ei+i is a sink in Pi. 
We need to introduce some more definitions. Let I'j be the isotropy subgroup of 
the equilibrium ei· We consider the eigenvalues of the linearized vector field at ei· 
We call the eigenvalues with eigendirections in Fix(r i) radial, the eigenvalues with 
eigendirections tangent to ws(ei) n Pi_ 1 contracting, the eigenvalues with eigendi-
rections tangent to Wu( ei) n Pi expanding, and the remaining eigenvalues transverse. 
By (Hl), ei is a sink in Pi_ 1 , i.e. ws ( ei) n Pi-l = Pi-l · 
The stability of the type I heteroclinic cycle was already studied by [1]. It was noticed 
that (Hl) could hardly be satisfied in a neighborhood of (0, 0) in the parameter 
plane (..\ 1 , ..\2 ). Let us be more precise. The condition wu(ei) c Pi implies that 
the transverse eigenvalues have negative real part. At equilibria a and /3, there is 
exactly one (double) transverse eigenvalue, with respective leading part 

a1 ..\1 + 1/2y_ +By:_ 
/31 ..\1 + 1 /2y+ + By! 

and eigendirections X±1 (see table 3). Here Y± denotes the nonvanishing component 
along y0 of the equilibria a and f3, i.e. 

Y± = 1/2 ( c ± V c2 + 4..\2 . 

Remark that if the condition is satisfied at {3, i.e. with y0 > 0, then it is true at 
a. We therefore restrict our attention to {3. It was noticed in [1] that the existence 
of the a -+ /3 connection in P2 is insured, for a given positive value of ,\2 , for .X 1 

in an interval (..\1, Y+ - Jy!), where ..\! is strictly negative (see [1]). It is therefore 
sufficient to check the stability conditions at ,\1 = 0. These conditions will persist 
in an open interval of values of ,\1 around 0. With this particular value, we have 

The condition /31 < 0 now reads 

1 
8 < -- , Le. 

2y+ 

(7) 
This implies 8 < 0 and 8 -+ -oo when ,\2 -+ 0, since c < 0 in order to insure the 
/3 -+ a connection in the plane P1 . Note however that in the numerical computations 
of [19] for the Benard problem, it was found that indeed B is negative : 8 '.:::'. -1 at 
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Pr ~ 10 and <5 ~ -5 at Pr ~ 0.1. It is therefore not physically irrelevant to consider 
situations when (Hl) is fulfilled, even if ,:\1 > 0. 

Under (Hl), a sufficient condition of asymptotic stability can easily be derived : let 
-Cj be the real part of the least contracting eigenvalue at ej, ej be the (real part 
of) the largest expanding one and ti be the maximum real part of the transverse 
eigenvalues (which are negative by Hl). Then if 

(8) 

the heteroclinic cycle is asymptotically stable. KRUPA and MELBOURNE (26] proved 
the necessity of this condition under some additional hypotheses, we shall come to 
this later. For the moment, let us check whether the above condition can be satisfied 
together with (Hl) for the type I heteroclinic cycles. 

Proposition 3.4 Given .:\2 > 0 and c < 0, there exists an open interval of values 
of .:\1 around 0 such that if J is close enough to <5, and . 

then th~ type I heteroclinic cycle exists and is asymptotically stable. 

Proof. In terms of the eigenvalues at a and {3, the stability condition reads 

It is easy to check that -a2 < ao - ai and f32 - /31 < -{30 , because c is close to 0. 
Since in addition a 2 = -3cy_ and f3i = -3cy+, the condition reduces to 

Suppose .:\1 = 0, this relation becomes, after some elementary algebra, 

0 < 3/2 +<Sy+ - Jy_. 

Take now J = <5. Then we get the con di ti on 

Combined with (7), this ends the proof. D 

Remark 3.5 1. The condition in Proposition 3.4 is not satisfied in the case of 
intermittent dynamics as observed in {19 ]. 

2. In this case Figure 17 of {19} shows that the dynamics does not fit the hetero-
clinic cycle found by {1]. Indeed there is no trajectory following the connection 
in the plane P1. 
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Condition (8) can also be necessary, as was shown in [26], if some additional hypothe-
ses are satisfied. Moreover in this case, a stability statement can still be claimed 
even if one of the transverse eigenvalues ai, f3i is positive but smaller than the 
corresponding expanding eigenvalue .. a 0 or {32 (see [27]). Of course (8) could not 
be fulfilled if both transverse eigenvalues had the foregoing property at the same 
time. If however this condition is again satisfied, then the heteroclinic cycle is not 
asymptotically stable but essentially asymptotically stable, meaning that trajectories 
converge to the cycle whenever the initial condition belongs to the complementary of 
a cuspoidal wedge in a neighborhood of the cycle. Therefore, for "most" initial con-
ditions in the neighborhood, the trajectories will converge to the heteroclinic cycle. 
It turns out that part of the additional hypotheses are not satisfied in our case. More 
precisely : hypothesis (S2) of [27] reads as follows : the eigenspaces corresponding 
to Cj, tj, ei+i and ti+i lie in the same ri-isotypic component. Translated into our 
case, this means for example that the eigenvectors for a 2, ai, {32 and f3i lie in the 
same 0(2) x 7l~-isotypic component, which is not true. Indeed, the eigenspace for 
ai and f3i is {Xi, xi} while the eigenspace for a2 and f32 is {y2, :Y2}. On the former 
space, S0(2) acts by xi 1-t eicpxi, and on the latter, it acts by y2 1-t e2i'Py2 • So 
we may now ask whether (8) is still a condition of essential asymptotic stability for 
our heteroclinic cycle of type I. On the other hand, we may also ask whether the 
transverse unstable directions are still related to heteroclinic connections between 
the group orbits of a and {3, or just escape to some other invariant object. This 
analysis will be the subject of the next section. 

4 The heteroclinic set and its stability 

4.1 Existence of an invariant sphere 

Here we follow the seminal paper by FIELD [18] .. We prove the existence of the 
invariant sphere in the case c close to zero and for I.Ai - .A2 j small. Selfadjoint refers 
to the spherical Benard-problem, see CHOSSAT [8] and MOUTRANE [32] for the 
consequences of this assumption for the bifurcation equation. Especially it follows 
that c = 0 and b, {3 satisfy the relation 2{3 = -b. So we have 

Theorem 4.1 Let ek > 0 be sufficiently small and assume .Ai, .A2 > 0. Then I.Ai -
.A2I < ei(l.Ail + l.A21), c < e2, lb+ 2,BI < e2 and the additional assumption 

r, d < 0, 5, 5', f, !' < e3 

imply the existence of an invariant sphere. 

Proof: In the selfadjoint case with .A = Ai = .A2 the hypotheses of theorem 5.1 in 
FIELD [18] are satisfied and for each value of .A > 0 (where we assume .A = .Ai = .A2) 
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we find an invariant sphere. Normal hyperbolicity of this sphere implies the existence 
of an invariant sphere as long as A1, .A2 > 0 and I .Ai - .A2 I is sufficiently small and 
the deviation from the selfadjoint case is small. D 

Let us make the following remarks on invari'ant spheres. 

Remark 4.2 1. The invariant sphere is a graph over a sphere of radius r = /j):I, 
i.e. there exists a map s : S( r) -+ V, such that the invariant sphere is given 
by s(S(r )) . 

2. The invariant sphere is unique. This follows from Field's proof. 

3. The map whose graph gives the invariant sphere is equivariant. This follows 
in a standard way from uniqueness. 

4. The invariant sphere is normally hyperbolic. 

4.2 The generalized heteroclinic cycle 

In order to establish the main result on the heteroclinic set, we restrict ourselves to 
the space Fix(Z;-). For the following we make the assumption 

(H) There exists an invariant sphere. 

We have seen that this hypothesis is satisfied for an open region in parameter space. 
Numerical computations indicate that this sphere exists for a much larger set, than 
Theorem 4.1 indicates. 

Let us consider the dynamics in Fix(7l2) and to be more precise on the intersection 
of this five dimensional space with the invariant sphere, which is a topological four 
dimensional sphere S4 • On this space Fix(7l2) we have an action of the normalizer 
N0 (3)(7l2) = 0(2)EB7l~ (see [17]). The invariant sphere has to be invariant under this 
action (if it where not for any 'YE N0 (3)(7l2) we had 1S4 is also an invariant sphere. 
Since all equilibria are on each invariant sphere S4 intersects 'Y S4 contradicting the 
normal hyperbolicity). So we can restrict the flow on S4 to the orbit space of S4 

under the action of N0 (3)(7l;-).The action of the normalizer has 7l2 as kernel, in fact 
we should look at the action of 0(2) EB 7l~/7l2 which is isomorphic to 0(2). In the 
following discussion groups refer to subgroups of 0(2). 

Lemma 4. 3 For this action the Hilbert map has the following form 8 = (Bo, ... , B3 ), 

where the Bi are given by 

Bo = Yo 
Bi = -X1X-1 ( = X1X1) 
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Proof: See CHOSSAT [11]. D 

Theorem 4.4 The orbit space B of the invariant sphere S4 has the following prop-
erties 

1. It is a three dimensional compact manifold with boundary. 

2. The principal stratum is the interior of this manifold, which is simply con-
nected. The corresponding orbit type is trivial. 

3. The boundary consists of three strata: the corresponding isotropy subgroups 
are 7h2, D2 and 0(2). 

4. It is topologically equivalent to· a man if old whose boundary is . described by the 
equations 

81 > 0 
82 > 0 

e; - e~e2 < 0 
e~ + 281 + 282 1. 

Remark 4.5 We think of this orbit space as of a banana, having one ridge, for an 
illustration see figures 3,4. 

Proof: Clearly dim(B) = dim(S4 ) - 1 = 3. The Hilbert map II = (80 , 81 , 82 , 83 ) 

sends Fix(Z2) into a four dimensional manifold with boundary. The invariant sphere 
is topologically equivalent to the set B6 - 281 + 282 = 1, so the image of the invariant 
sphere is topological equivalent to the image of the restriction of the Hilbert map 
to this set. The above statements follow easily from these considerations. D 

We have the following information about the flow in this "banana". 

Lemma 4.6 If c-=/= 0 then we have: 

1. The two 0-dimensional strata corresponding to 0(2)-isotropy are fixed points. 
They correspond to equilibria of type a, (3 (in the terminology of {1}). 

2. They are joined by a 1-dimensional stratum with D2 -isotropy. 

3. On this 1-dimensional stratum we have two additional equilibria a', (3' and 
orbits connecting these equilibria. 

18 



4. The two dimensional stratum is filled with solutions which are connections 
between a' and (3'. 

Proof: 

1. Zero dimensional strata obviously consist of points which are isolated in their 
stratum, which immediately implies that they are equilibria. 

2. On a one dimensional stratum the fl.ow consists of equilibria and connecting 
orbits only. In this case we have to find the solutions which (in the notation 
of [1]) are called a' and (3' on this stratum as well as the connections shown 
to exist in this paper. 

3. The two dimensional stratum is given by the image of the intersection of 
Fix( D~) with the invariant sphere. Again (1] shows that this is filled with 
connections. These are precisely the connections claimed here. 

D 
A first main result is contained in the following theorem. 

Theorem 4. 7 The flow inside the orbit space has the following features: 

1. In the selfadjoint case, the 1-dimensional stratum on the boundary consists 
of equilibria only. The three dimensional stratum is filled with connections 
between the various equilibria on the one-dimensional stratum. 

2. In the generic, nonselfadjoint case there are precisely two equilibria on the 
1-dimensionai stratum. The three dimensional stratum is filled with orbits 
conne.cting these two points. 

Figure 2: One of the extra connections. 

Proof: The proof consists of two steps: in the first step we consider the selfadjoint 
case, which is somewhat degenerate. Then we use a perturbation argument to 
conclude the behavior in the general case. Let us begin with the selfadjoint case. 
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Figure 3: The flow on the banana for the cubic system when c = 0. 

Figure 4: The flow in the case when c is small. 
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1. Let us begin with the selfadjoint case. Then the I-dimensional stratum is 
filled with equilibria. Let M = m(t), t E [O, 1] be a parameterization of this 
stratum with m(O) corresponding to a, m(l) corresponding to j3. One can 
easily check that there is a t* E [O, 1] such that for 0 :::; t < t* m( t) has a 
twodimensional unstable manifold Wtu (in the direction of M it obviously has 
a 0 eigenvalue) and for t* < t ::; 1 it has a two dimensional stable manifold 
Wt". The intersection of the Wt with the twodimensional stratum consists of 
connections to a point m(T(t)), T(t) > t*, these are the additional connection 
found by ARMBRUSTER & CHOSSAT [1]. The next step is to consider the 
solutions in the interior. Here we have to use some general information of 
dynamics in sums of representations of 0(2), compare [1] In polar coordinates 
(r1, r2, Yo, ¢1, <I>2) the equation on Fix(Z2) has the form (with <I> = <I> 1 - 4> 2) 

r1 = A1r1 - ~.Br1 (Yo + v'6r2 cos( 4>)) + 21r~ + Or1 (v5 + 2r~) + 
8'r1r2 (2r2 + J6yo cos(¢)) 

r2 A2r2 + ~H cos(efJ) - 2r2Yo + dr2(Y5 + 2r~) + 2/rh + 
J6J'yori cos(¢) 

Yo >.2Yo - &ri - c(2r~ - y~) + dyo(Y~ + 2r~) + 2fyori -
2/' r~ ( J6r2 cos(¢) - 2yo) 

4> -J6 sin( 4>) ( Gb +!'Yo) ~: + r 2 (-.B + 20')) 

¢1 r~(28'yo - [3) 
¢2 rH2f'Yo + b )' 

Observe that is is a general feature of such equations to allow to write an 
equation for the phase difference. This is not restricted to low order terms. 
In general these equations have singularities at r 1 = 0 or r 2 = 0. At such 
singularities the phase difference along solution may jump from 0 to 7r or vice 
versa, compare ARMBRUSTER, GUCKENHEIMER & HOLMES [2]. The phase 
difference k7r k E Z are obviously invariant, as long as those solutions do 
not go through r 1 == 0 or r 2 = 0. Let us look at the asymptotic behavior of 
the phase difference along any solution. Its behavior strongly depends on the 
second factor, so let us study it after multiplication with r 2 

Due to the smallness assumption of f', 8' this is of one sign along solutions on 
the invariant sphere. Therefore 
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The points with ¢ = 0, 7r correspond to the boundary of the orbit space and 
therefore we see that any trajectory tends to the boundary. Since we know 
the asymptotic behavior on the boundary we conclude that any solution has 
its w-limit set on the 1-dimensional stratum. 

Observe that the 1-dimensional stratum is almost normally hyperbolic. It we 
take out the unique point p, where the change in stability takes place we can 
write this stratum as a union 

where S$ and su are 1-dimeruional manifolds which consist of stable or un-
stable points respectively. 

2. Here we want to use perturbation arguments based on the first case. 

The main difference between these two cases is the behavior along the 1-
dimensional stratum. In the nonselfadjoint case, with c small, there are two 
interior solutions and the two endpoints which correspond to steady states. 
denote by a or {3 the endpoints of the 1-dimensional stratum corresponding to 
the equilibria a, {3. the other two solutions on this stratum are labelled with 
a' and {3' and correspond to these equilibria. They are located in S$ or su 
respectively. Especially a' =f. p =f. {3'. Moreover it is easy to check that there is 
a heteroclinic connection from {3' to a' and p is on this connection. Now the 
result basically follows from continuous dependence on initial values, stability 
and instability of a' and {3' respectively. 

D 

Theorem 4.8 In the nonselfadjoint case, but with c close to 0, there exist hetero-
clinic cycles 

{31 -+ a" -+ {3" -+ a' -+ {31 

such that the set of connecting orbits from {3' -+ a" and from {3' -+ a' are both three 
dimensional. The standard cycle 

{3' -+ a -+ {3 -+ a' -+ {3' 

is contained in the closure of the set of all the connections described before. 

Definition 4.9 We call the set of all the connections described in the previous the-
orem as the generalized heteroclinic cycle. 

Remark 4.10 The stability analysis is more complicated than usual, cf. sect. 3. 
Our method is adapted to the underlying geometry. 
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4.3 The stability of the generalized heteroclinic cycle 

4.3.1 Reduction to the local orbit space 

We study the stability of the heteroclinic set which was shown to exist in the last 
section. The main tool is a local orbit space reduction near the equilibria on the 
heteroclinic cycle. Of course we do not claim that there is no other way of proving 
the result, but we found it a convenient way to describe the relevant geometry (see 
[3] for another discussion of the stability of the GHC). Let us begin our discussion 
with the concept of a local orbit space as we shall use it. 

Given a manifold of equilibria of an equivariant dynamical system, we use the slice 
theorem (BREDON [4]) to get a neighborhood of a given point as a product ~f 
the group orbit and the corresponding normal bundle. There is an action of the 
isotropy of our given point on the normal bundle. The reduction to the orbit space 
with respect to this action will be called the local orbit space. 

If we consider a normally hyperbolic manifold O(p0 ), then we have a fibration of a 
neighborhood into stable and unstable manifolds. There is a trivial flow along the 
group orbit and the whole dynamics will be described by the behavior in one fiber N 
and therefore the flow on the local orbit space gives information about the behavior 
in a neighborhood of O(p0 ). This justifies the use of local orbit spaces. 

As we will see, this local reduction is enough to obtain a global view of the generalized 
heteroclinic cycle in the orbit space V1,2/ 0(3). 

All the fixed points involved in the GHC are 0(2)EBZ~ symmetric and we can restrict 
the calculations to the local orbit space around the point a. In a neighborhood of 
this point, the slice Sa to its group orbit is spanned by xo, X±i and Y±2· We have 
then to determine the orbit space Sa/ 0(2) EB Z~. This action of 0(2) EB Z~ is in · 
fact a 0-1-2 mode interaction, i.e. a sum of irreducible representations of this group 
associated with rotations eimB Zm, m == 0, 1, 2 respectively. 

We recall the action of 0(2) EB Z~ obtained by the restriction of the 0(3) action on 
V1,2: 

with the additional reality condition ([33]) Z-m = (-1r.zm. This isotropy lattice 
for the 0-1-2 mode interaction is given in figure (4.3.1). 

Lemma 4.11 The ring of invariant for this action of 0(2) EB Z~ on Sa is generated 
by the polynomials 
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Figure 5: Isotropy lattice for the 0-1-2 mode interaction with 0(2) EB Z~ 

r = x2 
0 

'T/1 = -X1X-1 (9) 
'T/2 = Y2Y-2 
'T/3 = 2 + 2 X1Y-2 X_1Y2 

The strata corresponding to the orbit space for this action are defined by the equations 
and inequalities given in table ( 4. 3.1). 

Proof. For the invariant functions note, that the representation is the same as 
before. Therefore we find the same invariants. The Hilbert map is then given by 

p : { 
Sa ----+ Sa/ 0(2) EB Z~ 

x = (xo,X± 17 Y±2) i-------+ (TJo(x),TJ1(x),TJ2(x),TJ3(x)) 

and the inequalities satisfied by the invariants are : 

'T]o ~ 0, 'T/1 ~ 0, 'f/3 ~ 0 and 'f/~ - TJfTJ2 ~ 0. 

The equations and inequalities defining the various strata in this 4-dimensiorial orbit 
space are summed up in table ( 4.3.1 ). D 
This orbit space can be seen as the "cone" defined by the equation TJ5 - TJiTJ2 ~ 0 
translated along the half-axis 'T/o ~ 0 (see fig. (4.3.1)). However, the only cone which 
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stratum defining equations 
0(2) EB 7l~ T/O = T/l = T/2 = T/3 = 0 

0(2)- T/O > 0, T/l = T/2 = T/3 = 0 
ID2 EB 7l~ T/2 > 0, T/O = T/l = T/3 = 0 

]DZ 2 T/O > 0, T/2 > 0, T/l = T/3 = 0 
IDd 

2 T/O = 0, T/l > 0, T/2 > 0, T/5 = T/h2 
7l2 (~) T/O > 0, T/l > 0, T/2 > 0, T/5 = T/i'T/2 
7l2 ( T/) T/o = 0, T/1 > 0, T/2 > 0, T/i < T/i'T/2 

n· T/o > 0, T/1 > 0, T/2 > 0, T/i < T/i'T/2 

Table 5: Strata in the local orbit space Sa/ 0(2) EB 7l~ 

possess a flow invariant surface is the cone in T/o = 0, its surface consisting in the 
union of the two strata 102 EB 7l~ and IDg. 

7l2 ( 7r) 

I 

Figure 6: The stratification of the local orbit space in the point a 

4.3.2 Projection of the heteroclinic set in tlJ.e orbit space 

The information concerning the local description of the orbit space V 1,2/ 0(3) around 
each fixed point of the heteroclinic set allow to give a global characterization from 
it. The two triplets (a, a', a") and ({3, {3', {3") of conjugated points in the hetero-

. clinic set, will be respectively projected on the points a and ~ in the orbit space 
corresponding two fixed points of the projected heteroclinic set. Now the instable 
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connections from a to (3 and from (3 to a' start respectively in the {yo} and {Y2r} 
direction. The projection of the first connection is tangent to the 0(2t close to the 
point a. The projection of the second connection is included in the D2 EB 7l2 atrata. 
Using results of the previous section., it is easy to see that the 102 EB 7l2, D~ and 7l2 
stratum near ~ will respectively be send by the fl.ow to the ID2 EB 7l2, ID~ and 7l2 
stratum near "S. The geometry of the set is rather complicated and will be studied 
in some detail below. A sketch of the geometry of this set is represented in figure 
( 4.3.2). 

out 
H~ 

Figure 7: The projection of the heteroclinic set in the orbit space V 1,2/ 0(3) 

Let us first give the lowest order terms for any commuting vector field. Let x 0 denote 
the coordinate on the one dimensional representation, x1 , y2 the complex coordinates 
on the 1 or 2 mode representation respectively. 

Those equations have (in lowest order) the form 

xo aoxo 
X1 alxl + b1X1Y2 
Y2 == a2Y2 + b2x~. · 

The invariant functions supply a coordinate system on the orbit space. The equa-
tions for them read as 

T/o 2aoT/o 
T/1 2a1 T/1 + 2b1 T/3 
T/2 2a2T/2 + b2TJ3 
T/3 (2a1 + a2)T/3 + 2b1T/1T/2 + b2T/~ 

Here it is a natural issue to ask for which terms have to be kept in order to talk 
about a reasonable linearization of the reduced equation. Obviously reduction and 
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then linearization leads to an equation which differs from the one one gets by first 
linearizing and then projecting on the orbit space. In [16] it is shown that the correct 
proce_dure consists of first linearization and then projection. 

An application of this construction gives as a linearization on the orbit space 

TJo 2aoTJo 

T/1 2a1T/1 

T/2 2a2T/2 

T/3 (2a1 + a2)T/3· 

Let a, f3 denote the equilibria on the heteroclinic cycle. Let us introduce local 
coordinates on the relevant Poincare sections. At each equilibrium we consider a 
section to the stable and unstable manifold respectively. Let us denote these by 
H!~hout respectively. In coordinates adapted to the geometry of these sections we 
have: 

Definition 4.12 

{so = 1 I s~ - s~ s2 < 0} 
{ro = 1 Ir~ - r~r2 < O} 
{P1 + P2 = 1 I P; - P~P2 ~ 0, 0 ~ Po ~ µ13} 
{qi + q2 = 1 I qi - q~ q2 ~ 0, qo ~ µa}· 

The first two sets are cone like sets. The last two sets can be considered as a disc 
bundle over an interval. The numbers µ13, µa will be chosen later. In order to study 
stability of the heteroclinic set we have to construct mappings between the various 
sections and to study their invariants. Let us denote the respective local maps by 
tP a : H~n --+ H';:t, tP /3 : H~n --+ H'{;'t and the far maps W a,/3 : H';:t --+ H~n and 
,Tr • Hout ~ Hin 
'±' {3,a • {3 ---, a • 

4.3.3 The local maps 

Let us begin with the map tPa. We use the local description on the local orbit space 
due to orbit space version of the Hartman-Grohman theorem [16]. We denote the 
coordinates on the incoming cross section by q0 , ••. , q3 and on the outgoing cross 
section by r0 , ••• r3 . Then the linearized flow allows to compute the dependence of 
the r-vector on the q-vector. For each trajectory we can compute the time necessary 
to travel along it from the incoming section to the outgoing section. The latter one 
is defined by r0 = 1. This time will be called the time of flight. The equation 

l = e2a0 tq0 
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defines the time of flight to . be 

This gives immediately 

log qo 
t=---. 

2ao 

_.21_ 
2a0 = qo qi 
-~ 

2ao qo q2 
_ 2a1 +a2 

2ao qo q3 

The other simple diffeomorphism comes from the local map ~13 : H~n ---+ H';'t at {3. 
Here we use coordinates Po, ... 'p3 on n;t and so, ... 'S3 on H~n. The cross section 
n;t is defined by P1 + P2 = 1, the incoming cross section by So = 1. Therefore we 
obtain the following solutions of the local differential equations: 

Po ef31 t 

P1 ef31 t S1 

P2 ef32t S2 

p3 ef33t s 3, 

where we define {33 = {31 + ~2 and similar a 3 = a 1 + T· The time of flight T(s1, s2) 
is then given by 

This equation allow to give lower and upper estimates which we shall need. 

4.3.4 The far maps 

Now we have to look at the far maps. Let us begin with '11 a,f3 : H;:'t ---+ H~n. From 
the geometry it is clear that (s1 , s2 , s3 ) is a function of (r1 , r 2 , r3 ). We claim that 
the map is a diffeomorphism and that we can approximate it by the linearization at 
(s1, s2, s3) = 0. Since Wa,{3(0) = 0, we have 

W a,{3 = Aa,(3S + h.o.t, 

where Aa,{3 = Dr Wa,{3· Since we are interested in the behavior near r = 0, we may 
neglect the higher order terms. Since the map has to preserve the strata it follows, 
that 

(10) 
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Lemma 4.13 Equation { 10) has to be satisfied if we replace W a,,6 by any of its 
homogeneous terms. Especially Ar has to satisfy the equation. As a consequence A 
has the form 

Proof: The first statements are clear. We have to show that A has to satisfy the 
given restrictions. Suppose A has the form 

Then for each triple (r1, r 2, r3 ) with 8(r) = 0 it follows 8(Ar) = 0 or 

(A31r1 + A33r3)2 - (A11r1 + A13r3)2(A21r1 + A22r2 + A23r3) = 0. 

Choosing r 2 = r3 = 0 we find A~1 = 0 and A~1 A21 = 0. A similar conclusion can 
be obtained by putting r1 = r3 = 0, implying A32 = 0 and A~2A22 = 0. Choosing 
r 1 = r 3 and r 2 = 1 we find (using that A has to be regular) that A12 = A13 = 0 and 
A21 + A23 = 0. If we set r1 = -r3, then it follows that A21 = A23 = 0. Altogether 
we find that A is diagonal and the coefficients on the diagonal satisfy 

D 
The next step is the to look at W ,{3,a· Here, we have to deal with a special com-
plication, which we first describe on the level of the dynamics on the space V. As 
we have seen, we have connections from {3' to o: a·nd from {3' to o:'. On the orbit 
space both connections will project onto a connection from 7r({3) to 7r(o:). However, 
those which come from the second type will pass near o: and then connect to o:'. On 
the orbit space this means that we have trajectories from 7r({3) to 7r( o:) which do 
connect immediately but on the first part they come close to 7r( o:). However, they 
miss and hit on the second passage. There is nice way of identifying this behavior 
with group theory. The groups D~ and D~ are subgroups of the isotropy subgroup of 
{3 and the decomposition of the (local) orbit into orbit types distinguishes these two 
isotropy types. However as subgroups of 0(3) these groups are conjugate and define 
the same orbit type. The solutions starting on the D~ stratum connect directly to 
7r( o:), those on the D~ stratum came back on a first return on the Dd stratum on 
connect on the second time. Observe that the fact, that D~ and D~ are conjugate 
within 0(3) makes it possible that solutions "switch the strata". Let us collect this 
information in a lemma. 
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Q~ 
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Q~ 

Figure 8: The disc bundles and the splitting of neighborhoods 

Lemma 4.14 The section H';'t decomposes into orbit types D~, D2, z; and the 
trivial one. 

1. Trajectories on the orbit type D~ do not hit 7r( a) instead they return into a 
neighborhood of 7r({3) and hit the orbit type D2. 

2. Solutions on the orbit type D2 connect to 7r( a). 

Proof: Follows from the results concerning the existence of the heteroclinic set. D 

For future reference we depict the disc bundles and the way we identify the isotropy 
types on those bundles, see Figure 8. 

We use this information to split H';'t into n~ and n~ and correspondingly w /3,o. into 

The definition of these sets is as follows: choose a number µa sufficiently small that 
the local map constructed above is well defined. Consider the point in p E H';'t 
which is mapped onto (µa, 0, 1, 0). This point p defines a value Pi and hence a value 
p~ and the corresponding p3 interval. In fact by choosing Pi even smaller we can 
achieve that on the set P1 :::; P!, p~ - p~p2 < 0 the diffeornorphisrn w~,o. which is 
defined by p --+ r, where r denotes the point where the trajectory through p hits 
H~n, can be approximated by the its linearization A at p = (0, 0, 1, 0). In fact we will 
determine the form of this linearization and we will assume that A instead of W /3,a 
was used to define Pi. This is not a loss of generality and all these quantities are well 
defined. Then n~ = {(po,p1,p2,p3) I Po :::; µf3,Pl :::; Pi,P2 = 1 - P1,p~ - P~P2 :::; O}. 
n~ = H';'t \ n~. There is one more complication corning up: for the upper map 
W~,a we do not have a solution where we can linearize those maps and therefore 
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it might not be justified to replace '11 a,/3 by its linearization. However, again the 
decomposition into orbit types helps. First we note that for p E n~ the map '11~,a 
will be defined as for Wb,a with the difference that the trajectory does not hit H~n 
on the first try. This follows from the construction of Pi. If one chooses p1 > Pi 
we will end up with a point ( qo,.O, 0) and qo > µa. We will denote n~ = Wb,a(!lb) 
and by n~ the complement in H~n. From the construction it follows that w~,a maps 
into n~, however we cannot conclude surjectivity or other nice properties. The only 
thing we need is a bound in the qo component. The various orbit types are described 
by certain functions. We use linearization for such functions. The lower map -Wb,a 
can be approximated by its linear part. We find this approximation by considering 
how the orbit types are mapped onto each other. This gives sufficient restriction to 
give a clear form of the linear approximation. 

Lemma 4.15 
form: 

1. '11~,a can be approximated by its linear part. This part has the 

( 
c c 0 ) 

A= b a -a 
b -a a 

2. For the upper part we notice that p0 maps onto q0 and we may assume that an 
estimate o J the J orm 

is true, where M is a positive constant. 

Proof: The first part follows from linearization and identification of the strata near 
the fixed point, since we know that strata have to be preserved along the map. For 
the second part, we note that the p0 = 0 maps into the set q0 = 0. Since the map is 
differentiable, the assertion follows. 0 

4.3.5 The first return map 

Now we can piece together this information to write the first return map. 

This map is given by 

We have (taking '11 /3,a as wb,a) 
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Lemma 4.16 For the limit we are interested in ( q2 == 1), we can take 

(11) 

Proof: In the lower domain Ob, q1 is small and q2 is nearly 1. Therefore we look at 
the condition 

D 
Altogether we get 

Lemma 4.17 1. If '11 f3,a == wb,a then 

2. If '11 f3,a == '11~,a then we find 

We recall the condition for stability of the heteroclinic cycle: if a 1 , ,81 j0 and if 

then the heteroclinic cycle is stable. 

To get the stability of the heteroclinic set, we have to include '11~,a and we obtain: 

Theorem 4.18 The generalized heteroclinic cycle is stable if 

(12) 
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5 Perturbation of heteroclinic cycles by a slow 
rotation of the domain 

Let us consider a heteroclinic cycle (simple or generalized) of the kind described 
in the previous sections, and suppose now that the spherical shell is allowed to 
rotate . slowly around its "vertical" axis. This introduces some inertial terms into 
the equations of motion : a) a centrifugal force which we incorporate in the gradient 
of pressure; b) the Coriolis force, which, in the non-dimensional variables, has the 
form Ta v x k, where k is the unit vector along the vertical axis Oz and Ta is 
the Taylor number (proportional to the angular velocity of the domain). Assuming 
a slow rotation comes back to assume that Ta is close to 0. For convenience, we 
shall use the notation € instead of Ta in the following. The introduction of the 
Coriolis force breaks the 0(3) invariance of the system. One easily checks that 
the Coriolis force commutes with, and only with, the rotations around the vertical 
axis (group S0(2)) and still with the reflection through the origin (group Z~). The 
question is therefore to determine what happens to the heteroclinic cycles after such 
a perturbation. We shall see that surprisingly enough, there is persistence of a cycle 

. as long as the perturbation is small, i.e. for € close enough to 0. Since we take € as a 
parameter in a neighborhood of 0, the center manifold reduction on the space V of 
critical modes for the 0(3) invariant system is still valid (see [8] for details). We shall 
not proceed however to a bifurcation analysis (which would then be a codimension 
4 bifurcation), but rather we shall assume the existence of a heteroclinic cycle for 
some fixed values of the bifurcation parameters (in particular the Rayleigh number) 
and € = 0. Then we perturb this situation with € 4- 0. 

We shall proceed in the following steps. First analyse the geometry of the action 
of H = S0(2) x Z~ in V. Surprisingly enough, we shall see that most of the orbit 
type structure of the 0(3) action does remain. Then we can easily draw conclusions 
about the persistence of most of the heteroclinic connections. Finally we analyse 
the effect of the perturbation on the group orbits of equilibria. All this will result 
in the existence of a new type of heteroclinic cycle for the perturbed problem. 

5.1 The action of the group H in V 

We recall that Z~ acts trivially on the lo = 2 components (i.e. on the Ym 's) and as 
-n on the £0 = 1 components (i.e. on the x/s ). The action of S0(2) is as follows : 

Rip ( x_1, xo, xi) 
Rip (Y-2, Y-1, Yo, Yi, Y2) 

(13) 
(14) 

Then it is easy to check that the isotropy subgroups of this action are, up to conju-
gacy in H, as follows. 
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l. H, with Fix(H) ={yo} 

2. S0(2), with Fix(S0(2)) = {xo, Yo} 

3. 7l2 x 7l~, with Fix(7l2 x 7l~) = {yo, Y-2, Y2} 

4. 7l2, with Fix(7l2) = {x-1,x1,Yo,Y-2,Y2} 

6. n, with Fix(n) = V 

In the following reference to a group in this list refers to a subgroup of H (unless 
explicitly mentioned otherwise). 

We can compare the fixed-point subspaces with those of the action of 0(3) : Fix(S0(2)) = 
Fix( 0(2)-), Fix(7l2 x 7l~) is the span of copies of Fix(D2 x 7l~) under the action of 
S0(2), Fix(7l2) and Fix(7l~) are unchanged (of course these isotropy subgroups are 
defined now up to conjugacy in H, which means that most conjugates in 0(3) do 
not persist as isotropy subgroups. 

5.2 Perturbation of the equilibria and their connections 

We consider the equilibria a, a', a", /3, /3', /3", which are involved in the heteroclinic 
cycles of type I when € = 0 and which belong to the plane P1 = Fix0 (3)(D2 x 7l~). 
In this plane, we know that saddle-sink connections exist from /3 to a' and a", from 
/3' to a and a" and from /3" to a and a'. The heteroclinic cycle is completed by 
connections from a' to /3' and from a" to /3", in the planes P~ and P~' respectively 
(see section 3.1.2). Acting on these connections with rotations in S0(2) C H, we 
get a one parameter family of heteroclinic cycles. The question is what happens to 
this object when we set € =f. 0. 

The equilibria a and /3 persist since they belong to Fix(H). In other words, their 
S0(2) group orbit reduces to one point. This is not the case for the other equilibria. 
Their S0(2) group orbits are circles in Fix(7l2 x 7l~). When € =f. 0, the symmetry-
breaking induces on the S0(2) group orbits of a' and /3' a drift (see the annex). 
Hence these two circles of equilibria are replaced by two rotating waves which we 
denote by RWa and RW13 respectively. It is clear that RWa is stable in Fix(7l2 x 7l~), 
because when € = 0, a' (as well as a") is a sink in P1 . 

We now examine how the perturbation acts on the heteroclinic connections, a~sum­
ing that € is close enough to 0. 

1. The a -+ /3 connection in { x0 , y0 } persists, because this space is still flow 
invariant (see above). 
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2. The /3 ~ a' (and a") connection in Fix( D2 x 7l~) is now replaced by a connec-
tion in Fix(7l2 x 7l~) from /3 to RWa. This is clear because the normal cross 
section to RWa at the point a' (for example) is just (locally) Fix( D2 x 7l~). 

3. For the same reason, the /3' ~ a connection in Fix(D2 x 7l~) is now replaced 
by a connection RW.B ~ a. 

4. The 2 D manifold of connections which exists at € = 0 from RW.B to RWa in 
Fix(7l2 x 1l~), persists when € i= 0. 

It is important to notice that the planes P; and P;' are included in the 5 dimensional 
space Fix(Z2), however the points in these planes have trivial isotropy in H. Note 
also that S0(2) C H acts on this space. Therefore in order to study the perturbation 
of the heteroclinic connections in P; and its copies by the action of S0(2), we can 
restrict ourselves to the space Fix(7l2"). This is what we do in the next two lemmas. 
For a better understanding of the geometry of connections in Fix(Z2), we can notice 
that when € = 0, a part of the heteroclinic cycle of type I realizes a sub-heteroclinic 
cycles in this space (see figure 9). The S0(2) orbit of this sub-heteroclinic cycle is 
also included in Fix(7l2). 

Yo 

Figure 9: Projection on P1 of the sub-heteroclinic cycle in Fix(Z2) (solid lines). 

Lemma 5 .1 The connecting orbits from RWa to RW.B in Fix( z;), do not generi-
cally persist when € i= 0, close to 0. 

Proof. As noted above, the connections from RWa to RW.B when € = 0 have 
trivial isotropy in H. The unstable manifold wu(RWa) consists precisely of these 
connections when € = 0. Let W"(RW.B) denote the stable manifold of RW.B. The 
projection of the trivial stratum on the orbit space Fix(Z;)/ S0(2) is a 4 D manifold. 
The projections of RWa and RW.B are points (equilibria for the projected vector 
field). The projection of wu(RWa) is a 1 D manifold and that of W"(RW,a) is 
either a 2 D or a 3 D manifold. This can be checked by a count of the unstable 
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eigendirections at a' and of the stable eigendirections at {3' in Fix( z;) and at E = 0. 
In any case, the sum of these dimensions is less than or equal to 4, which implies 
that no trajectory can belong to the intersection of the two manifolds under generic 
perturbations. D 

Remark. This lemma does not imply that for our specific perturbed vector field, 
the connections RWa --7 RW,B are indeed broken. However this is observed in the 
numerical simulations. The splitting of the connections could also be computed in 
principle (like e.g. in (9)) but we do not need this : as we shall see by the next 
lemma, a heteroclinic cycle persists in any case when E =j:. 0. 

Lemma 5.2 Suppose that E =j:. 0, close to 0, and the connections RWa --7 RW.e 
are broken. Then one of the two following situations occurs in Fix( z;) : {i) 
wu(RWa) c W"(a); {ii) there exists a flow-invariant set S such that wu(RWa) c 
W" ( S), but in this case wu( S) c W" (a). 

Proof. As noted above, when E = 0 a heteroclinic cycle 

exists in Fix(Z;-). On the other hand, we know by Proposition 3.4 that under the 
conditions of existence of the heteroclinic cycle of type I,, a is a sink in Fix(Z2"). 
Now, assume that the connections RWa --7 RW.e are broken. The heteroclinic cycle 
in Fix( z;) does not exist anymore, but an invariant set S (e.g. quasi-periodic 
orbit) can exist nearby (this is a well-known fact when forced symmetry-breaking 
is applied to a heteroclinic cycle see [9]). Then there are only two possibilities : 
(i) wu(RWa) c W"(a) or (ii) Wu(RWa) intersects the stable manifold of S. Now 
notice that wu(RW,B)nW"( a) =j:. 0. Buts is close to the heteroclinic cycle if Eis close 
to 0, hence wu(S) is nonempty and lies in W"(a). This proves the lemma. D 
A last new feature of the symmetry-breaking perturbation is the dynamics induced 
on the perturbed 0(3) group orbits of equilibria themselves. A general classification 
of the possible dynamics has been proposed by [29]. In our case the equilibria have 
isotropy 0(2) x Z~, so the group orbits are 2 D manifolds. Assuming normal hyper-
bolicity of these orbits (which is the case here) and taking E -=/= 0 but close enough 
to 0, we know that after perturbation, a 2 D flow invariant manifold persists near 
the former group orbit. The next lemma specifies the dynamics on this manifold. 

Lemma 5.3 Under the above assumptions, the 2 D invariant manifold which per-
sists after perturbation of the 0(3) group orbit of a is the union of the equilibrium 
a, the rotating wave RWa, and a 2 D set of connecting trajectories from a to RWa. 
A similar result holds for the perturbed O ( 3) orbit of {3. 

Pro of. In the appendix. D 
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6 Conclusion 

In this paper we have been able to extend the work of [1), by the mean of recent 
methods about equivariant bifurcations and dynamical systems. Our main results 
are (i) the existence of a generalized heteroclinic cycle in the 1 - 2 mode interaction 
with symmetry, (ii) a sufficient condition for the stability of this GHC, (iii) the 
persistence of a heteroclinic cycle (or set) involving rotating waves, when the sym-
metry is broken by an S0(2) x Z~ equivariant perturbation (as it occurs for Benard 
convection in a spherical shell which can slowly rotate around an axis). There are 
several questions which remain unanswered. The first one concerns the stability of 
the generalized heteroclinic cycle versus stability of the heteroclinic cycle (of type 

. I). Suppose we vary one coefficient (e.g. c5) in such a way that the heteroclinic cy-
cle of type I is asymptotically stable at the beginning, but a transverse eigenvalue 
(namely, {31 ) becomes positive as this parameter crosses a certain critical value. Then 
the cycle is not asymptotically stable anymore. However, we conjecture that it is 
essentially asymptotically stable (see [27) for an open interval of parameter values, 
while it becomes completely unstable when the parameter leaves this interval. It 
is tempting to imagine that when this happens, the generalized heteroclinic cycle 
is still an attractor. However this needs not to be the case in general. We have 
not tried to determine analytically an interval of values of the coefficients where the 
condition of stability of the heteroclinic set is fulfilled. It. is easy to find numerical 
values for this. In figure 10 we show a numerical simulation of the heteroclinic cycle 
for coefficient values satisfying condition (12), but at which the heteroclinic cycle of 
type I is clearly unstable. The Figure 10( a) shows a single trajectory which clearly 
follows different paths after each return. In Figure lO(b), we selected a single first 
return trajectory. 

In order to show the impact of this work on the spherical Benard problem we test 
theorem 4.18 against the values of the coefficients displayed in Table 1, for example. 
Choosing µ 1 = 0.03 and µ2 = 0.05 the stability conditions are satisfied. This 
explains the observations of FRIEDRICH & HAKEN [19]. 

The persistence of a generalized heteroclinic cycle after a perturbation. like the rota-
tion of the spherical shell in the Benard problem is one of the surprises of this work. 
We again did not intend to prove that stability is preserved under perturbations 
with € close enough to 0. This is clear if no invariant set is created near the cycle. 
Numerically, the generalized heteroclinic cycle can be observed, as figure 11 shows 
(pictures (a) and (b)). As €is increased, the trajectories pass quite far away from 
the rotating wave RW.B (figures 12 (a) and (b)), but the cycle is still observable. 

It would be interesting to pursue this analysis when the heteroclinic cycle comes in 
a different 0(3) mode interaction. Such cycles have been proved to exist in [14]. 
However it will then becomes very complicated, due to the high dimension of phase 
space (already 12 in the 2 - 3 mode interaction), and the multiplicity of heteroclinic 
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Figure 10: The heteroclinic set (a) after a certain number of returns, (b) for a single 
return. The trajectories are projected onto the plane {(yo, Y2r )}. 

cycles which may coexist. 

Appendix 

A The f == 1, f == 2 mode interaction 

Here, we will complete the information on the mode interaction from section 2. The 
Pein.care series is a well established tool in invariant theory [34]. During the last years 
it was also used in applications of invariant theory to equivariant bifurcation theory 
and equivariant dynamics [30, 31, 20]. Let R(V) denote the algebra of invariant 
polynomials over the representation V. With Rd(V) w denote the polynomials 
in R(V) of degree d. Similarly we define M (V) to be the module of equivariant 
polynomial mappings over R(V) and Md(V) denotes the mappings of degree d. The 
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Figure 11: The perturbed heteroclinic set for E = 0.03. (a) projection onto the plane 
{y2, :Y2)}, (b) projection onto the plane {yo, Y2r)}. 

Poincare-series for the ring of invariant polynomials is the formal power series 

00 

P'R(s) = L dim(Rd(V), (15) 
d=O 

and in similar fashion the Poincar6-series for the module M(V) is given by 

00 

pM(s) = Ldim(Md(V). (16) 
d=O 

Both series can be determined via Molien formulas, for a reference see SATTINGER 
[33], SPRINGER [34] 

'R J 1 p (s) = det(r - sn) d1 (17) 
0(3) 

and 
pM(s) = j tr(r) d1. 

det( 1' - sn) 
0(3) 

(i8) 

In order to compute the series for our representation Vi,2 we use the formulas given 
in [30], i.e. where these integrals were reduced to an integral over the unit circle in ~ 
and hence to computations of some residues. To compute these integrals we proceed 
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Figure 12: The perturbed heteroclinic set for € = 0.2. (a) projection onto the plane 
{y2, j}2)}, (b) projection onto the plane {yo, Y2r)}. 

as in LAUTERBACH & SANDERS [30]. Some care is required for the integration over 
0(3) \S0(3). Using the notation as in [30] we find for the group S0(3) that p'R(s) 
for the l = 1, l = 2-mode interaction is given by 

P,'R 8 = ~-1- j z2(1 - z)(z - 1) dz 
5 o(3).( ) 2 27ri (1- s)2(z - s) 2(1 - sz) 2(z2 - s)(l - sz2) 

lzl=l 
(19) 

and similar for 

RM 
8 

_ ~-1- j z2 (1 - z)(z - 1)(2 + 2(z + z-1
) + z2 + z-2

) dz 
5 0(3)( ) - 2 27ri (1 - s) 2 (z - 2) 2(1 - sz) 2(z 2 - s)(l - sz2 ) 

lzl=l 
(20) 

Since the Weyl group for 0(3) has four elements the respective formulas for the 
group 0(3) read 

n 1 'R 1 1 j z2 
( 1 - z) ( z - 1) dz 

Po(3)(s) = 2P5 o(3)+4 27ri (1 - s)(l + s)(z - s)(z + s)(l - sz) 2(z 2 - s)(l - sz2 ) 
lzl=l 

(21) 
and 
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M 1 M 1 1 j z2(1 - z)(z - l)(z2 + z- 2 

Po(3)(s) = -2Pso(3)(s)+-42,,...; ( dz "" 1 - s)(l + s)(z - s)(z + s)(l - sz)2(z2 - s)(l - sz2) 
lzl=l 

(22) 
Using residue calculus one can evaluate these integrals and obtain 

(23) 

and 
M 2s + 4s2 + 4s3 + 4s4 + 2s5 

Pso(3)(s) = (1 - s2)2(1 - s3)2(1 - s4). (24) 

In the case of 0(3) we get 

(25) 

and 

(26) 

In order to give an interpretation for the degrees of a generating set of these algebraic 
structures we need to find a set of algebraically independent elements of pn ( s) 
(for either G == S0(3) or G = 0(3)) with degrees indicated by the denominator 
of the series for the invariant polynomials, compare STURMFELS [35]. Before we 
continue we mention that it follows from here already that the S0(3) theory is 
significantly ·more difficult than the 0(3) case. The next step consists of finding 
a set of algebraically independent invariant polynomials which are homogeneous of 
degrees 2, 2, 3, 3 and 4. These are given in Lemma 2.1. Similar considerations apply 
to the equivariants. 

B Proof of lemma 5.3 

We consider the 0(3)- group orbits of equilibria of types a and {3, and we perturb 
them by taking € close to 0 in the equations. With € close enough to 0, a normally 
hyperbolic invariant manifold persists near each of the group orbits. The symmetry 
of the perturbation is H = S0(2) x Z~. The question is then to determine the 
kind of dynamics which is induced on this invariant manifold by the perturbation. 
As mentioned in section 5, the axis y0 remains flow invariant, hence an equilibrium 
persists near a (as well as near {3), to which we give the same name. Moreover, a 
rotating wave appears near the S0(2) orbit of a' (respectively {3'), which we call 
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RWa) (respectively RW13). We shall prove that the invariant manifolds are the 
. union of these two solutions and of a 2 D set of connecting orbits there are typically 

no other flow-invariant circles between these two from a (respectively {3) to RWa 
(respectively RW13). 

We proceed as follows : 1. Write the equations on the center manifold when E =J 0, 
2. show that no other relative equilibria than those listed above persist when E =J 0; 
3. Compute the eigenvalues along the invariant manifold at a' (respectively {3). 

B.1 The perturbed equations on the center manifold 

The equilibria a and f3 belong to the "pure mode" £ = 2 space. In what follows we 
can therefore forget about the other, £ = 1 components. When a center manifold 
reduction is performed in the case E ~ 0, the bifurcation equations take the following 
form (see [8]). 

Yo 
Y1 
Y2 

ayo + b(-1/2y~ + 1/2Y1Y-1 + Y2Y-2) + E2ho 
ay1 + b(-YoY1 + .J6/2Y-1Y2)) + E2 hi + iEki) 
ay2 + b(YoY2 - v'6 / 4y~) + E2 h2 + iEk2 

(27) 
(28) 
(29) 

where a and b are 0(3)-invariant functions of the y/s and hm and km are even 
functions of E and are S0(2)-invariant functions of the y/s. The last property 
implies the following : 

(30) 
(31) 
(32) 

Here the various functions h~, etc ... depend on E and on the norms ~f the y/s, and 
moreover hj(O) = !i with the relations 

{o < {1 < 12 < 0. 

There is a similar structure for the functions ki and moreover we can write 

kj(O) = j{3, f3 < 0. 

In what follows we shall not need the S0(3)-invariant structure of a and b. 

B.2 The perturbed relative equilibria 

B.2.1 The equilibria of the unperturbed equations 

We set E = 0. We are interested in the group orbit of equilibria on the y0-axis. 
Solving equation 27 with y1 = y2 = 0, and assuming that bis in general position, we 
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can write the solution : 
" a 
Yo == - b == v · 

Let us assume v < < 1. The group orbit spanned by this solution is two dimensional 
(y0 is fixed by S0(2) ). Any equilibrium in this group orbit must satisfy 

(33) 

Acting by rotations around the vertical axis, we can always set y1 E JR, i.e. restrict to 
the slice on the orbit defined by that condition. A simple combination of equations 
(27)-(29) ( E == 0) shows that any solution with b in general position and real y 1 , 

must also satisfy the following relations : 

v'6 2 2 Y2 E 1R and -YoY2 + Y2 - Y1 == 0. 2 (34) 

Finally we can express any element of the group orbit with coordinates Yi == eiNYi 
(j == 0, 1, 2), where 'lj; is an arbitrary phase and the f;/s are real and satisfy relations 
33 and 34. 

B.2.2 The relative equilibria when E # 0 

Since the S0(2) equivariant perturbation has a vertical axis of symmetry, the rela-
tive equilibria when E # 0 must have the form 

Yi( t) == eii(wt+cp)Yi, (j == 0, 1, 2) (35) 

where w vanishes at E == 0 and c.p is an arbitrary phase. Replacing the amplitude 
variables in (27)-(29) by (35), reduces these equations to a time independent system 
which is just (27)-(29) with Yi replaced by ijwyi. 
As a first consequence, we can set y1 E 1R without restricting the generality. 

Next, we look for relative equilibria which result from the perturbation of the group 
orbit of pure equilibria when E == 0. Hence we can set 

Yi ==Yi+ Ui (36) 

with u0 and u 1 real (but apriori not u 2 ), each ui vanishing at E = 0. 

There are two cases where the equations for this perturbation are easily solved and 
lead to well-defined solutions (see [9]) : 
(i) y1 = y2 = 0 : the system reduces to the scalar equation (27) for u0 • This solution 
is S0(2) invariant and hence is a pure equilibrium; 
(ii) y1 = 0 : the system reduces to three scalar equations for u0 , u 2 and w. The 
solutions are now rotating waves and as E tends to 0, they tend to an equilibrium 
on the circle defined by y2 = ei"'fJ2 and fJ2 = /Iilo or -/IfJo. Notice that such 
equilibria are just axisymmetric flows with a horizontal axis of symmetry. 
We call type I and type II these two kinds of relative equilibria. 
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Lemma B .1 When the norm v is small enough, there are generically no other 
perturbed relative equilibria than type I and II to the axisymmetric equilibria. 

Proof. Let us assume y1 =/= 0. As noticed above we can always take y 1 E 1R by 
adjusting the (arbitrary) phase. We replace Yi in equations (27)-(29) by ijwyi. Then 
we can divide (28) by Y1. 
The imaginary part of (28) can be readily solved for the frequency, which gives 

w = - ~ bfl2; + ef3 + h.o.t. 

(we write Y2 = Y2r + iy2i). 
We expand the various functional coefficients in (27)-(29). After some algebraic ma-
nipulations the remaining equations can then be replaced by the following system : 

0 y'6 1 2 2 2 ( ) 2 b( 2YoY2r - 2Y1 + Y2r + Y2i) + /o - /1 € Yo + Ki €YoY2i + h.o.t. 

0 (3 y'6 2 y'6 2) ( 2 2 2 b 2YoY2r - 4Y1 + 2Y2i + /2 - /1)€ Y2r + K2€YoY2i + b2€ Yi + h.o.t. 

0 ( 3 3y'6 ) ( ) 2 2 b -YoY2i + --Y2rY2i + /2 - /1 € Y2i + KJEY1 + h.o.t. 2 2 

0 = y'6 2 
a - byo - 2by2r + /1 € + K4EY2i + h.o.t. 

We do not need to make the coefficients Ki and 8k more explicit. 
We know that these equations are satisfied for Yi = Yi and E = 0. However one 
can easily check that the implicit function theorem does not apply : there is a 
compatibility condition. Let us set 

Yi =Yi+ ui, j = 0, 1, 2 . 

From the third equation we get 

2K3 Yi 
U2i = --b J& € + h.o.t . . 

3 Yo+ 6iJ2r 

Replacing u 2i by this expression in the two first equations, combining them and 
identifying the terms of order e2 , we obtain the following relation : 

~ K~y{ J6 ( ) " " 2K3 y'6 Yi -3vo " " +- /0-/1 Yo-(12-11)Y2r--(-K1-K2)" " = 0 . 
(Yo+ vf6Y2r )2 2 3b 2 Yo+ J6Y2r · 

Now remember that y5 + 2y1y1 + 2y2fh = v2 < < 1. Hence the above relation leads 
to the necessary condition 

~ ('ro - 'YI )Yo - ('r2 - 'YI )Y2r = 0 · 
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However numerical computations by [13] have shown that in typical cases, 
12 - 11 ~ 3(11 - 10) > o. 
Therefore (37) can be satisfied if there exist Yo and fJ2r on the group orbit of basic 
equilibria such that 

v'6 A A 

TYo + 3y2r = 0 . 

By the above condition combined with (34) we finally get 

which leads to a contradiction since ·we have assumed f;1 =f. 0. D 

B.3 Heteroclinic connections along perturbed group orbits 
of equilibria 

An important consequence of lemma 1 is that there must exist connecting orbits 
between relative equilibria of types I and II in the invariant manifold which results 
from the perturbation of the group orbit of equilibria when €is close enough to 0. 
In this section we wish to determine the direction of the fl.ow along these connections. 

Let us first make more precise the geometric structure of the perturbed group orbit 
when € is close enough to 0. We call Mt: this 2 dimensional, fl.ow-invariant manifold. 
Hence Mo is the group orbit of equilibria for the unperturbed system. Mt: contains 
one equilibrium y0 and an invariant circle (rotating wave) in the subspace y1 = 0. 
·Since the equilibrium is S0(2) invariant, the tangent plane to the manifold at y0 is 
an eigenspace for a double eigenvalue. By lemma 1 it corresponds either a stable 
or an unstable manifold to the equilibrium, and this invariant manifold realizes 
a heteroclinic orbit to the rotating wave. It is therefore enough to compute this 
eigenvalue at y0 in order to determine the direction of the fl.ow along Mt:. 
Notice that the tangent directions to Mo at y0 are given by y1 and 'f}i. Indeed, if we 
denote by J± and J3 respectively the infinitesimal generators of the action of S0(3) 
on the y/s, then J3y0 = 0 (rotational invariance of Yo along the "vertical axis"), and 
J±Yo = f30Y±1· 
It follows that we only have to compute the Jacobian matrix at y0 restricted to the 
coordinates Y1, Yi· 

Lemma B.2 The eigenvalue along the tangent space to Mt: at y0 has leading real 
part (r1 - 1o)E2. 

Consequence : since 11 - 1o > 0 (see [13]), the connecting orbit is the unstable 
manifold of y0 (therefore the stable manifold of the rotating wave). 
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Proof. First we solve (27) for Yo (with Y1 == Y2 = 0). It gives 

2a 210 2 Yo == b + bf. + h.o.t. 

Differentiating equation (28) with respect to y1 and 

ih at Y1 == Y2 = 0, we then easily get the result. 0 
It is important to remark that the result does not depend on the sign of y0 . In 
particular when there are two kinds of equilibria on the y0 axis, with opposite signs 
(which is our case of interest), the flows on the two corresponding perturbed group 
orbits show the same dynamical behavior. 
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