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Diffusion dynamics for an infinite system of two-type spheres
and the associated depletion effect

Myriam Fradon, Julian Kern, Sylvie Rœlly, Alexander Zass

Abstract

We consider a random diffusion dynamics for an infinite system of hard spheres of two different
sizes evolving inRd, its reversible probability measure, and its projection on the subset of the large
spheres. The main feature is the occurrence of an attractive short-range dynamical interaction –
known in the physics literature as a depletion interaction – between the large spheres, which
is induced by the hidden presence of the small ones. By considering the asymptotic limit for
such a system when the density of the particles is high, we also obtain a constructive dynamical
approach to the famous discrete geometry problem of maximisation of the contact number of n
identical spheres in Rd. As support material, we propose numerical simulations in the form of
movies.

1 Introduction: the model and its configuration space

Consider hard spheres randomly oscillating in a bath of very small free particles (see Figure 1) which
are themselves independently randomly vibrating. At some appropriate scale, and as soon as two hard
spheres are very close, one can observe the appearance of a strong mutual attraction which forces
them to stay close together for a certain random amount of time. As no external force is acting on the
system, this is a quite surprising phenomenon. What is going on?

To provide an answer, we provide here a mathematical formulation of this heuristics: in this introduc-
tory section, we first present the classical Asakura–Oosawa model from Chemical Physics, and then
describe the mathematical setting of this work.

1.1 The origin of the model: a short heuristics

The model is the following: spheres of equal radius r̊ evolve in a bath of much smaller ones with
radius ṙ � r̊. The radius ṙ is called depletion radius for a reason which will become clear later.
The larger spheres are hard in the sense that they cannot overlap: their interiors must always stay
disjoint. The smaller spheres – called particles for clarity – which compose the (random) medium are
also not allowed to overlap the large ones. This naturally leads to the presence of a virtual spherical
shell around each large sphere, corresponding to the zone in which the centres of the particles are
not allowed. This zone, called depletion shell, will play a fundamental role in what follows. Finally, the
radius ṙ of the particles is taken so small that one can simplify the situation by considering them as
an ideal gas: the particles can overlap each other. In Figure 1, a realisation of this model; the region
coloured in orange is the union of the depletion shells.

This model is known in the physics literature as AO-model in reference to the seminal work of S. Asakura
and F. Oosawa, who introduced in [1, 2] a size-asymmetric binary mixture in the Euclidean space R3

to describe colloids (large spheres) in a bath (or emulsion) of ideal polymers (the small particles)
in the context of Chemical Physics, see also [25]. The reader can find in [18] a clear overview of
the physical phenomenon and its modelling. Its importance is underlined by Binder, Virnau and Statt
in [5]: “Since 60 years the Asakura–Oosawa model, which simply describes the polymers as ideal soft
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Figure 1: Identical hard spheres in a bath of identical small particles. An ideal mathematical representation

(left) and a culinary realisation (right, jelly doughnuts in particles of frying oil).

Left: the orange depletion shells around the brown spheres overlap.

spheres, is an archetypal description for the statistical thermodynamics of such systems, accounting
for many features of real colloid-polymer mixtures very well.” Indeed the bath of polymers induce a
new attractive interaction between the colloids, called effective or depletion interaction. For a physical
theoretical analysis of this general phenomena see, e.g., [19] and the valuable monograph [17]. As an
illustration of the effect of the depletion force one can cite the ordered, helical conformation of long
molecular chains like DNA in the Euclidean space R3 by interpreting this geometric structure as being
thermodynamically induced by the entropy minimisation of depleting spheres, see [23].

A first rigorous mathematical treatment of the AO-model for an infinite number of both sphere types
with methods of Statistical Mechanics appeared only recently in a series of papers by S. Jansen and
coauthors, see [13, 14, 26].

1.2 The mathematical model

The geometric objects we deal with in this paper are spheres of two different types: the hard spheres
with fixed radius r̊ and the particles with radius ṙ < r̊. They are identified by the position of their
centres in Rd; if a point x ∈ Rd is the centre of a hard sphere we denote it by x̊, if it is the centre
of a particle we denote it by ẋ. In this way we can consider the set X = X̊

⊔
Ẋ ' Rd × {◦, · } as

duplication of Rd, to distinguish between the two types of spheres.

Throughout the paper, the number of hard spheres will be finite and fixed, equal to n ≥ 1.

The configuration space of the system is the setM of σ-finite Radon point measures on X, i.e., those
of the form

x = x̊ + ẋ =
n∑
i=1

δx̊i +
∑
k∈K

δẋk , x̊i ∈ X̊, ẋk ∈ Ẋ, K ⊂ N∗,

such that for any compact Λ ⊂ X, x(Λ) < +∞.

With this formalism, x̊ denotes the point measure of centres of hard spheres belonging to the config-
uration x and ẋ denotes the point measure of centres of the particles in x. To simplify notations, we
use interchangeably the notation x for the point measure or for its support {x̊i, ẋk, 1 ≤ i ≤ n, k ∈
K} ⊂ Rd (which is possible since the point measures we consider are a.s. simple), and write the
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Dynamics of two-type spheres 3

sum of two point measures as the juxtaposition x̊ẋ := x̊ + ẋ. For m ∈ N, letMm ⊂M be the set
of finite configurations with exactly m particles, that is

Mm := {x = x̊ẋ ∈M, ẋ(Ẋ) = m}.

It is used in the first step of the proof of Theorem 2.1, to approximate the infinite configurations.

We write M̊ (resp. Ṁ) for the point measures supported only by hard spheres (resp. particles).

In the following, B(y, r) denotes the closed ball in Rd centred in y ∈ Rd with radius r ∈ R+.

Under the non-overlap constraint, the configurations that can actually be realised, called admissible,
make up the following subsetD ⊂M:

D =

{
x̊ = x̊ẋ ∈M :

∀i 6= j, |̊xi − x̊j| ≥ 2̊r,
∀i, k, |̊xi − ẋk| ≥ r̊ + ṙ

}
. (1.1)

The second type of constraints in (1.1) can be interpreted as follows: around each hard sphere
B(̊xi, r̊) there is a shell of thickness ṙ, called depletion shell, that is forbidden for the centres of

the particles (ẋk)k, see Figure 1. We therefore introduce the radius
�
r, seen as an enlargement of the

original hard-sphere radius r̊:

�
r := r̊ + ṙ = r̊ (1 + ρ), where ρ :=

ṙ

r̊
∈ [0, 1[ , (1.2)

and identify the forbidden area for particles around the admissible configuration of hard spheres x̊ as
the interior of

B(̊x) :=
n⋃
i=1

B(̊xi,
�
r) ⊂ Rd. (1.3)

As we will see in the paper, the parameter ρ defined in (1.2), which describes the relative size between
particle and hard sphere radii, plays an important role in the study of this two-size model.

Our aim here is to present and study a dynamical version of the AO-model and its depletion feature. We
first construct, in Section 2, an infinite-dimensional random diffusion dynamics whose reversible (i.e.,
equilibrium) measure is the AO-Model for n hard spheres in a bath of infinitely many particles. Section
3 is devoted to the study of the projection of this two-type equilibrium measure onto the subsystem
of hard spheres. We first notice how it induces a new attractive interaction (in the sense of Statistical
Mechanics) between the hard spheres, called depletion interaction. This new term is induced by the
hidden presence of the particle bath and is proportional to the volume of the depletion shells around the
hard spheres, see Proposition 3.1. Detailed computations and geometric comments in particular cases
are then presented. Moreover, a gradient random dynamics associated to this measure is proposed
in Section 3.2. In Section 3.3, we consider the asymptotic regime corresponding to the system of n
spheres in a bath with a very high density of particles. The depletion interaction thus dominates the
system to the extent that the equilibrium measure concentrates on n-hard-sphere configurations in
Rd which maximise their contact number. In this way, we obtain a constructive random dynamical
approach via gradient diffusions to the difficult problem of optimal sphere packing for any number n of
spheres and in any dimension d.

In order to get an understanding for the behaviour of the two-type dynamics of Section 2, as well as
of the gradient random dynamics with depletion studied in Section 3.2, we decided to write a Python
code to generate some simulations. The link to the GitLab page is provided in Section 4, along with a
short presentation of the animations one can find there.
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2 Diffusion of hard spheres in an infinite bath of Brownian parti-
cles

Finding an appropriate random dynamics that describes the time-evolution of various two-type physical
systems is an old challenge. See, e.g., the mechanical model of Brownian motion proposed in [8] for
the motion of a large component whose velocity follows an Ornstein-Uhlenbeck diffusion in an infinite
bath of small particles; [22], in which a Brownian sphere interacts with infinitely-many particles of
vanishing radius; [7], in which the authors exhibit a kind of Archimedes’ principle for a large disc
evolving as a Brownian motion with drift (due to the force of gravity) in a one-sided open cylinder of
R2, submerged in a large number of much smaller discs.

Despite the vast literature, to the best of our knowledge, there is no study that takes into account a
two-type hard-core interaction. The specificity of our approach lies therefore in the construction of a
strong solution to an infinite-dimensional stochastic differential system for a two-size model of large
hard spheres and small particles that are diffusing under the infinitely-many non-overlap constraints
(1.1). The main technical difficulty consists in controlling the reflection at the boundary of the set of
admissible configurations, expressed mathematically as infinitely-many local-time terms appearing in
the SDE that describes the time evolution of each sphere.

2.1 Existence and uniqueness result for an infinite-dimensional random dy-
namics with reflection

We now introduce and study the random evolution in Rd of our two-type system. To simplify, we restrict
the time evolution to the time interval [0, 1], noting that it can be extended by Markovianity to any time
interval.

The system is described as follows:

• n hard spheres with radius r̊, whose centres at time t are denoted by {X̊1(t), . . . , X̊n(t)}, move
according to n independent Brownian motions.

In order to avoid their dispersion at infinity, they are smoothly confined around the origin by a
self-potential ψ̊ : Rd → R of class C2 with bounded derivatives and satisfying∫

Rd
exp

(
− ψ̊(x)

)
dx = 1 and

∫
Rd
|x|2 e−ψ̊(x) dx < +∞. (2.1)

It is simple to show that such a function (having linear growth with respect to the Euclidean norm
at infinity) exists. Moreover, the measure

λ(dx) := exp
(
− ψ̊(x)

)
dx

is a probability measure with second moment, and plays a reference role in what follows.

• The hard spheres evolve in a time-inhomogeneous random medium consisting of a field
∑

k δẊk(·)
of intensity ż of infinitely many small particles, themselves moving according to σ̇-scaled indepen-
dent Brownian motions.

• The only interactions between the hard spheres and the small particles are due to the non-overlap
constraints (1.1), in the sense that, at each time, the two-type configuration should be admissible.
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Dynamics of two-type spheres 5

We can then describe this two-type dynamics with the following infinite-dimensional stochastic differ-
ential equation (SDE) with reflection:



for i, j ∈ {1, . . . , n}, k ∈ N∗, t ∈ [0, 1],

X̊i(t) = X̊i(0) + W̊i(t)−
1

2

∫ t

0

∇ψ̊
(
X̊i(s)

)
ds

+
n∑
j=1

∫ t

0

(
X̊i(s)− X̊j(s)

)
dLij(s) +

∑
k≥1

∫ t

0

(
X̊i(s)− Ẋk(s)

)
d`ik(s),

Ẋk(t) = Ẋk(0) + σ̇ Ẇk(t) + σ̇2

n∑
i=1

∫ t

0

(
Ẋk(s)− X̊i(s)

)
d`ki(s),

Lij(0) = 0, Lij ≡ Lji, Lij(t) =

∫ t

0

1|X̊i(s)−X̊j(s)|=2 r̊ dLij(s), Lii ≡ 0,

`ik(0) = 0, `ik ≡ `ki, `ik(t) =

∫ t

0

1|X̊i(s)−Ẋk(s)|=r̊+ṙ d`ik(s), `ii ≡ 0,

(S)

where the i.i.d. sequences of Rd-valued Brownian motions (W̊i)i=1,··· ,n and (Ẇk)k∈N∗ are indepen-
dent.

The local times (Lij)i,j∈{1,...,n} ensure that the hard spheres do not overlap pairwise. In case of
collision, they are submitted to an instantaneous repulsion corresponding to a normal reflection at
the boundary of the set of admissible configurations. Analogously, the local times (`ik)i∈{1,...,n}, k∈N∗
ensure that the small particles do not overlap with the hard spheres.

The gradient term ∇ψ̊ guarantees that, in the absence of small particles, the large spheres undergo
a recurrent diffusive motion whose unique reversible probability measure is known. The diffusion co-
efficient σ̇ parametrises the mobility of the small particles.

We can now state the main result of this section.

Theorem 2.1. The infinite-dimensional SDE with reflection (S) admits for µ-almost every deterministic
initial condition a uniqueD-valued strong solution. The probability measure µ, concentrated onD, is
given by (2.8).

The rest of this section is devoted to the proof of the above theorem. We split it into four steps, taking
inspiration from, and generalising, the existence theorem obtained in [10] for an infinite-dimensional
diffusion with reflection of equal (one-size) spheres:

Step 1: Dynamics for n hard spheres and m confined particles.

We first approximate the above infinite-dimensional dynamics by a two-type dynamics concerning only
a finite numberm ≥ 1 of particles. Moreover, we confine them by adding to their dynamics a restoring
gradient drift that prevents their dispersion. The resulting dynamics is then described by the following
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finite-dimensional SDE:

for i ∈ {1, . . . , n}, k ∈ {1, . . . ,m}, t ∈ [0, 1],

X̊i(t) = X̊i(0) + W̊i(t)−
1

2

∫ t

0

∇ψ̊
(
X̊i(s)

)
ds

+
n∑
j=1

∫ t

0

(X̊i − X̊j)(s)dLij(s) +
m∑
k′=1

∫ t

0

(X̊i − Ẋk′)(s)d`ik′(s),

Ẋk(t) = Ẋk(0) + σ̇ Ẇk(t)−
σ̇2

2

∫ t

0

∇ψ̇R
(
Ẋi(s)

)
ds

+ σ̇2

n∑
i=1

∫ t

0

(Ẋk − X̊i)(s)d`ki(s),

Lij(0) = 0, Lij ≡ Lji, Lij(t) =

∫ t

0

1|X̊i(s)−X̊j(s)|=2̊r dLij(s), Lii ≡ 0,

`ik(0) = 0, `ik ≡ `ki, `ik(t) =

∫ t

0

1|X̊i(s)−Ẋk(s)|=r̊+ṙ d`ik(s), `ii ≡ 0.

(Sm,R)

where W̊i, 1 ≤ i ≤ n, Ẇk, 1 ≤ k ≤ m, are independent Rd-valued Brownian motions.

The function ψ̇R : Rd 7→ R+ confining the particles is of class C2 with bounded derivatives. Moreover,
it depends on the parameter R ∈ N in the following way:

ψ̇R(x) = 0 if x ∈ B(0, R) and
∞∑
R=1

∫
B(0,R)c

e−ψ̇
R(x) dx < +∞. (2.2)

Since it vanishes in the ball B(0, R), its confining effect decreases and eventually disappears as R
tends to infinity. Such a function can be constructed, e.g., by defining it proportional to |x| − R for x
far from the origin.

We define the set of finite admissible configurations with m particles asDm := D ∩Mm.

Proposition 2.2. The SDE with reflection (Sm,R) admits, for any deterministic initial condition in the
interior of the domainDm, a unique strong solution(

X̊m,R
i (t), Ẋm,R

k (t), Lm,Rij (t), `m,Rik (t)
)
t∈[0,1], 1≤i,j≤n, 1≤k≤m .

The finite measure νm,R, concentrated on the admissible configurations with m particles, and given
by

νm,R(dx) := 1Dm(x) e−
∑m
k=1 ψ̇

R(ẋk) ⊗ni=1 λ(dx̊i) ⊗mk=1 dẋk, (2.3)

where x = {x̊1, . . . , x̊n, ẋ1, . . . , ẋm}, is reversible for the dynamics (Sm,R).

Remark 2.3. Due to the assumptions (2.2) satisfied by the confining potential ψ̇R, the measure νm,R

is mainly supported on configurations whosem particles are in the ballB(0, R) (or close to that ball).

Moreover, the integral
∫
Rd e−ψ̇

R(x)dx is finite and increases at most polynomially in R when R tends
to infinity.

Proof of Proposition 2.2. The system (Sm,R) describes the dynamics of an (n + m)d-dimensional
gradient diffusion with reflection at the boundary of the domain Dm. The different size of the hard
spheres and the particles induces a new geometric complexity which did not exist in the case of
identical spheres studied in [10].
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Dynamics of two-type spheres 7

In [9], the first author solved the question of existence and uniqueness of a reflected diffusion in a
geometric domain whose boundary is induced by several constraints. There, the required assumptions
are (i) a regularity condition on each constraint; and (ii) a so-called compatibility condition between the
constraints. We check here that the domain Dm ⊂ Mm satisfies such properties, as stated in [9,
Definition 2.1].

The interior of the domainDm can be described as the following intersection of sets:

int(Dm) =
⋂

1≤i,j≤n
j 6=i

{
x ∈Mm : Γij(x) > 0

}
∩
⋂

1≤i≤n
1≤k≤m

{
x ∈Mm : γik(x) > 0

}
.

The C2 constraint function

Γij(x) = Γij (̊x) :=
|̊xi − x̊j|2

4̊r2
− 1 (2.4)

controls the distance between the hard spheres i and j, whereas the C2 constraint function

γik(x) :=
|̊xi − ẋk|2

�
r 2

− 1

controls the distance between the hard sphere i and the particle k. The boundary of Dm is then a
union of smooth boundaries, each one being the set of zeros of one constraint.

(i) Boundedness of first and second derivatives of the constraint functions.

We first prove that the norm of the gradient of each constraint function is uniformly bounded from
below on its induced boundary.

It is straightforward to check that, for x = {x̊1, · · · , x̊n, ẋ1, · · · , ẋm},

• if Γij(x) = 0, i.e., |̊xi − x̊j|2 = 4 r̊2, then |∇Γij(x)|2 = 8 |̊xi − x̊j|2/16̊r4 = 2/̊r2 > 0;

• if γik(x) = 0, i.e., |̊xi − ẋk|2 =
�
r 2 then |∇γik(x)|2 = 8/

�
r 2 > 0.

Second derivatives are uniformly bounded from above because they are constant.

(ii) Compatibility between the constraints.

We are now looking for a positive constant b0 such that, at any point x of the ij-boundary (resp.
ik-boundary) ofDm, there exists a non-zero vector v ∈ (Rd)n+m, such that

v · ∇Γij(x) ≥ b0 |v| |∇Γij(x)| (resp. v · ∇γik(x) ≥ b0 |v| |∇γik(x)).

More precisely, if a configuration x = x̊ẋ belongs, e.g., to the ij-boundary, the hard spheres i and
j collide. Heuristically, the vector v indicates the most effective impulse for the configuration to come
back into the interior of the domain Dm, i.e., for the colliding spheres to go away from each other
as fast as possible. The compatibility condition requires that the maximum angle between all these
impulses, which is equal to 2 arccos b0, remains bounded away from π.

Fix x ∈ ∂Dm, and let C (̊xi) be the cluster around the i-th sphere x̊i (resp. C(ẋk) the cluster around
the k-th particle ẋk), that is, the set of all spheres or particles of x either touching x̊i or belonging to
a chain of spheres and/or particles in contact including x̊i (similarly for ẋk). We define the centre of
mass of such clusters by

m(̊xi) :=
1

#C (̊xi)

∑
xj∈C (̊xi)

xj and m(ẋk) :=
1

#C(ẋk)

∑
xj∈C(ẋk)

xj

DOI 10.20347/WIAS.PREPRINT.3024 Berlin 2023
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and the vector v = v̊v̇ ∈ Rdn × Rdm by

v̊i := x̊i −m(̊xi) and v̇k := ẋk −m(ẋk).

It is not difficult to show that

Γij(x) = 0 ⇒ v · ∇Γij(x)

|∇Γij(x)|
=
√

2̊r and γik(x) = 0 ⇒ v · ∇γik(x)

|∇γik(x)|
=

�
r√
2
.

Moreover, |v|2 ≤ 4̊r2(n+m)3. Therefore, one can choose b0 :=

�
r

2
√

2 r̊(n+m)3/2
> 0.

Note that b0 vanishes as m tends to infinity. Therefore this method to prove existence cannot be
applied to the case m = +∞.

Having proved that the constraints defining the domain Dm are compatible in the sense of [9], we
can now apply Theorem 2.2 therein, yielding the existence and uniqueness, for each initial admissible
configuration, of a strong solution to the SDE with reflection (Sm,R).

Its diffusion matrix is the
(
d(n+m)× d(n+m)

)
-block matrix of diagonal matrices

(
Ind 0
0 σ̇Imd

)
and its drift is given by the gradient of the potential function Φ(x) :=

∑n
i=1 ψ̊(̊xi) +

∑m
k=1 ψ̇

R(ẋk).

Applying [9, Theorem 2.5] (see also [21]), we get that 1Dm(x)e−Φ(x)dx is a time-reversible measure
for the dynamics (Sm,R). This concludes the proof of the proposition.

Step 2: Localisation of the initial particles.

We consider again the finite-dimensional dynamics (Sm,R), and fit the number m of particles to the
confinement parameter R in the following way. Let x = x̊ẋ ∈ D be an admissible configuration; we
define the finite-dimensional process

Xx,R =
(
X̊x,R
i (t), Ẋx,R

k (t), Lx,R
ij (t), `x,Rik (t)

)
t∈[0,1], 1≤i,j≤n, 1≤k≤m

(2.5)

as the solution of the SDE (Sm,R) with initial condition x̊ for the n hard spheres and ẋ|R for the
particles, where ẋ|R denotes the subset of particles in ẋ which belong to the ball B(0, R). Therefore
the corresponding dimension m = m(ẋ, R) is equal to the finite number #ẋ|R of particles.

For any continuous function f : [0, 1]→ Rd, let w be its modulus of continuity, that is for any δ > 0,
w(f, δ) := sup{|f(t) − f(s)|, |t − s| < δ}. We say that a continuous path is nice if it stays away
from the origin, or if its modulus of continuity w is bounded. More precisely, for any α, δ, ε > 0, we
define the set of (α, δ, ε)-nice paths as

N (α, δ, ε) :=

{
f : [0, 1]→ Rd continuous s.t. min

s∈[0,1]
|f(s)| > α or w(f, δ) ≤ ε

}
. (2.6)

Finally, for x ∈ D, we define an event Ωx ⊂ Ω, on which we will be able to construct the solution of
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the infinite dimensional two-type dynamics (S), as follows:

Ωx :=
{
ω ∈ Ω : ∀R̊ ∈ N∗ ∃Ṙ ∈ N∗ ∀R ≥ Ṙ,

∀i ≤ n, X̊x,R
i (ω) ∈ N (R̊ +

√
R,

1√
R
, 1),

∀k ≤ m(ẋ, R), Ẋx,R
k (ω) ∈ N (R̊ +

�
r +
√
R,

1√
R
, 1),

∀i ≤ n, X̊x,R+1
i (ω) ∈ N (R̊ +

√
R,

1√
R
, 1),

∀k ≤ m(ẋ, R + 1), Ẋx,R+1
k (ω) ∈ N (R̊ +

�
r +
√
R,

1√
R
, 1)
}
.

(2.7)

Step 3: Convergence on Ωx ⊂ Ω of the approximating processes.

Proposition 2.4. Fix x in D. The sequence
(
Xx,R(ω), ω ∈ Ωx

)
R∈N∗ defined in (2.5) converges to

a limit process denoted by Xx :=
(
X̊x
i , Ẋ

x
k , L

x
ij, `

x
ik

)
1≤i,j≤n, k≥1

. This process is solution on Ωx of

the infinite-dimensional equation (S) with initial configuration x.

Proof. Fix x = x̊ẋ ∈ D and ω ∈ Ωx.

We first prove that, for fixed 1 ≤ i, j ≤ n and k ∈ N∗, the four sequences(
X̊x,R
i (ω)

)
R
,
(
Ẋx,R
k (ω)

)
R
,
(
Lx,R
ij (ω)

)
R
,
(
`x,Rik (ω)

)
R

are eventually constant. Choose R̊ := dmax{|̊xi|, 1 ≤ i ≤ n}e (dze denotes the smallest integer
larger than z ∈ R). The initial position x̊i of the i-th hard-sphere centre belongs therefore to B(0, R̊).

Since both paths X̊x,R
i (ω) and X̊x,R+1

i (ω) belong to the setN (R̊ +
√
R, 1/

√
R, 1), then

w
(
X̊x,R
i (ω), 1/

√
R
)
≤ 1 as soon as min

t∈[0,1]
|X̊x,R

i (ω, t)| ≤ R̊ +
√
R,

and the same holds for X̊x,R+1
i (ω).

Moreover, since a path with δ-modulus of continuity bounded by ε started in B(0, α) remains in
B(0, α + ε

δ
) for the time interval [0, 1] then, taking α = R̊, δ = 1/

√
R and ε = 1, then

max
t∈[0,1]

|X̊x,R
i (ω, t)| ≤ R̊ +

√
R as soon as min

t∈[0,1]
|X̊x,R

i (ω, t)| ≤ R̊ +
√
R.

This is indeed the case, as the above condition is always satisfied, since

min
t∈[0,1]

|X̊x,R
i (ω, t)| ≤ |X̊x,R

i (ω, 0)| ≤ R̊.

The same argument holds for X̊x,R+1
i (ω).

This implies in particular that every particle Ẋx,R
k (ω) which collides with some hard sphere X̊x,R

i (ω)

belongs to B(0, R̊ +
�
r +
√
R) at the time of the collision.

Since the path Ẋx,R
k (ω) belongs toN (R̊+

�
r +
√
R, 1/

√
R, 1), if it collides with some hard sphere,

its (1/
√
R)-modulus of continuity is bounded by 1. The same argument holds for Ẋx,R+1

k (ω).
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So, since particles that collide with a hard sphere at some time t ∈ [0, 1] cannot cover more than a

distance
√
R during the time interval [0, 1], their paths stay in the ball B(0, R̊ +

�
r + 2

√
R).

As a consequence, for R large enough in the sense that R ≥ R̊ +
�
r + 2

√
R (this holds as soon as

R ≥ R := 4 + 2(R̊ +
�
r)), the hard spheres and the particles that visit B(0, R̊ +

�
r +
√
R) stay in

a region where the self-potentials ψ̇R and ψ̇R+1 vanish. That is, the k-th-particle dynamics computed

at ω in (Sm,R) does not feel ψ̇R if it collides with hard spheres or if it starts in B(0, R̊ +
�
r +
√
R).

Consequently, the sphere dynamics computed at ω in both equations (Sm,R) and (Sm,R+1) coincide
when R ≥ R, and the k-th-particle dynamics computed at ω coincide as soon as ẋk ∈ B(0, R̊ +
�
r +
√
R).

The strong uniqueness in Theorem 2.2 of [9] allows us to deduce the existence of paths X̊x
i (ω),

Ẋx
k (ω), Lx

ij(ω) and `xik(ω) such that

∀R ≥ R, ∀1 ≤ i, j ≤ n, ∀k such that ẋk ∈ B(0, R̊ +
�
r +
√
R), ∀t ∈ [0, 1],

X̊x,R
i (ω, t) = X̊x

i (ω, t), Ẋx,R
k (ω, t) = Ẋx

k (ω, t), Lx,R
ij (ω, t) = Lx

ij(ω, t), `
x,R
ik (ω, t) = `xik(ω, t).

By construction then, these paths satisfy the following SDE

for i ∈ {1, . . . , n}, k ∈ N∗, t ∈ [0, 1],

X̊x
i (ω, t) = x̊i + W̊i(ω, t)−

1

2

∫ t

0

∇ψ̊
(
X̊x
i (ω, s)

)
ds

+
n∑
j=1

∫ t

0

(
X̊x
i (ω, s)− X̊x

j (ω, s)
)
dLx

ij(ω, s)

+
+∞∑
k′=1

∫ t

0

(
X̊x
i (ω, s)− Ẋx

k′(ω, s)
)
d`xik′(ω, s),

Ẋx
k (ω, t) = ẋk + σ̇ Ẇk(ω, t) + σ̇2

n∑
i=1

∫ t

0

(
Ẋx
k (ω, s)− X̊x

i (ω, s)
)
d`xki(ω, s),

Lx
ij(ω, 0) = 0, Lx

ij ≡ Lx
ji, Lx

ij(ω, t) =

∫ t

0

1|X̊x
i (ω,s)−X̊x

j (ω,s)|=2̊r dL
x
ij(ω, s), Lx

ii ≡ 0,

`xik(ω, 0) = 0, `xik ≡ `xki, `xik(ω, t) =

∫ t

0

1
|X̊x
i (ω,s)−Ẋx

k (ω,s)|=�
r
d`xik(ω, s), `xii ≡ 0.

This concludes the proof.

Step 4: The constructed solution of (S) is defined on a full subset of Ω.

We first introduce a probability measure µ on the set of admissible configurations D, as the law of
n free hard spheres – each one submitted to the self-potential ψ̊ – in an admissible Poisson bath of
particles. In Section 2.2 we will eventually prove that µ is indeed the reversible probability measure for
the dynamics (S).

Let π(dẋ) denote the Poisson point process on Ṁ with intensity ż > 0, where ż is a fixed parameter
(we let vary it only in the last section of the paper). We consider the following probability measure µ
onM with support inD:

µ(dx) =
1

Z
1D (̊xẋ) π(dẋ) ∗ δx̊ ⊗ni=1 λ(dx̊i), x = x̊ẋ.
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The normalisation constant

Z =

∫
M

1D (̊xẋ) π(dẋ) ⊗ni=1 λ(dx̊i) < +∞

is finite since the measure λ has finite mass.

Notice that, by considering⊗ni=1λ(dx̊i) we have enforced an ordering on the hard spheres x̊. It should
be multiplied by 1/n!, but this factor is absorbed by the normalisation constant Z .

Equivalently, µ is characterised as follows: for any positive measurable function F onD,∫
D

F (x) µ(dx) :=
1

Z

∫
Rnd

∫
Ṁ

F (̊xẋ) 1D (̊xẋ) π(dẋ) ⊗ni=1 λ(dx̊i). (2.8)

Proposition 2.5. For µ-a.e. x ∈ D,
P (Ωx) = 1.

Therefore, the limit process Xx constructed in Proposition 2.4 is well defined for µ-almost every initial
configuration x.

Proof. We aim to prove that

∫
D

P
(
(Ωx)c

)
dµ(x) = 0.

Due to the definition of Ωx given in (2.7), we can write its complement set (Ωx)c as⋃
R̊∈N∗

lim sup
R

{
∃i ≤ n : X̊x,R

i ∈ B
(
R̊ +
√
R,

1√
R
, 1
)
∪ B

(
R̊ +
√
R− 1,

1√
R− 1

, 1
)

or

∃k ≤ m(ẋ, R) : Ẋx,R
k ∈ B

(
R̊ +

�
r +
√
R,

1√
R
, 1
)
∪ B

(
R̊ +
√
R− 1,

1√
R− 1

, 1
)}
,

where B denotes the set of bad paths, complement of the setN of nice paths defined in (2.6):

B(α, δ, ε) :=

{
f : [0, 1]→ Rd continuous s.t. min

s∈[0,1]
|f(s)| ≤ α and w(f, δ) > ε

}
.

In other words, a path in B(α, δ, ε) visits the ball B(0, α) during the time interval [0, 1] and its δ-
modulus of continuity is larger than ε.

Since B(α, δ, ε) increases as α increases and increases as δ increases, it suffices to prove that∫
D

P (Ω̃x) dµ(x) = 0, where

Ω̃x :=
⋃
R̊∈N∗

lim sup
R

{
∃i ≤ n : X̊x,R

i ∈ B(R̊ +
√
R,

1√
R− 1

, 1)

or ∃k ≤ m(ẋ, R) : Ẋx,R
k ∈ B(R̊ +

�
r +
√
R,

1√
R− 1

, 1)

}
⊃ (Ωx)c.

Thanks to the Borel–Cantelli lemma, it is then sufficient to prove that, for any R̊ ∈ N∗,∑
R∈N∗

∫
D

P
(
∃i ≤ n, X̊x,R

i ∈ B(R̊ +
√
R,

1√
R− 1

, 1) or

∃k ≤ m(ẋ, R), Ẋx,R
k ∈ B(R̊ +

�
r +
√
R,

1√
R− 1

, 1)
)
dµ(x) < +∞. (2.9)

The convergence of the above series will derive from a precise control of the probability of bad paths
under various reversible dynamics, which is contained in Lemmas 2.6 and 2.7 below.
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Lemma 2.6. Let ν̄m,R denote the probability measure on Dm obtained by normalising the measure
νm,R defined in (2.3).

The reversible solution Xm,R of the SDE (Sm,R) with initial distribution ν̄m,R satisfies the following
inequality: for 0 < α < α′, δ ∈ (0, 1) and ε > 0,

Pν̄m,R
(
∃i ≤ n, X̊m,R

i ∈ B(α, δ, ε) or ∃k ≤ m, Ẋm,R
k ∈ B(α′, δ, ε)

)
≤ c1

δ

n+m

1− ec0 δα2 e−c0 ε
2/δ,

where c0 > 0 and c1 > 0 are constants depending only on the dimension d and the parameter σ̇.

For the sake of readability, the proof of this lemma is stated at the end of the section.

Consider now a Poissonian randomisation of the number m of moving particles in the measure νm,R.
It leads to the definition of the following probability measure onD, mixture of νm,R measures :

µR :=
1

ZR

+∞∑
m=0

żm

m!
νm,R, (2.10)

where the normalisation constantZR is given by

ZR =

∫
Rdn

1D (̊x) exp

(
ż

∫
Rd\B(̊x)

e−ψ̇
R(x)dx

)
⊗ni=1 λ(dx̊i).

Recall (see (1.3)) that the interior of the set B(̊x) ⊂ Rd is the forbidden volume for the centres of
particles around the configuration x̊.

By arguments similar to those used in the proof of Lemma 2.6, we can also control the probability that
the solution of (Sm,R) with initial distribution µR contains bad paths:

Lemma 2.7. The solution of the SDE (Sm,R) with initial distribution µR satisfies the following inequal-
ity: for 0 < α < α′, δ ∈ (0; 1) and ε > 0,

PµR
(
∃i ≤ n : X̊m,R

i ∈ B(α, δ, ε) or ∃k ≤ m : Ẋm,R
k ∈ B(α′, δ, ε)

)
≤ c1

δ

(
n+ ż

∫
Rd

e−ψ̇
R(x)dx

) e−c0 ε
2/δ

1− ec0 δα2 ,

where c0 > 0 and c1 > 0 are universal constants depending only on the dimension d and the
parameter σ̇.

From Lemma 2.7, together with Remark 2.3, it is now easy to obtain the convergence of the following
series: ∑

R

PµR
(
∃i ≤ n : X̊m,R

i ∈ B(R̊ +
√
R,

1√
R− 1

, 1) or

∃k ≤ m : Ẋm,R
k ∈ B(R̊ +

�
r +
√
R,

1√
R− 1

, 1)
)

≤
∑
R

c1

√
R− 1

n+ ż
∫
Rd e−ψ̇

R(x)dx

1− exp(−c0(R̊ +
√
R)2/

√
R− 1)

e−c0
√
R−1 < +∞.

(2.11)

This is still not exactly the summability (2.9) we are aiming for, but we are close.

In order to conclude, we have to compare the two processes below, whose dynamics are given by the
same SDE (Sm,R), m ∈ N, but with different initial distributions:
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• The process Xm,R, with random m and initial configuration Xm,R(0) chosen according to the
probability measure µR, introduced in (2.10);

• The process Xx,R, whose initial configuration x is chosen according to the probability measure µ.
In particular, the random number m = m(ẋ, R) corresponds to the number #ẋ|R of particles of
ẋ in B(0, R), see (2.5).

Note that the first process is reversible – as it is given by a mixture of reversible processes – while
the second one is not, since, e.g., its initial law only weighs configuration of particles concentrated in
B(0, R).

In order to estimate the difference between these two processes, we consider the total variation dis-
tance between their laws, denoted by dTV (R). It is defined as usual as the supremum over all mea-
surable sets A of continuous paths with values inD :

dTV (R) := sup
A⊂C([0,1],D)

∣∣∣∣ ∫
D

P
(
X#ẋ,R ∈ A|X#ẋ,R(0) = x

)
µR(dx)

−
∫
D

P
(
Xm(ẋ,R),R ∈ A|Xm(ẋ,R),R(0) = x

)
µ(dx)

∣∣∣∣
= sup

A⊂C([0,1],D)

∣∣∣∣ ∫
D

FA(x) µR(dx)−
∫
D

FA(̊xẋ|R)µ(dx)

∣∣∣∣,
where, for any m ≥ 0, the function FA is defined on Dm by FA(x) := P

(
Xm,R ∈ A|Xm,R(0) =

x
)
.

In the second integral, we can disintegrate the Poisson point measure π (which models the law of the
particles under µ) into the product of the Poisson point measure π|R inside B(0, R) and the Poisson
point measure π|Rc outside B(0, R). Denoting

ZR :=

∫
Ṁ

∫
Rdn

1D (̊xẏ) eż|B(0,R)\B(̊x)| ⊗ni=1 λ(dx̊i) dπ|Rc (ẏ),

we then obtain that dTV (R) is the supremum over A of the following expression:∣∣∣∣ 1

ZR

∫
Rdn

1D (̊x)
(
FA(̊x)

+
+∞∑
m=1

żm

m!

∫
Rdm

FA(̊xẋ1 . . . ẋm)
m∏
k=1

(
1ẋk /∈B(̊x) e−ψ̇

R(ẋk)
)
⊗mk=1 dẋk

)
⊗ni=1 λ(dx̊i)

− 1

ZR

∫
Ṁ

∫
Rdn

1D (̊xẏ)
(
FA(̊x)

+
+∞∑
m=1

żm

m!

∫
B(0,R)m

FA(̊xẋ1 . . . ẋm)
m∏
k=1

1ẋk /∈B(̊x) ⊗mk=1 dẋk

)
⊗ni=1 λ(dx̊i)π|Rc (dẏ)

∣∣∣∣
≤
∫
Ṁ

∣∣∣∣ ∫
Rdn

FA(̊x)
(1D (̊x)

ZR

− 1D (̊xẏ)

ZR

)
+

+∞∑
m=1

żm

m!

∫
Rdm

FA(̊xẋ)
m∏
k=1

(
1ẋk /∈B(̊x) e−ψ̇

R(ẋk)
)

(1D (̊x)

ZR

− 1D (̊xẏ)

ZR
1ẋ⊂B(0,R)

)
⊗mk=1 dẋk ⊗ni=1 λ(dx̊i)

∣∣∣∣ π|Rc (dẏ).
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We then have that

dTV (R) ≤
∣∣∣∣ZR

ZR
− 1

∣∣∣∣+ n

(
1 +
ZR

ZR

)
eż|B(0,R)|

ZR

eż
∫
B(0,R)c e−ψ̇

R(x) dx

∫
B(0,R−�

r )c
e−ψ̊(x) dx

+ ż
ZR

ZR

∫
B(0,R)c

e−ψ̇
R(x) dx,

where the last inequality follows from the fact that the function FA is bounded by one, and by carefully
reordering and upperbounding each term.

We now need the following fine estimate on the asymptotic behaviour for large R of the two normali-
sation constantsZR and ZR:

1 ≤ ZR

ZR
≤ exp

(
ż

∫
B(0,R)c

e−ψ̇
R(x)dx

)
,

where the upper bound tends fast to 1, since the exponent is summable in R, as stated in (2.2).
Therefore, there exists a positive constant c3 depending only on n, ψ̊, ż such that, forR large enough,

dTV (R) ≤ c3

(∫
B(0,R−�

r )c
e−ψ̊(x) dx+

∫
B(0,R)c

e−ψ̇
R(x)dx

)
≤ c3

(∫
Rd |x|

2 e−ψ̊(x) dx

(R− �
r)2

+

∫
B(0,R)c

e−ψ̇
R(x)dx

)
.

(2.12)

Thanks to assumptions (2.1) and (2.2) on ψ̊ and ψ̇R, respectively, the right-hand side is summable.

The convergence of the series in (2.11) implies for every R̊ the summability (2.9), which in turn implies
that Ωx is µ-a.s. a set of full measure. This completes the proof of Proposition 2.5.

We are then only left with proving Lemma 2.6.

Proof of Lemma 2.6. According to (Sm,R), for any i ∈ {1, . . . , n}, the process

W̊i(t) = X̊m,R
i (t)− X̊m,R

i (0) +
1

2

∫ t

0

∇ψ̊
(
X̊m,R
i (s)

)
ds

−
n∑
j=1

∫ t

0

(
X̊m,R
i − X̊m,R

j )(s)
)
dLij(s)−

m∑
k′=1

∫ t

0

(X̊m,R
i − Ẋm,R

k′ )(s) d`ik′(s)
(2.13)

is a Brownian motion. Since Xm,R is time-reversible, the process
(
X̊m,R
i (t)

)
t∈[0,1]

has the same

distribution as the backward process
(
X̊m,R
i (1− t)

)
t∈[0,1]

. Consequently the process W̊i←− obtained

by replacing X̊m,R
i (·) by X̊m,R

i (1−·) in (2.13) is also a Brownian motion. Therefore, one can express

X̊
m,R(·)
i – without local-time terms – as follows:

X̊m,R
i (t) = X̊m,R

i (0) +
1

2

(
W̊i(t) + W̊i←−(1− t)− W̊i←−(1)

)
, t ∈ [0, 1]. (2.14)

Similarly,

Ẋm,R
k (t) = Ẋm,R

k (0) +
1

2

(
σ̇ Ẇk(t) + σ̇ Ẇk←−(1− t)− σ̇ Ẇk←−(1)

)
, t ∈ [0, 1].
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The n+m components of Xm,R are exchangeable, thus

Pν̄m,R
(
∃i ≤ n, X̊m,R

i ∈ B(α, δ, ε) or ∃k ≤ m, Ẋm,R
k ∈ B(α′, δ, ε)

)
≤ n Pν̄m,R

(
X̊m,R

1 ∈ B(α, δ, ε)
)

+m Pν̄m,R
(
Ẋm,R

1 ∈ B(α′, δ, ε)
)
.

Summing over all possible initial positions, we get

Pν̄m,R
(
X̊m,R

1 ∈ B(α, δ, ε)
)

=
+∞∑
k=0

Pν̄m,R

(
kα ≤ |X̊m,R

1 (0)| < (k + 1)α and inf
[0;1]
|X̊m,R

1 | ≤ α and w(X̊m,R
1 , δ) > ε

)
.

A path which starts outside B(0, kα) and visits B(0, α) before time 1 has necessarily an oscillation
larger than (k− 1)αδ during some time interval of length δ; moreover, for k large enough, (k− 1)αδ
is larger than ε. Therefore, the two first conditions in the above event imply the third one as soon as

k > 1 +
ε

αδ
. Hence

Pν̄m,R
(
X̊m,R

1 ∈ B(α, δ, ε)
)
≤ Pν̄m,R

(
|X̊m,R

1 (0)| < α + ε/δ and w(X̊m,R
1 , δ) > ε

)
+

∑
k>1+ε/αδ

Pν̄m,R
(
kα ≤ |X̊m,R

1 (0)| < (k + 1)α

and w(X̊m,R
1 , δ) > (k − 1)αδ

)
.

Thanks to the decomposition (2.14),

w(X̊m,R
1 , δ) > ε ⇒ w(W̊1, δ) > ε or w(W̊1←−, δ) > ε.

Therefore, we have

Pν̄m,R
(
X̊m,R

1 ∈ B(α, δ, ε)
)

≤ Pν̄m,R
(
|X̊m,R

1 (0)| < α +
ε

δ

)(
Pν̄m,R

(
w(W̊1, δ) > ε

)
+ Pν̄m,R

(
w(W̊1←−, δ) > ε

))
+

∑
k>1+ε/αδ

(
Pν̄m,R

(
w(W̊1, δ) > (k − 1)αδ

)
+ Pν̄m,R

(
w(W̊1←−, δ) > (k − 1)αδ

))
.

Note now the following standard estimate on the modulus of continuity of any d-dimensional Brownian
motion W : there exist two universal constants c1 > 0 and c2 > 0, depending only on the dimension
d, such that

P (w(W, δ) ≥ ε) ≤ c1

4δ
exp(−c2ε

2

δ
).

We then have

Pν̄m,R
(
X̊m,R

1 ∈ B(α, δ, ε)
)

≤ c1

2δ
Pν̄m,R

(
|X̊m,R

1 (0)| < α +
ε

δ

)
exp(−c2ε

2

δ
) +

c1

2δ

∑
k>1+ε/αδ

exp(−c2(k − 1)2α2δ)

≤ c1

2δ

(
Pν̄m,R

(
|X̊m,R

1 (0)| < α +
ε

δ

)
+

+∞∑
j=0

exp(−c2jα
2δ)
)

exp
(
− c2ε

2

δ

)
≤ c1

δ

1

1− exp(−c2α2δ)
exp

(
− c2ε

2

δ

)
,
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By similar arguments, we obtain the following upper bound for the particles:

Pν̄m,R
(
Ẋm,R

1 ∈ B(α′, δ, ε)
)
≤ c1

δ

1

1− exp(−c2(α′)2δ/σ̇2)
exp(−c2ε

2

σ̇2δ
).

Choosing c0 :=
c2

max(1, σ̇2)
yields the claimed estimate.

2.2 A (two-type) equilibrium measure

The identification of equilibrium – versus reversible – measures associated to the dynamics (S) is
mathematically and physically relevant. We address it in this section.

Proposition 2.8. Consider the solution of the two-type infinite-dimensional equation (S), whose initial
condition X(0) is random and distributed according to the probability measure µ defined onM by
(2.8). This solution is time-reversible.

Proof. Recall that, thanks to Propositions 2.4 and 2.5, for any fixed admissible initial condition x ∈ D,
we can construct a path Xx solving (S) on the full set Ωx.

We aim to prove that the process XX0 is time-reversible as soon as X0 is a µ-distributed point
process independent of the Brownian motions (W̊i)i’s and (Ẇk)k ’s.

The process XX0 is time-reversible on [0, 1] if, for any time T in [0, 1], the backward process(
XX0(T − t)

)
0≤t≤T has the same distribution as the forward process

(
XX0(t)

)
0≤t≤T . Equiva-

lently, one has to prove that, for any times 0 ≤ t1 < · · · < tj ≤ T, j ∈ N and any bounded
continuous local functions F1, . . . , Fj onM,∫

D

E

( j∏
i=1

Fi
(
Xx(T − ti)

)
−

j∏
i=1

Fi
(
Xx(ti)

))
µ(dx) = 0.

Since Xx was obtained in Proposition 2.4 as limit of (Xx,R)R, it is sufficient to prove that

lim
R→+∞

∫
D

E

( j∏
i=1

Fi
(
Xx,R(T − ti)

)
−

j∏
i=1

Fi
(
Xx,R(ti)

))
µ(dx) = 0.

In the same way as it was done in the proof of the existence of the two-type process, we split the
computation of the integral term into two terms, introducing µR – see (2.10) – defined as a mixture of
the measures νm,R, themselves reversible under the finite dimensional dynamics (Sm,R). Therefore,∫
D

E

( j∏
i=1

Fi(X
x,R(T − ti))−

j∏
i=1

Fi(X
x,R(ti))

)
µ(dx)

≤
∫
D

E

( j∏
i=1

Fi(X
m(ẋ,R),R(T − ti))−

j∏
i=1

Fi(X
m(ẋ,R),R(ti))

)
µR(dx)︸ ︷︷ ︸

vanishes due to reversibility

+

j∏
i=1

‖Fj‖∞ dTV (R)

We proved in (2.12) the summability in R of the distance in total variation dTV (R), thus a fortiori it
tends to zero. This completes the proof of the time-reversibility of the solution of (S) when the initial
condition is µ-distributed.
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3 Occurrence of a new depletion interaction between hard spheres

We are interested now in the projection of the two-type infinite point process considered till now onto
the system of just the n hard spheres. Our attention will first focus on the projection µ̊ of the reversible
measure µ studied in Section 2.2. An new interaction between the hard spheres induced by the small
ones will be observed as a depletion interaction. Its specific properties are pointed out, in particular the
fact that it is highly local, see Figure 4 and Figure 5. We then identify an n-dimensional random gradient
dynamics whose reversible measure is proportional to µ̊. Finally, we prove that, asymptotically as the
density ż of the (hidden) particles tends to infinity, the measure µ̊ concentrates around remarkable
geometrical configurations: they form sphere clusters that maximise their contact numbers, which is
part of an important – and difficult – topic in discrete geometry.

3.1 The projection of the two-type equilibrium measure: The occurrence of a
depletion interaction

We study here the projection of the equilibrium measure µ onto the n hard spheres.

We first mention that in the case n = +∞, S. Jansen and D. Tsagkarogiannis computed in [13, 14]
the projection of the partition function of a two-type grand canonical Gibbs process on the infinite
system of hard spheres. They prove the emergence of an additional induced interaction between the
spheres, identified as a depletion interaction. This kind of interaction was already known and studied
in the physical literature, see, e.g., [19] and [17]. In our setting, however, where the number of hard
spheres is finite – fixed to n –, this approach does not work anymore, in particular because the density
of the hard spheres vanishes.

Recall that in Section 1.2 we defined a slightly enlarged version of the hard spheres x̊i by placing
around them a spherical shell with size ṙ, called depletion shell. The new feature is that these enlarged

spheres with radius
�
r = r̊ + ṙ may pairwise overlap, which will be at the origin of the depletion

interaction.

Proposition 3.1. Consider µ, the equilibrium probability measure onM of the two-type system de-
fined by (2.8). Its projection onto the n hard sphere system is a probability measure µ̊ż on M̊ defined
as

µ̊ż(dx̊) =
1

Zż
exp

(
− ż E (̊x)

)
1D (̊x) ⊗ni=1 λ(dx̊i), (3.1)

where E (̊x), the energy of the configuration x̊ ∈M, is given by

E (̊x) := Vol (B(̊x)) = Vol

(
n⋃
i=1

B(̊xi,
�
r)

)
.

Proof. Integrating the measure µ over bounded test functions F supported on M̊ yields∫
M̊

F (̊x) µ̊ż(dx̊) :=

∫
M

F (̊x)µ(dx) =
1

Zż

∫
Rdn

F (̊x)

∫
Ṁ

1D (̊xẋ) π(dẋ) ⊗ni=1 λ(dx̊i)

=
1

Zż

∫
Rdn

F (̊x)
(∫
Ṁ

1D (̊xẋ|R(̊x)
)π|R(̊x)

(dẋ) ⊗ π|R(̊x)c
(dẋ)

)
1D (̊x) ⊗ni=1 λ(dx̊i),
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where R(̊x) is a radius large enough for B
(
0, R(̊x)

)
to contain B(̊x). Since the particles outside of

B
(
0, R(̊x)

)
are independent of the ones inside, we get∫

M̊

F (̊x) µ̊ż(dx̊) =
1

Zż

∫
Rdn

F (̊x)

∫
Ṁ

1B(̊x)c(ẋ) π|R(̊x)
(dẋ) 1D (̊x) ⊗ni=1 λ(dx̊i)

=
1

Zż

∫
Rdn

F (̊x) exp
(
− ż Vol (B(̊x))

)
1D (̊x) ⊗ni=1 λ(dx̊i),

which is equivalent to the claim.

Remark 3.2. By the inclusion-exclusion rule,

E (̊x) =
n∑
k=1

Vol
(
B(̊xk,

�
r)
)

+
n∑
k=2

∑
1≤i1<···<ik≤n

ϕk (̊xi1 , . . . , x̊ik), (3.2)

where the function ϕk, k ≥ 2, is a symmetric translation-invariant function on (Rd)k given by

ϕk(x1, . . . , xk) := (−1)k−1 Vol
(
B(x1,

�
r) ∩ · · · ∩B(xk,

�
r)
)
. (3.3)

The function ϕk is called the k-body depletion interaction. It is highly dependent on ρ, the proportion-
ality factor between the particle radius and the hard sphere radius.
Putting it together yields

µ̊ż(dx̊) = exp

(
− ż

(
nvd

�
r d +

n∑
k=2

∑
1≤i1<···<ik≤n

ϕk (̊xi1 , . . . , x̊ik)
))

1D (̊x) ⊗ni=1 λ(dx̊i),

where vd denotes the volume in Rd of the unit sphere.

In the following lemma, we find thresholds on ρ, the ratio of particle and hard-sphere radii, in order
for three-body or k-body interactions occur. See also [26] for a geometric computation in the case of
differently shaped bodies.

Lemma 3.3. The multi-body depletion interaction reduces to a pair interaction as soon as the size
proportionality factor ρ between the particles and the hard spheres is bounded from above by ρ2 :=
2
3

√
3− 1 ' 0.1547. Moreover, 4-body depletion interactions can appear, in dimension d = 2, only if

ρ > ρ3 :=
√

2− 1 ' 0.4142, in dimension d ≥ 3, only if ρ > ρ3 :=
√

3/2− 1 ' 0.2247.

Proof. We first show that for ρ ≤ ρ2, the k-body interaction ϕk vanishes for any k ≥ 3. Indeed, in
any dimension d ≥ 2, the lowest value of ρ for multiple depletion shells to overlap can be computed
by considering 3 spheres whose centres lie on the vertices of an equilateral triangle of side-length 2 r̊,
see the top of Figure 2.

There is overlap as soon as the centre of the triangle is at a distance
�
r = r̊(1 + ρ) from the vertices,

that is if and only if

2 r̊

√
3

3
<

�
r ⇐⇒ 2

√
3

3
< 1 + ρ ⇐⇒ ρ > ρ2 :=

2

3

√
3− 1 ' 0.1547.

The value for ρ3 depends on the dimension d. In dimension d = 2, the smallest value of ρ for more
than 3 depletion shells to overlap is obtained by considering 4 spheres whose centres lie on the
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Figure 2: Examples of hard discs with depletion shell; the shaded areas represent the overlap between
the depletion shells.
Top: In the picture on the left, ρ ≤ ρ2, while in the one on the right, ρ > ρ2.

Bottom: In the picture on the left, ρ2 < ρ < ρ3, while in the one on the right, ρ > ρ3.

vertices of a square of side-length 2̊r, see the bottom of Figure 2. So, there is a 4-way overlap if and
only if

2
√

2 r̊ < 2
�
r ⇐⇒ ρ > ρ3 :=

√
2− 1 ' 0.4142 .

In dimension d ≥ 3, the smallest value of ρ is obtained by considering 4 spheres whose centres lie
on the vertices of a regular tetrahedron of side-length 2̊r. So, there is a 4-way overlap if and only if the

distance between any vertex and the center of mass of the tetrahedron is smaller than
�
r, that is√

3/2 r̊ <
�
r ⇐⇒ ρ > ρ3 :=

√
3/2− 1 ' 0.2247 .

This concludes the proof.

Let us compute the pair depletion interaction ϕ2 in any dimension.

Lemma 3.4. The pair depletion interaction is attractive, radial and strongly local. Its expression in
dimension d is given by the following integral: for any xi, xj ∈ Rd,

ϕ2(xi, xj) = −2 vd−1
�
r d
∫ arccos(u)

0

(sin θ)d dθ 1[ 1
1+ρ

,1](u), where u :=
|xi − xj|

2
�
r

.

Proof. Note first that the function ϕ2(xi, xj) = −Vol
(
B(xi,

�
r) ∩B(xj,

�
r)
)

is non-positive and

therefore the pair depletion interaction is attractive.
Moreover, it only depends on the distance between both points xi and xj in Rd. Therefore, to simplify
the notations we define the (rescaled) functionVovlap as follows:

Vovlap(u) := −ϕ2(xi, xj) with u =
|xi − xj|

2
�
r

∈
[ r̊

�
r
,+∞

)
. (3.4)

The functionVovlap is clearly decreasing from its maximal valueV∗ovlap – attained at u = r̊
�
r

= 1
1+ρ

–

to its minimal value 0 attained at u = 1. It vanishes on [1,+∞), underlining the strong locality of this
pair interaction. We compute it now.
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By shift invariance and symmetry, denoting (e1, . . . , ed) an orthonormal basis of Rd, we find

Vovlap(u) = Vol
(
B(0,

�
r) ∩B(2

�
ru e1,

�
r)
)

= 2Vol
({
x ∈ Rd, |x| ≤ �

r and x · e1 ≥
�
ru
})

= 2Vol

({
x ∈ Rd,

d∑
i=2

(x · ei)2 ≤ �
r 2 − (x · e1)2 and x · e1 ≥

�
ru

})
.

Introducing vd−1, the volume of the unit sphere in Rd−1, one gets for 1
1+ρ
≤ u ≤ 1,

Vovlap(u) = 2

∫ �
r

�
ru

vd−1

(√
�
r 2 − t2

)d−1

dt = 2vd−1 (
�
r 2)

d−1
2

∫ 1

u

(√
1− s2

)d−1 �
r ds

= 2vd−1
�
r d
∫ arccos(u)

0

(sin θ)d dθ.

Example 3.5 (The pair depletion interaction between discs in R2).

Experimental results in R2 were obtained by physicists to estimate the value of the depletion potential,
see, e.g., [20, Figure 3].

Applying Lemma 3.4 one can compute explicitly the integral in the case d = 2 to obtain, for u =
|xi−xj |

2
�
r
∈ [ 1

1+ρ
, 1],

ϕ2(xi, xj) = −2 v1
�
r 2

∫ arccos(u)

0

(sin θ)2 dθ = −2
�
r 2
(

arccos(u)− u
√

1− u2
)
.

It can also be computed directly via the following simple planar geometry argument (cf. Figure 3).

Figure 3: Intersection of two depletion discs.

In the plane, consider a disc centred at a point O ∈ R2, with radius
�
r, and suppose it intersects

another disc of the same radius and whose centre is at distance 2
�
r u from O.

Denote by Asec(u), the area of the circular sector in OBC . Consider then the area Atri(u) of the
rectangular triangle OBC . One has

Asec(u) =
1

2
arccos(u)

�
r 2, Atri(u) =

1

2
OA AB =

�
r2

2
u
√

1− u2.

The area of the overlap is then given by

Vovlap(u) = 4
(
Asec(u)−Atri(u)

)
= 2

�
r 2
(

arccos(u)− u
√

1− u2
)
, (3.5)
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see Figure 4, left. The maximal overlap area is

V∗ovlap = Vovlap

( 1

1 + ρ

)
= 2

�
r 2
(

arccos
( 1

1 + ρ

)
− 1

(1 + ρ)2

√
ρ(2 + ρ)

)
. (3.6)

Moreover, the derivative on ( 1
1+ρ

, 1) of the functionVovlap is given by

V ′ovlap(u) = −4
�
r 2
√

1− u2

which vanishes in 1 (see Figure 4, right). Therefore the function Vovlap is of class C1 over the full
interval [ 1

1+ρ
,+∞). Nevertheless its second derivative explodes at the point u = 1 since

V ′′ovlap(u) = 4
�
r 2 u√

1− u2
,

1

1 + ρ
≤ u < 1.

V∗ovlap

Vovlap(u)

1
1+ρ

1

u

V ′ovlap(u) 1
1+ρ 1 u

Figure 4: Behaviour of u 7→ Vovlap(u) (left) and u 7→ V ′ovlap(u) (right) for discs in the plane.

Remark 3.6. If the size of the particles is large enough (ρ > ρ2), then a three-body depletion interac-
tion can appear. Its explicit computation is done in [15, Equation 2.2]:

ϕ3(x1, x2, x3) =
1

2

( ∑
{i,j}⊂{1,2,3}

Vovlap

( |xi − xj|
2

�
r

)
− π�

r 2

+
1

2

√
4|x1 − x2|2|x1 − x3|2 −

(
|x1 − x2|2 + |x1 − x3|2 − |x2 − x3|2

)2
)
.

Example 3.7 (The pair depletion interaction between balls in R3).

In the 3-dimensional Euclidean space, experimental results for the value of the depletion interaction
are obtained, e.g., as in [20, Figure 5].

Applying Lemma 3.4 in the case d = 3, one can explicitly compute the integral and obtain, for u ∈
[ 1
1+ρ

, 1]:

Vovlap(u) = 2 v2
�
r 3

∫ arccos(u)

0

(sin θ)3 dθ = 2π
�
r 3

∫ 1

u

(1− s2) ds =
4π

3

�
r 3(1− u)2(1 +

u

2
),

see also, e.g., [25]. Its maximal value is given by

V∗ovlap = Vovlap

( 1

1 + ρ

)
= 2π r̊3 ρ2

(
1 +

2

3
ρ
)
. (3.7)
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Its first derivative satisfies

V ′ovlap(u) = −2 π
�
r 3
(
1− u2

)
,

1

1 + ρ
< u < 1.

This expression vanishes in 1 which implies – as in dimension 2 – the C1-regularity of the function
Vovlap over the full intervall [ 1

1+ρ
,+∞), see Figure 5, left. Its second derivative on ( 1

1+ρ
, 1) satisfies

V ′′ovlap(u) = 4 π
�
r 3u which does not vanish at u = 1 but remains bounded, contrary to the behaviour

in dimension 2, see Figure 5, right.

V∗ovlap

Vovlap(u)

1
1+ρ

1

u

V ′ovlap(u) 1
1+ρ 1 u

Figure 5: Behaviour of u 7→ Vovlap(u) (left) and u 7→ V ′ovlap(u) (right) for balls in R3.

Notice that, if the size of the particles is large enough (ρ > ρ2), then a three-body depletion interaction
can appear. K. W. Kratky computes it implicitly in [16, Equation 1.2b].

3.2 An associated gradient dynamics

From now on, we suppose ρ ≤ ρ2, so that the energy of a configuration of hard spheres defined by
(3.2) is only generated by pairwise interactions. Due to Lemma 3.4 and the definition of the overlap
function (3.4), the energy function becomes

E (̊x) = nvd
�
r d −

∑
1≤i<j≤n

Vovlap

( |̊xi − x̊j|
2

�
r

)
. (3.8)

Therefore, using the explicit expression ofVovlap andV ′ovlap, the gradient field of the energy satisfies,
for i ∈ {1, · · · , d},

∇iE (̊x) = − 1

2
�
r

n∑
j=1

V ′ovlap

( |̊xi − x̊j|
2

�
r

) x̊i − x̊j
|̊xi − x̊j|

= −vd−1
�
r d−1

n∑
j=1

(
1− |̊xi − x̊j|

2

4
�
r 2

)d−1
2

+

x̊i − x̊j
|̊xi − x̊j|

, (3.9)

where, as usual, u+ := max(0, u) denotes the positive part of any real number u.

Let us now define the diffusive dynamics of the hard spheres (X̊i)i=1,...,n submitted to (ż times) this
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gradient field. It solves the SDE

for i ∈ {1, . . . , n}, t ∈ [0, 1],

dX̊i(t) = dW̊i(t)−
1

2
∇ψ̊
(
X̊i(t)

)
dt

+
ż

2
vd−1

�
r d−1

n∑
j=1

(
1− |X̊i − X̊j|2

4
�
r 2

)d−1
2

+

X̊i − X̊j

|X̊i − X̊j|
dt

+
n∑
j=1

(
X̊i(t)− X̊j(t)

)
dLij(t) ,

Lij(0) = 0, Lij ≡ Lji, Lij(t) =

∫ t

0

1|X̊i(s)−X̊j(s)|=2 r̊ dLij(s), Lii ≡ 0,

(Sdep
n )

where W̊1, ..., W̊n are n independent Rd-valued Brownian motions and Lij denotes the collision local
time between the sphere i and the sphere j. The local times Lij describe the effects of the elastic
collision between the large particles i and j (subject to normal reflection).

Theorem 3.8. The SDE (Sdep
n ) admits a unique solution in the set of admissible configurations D.

Moreover the measure µ̊ż defined by (3.1) is reversible under this dynamics.

Proof. The stochastic differential system (Sdep
n ) describes the dynamics of an nd-dimensional gra-

dient diffusion with reflection at the boundary of the set of admissible hard spheres D ∩ M̊ =⋂
1≤i<j≤n

{
x̊ ∈ M̊ : Γij (̊x) ≥ 0

}
. This domain is induced by the pairwise constraint functions

Γij (̊x) :=
|̊xi−x̊j |2

4̊r2 − 1 introduced in (2.4).

We first verify the smoothness of each constraint function and their global compatibility: this was
already done in steps (i) and (ii) of the proof of Proposition 2.2 for a larger number of constraints.

Existence and uniqueness of a strong solution to (Sdep
n ) are then ensured by [9, Theorem 2.2] as

soon as the gradient field of the energy function is Lipschitz continuous and bounded on the domain
D ∩ M̊. Considering the expression (3.9), this is the case in any dimension d > 2.

In dimension d = 2, however,

∇iE (̊x) = −2
�
r

n∑
j=1

√(
1− |̊xi − x̊j|

2

4
�
r 2

)
+

x̊i − x̊j
|̊xi − x̊j|

is Lipschitz continuous onD ∩ M̊ except around the configurations containing a pair of hard spheres

whose centres lie at the critical distance 2
�
r = 2 r̊(1+ρ). This pathology corresponds to the explosion

of the functionV ′′ovlap at u = 1 observed in Example 3.5. Nevertheless, the SDE (Sdep
n ) can be solved

straightforwardly as follows.

The solution is constructed progressively on intervals defined through a sequence of stopping times in-
dicating, (i) either the moment in which a pair i, j of hard spheres is close enough, say Γij (̊x) ∈ [0, ρ],
or (ii) the moment in which two spheres are close to the critical distance, say Γij (̊x) ∈ [2ρ, 2ρ(1 +
ρ/2)]. In the first kind of time interval, the energy function is smooth and we can use the existence re-
sult used for d > 2. In the second kind of time interval, the energy function is not smooth anymore, but
the hard spheres cannot collide, meaning that (Sdep

n ) does not contain collision local times. Therefore,
we can apply strong existence results for Brownian diffusions with bounded Borel drift as, e.g., [24,
Theorem 1].

Applying [9, Theorem 2.5] (see also [21]), we get that 1D (̊x)e−żE(̊x)dx̊ is a time-reversible measure
for the dynamics (Sm,R). This concludes the proof of the theorem.

DOI 10.20347/WIAS.PREPRINT.3024 Berlin 2023



M. Fradon, J. Kern, S. Rœlly, A. Zass 24

3.3 High-density of the small-particle bath: towards an optimal packing of
finitely-many hard spheres

In Proposition 3.1, we saw that the log-density of the equilibrium measure µ̊ż of the large spheres
is proportional to the activity ż of the bath of particles (i.e., the medium) in which they evolve. It is
therefore natural to consider the asymptotic behaviour of the measure µ̊ż in a high-density regime of
the bath, that is for ż tending to∞.

Heuristically, for a fixed activity ż, the probability measure µ̊ż favours the n-ball configurations with low
energy. As ż increases, µ̊ż will concentrate more and more on configurations with minimal energy, as
expressed in Proposition 3.9, below.

We further assume in this section that ρ ≤ ρ2.

The contact number cn(̊x) of a configuration x̊ ∈ D of n hard spheres is the number of its pair
contacts:

cn(̊x) := #{(i, j) s.t. |̊xi − x̊j| = 2̊r, 1 ≤ i < j ≤ n}.

Proposition 3.9. Asymptotically in ż, the equilibrium probability measure µ̊ż of n hard spheres in Rd

that are submitted to the depletion force concentrates around cluster configurations which maximise
the contact number of n spheres in Rd.

More precisely, let E∗ := inf
ẙ∈D
E (̊y) be the minimal energy of admissible hard-sphere configurations,

and define the set of admissible configurations with η-minimal energy by Dη
∗ := {ẙ ∈ D, E (̊y) ≤

E∗ + η}. Then
∀ε, η > 0 ∃ż∗ > 0, ∀ż > ż∗ µ̊ż(D

η
∗ ) ≥ 1− ε. (3.10)

Moreover, sphere configurations x̊ ∈ D whose energy realises the minimum E∗ maximise the contact
number c(̊x).

Proof. We first prove (3.10).

Since Zż :=

∫
D

e−żE(̊x)λ⊗n(dx̊) is a normalisation constant, one has

µ̊ż
(
(Dη
∗ )
c
)

=

∫
D

e−żE(̊x) 1E(̊x)>E∗+η λ
⊗n(dx̊)∫

D
e−żE(̊x)λ⊗n(dx̊)

=

∫
D

e−ż
(
E(̊x)−(E∗+η)

)
1E(̊x)>E∗+η λ

⊗n(dx̊)∫
D

e−ż
(
E(̊x)−(E∗+η)

)
λ⊗n(dx̊)

≤
∫
D

e−ż
(
E(̊x)−(E∗+η)

)
1E(̊x)>E∗+η λ

⊗n(dx̊)∫
D

e−ż
(
E(̊x)−(E∗+η)

)
1E(̊x)≤E∗+ηλ

⊗n(dx̊)

≤
∫
D

e−ż
(
E(̊x)−(E∗+η)

)
1E(̊x)>E∗+η λ

⊗n(dx̊)

λ⊗n
(
{x̊ ∈ D : E (̊x) ≤ E∗ + η}

) =:
n(η, ż)

d(η)
.

Note that the denominator d(η) is positive and does not depend on ż. For the numerator, note that for
each fixed η, point-wise in x̊,

lim
ż↗∞

e−ż
(
E(̊x)−(E∗+η)

)
1E(̊x)>E∗+η = 0

Since x̊ 7→ e−ż
(
E(̊x)−(E∗+η)

)
1E(̊x)>E∗+η is uniformly bounded by the constant 1, which is λ⊗n-

integrable, the dominated convergence theorem implies that the numerator n(η, ż) vanishes as ż
increases. This completes the proof of (3.10).
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Next, we investigate the shape of the admissible configurations whose energy realises the minimum
E∗. Recalling (3.8),

E (̊x) = nvd
�
r d −

∑
1≤i<j≤n

Vovlap

( |̊xi − x̊j|
2

�
r

)
.

Thus,

E∗ = inf
x̊∈D
E (̊x) = nvd

�
r d −max

x̊∈D

∑
1≤i<j≤n

Vovlap

( |̊xi − x̊j|
2

�
r

)
= nvd

�
r d − c(n, d)V∗ovlap ,

(3.11)

where
c(n, d) := max{cn(̊x), x̊ = {x̊1, . . . , x̊n} ∈ D ⊂ Rd}

is the maximum of the contact number of n non-overlapping identical spheres in Rd. Thus the config-
urations x̊ that minimise the energy are maximising their contact number c(̊x), as claimed.

The identification of the set of configurations whose contact number equals c(n, d) is a difficult topic,
even in low dimensions 2 and 3, as it is presented in the next examples.

Recall that c(n, d) is also the maximum number of edges that a contact graph of n non-overlapping
translations of B(0, 1) can have in Rd, see, e.g., the monograph [3] and [4, Chapter 3]. Using this
approach, we now review in more detail the situation in the Euclidean spaces R2 and R3.

Example 3.10 (The planar case, d = 2). An explicit general formula for c(n, 2) was introduced by
Erdős in 1946, but rigorously established only in 1974 by Harborth, [11]:

c(n, 2) = b3n−
√

12n− 3c, n ≥ 2.

In particular, one has

c(2, 2) = 1, c(3, 2) = 3, c(4, 2) = 5, c(5, 2) = 7, c(6, 2) = 9, c(7, 2) = 12.

Moreover, the hexagonal packing arrangement is a cluster configuration whose contact number achieves
c(n, 2) for all n, see Figure 6. But it also corresponds to clusters which realise the densest packing.
Nevertheless, the problem of recognising (all) contact graphs of unit disc packing is NP-hard, see [6].

Figure 6: Favourite planar cluster configurations with minimal energy E∗ for n = 4, 5, 6 and their
induced contact graphs with respectively c(n, 2) contacts. Optimal Kugelhopf configuration for n = 7.

We now study the asymptotic behaviour of the minimal energy E∗ for small ρ. It means that we expand
the maximal overlap area obtained in (3.6)

V∗ovlap = 2
�
r 2
(

arccos
( 1

1 + ρ

)
− 1

(1 + ρ)2

√
ρ(2 + ρ)

)
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as a function of ρ. Using the expansion of the function arccos around the point 1, arccos(1 − x) =
√

2x
(
1+ 1

12
x+O(x2)

)
, we obtain that, asymptotically for ρ� 1,V∗ovlap =

8
√

2

3
r̊2 ρ3/2 +O(ρ5/2).

The minimal energy E∗ is then given by

E∗ = nπ r̊2
(

1 + 2ρ− 8
√

2

3π

c(n, 2)

n
ρ3/2 +O(ρ5/2)

)
.

Example 3.11 (The 3-dimensional case). The theoretical situation in R3 is mainly unsolved, with no
hope of obtaining an explicit general formula for c(n, 3) in terms of n. The only known exact values
are the trivial ones, that is:

c(2, 3) = 1, c(3, 3) = 3, c(4, 3) = 6, c(5, 3) = 9.

The largest known number of contacts for n = 6, 7, 8, 9 are 12, 15, 18, 21, respectively, see [4]. They
correspond to clusters which also satisfy the property of being densest packing: the centres of the
spheres are the lattice points of a face-centred cubic lattice, see [4, Figure 1].

In [12], the authors study numerically the number and the structure of optimal finite-sphere packings –
called isoenergetic states – via exact enumeration. They underline the implications for colloidal crystal
nucleation.

To conclude this section, we recall the expression of the maximal overlap volumeV∗ovlap computed in
Example 3.7:

V∗ovlap = 2π r̊3 ρ2
(
1 +

2

3
ρ
)
.

Therefore, by (3.11), the minimal energy E∗ is given by

E∗ = n
4

3
π r̊3(1 + ρ)3 − c(n, 3) 2π r̊3 ρ2

(
1 +

2

3
ρ
)
,

which leads to the following asymptotic expansion in ρ,

E∗ = n
4

3
π r̊3

(
1 + 3ρ+ 3

(
1− c(n, 3)

2n

)
ρ2 +O(ρ3)

)
, ρ� 1.

4 Numerical simulations

We created a companion GitLab page (https://lab.wias-berlin.de/zass/dynamics-of-spheres),
where the reader can find a Python code we wrote to generate illustrative movies that simulate various
planar random dynamics of the type studied in this paper. In particular, we propose illustrations of
Section 2 and Section 3.3, that is:

• The two-type dynamics (S) of Brownian hard spheres in a Brownian particle bath and their projec-
tions on the hard sphere system, for different values of ρ and ż. The short range of the depletion
attraction is clearly visible.

• The dynamics (S) of Brownian hard spheres in a Brownian particle bath with high density ż, which
induces a very high stability of the initial hard sphere cluster configuration, close to a maximiser of
its contact number.
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