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Second-order sufficient conditions in the sparse optimal control
of a phase field tumor growth model with logarithmic potential

Jürgen Sprekels, Fredi Tröltzsch

Abstract

This paper treats a distributed optimal control problem for a tumor growth model of viscous
Cahn–Hilliard type. The evolution of the tumor fraction is governed by a thermodynamic force
induced by a double-well potential of logarithmic type. The cost functional contains a nondifferen-
tiable term like the L1–norm in order to enhance the occurrence of sparsity effects in the optimal
controls, i.e., of subdomains of the space-time cylinder where the controls vanish. In the context of
cancer therapies, sparsity is very important in order that the patient is not exposed to unnecessary
intensive medical treatment. In this work, we focus on the derivation of second-order sufficient op-
timality conditions for the optimal control problem. While in previous works on the system under
investigation such conditions have been established for the case without sparsity, the case with
sparsity has not been treated before. The results obtained in this paper also improve the known
results on this phase field model for the case without sparsity.

1 Introduction

Let α > 0, β > 0, χ > 0, and let Ω ⊂ R3 denote some open and bounded domain having a smooth
boundary Γ = ∂Ω and the unit outward normal n with associated outward normal derivative ∂n.
Moreover, we fix some final time T > 0 and introduce for every t ∈ (0, T ) the sets Qt := Ω× (0, t)
and Qt := Ω × (t, T ). We also set, for convenience, Q := QT and Σ := Γ × (0, T ). We then
consider the following optimal control problem:

(CP) Minimize the cost functional

J((µ, ϕ, σ),u) :=
b1

2

∫∫
Q

|ϕ− ϕ̂Q|2 +
b2

2

∫
Ω

|ϕ(T )− ϕ̂Ω|2 +
b3

2

∫∫
Q

(|u1|2 + |u2|2)

+ κ

∫∫
Q

(|u1|+ |u2|)

=: J1((µ, ϕ, σ),u) + κg(u) (1.1)

subject to the state system

α∂tµ+ ∂tϕ−∆µ = P (ϕ)(σ + χ(1− ϕ)− µ)− h(x, t)u1 in Q , (1.2)

β∂tϕ−∆ϕ+ F ′1(ϕ) + F ′2(ϕ) = µ+ χσ in Q , (1.3)

∂tσ −∆σ = −χ∆ϕ− P (ϕ)(σ + χ(1− ϕ)− µ) + u2 in Q , (1.4)

∂nµ = ∂nϕ = ∂nσ = 0 on Σ , (1.5)

µ(0) = µ0, ϕ(0) = ϕ0, σ(0) = σ0 in Ω , (1.6)
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J. Sprekels, F. Tröltzsch 2

and to the control constraint
u = (u1, u2) ∈ Uad . (1.7)

Here, b1 and b2 are nonnegative constants, while b3 and κ are positive; ϕ̂Q and ϕ̂Ω are given
target functions. The term g(u) accounts for possible sparsity effects. Moreover, the set of admissible
controls Uad is a nonempty, closed and convex subset of the control space

U := L∞(Q)2. (1.8)

The state system (1.2)–(1.6) constitutes a simplified and relaxed version of the four-species thermo-
dynamically consistent model for tumor growth originally proposed by Hawkins-Daruud et al. in [38]
that additionally includes the chemotaxis-like terms χσ in (1.3) and −χ∆ϕ in (1.4). Let us briefly
review the role of the occurring symbols. The primary (state) variables ϕ, µ, σ denote the tumor frac-
tion, the associated chemical potential, and the nutrient concentration, respectively. Furthermore, the
additional term α∂tµ corresponds to a parabolic regularization of equation (1.2), while β∂tϕ is the
viscosity contribution to the Cahn–Hilliard equation. The nonlinearity P denotes a proliferation func-
tion, whereas the positive constant χ represents the chemotactic sensitivity and provides the system
with a cross-diffusion coupling.

The evolution of the tumor fraction is mainly governed by the nonlinearities F1 and F2 whose deriva-
tives occur in (1.3). Here, F2 is smooth, typically a concave function. As far as F1 is concerned, we
admit in this paper functions of logarithmic type such as

F1,log(r) =


(1 + r) ln(1 + r) + (1− r) ln(1− r) for r ∈ (−1, 1)
2 ln(2) for r ∈ {−1, 1} ,
+∞ for r 6∈ [−1, 1]

(1.9)

We assume that F = F1+F2 is a double-well potential. This is actually the case if F2(r) = k(1−r2)
with a sufficiently large k > 0. Note also that F ′1,log(r) becomes unbounded as r ↘ −1 and r ↗ 1.

The control variable u2 occurring in (1.4) can model either an external medication or some nutrient
supply, while u1, which occurs in the phase equation (1.2), models the application of a cytotoxic drug
to the system. Usually, u1 is multiplied by a truncation function h(ϕ) in order to have the action
only in the spatial region where the tumor cells are located. Typically, one assumes that h(−1) =
0, h(1) = 1, and h(ϕ) is in between if −1 < ϕ < 1; see [29, 35, 41, 42] for some insights on
possible choices of h. Also in [15, 17, 54], this kind of nonlinear coupling between u1 and ϕ has
been admitted. For our following analysis, this nonlinear coupling is too strong, and, only for technical
reasons, we have chosen to simplify the original system somewhat by assuming that h = h(x, t) is
a bounded nonnegative function that does not depend on ϕ. We stress the fact that this simplification
does not have any impact on the validity of the results from [17] to be used below.

As far as well-posedness is concerned, the above model was already investigated in the case χ = 0
in [6–9], and in [25] with α = β = χ = 0. There the authors also pointed out how the relaxation
parameters α and β can be set to zero, by providing the proper framework in which a limit system can
be identified and uniquely solved. We also note that in [13] a version has been studied in which the
Laplacian in the equations (1.2)–(1.4) has been replaced by fractional powers of a more general class
of selfadjoint operators having compact resolvents. A model which is similar to the one studied in this
note was the subject of [15,54].

For some nonlocal variations of the above model we refer to [27, 28, 47]. Moreover, in order to better
emulate in-vivo tumor growth, it is possible to include in similar models the effects generated by the
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Second-order conditions in the sparse control of tumor growth 3

fluid flow development by postulating a Darcy law or a Stokes–Brinkman law. In this direction, we
refer to [11,21,24,27,29–33,35,59], and we also mention [36], where elastic effects are included. For
further models, discussing the case of multispecies, we refer the reader to [21, 27]. The investigation
of associated optimal control problems also presents a wide number of results of which we mention
[10,13,15,22,23,28,34,37,42,48–52,54,56].

Sparsity in the optimal control theory of partial differential equations is a very active field of research.
The use of sparsity-enhancing functionals goes back to inverse problems and image processing. Soon
after the seminal paper [57], many results were published. We mention only very few of them with
closer relation to our paper, in particular [1, 39, 40], on directional sparsity, and [5] on a general theo-
rem for second-order conditions; moreover, we refer to some new trends in the investigation of sparsity,
namely, infinite horizon sparse optimal control (see, e.g., [43, 44]), and fractional order optimal con-
trol (cf. [46], [45]). These papers concentrated on first-order optimality conditions for sparse optimal
controls of single elliptic and parabolic equations. In [3, 4], first- and second-order optimality condi-
tions have been discussed in the context of sparsity for the (semilinear) system of FitzHugh–Nagumo
equations. Moreover, we refer to the measure control of the Navier–Stokes system studied in [2].

The optimal control problem (CP) has recently been investigated in [17] for the case of logarithmic
potentials F1 and without sparsity terms, where second-order sufficient optimality conditions have
been derived using the τ–critical cone and the splitting technique as described in the textbook [58].
In [54] and [18], sparsity terms have been incorporated, where in the latter paper not only logarith-
mic nonlinearities but also nondifferentiable double obstacle potentials have been admitted. However,
second-order sufficient optimality conditions have not been derived.

The derivation of meaningful second-order conditions for locally optimal controls of (CP) in the loga-
rithmic case with sparsity term is the main object of this paper. In particular, we aim at constructing
suitable critical cones which are as small as possible. In our approach, we follow the recent work [55]
on the sparse optimal control of Allen–Cahn systems, which was based on ideas developed in [4].

The paper is organized as follows. In the next section, we list and discuss our assumptions, and we
collect known results from [18] concerning the properties of the state system (1.2)–(1.6) and of the
control-to-state operator. In Section 3, we study the optimal control problem. We derive first-order
necessary optimality conditions and results concerning the full sparsity of local minimizers, and we
establish second-order sufficient optimality conditions for the optimal control problem (CP). In an ap-
pendix, we prove auxiliary results that are needed for the main theorem on second-order sufficient
conditions.

Prior to this, let us fix some notation. For any Banach space X , we denote by
‖ · ‖X the norm in the space X , by X∗ its dual space, and by 〈 · , · 〉X the duality pairing be-
tween X∗ and X . For any 1 ≤ p ≤ ∞ and k ≥ 0, we denote the standard Lebesgue and
Sobolev spaces on Ω by Lp(Ω) and W k,p(Ω), and the corresponding norms by ‖ · ‖Lp(Ω) = ‖ · ‖p
and ‖ · ‖Wk,p(Ω), respectively. For p = 2, they become Hilbert spaces, and we employ the standard
notation Hk(Ω) := W k,2(Ω). As usual, for Banach spaces X and Y that are both continuously
embedded in some topological vector space Z , we introduce the linear space X∩Y which becomes
a Banach space when equipped with its natural norm ‖v‖X∩Y := ‖v‖X + ‖v‖Y , for v ∈ X ∩ Y .
Moreover, we recall the definition (1.8) of the control space U and introduce the spaces

H := L2(Ω) , V := H1(Ω) , W0 := {v ∈ H2(Ω) : ∂nv = 0 on Γ}. (1.10)

Furthermore, by ( · , · ) and ‖ · ‖ we denote the standard inner product and related norm in H , and,
for simplicity, we also set 〈 · , · 〉 := 〈 · , · 〉V .
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J. Sprekels, F. Tröltzsch 4

Throughout the paper, we make repeated use of Hölder’s inequality, of the elementary Young inequality

ab ≤ δ|a|2 +
1

4δ
|b|2 ∀ a, b ∈ R, ∀ δ > 0, (1.11)

as well as the continuity of the embeddings H1(Ω) ⊂ Lp(Ω) for 1 ≤ p ≤ 6 and H2(Ω) ⊂ C0(Ω).

We close this section by introducing a convention concerning the constants used in estimates within
this paper: we denote by C any positive constant that depends only on the given data occurring in the
state system and in the cost functional, as well as on a constant that bounds the (L∞(Q)× L∞(Q))–
norms of the elements of Uad. The actual value of such generic constants C may change from
formula to formula or even within formulas. Finally, the notation Cδ indicates a positive constant that
additionally depends on the quantity δ.

2 General setting and properties of the control-to-state operator

In this section, we introduce the general setting of our control problem and state some results on the
state system (1.2)–(1.6) and the control-to-state operator that in its present form have been established
in [17,18].

We make the following assumptions on the data of the system.

(A1) α, β, χ are positive constants.

(A2) F = F1 + F2, where F2 ∈ C5(R) has a Lipschitz continuous derivative F ′2, and where
F1 : R→ [0,+∞] is convex and lower semicontinuous and satisfies F1(0) = 0, F1|(−1,1)

∈
C5(−1, 1), as well as

lim
r↘−1

F ′1(r) = −∞ and lim
r↗1

F ′1(r) = +∞ . (2.1)

(A3) P ∈ C3(R) ∩W 3,∞(R) and h ∈ L∞(Q) are nonnegative and bounded.

(A4) The initial data satisfy µ0, σ0 ∈ H1(Ω) ∩ L∞(Ω), ϕ0 ∈ W0, as well as

−1 < min
x∈Ω

ϕ0(x) ≤ max
x∈Ω

ϕ0(x) < 1 . (2.2)

(A5) With fixed given constants ui, ui satisfying ui < ui, i = 1, 2, we have

Uad = {u = (u1, u2) ∈ U : ui ≤ ui ≤ ui a.e. in Q for i = 1, 2} . (2.3)

(A6) R > 0 is a constant such that Uad ⊂ UR := {u ∈ U : ‖u‖U < R}.

Remark 2.1. Observe that (A3) implies that the functions P, P ′, P ′′ are Lipschitz continuous on R.
Let us also note that F1 = F1,log satisfies (A2). Moreover, (2.2) implies that initially there are no pure
phases. Finally, (A6) just fixes an open and bounded subset of U that contains Uad.

The following result is a consequence of [18, Thm. 2.3].
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Theorem 2.2. Suppose that the conditions (A1)–(A6) are fulfilled. Then the state system (1.2)–(1.6)
has for every u = (u1, u2) ∈ UR a unique strong solution (µ, ϕ, σ) with the regularity

µ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W0) ∩ L∞(Q), (2.4)

ϕ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W0) ∩ C0(Q), (2.5)

σ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W0) ∩ L∞(Q). (2.6)

Moreover, there is a constant K1 > 0, which depends on Ω, T, R, α, β and the data of the system,
but not on the choice of u ∈ UR, such that

‖µ‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W0)∩L∞(Q)

+ ‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W0)∩C0(Q)

+ ‖σ‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W0)∩L∞(Q) ≤ K1 . (2.7)

Furthermore, there are constants r∗, r∗, which depend on Ω, T, R, α, β and the data of the system,
but not on the choice of u ∈ UR, such that

−1 < r∗ ≤ ϕ(x, t) ≤ r∗ < 1 for all (x, t) ∈ Q. (2.8)

Also, there is some constant K2 > 0 having the same dependencies as K1 such that

max
i=0,1,2,3

∥∥P (i)(ϕ)
∥∥
L∞(Q)

+ max
i=0,1,2,3,4,5

max
j=1,2

∥∥∥F (i)
j (ϕ)

∥∥∥
L∞(Q)

≤ K2 . (2.9)

Finally, if ui ∈ UR are given controls and (µi, ϕi, σi) the corresponding solutions to (1.2)–(1.6), for
i = 1, 2, then, with a constant K3 > 0 having the same dependencies as K1,

‖µ1 − µ2‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W0) + ‖ϕ1 − ϕ2‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W0)

+ ‖σ1 − σ2‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W0) ≤ K3 ‖u1 − u2‖L2(Q)2 . (2.10)

Remark 2.3. Condition (2.8), known as the separation property, is especially important for the case
of singular potentials such as F1 = F1,log, since it guarantees that the phase variable ϕ always stays
away from the critical values −1,+1. The singularity of F ′1 is therefore no longer an obstacle for the
analysis, as the values of ϕ range in some interval in which F ′1 is smooth.

Owing to Theorem 2.2, the control-to-state operator

S : u = (u1, u2) 7→ (µ, ϕ, σ)

is well defined as a mapping between U = L∞(Q)2 and the Banach space specified by the regularity
results (2.4)–(2.6). We now discuss its differentiability properties. For this purpose, some functional
analytic preparations are in order. We first define the linear spaces

X := X × X̃ ×X, where

X := H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W0) ∩ L∞(Q),

X̃ := W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W0) ∩ C0(Q), (2.11)

DOI 10.20347/WIAS.PREPRINT.3020 Berlin 2023
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which are Banach spaces when endowed with their natural norms. Next, we introduce the linear space

Y :=
{

(µ, ϕ, σ) ∈ X : α∂tµ+ ∂tϕ−∆µ ∈ L∞(Q), β∂tϕ−∆ϕ− µ ∈ L∞(Q),

∂tσ −∆σ + χ∆ϕ ∈ L∞(Q)
}
, (2.12)

which becomes a Banach space when endowed with the norm

‖(µ, ϕ, σ)‖Y := ‖(µ, ϕ, σ)‖X + ‖α∂tµ+ ∂tϕ−∆µ‖L∞(Q) + ‖β∂tϕ−∆ϕ− µ‖L∞(Q)

+ ‖∂tσ −∆σ + χ∆ϕ‖L∞(Q) . (2.13)

Finally, we put

Z := H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W0), (2.14)

Z := Z × Z × Z. (2.15)

For fixed (ϕ∗, µ∗, σ∗), we first discuss an auxiliary result for the linear initial-boundary value problem

α∂tµ+ ∂tϕ−∆µ = λ1 [P (ϕ∗)(σ − χϕ− µ) + P ′(ϕ∗)(σ∗ + χ(1− ϕ∗)− µ∗)ϕ]

− λ2 hh1 + λ3f1 in Q, (2.16)

β∂tϕ−∆ϕ− µ = λ1 [χσ − F ′′(ϕ∗)ϕ] + λ3f2 in Q, (2.17)

∂tσ −∆σ + χ∆ϕ = λ1 [−P (ϕ∗)(σ − χϕ− µ)− P ′(ϕ∗)(σ∗ + χ(1− ϕ∗)− µ∗)ϕ]

+ λ2h2 + λ3f3 in Q, (2.18)

∂nµ = ∂nϕ = ∂nσ = 0 on Σ, (2.19)

µ(0) = λ4µ0, ϕ(0) = λ4ϕ0, σ(0) = λ4σ0, in Ω, (2.20)

which for λ1 = λ2 = 1 and λ3 = λ4 = 0 coincides with the linearization of the state equation at
((µ∗, ϕ∗, σ∗), (u∗1, u

∗
2)). We have the following result.

Lemma 2.4. Suppose that λ1, λ2, λ3, λ4 ∈ {0, 1} are given and that the assumptions (A1)–(A6) are
fulfilled. Moreover, let u∗ = (u∗1, u

∗
2) ∈ UR be given and (µ∗, ϕ∗, σ∗) = S(u∗). Then (2.16)–(2.20)

has for every h = (h1, h2) ∈ L2(Q)2 and (f1, f2, f3) ∈ L2(Q)3 a unique solution (µ, ϕ, σ) ∈
Z × X̃ × Z . Moreover, the linear mapping

((h1, h2), (f1, f2, f3)) 7→ (µ, ϕ, σ) (2.21)

is continuous from L2(Q)2×L2(Q)3 into Z× X̃×Z . Moreover, if h ∈ L∞(Q)2 and (f1, f2, f3) ∈
L∞(Q)3, in addition, then it holds (µ, ϕ, σ) ∈ Y, and the mapping (2.21) is continuous fromL∞(Q)2×
L∞(Q)3 into Y.

Proof. The existence result and the continuity of the mapping (2.21) between the spaces L∞(Q)2×
L∞(Q)3 and Y directly follow from the statement of [17, Lem. 4.1 and Rem. 4.2]. Moreover, from the
estimates (4.36)–(4.38) and (4.43) in [17] we can conclude that the mapping (2.21) is also continuous
between the spaces L2(Q)2 × L2(Q)3 and Z × X̃ × Z .

Now let u∗ = (u∗1, u
∗
2) ∈ UR be arbitrary and (µ∗, ϕ∗, σ∗) = S(u∗). Then, according to [17,

Thm. 4.4], the control-to-state operator S is twice continuously Fréchet differentiable at u∗ as a map-
ping from U into Y. Moreover, for every h = (h1, h2) ∈ U, the first Fréchet derivative S ′(u∗) ∈
L(U,Y) of S at u∗ is given by the identity S′(u∗)[h] = (ηh, ξh, θh), where (ηh, ρh, θh) ∈ Y is
the unique solution to the linearization of the state system given by the initial-boundary value problem
(2.16)–(2.20) with λ1 = λ2 = 1 and λ3 = λ4 = 0.

DOI 10.20347/WIAS.PREPRINT.3020 Berlin 2023
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Remark 2.5. Observe that, in view of the continuity of the embedding Y ⊂ Z × X̃ ×Z , the operator
S′(u∗) ∈ L(U,Y) also belongs to the space L(U, Z × X̃ × Z) and, owing to the density of
U in L2(Q)2, can be extended continuously to an element of L(L2(Q)2, Z × X̃ × Z) without
changing its operator norm. Denoting the extended operator still by S′(u∗), we see that the identity
S′(u∗)[h] = (ηh, ξh, θh) is also valid for every h ∈ L2(Q)2, only that (ηh, ξh, θh) ∈ Z × X̃ × Z ,
in general. In addition, it also follows from the proof of [17, Lem. 4.1] that there is a constant K4 > 0,
which depends only on R and the data, such that

‖S′(u)[h]‖Z×X̃×Z ≤ K4 ‖h‖L2(Q)2 for all u ∈ UR and every h ∈ L2(Q)2 . (2.22)

Next, we show a Lipschitz property for the extended operator S′.

Lemma 2.6. The mapping S′ : U→ L(L2(Q)2, Z × X̃ × Z), u 7→ S′(u), is Lipschitz continuous
in the following sense: there is a constantK5 > 0, which depends only on R and the data, such that,
for all controls u1,u2 ∈ UR and all increments h ∈ L2(Q)2,

‖ (S′(u1)− S′(u2)) [h]‖Z ≤ K5 ‖u1 − u2‖L2(Q)2 ‖h‖L2(Q)2 . (2.23)

Proof. We put (µi, ϕi, σi) := S(ui), (ηi, ξi, θi) := S′(ui)[h], i = 1, 2, as well as

u := u1 − u2, µ := µ1 − µ2, ϕ := ϕ1 − ϕ2, σ := σ1 − σ2,

η := η1 − η2, ξ := ξ1 − ξ2, θ := θ1 − θ2 .

Then it follows from (2.10) in Theorem 2.2 that

‖(µ, ϕ, σ)‖Z ≤ K3‖u‖L2(Q)2 . (2.24)

Moreover, (η, ξ, θ) solves the problem

α∂tη + ∂tξ −∆η = P (ϕ1)(θ − χξ − η) + P ′(ϕ1)(σ1 + χ(1− ϕ1)− µ1)ξ + f1 , (2.25)

β∂tξ −∆ξ = χθ − F ′′(ϕ1)ξ + f2 , (2.26)

∂tθ −∆θ + χ∆ξ = −P (ϕ1)(θ − χξ − η)− P ′(ϕ1)(σ1 + χ(1− ϕ1)− µ1)ξ + f3 , (2.27)

∂nη = ∂nξ = ∂nθ = 0 , (2.28)

η(0) = ξ(0) = θ(0) = 0 , (2.29)

which is of the form (2.16)–(2.20) with λ1 = λ3 = 1 and λ2 = λ4 = 0, and where

f1 := −f3 := ((P (ϕ1)− P (ϕ2))(θ2 − χξ2 − η2) + P ′(ϕ1)(σ − χϕ− µ)ξ2

+ (P ′(ϕ1)− P ′(ϕ2))(σ2 + χ(1− ϕ2)− µ2)ξ2 , (2.30)

f2 := −(F ′′(ϕ1)− F ′′(ϕ2))ξ2 . (2.31)

We therefore conclude from Lemma 2.4 that

‖(η, ξ, θ)‖Z ≤ C
(
‖f1‖L2(Q) + ‖f2‖L2(Q)

)
.

Hence, the proof will be finished once we can show that

‖f1‖L2(Q) + ‖f2‖L2(Q) ≤ C ‖u‖L2(Q)2 ‖h‖L2(Q)2 . (2.32)

DOI 10.20347/WIAS.PREPRINT.3020 Berlin 2023
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To this end, we first use the mean value theorem, (2.9), Hölder’s inequality, the continuity of the em-
bedding V ⊂ L4(Ω), as well as (2.10) and (2.24), to find that

‖f2‖2
L2(Q) ≤ C

∫∫
Q

|ϕ|2 |ξ2|2 ≤ C

∫ T

0

‖ϕ‖2
4 ‖ξ2‖2

4 ds ≤ C ‖ϕ‖2
C0([0,T ];V ) ‖ξ2‖2

C0([0,T ];V )

≤ C ‖ϕ‖2
Z ‖S′(u2)[h]‖2

Z ≤ C ‖u‖2
L2(Q)2 ‖h‖2

L2(Q)2 . (2.33)

Here, we have for convenience omitted the argument s in the third integral. We will do this repeat-
edly in the following. For the three summands on the right-hand side of (2.30), which we denote by
A1, A2, A3, in this order, we obtain by similar reasoning the estimates∫∫

Q

|A1|2 ≤ C

∫∫
Q

|ϕ|2 |θ2 − χξ2 − η2|2 ≤ C

∫ T

0

‖ϕ‖2
4

(
‖θ2‖2

4 + ‖ξ2‖2
4 + ‖η2‖2

4

)
ds

≤ C ‖u‖2
L2(Q)2 ‖h‖2

L2(Q)2 , (2.34)∫∫
Q

|A2|2 ≤ C

∫ T

0

|ξ2|2
(
|µ|2 + |ϕ|2 + |σ|2

)
ds ≤ C

∫ T

0

‖ξ2‖2
4

(
‖µ‖2

4 + ‖ϕ‖2
4 + ‖σ‖2

4

)
ds

≤ C ‖u‖2
L2(Q)2 ‖h‖2

L2(Q)2 , (2.35)∫∫
Q

|A3|2 ≤ C
(
‖σ2‖2

L∞(Q) + ‖ϕ2‖2
L∞(Q) + ‖µ2‖2

L∞(Q) + 1
) ∫∫

Q

|ϕ|2|ξ2|2

≤ C ‖u‖2
L2(Q)2 ‖h‖2

L2(Q)2 , (2.36)

where in the last estimate we also used (2.7) and (2.33). With this, the assertion is proved.

Next, we turn our interest to the second Fréchet derivative S′′(u∗) of S at u∗. Let h = (h1, h2) ∈ U

and k = (k1, k2) ∈ U. Then, (ηh, ξh, θh) := S′(u∗)[h] and (ηk, ξk, θk) := S′(u∗)[k] both
belong to Y and, by virtue of [17, Thm. 4.6], (ν, ψ, ρ) = S′′(u∗)[h,k] ∈ Y is the unique solution to
the bilinearization of the state system at ((µ∗, ϕ∗, σ∗), (u∗1, u

∗
2)), which is given by the linear initial-

boundary value problem

α∂tν + ∂tψ −∆ν = P (ϕ∗)(ρ− χψ − ν) + P ′(ϕ∗)(σ∗ + χ(1− ϕ∗)− µ∗)ψ + f1 , (2.37)

β∂tψ −∆ψ − ν = χρ− F ′′(ϕ∗)ψ + f2 , (2.38)

∂tρ−∆ρ+ χ∆ψ = −P (ϕ∗)(ρ− χψ − ν)− P ′(ϕ∗)(σ∗ + χ(1− ϕ∗)− µ∗)ψ + f3 , (2.39)

∂nν = ∂nψ = ∂nρ = 0 , (2.40)

ν(0) = ψ(0) = ρ(0) = 0 , (2.41)

and which is again of the form (2.16)–(2.20) with λ1 = λ3 = 1 and λ2 = λ4 = 0, where

f1 := −f3 := P ′(ϕ∗)
(
ξk (θh − χξh − ηh) + ξh (θk − χξk − ηk)

)
+ P ′′(ϕ∗) ξk ξh (σ∗ + χ(1− ϕ∗)− µ∗) , (2.42)

f2 := −F (3)(ϕ∗)ξhξk . (2.43)

Now assume that h,k ∈ L2(Q)2 are given. Then the expressions (ηh, ξh, θh) := S′(u∗)[h] and
(ηk, ξk, θk) := S′(u∗)[k] are well-defined elements of the space Z × X̃ × Z , where S′(u∗) now
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denotes the extension of the Fréchet derivative introduced in Remark 2.5. We now claim that there is
a constant Ĉ > 0 that depends only on R and the data, such that

‖f1‖L2(Q) + ‖f2‖L2(Q) ≤ Ĉ ‖h‖L2(Q)2 ‖k‖L2(Q)2 . (2.44)

Indeed, arguing as in the derivation of the estimates (2.33)–(2.36), we obtain

‖f1‖2
L2(Q) ≤ C

∫ T

0

‖ξk‖2
4

(
‖θh‖2

4 + ‖ξh‖2
4 + ‖ηh‖2

4

)
ds

+ C

∫ T

0

‖ξh‖2
4

(
‖θk‖2

4 + ‖ξk‖2
4 + ‖ηk‖2

4

)
ds

+ C
(
‖σ∗‖2

L∞(Q) + ‖ϕ∗‖2
L∞(Q) + ‖µ∗‖2

L∞(Q) + 1
) ∫ T

0

‖ξk‖2
4 ‖ξh‖2

4 ds

≤ C ‖S′(u∗)[h]‖2
C0([0,T ];V ) ‖S′(u∗)[k]‖2

C0([0,T ];V ) ≤ C ‖h‖2
L2(Q)2 ‖k‖2

L2(Q)2 ,

‖f2‖2
L2(Q) ≤ C

∫ T

0

‖ξh‖2
4 ‖ξk‖2

4 ds ≤ C ‖h‖2
L2(Q)2 ‖k‖2

L2(Q)2 ,

which proves the claim. At this point, we can conclude from Lemma 2.4 that the system (2.37)–(2.41)
has for every h,k ∈ L2(Q)2 a unique solution (ν, ψ, ρ) ∈ Z × X̃ × Z . Moreover, we have, with a
constant K6 > 0 that depends only on R and the data,

‖(ν, ψ, ρ)‖Z×X̃×Z ≤ K6 ‖h‖L2(Q)2 ‖k‖L2(Q)2 ∀h,k ∈ L2(Q)2. (2.45)

Remark 2.7. Similarly as in Remark 2.5, the operator S′′(u∗) ∈ L(U,L(U,Y)) can be extended
continuously to an element of L(L2(Q)2,L(L2(Q)2, Z × X̃ × Z)) without changing its opera-
tor norm. Denoting the extended operator still by S′′(u∗), we see that the identity S′′(u∗)[h,k] =

(ν, ψ, ρ) is also valid for every h,k ∈ L2(Q)2, only that (ν, ψ, ρ) ∈ Z × X̃ × Z , in general. In
addition, we have

‖S′′(u)[h,k]‖Z×X̃×Z ≤ K6 ‖h‖L2(Q)2 ‖k‖L2(Q)2 for all u ∈ UR and h,k ∈ L2(Q)2 . (2.46)

We conclude our preparatory work by showing a Lipschitz property for the extended operator S′′ that
resembles (2.23).

Lemma 2.8. The mapping S′′ : U→ L(L2(Q)2,L(L2(Q)2, Z×X̃×Z)), u 7→ S′′(u), is Lipschitz
continuous in the following sense: there is a constant K7 > 0, which depends only on R and the
data, such that, for all controls u1,u2 ∈ UR and all increments h,k ∈ L2(Q)2,

‖ (S′′(u1)− S′′(u2)) [h,k]‖Z ≤ K7 ‖u1 − u2‖L2(Q)2 ‖h‖L2(Q)2 ‖k‖L2(Q)2 . (2.47)

Proof. We put (µi, ϕi, σi) := S(ui), (ηhi , ξ
h
i , θ

h
i ) := S′(ui)[h], (ηki , ξ

k, θki ) := S′(ui)[k], (νi, ψi,
ρi) := S′′(ui)[h,k], for i = 1, 2, as well as

u := u1 − u2, µ := µ1 − µ2, ϕ := ϕ1 − ϕ2, σ := σ1 − σ2,

ηh := ηh1 − ηh2 , ξh := ξh1 − ξh2 , θh := θh1 − θh2 ,
ηk := ηk1 − ηk2 , ξk := ξk1 − ξk2 , θk := θk1 − θk2 ,
ν := ν1 − ν2, ψ := ψ1 − ψ2, ρ := ρ1 − ρ2.
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Then it follows from (2.10) and (2.23) that

‖(µ, ϕ, σ)‖Z ≤ C ‖u‖L2(Q)2 , ‖(ηh, ξh, θh)‖Z ≤ C ‖u‖L2(Q)2 ‖h‖L2(Q)2 ,

‖(ηk, ξk, θk)‖Z ≤ C ‖u‖L2(Q)2 ‖k‖L2(Q)2 . (2.48)

We also recall the estimates (2.22) and (2.46). Moreover, (ν, ψ, ρ) solves the problem

α∂tν + ∂tψ −∆ν = P (ϕ1)(ρ− χψ − ν) + P ′(ϕ1)(σ1 + χ(1− ϕ1)− µ1)ψ + g1 , (2.49)

β∂tψ −∆ψ = χρ− F ′′(ϕ1)ψ + g2 , (2.50)

∂tρ−∆ρ+ χ∆ψ = −P (ϕ1)(ρ− χψ − ν)− P ′(ϕ1)(σ1 + χ(1− ϕ1)− µ1)ψ + g3 , (2.51)

∂nν = ∂nψ = ∂nρ = 0 , (2.52)

ν(0) = ψ(0) = ρ(0) = 0 , (2.53)

which is again of the form (2.16)–(2.20) with λ1 = λ3 = 1 and λ2 = λ4 = 0, where

g1 := −g3 := ((P (ϕ1)− P (ϕ2))(ρ2 − χψ2 − ν2) + P ′(ϕ1)(σ − χϕ− µ)ψ2

+ (P ′(ϕ1)− P ′(ϕ2))(σ2 + χ(1− ϕ2)− µ2)ψ2 + (P ′(ϕ1)− P ′(ϕ2)) ξk1 (θh1 − χξh1 − ηh1 )

+ P ′(ϕ2) ξk (θh1 − χξh1 − ηh1 ) + P ′(ϕ2) ξk2 (θh − χξh − ηh)

+ (P ′(ϕ1)− P ′(ϕ2)) ξh1 (θk1 − χξk1 − ηk1 ) + P ′(ϕ2) ξh (θk1 − χξk1 − ηk1 )

+ P ′(ϕ2) ξh2 (θk − χξk − ηk) + (P ′′(ϕ1)− P ′′(ϕ2)) ξh1 ξ
k
1 (σ1 + χ(1− ϕ1)− µ1)

+ P ′′(ϕ2) ξk ξh1 (σ1 + χ(1− ϕ1)− µ1) + P ′′(ϕ2) ξk2 ξ
h (σ1 + χ(1− ϕ1)− µ1)

+ P ′′(ϕ2) ξk2 ξ
h
2 (σ − χϕ− µ) =:

13∑
i=1

Bi , (2.54)

g2 := −(F ′′(ϕ1)− F ′′(ϕ2))ψ2 −
(
F (3)(ϕ1)− F (3)(ϕ2)

)
ξh1 ξ

k
1

− F (3)(ϕ2)
(
ξh ξk1 + ξh2 ξ

k
)
, (2.55)

where Bi denotes the ith summand on the right-hand side of (2.54).

At this point, we infer from the proof of [17, Lem. 4.1] that the assertion follows once we can show that

13∑
i=1

‖Bi‖L2(Q) + ‖g2‖L2(Q) ≤ C ‖u‖L2(Q)2 ‖h‖L2(Q)2 ‖k‖L2(Q)2 .

We only show the corresponding estimate for the terms B1, B4, B11 and leave the others to the
interested reader. In the following, we make use of the mean value theorem, Hölder’s inequality, the
continuity of the embeddings V ⊂ L6(Ω) ⊂ L4(Ω), and the global estimates (2.7), (2.8), (2.22), and
(2.46). We have

‖B1‖2
L2(Q) ≤ C

∫ T

0

‖ϕ‖2
4

(
‖ρ2‖2

4 + ‖ψ2‖2
4 + ‖ν2‖2

4

)
ds

≤ C ‖ϕ‖2
C0([0,T ];V ) ‖S′′(u2)[h,k]‖2

C0([0,T ];V )3 ≤ C ‖u‖2
L2(Q)2 ‖h‖2

L2(Q)2 ‖k‖2
L2(Q)2 ,

‖B4‖2
L2(Q) ≤ C

∫ T

0

‖ϕ‖2
6 ‖ξk1 ‖2

6

(
‖θh1 ‖2

6 + ‖ξh1 ‖2
6 + ‖ηh1 ‖2

6

)
ds

≤ C ‖ϕ‖2
C0([0,T ];V ) ‖ξk1 ‖2

Z ‖S′(u1)[h]‖2
Z ≤ C ‖u‖2

L2(Q)2 ‖h‖2
L2(Q)2 ‖k‖2

L2(Q)2 ,
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as well as

‖B11‖2
L2(Q) ≤ C

(
‖σ1‖2

L∞(Q) + ‖ϕ1‖2
L∞(Q) + ‖µ1‖2

L∞(Q) + 1
) ∫ T

0

‖ϕ‖2
6 ‖ξh1 ‖2

6 ‖ξk1 ‖2
6 ds

≤ C ‖ϕ‖2
C0([0,T ];V ) ‖ξh1 ‖2

C0([0,T ];V ) ‖ξk1 ‖2
C0([0,T ];V ) ≤ C ‖u‖2

L2(Q)2 ‖h‖2
L2(Q)2 ‖k‖2

L2(Q)2 .

The assertion of the lemma is thus proved.

3 The optimal control problem

We now begin to investigate the control problem (CP). In addition to (A1)–(A6), we make the following
assumptions:

(C1) The constants b1, b2 are nonnegative, while b3, κ are positive.

(C2) It holds ϕ̂Ω ∈ H1(Ω) and ϕ̂Q ∈ L2(Q).

(C3) g : L2(Q)2 → R is nonnegative, continuous and convex on L2(Q)2.

Observe that (C3) implies that g is weakly sequentially lower semicontinuous on L2(Q)2. Moreover,
denoting in the following by ∂ the subdifferential mapping in L2(Q)2, it follows from standard con-
vex analysis that ∂g is defined on the entire space L2(Q)2 and is a maximal monotone operator.
In addition, the mapping ((µ, ϕ, σ),u) 7→ J((µ, ϕ, σ),u) defined by the cost functional (1.1) is
obviously continuous and convex (and thus weakly sequentially lower semicontinuous) on the space(
L2(Q) × C0([0, T ];L2(Ω)) × L2(Q)

)
× L2(Q)2. From a standard argument (which needs no

repetition here) it then follows that the problem (CP) has a solution.

In the following, we often denote by u∗ = (u∗1, u
∗
2) ∈ Uad a local minimizer in the sense of U and

by (µ∗, ϕ∗, σ∗) = S(u∗) the associated state. The corresponding adjoint state variables solve the
adjoint system, which is given by the backward-in-time parabolic system

− ∂tp− β∂tq −∆q + χ∆r + F ′′(ϕ∗)q − P ′(ϕ∗)(σ∗ + χ(1− ϕ∗)− µ∗)(p− r)
+ χP (ϕ∗)(p− r) = b1(ϕ∗ − ϕ̂Q) in Q , (3.1)

− α∂tp−∆p− q + P (ϕ∗)(p− r) = 0 in Q , (3.2)

− ∂tr −∆r − χq − P (ϕ∗)(p− r) = 0 in Q , (3.3)

∂np = ∂nq = ∂nr = 0 on Σ , (3.4)

(p+ βq)(T ) = b2(ϕ∗(T )− ϕ̂Ω), αp(T ) = 0, r(T ) = 0, in Ω . (3.5)

According to [17, Thm. 5.2], the adjoint system has a unique weak solution ( p, q, r ) satisfying

p+ βq ∈ H1(0, T ;V ∗), (3.6)

p ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W0) ∩ L∞(Q), (3.7)

q ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), (3.8)

r ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W0) ∩ L∞(Q), (3.9)
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as well as

− 〈∂t(p+ βq), v〉+

∫
Ω

∇q · ∇v − χ
∫

Ω

∇r · ∇v +

∫
Ω

F ′′(ϕ∗) q v

−
∫

Ω

P ′(ϕ∗)(σ∗ + χ(1− ϕ∗)− µ∗)(p− r)v + χ
∫

Ω

P (ϕ∗)(p− r)v = b1

∫
Ω

(ϕ∗ − ϕ̂Q)v,

(3.10)

− α
∫

Ω

∂tp v +

∫
Ω

∇p · ∇v −
∫

Ω

q v +

∫
Ω

P (ϕ∗) (p− r) v = 0, (3.11)

−
∫

Ω

∂tr v +

∫
Ω

∇r · ∇v − χ
∫

Ω

q v −
∫

Ω

P (ϕ∗) (p− r) v = 0, (3.12)

for every v ∈ V and almost every t ∈ (0, T ), and

(p+ βq)(T ) = b2(ϕ∗(T )− ϕ̂Ω), p(T ) = 0, r(T ) = 0 a.e. in Ω . (3.13)

Moreover, it follows from the proof of [17, Thm. 5.2] that there exists a constant K8 > 0, which
depends only on R and the data (but not on the special choice of u∗ ∈ Uad), such that

‖p‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W0)∩L∞(Q) + ‖q‖H1(0,T ;V ∗)∩L∞(0,T ;H)∩L2(0,T ;V )

+ ‖r‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W0)∩L∞(Q)

≤ K8

(
‖ϕ∗ − ϕ̂Q‖L2(Q) + ‖ϕ∗(T )− ϕ̂Ω‖V

)
. (3.14)

3.1 First-order necessary optimality conditions

In this section, we aim at deriving associated first-order necessary optimality conditions for local min-
ima of the optimal control problem (CP). We assume that (A1)–(A6) and (C1)–(C3) are fulfilled and
define the reduced cost functionals associated with the functionals J and J1 introduced in (1.1) by

Ĵ(u) = J(S(u),u), Ĵ1(u) = J1(S(u),u) . (3.15)

Since S is twice continuously Fréchet differentiable from U into Y and Y is continuously embedded in
C0([0, T ];L2(Q)3), S is also twice continuously Fréchet differentiable from U into C0([0, T ];L2(Q)3).
It thus follows from the chain rule that the smooth part Ĵ1 of Ĵ is a twice continuously Fréchet differ-
entiable mapping from U into R, where, for every u∗ = (u∗1, u

∗
2) ∈ U and every h = (h1, h2) ∈ U,

it holds with (µ∗, ϕ∗, σ∗) = S(u∗) that

Ĵ ′1(u∗)[h] = b1

∫∫
Q

ξh(ϕ∗ − ϕ̂Q) + b2

∫
Ω

ξh(T )(ϕ∗(T )− ϕ̂Ω)

+ b3

∫∫
Q

(u∗1h1 + u∗2h2), (3.16)

where (ηh, ξh, θh) = S′(u∗)[h] is the unique solution to the linearized system (2.16)–(2.20), with
λ1 = λ2 = 1 and λ3 = λ4 = 0, associated with h.

Remark 3.1. Observe that the right-hand side of (3.16) is meaningful also for arguments h = (h1, h2)
∈ L2(Q)2, where in this case (ηh, ξh, θh) = S′(u∗)[h] with the extension of the operator S′(u∗) to
L2(Q)2 introduced in Remark 2.5. Hence, by means of the identity (3.16) we can extend the operator
Ĵ ′1(u∗) ∈ U∗ to L2(Q)2. The extended operator, which we again denote by Ĵ ′1(u∗), then becomes
an element of (L2(Q)2)∗. In this way, expressions of the form Ĵ ′1(u∗)[h] have a proper meaning also
for h ∈ L2(Q)2.
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In the following, we assume that u∗ = (u∗1, u
∗
2) ∈ Uad is a given locally optimal control for (CP) in

the sense of U, that is, there is some ε > 0 such that

Ĵ(u) ≥ Ĵ(u∗) for all u ∈ Uad satisfying ‖u− u∗‖U ≤ ε. (3.17)

Notice that any locally optimal control in the sense of Lp(Q)2 with 1 ≤ p <∞ is also locally optimal
in the sense of U. Therefore, a result proved for locally optimal controls in the sense of U is also
valid for locally optimal controls in the sense of Lp(Q)2. It is of course also valid for (globally) optimal
controls.

Now, in the same way as in [55], we infer that then the variational inequality

Ĵ ′1(u∗)[u− u∗] + κ (g(u)− g(u∗)) ≥ 0 ∀u ∈ Uad (3.18)

is satisfied. Moreover, denoting by the symbol ∂ the subdifferential mapping in L2(Q)2 (recall that
g is a convex continuous functional on L2(Q)2), we conclude from [55, Thm. 4.5] that there is some
λ∗ = (λ∗1, λ

∗
2) ∈ ∂g(u∗) ⊂ L2(Q)2 such that

Ĵ ′1(u∗)[u− u∗] +

∫∫
Q

κ (λ∗1(u1 − u∗1) + λ∗2(u2 − u∗2)) ≥ 0 ∀u = (u1, u2) ∈ Uad. (3.19)

As usual, we simplify the expression Ĵ ′1(u∗)[u − u∗] in (3.19) by means of the adjoint state vari-
ables defined in (3.1)–(3.5). A standard calculation (see the proof of [17, Thm. 5.4]) then leads to the
following result.

Theorem 3.2. (Necessary optimality condition) Suppose that (A1)–(A6) and (C1)–(C3) are fulfilled.
Moreover, let u∗ = (u∗1, u

∗
2) ∈ Uad be a locally optimal control of (CP) in the sense of U with

associated state (µ∗, ϕ∗, σ∗) = S(u∗) and adjoint state (p∗, q∗, r∗). Then there exists some λ∗ =
(λ∗1, λ

∗
2) ∈ ∂g(u∗) such that, for all u = (u1, u2) ∈ Uad,∫∫
Q

(−h p∗ + κλ∗1 + b3u
∗
1)(u1 − u∗1) +

∫∫
Q

(r∗ + κλ∗2 + b3u
∗
2)(u2 − u∗2) ≥ 0 . (3.20)

Remark 3.3. We underline again that (3.20) is also necessary for all globally optimal controls and all
controls which are even locally optimal in the sense of Lp(Q)×Lp(Σ) with p ≥ 1. Observe also that
the variational inequality (3.20) is equivalent to two independent variational inequalities for u∗1 and u∗2
that have to hold simultaneously, namely,∫∫

Q

(−h p∗ + κλ∗1 + b3u
∗
1) (u1 − u∗1) ≥ 0 ∀u1 ∈ U1

ad, (3.21)∫∫
Q

(r∗ + κλ∗2 + b3u
∗
2) (u2 − u∗2) ≥ 0 ∀u2 ∈ U2

ad, (3.22)

where

U i
ad := {ui ∈ L∞(Q) : ui ≤ ui ≤ ui a.e. in Q}, i = 1, 2. (3.23)

3.2 Sparsity of controls

The convex function g in the objective functional accounts for the sparsity of optimal controls, i.e.,
any locally optimal control can vanish in some region of the space-time cylinder Q. The form of this
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region depends on the particular choice of the functional g which can differ in different situations. The
sparsity properties can be deduced from the variational inequalities (3.21) and (3.22) and the form
of the subdifferential ∂g. In this paper, we restrict our analysis to the case of full sparsity which is
characterized by the functional (recall (1.1))

g(u) = g(u1, u2) :=

∫∫
Q

(|u1|+ |u2|) . (3.24)

Other important choices leading to the directional sparsity with respect to time and the directional
sparsity with respect to space are not considered here. It is well known (see, e.g., [54]) that the subd-
ifferential of g is given by

∂g(u) = g(u1, u2)

:=

(λ1, λ2) ∈ L2(Q)2 : λi ∈


{1} if ui > 0
[−1, 1] if ui = 0
{−1} if ui < 0

 a.e. in Q, i = 1, 2

 . (3.25)

The following sparsity result can be proved in exactly the same way as [55, Thm. 4.9].

Theorem 3.4. (Full sparsity) Suppose that the assumptions (A1)–(A6) and (C1)–(C3) are fulfilled,
and assume that ui < 0 < ui, i = 1, 2. Let u∗ = (u∗1, u

∗
2) ∈ Uad be a locally optimal control in the

sense of U for the problem (CP) with the sparsity functional g defined in (3.24), and with associated
state (µ∗, ϕ∗, σ∗) = S(u∗) solving (1.2)–(1.6) and adjoint state (p∗, q∗, r∗) solving (3.1)–(3.5). Then
there exists some (λ∗1, λ

∗
2) ∈ ∂g(u∗) such that (3.21)–(3.22) are satisfied. In addition, we have that

u∗1(x, t) = 0 ⇐⇒ | − h(x, t)p∗(x, t)| ≤ κ, for a.e. (x, t) ∈ Q, (3.26)

u∗2(x, t) = 0 ⇐⇒ |r∗(x, t)| ≤ κ, for a.e. (x, t) ∈ Q. (3.27)

Moreover, if (p∗, q∗, r∗) and (λ∗1, λ
∗
2) are given, then (u∗1, u

∗
2) is obtained from the projection formulas

u∗1(x, t) = max
{
u1,min

{
u1,−b3

−1 (−h p∗ + κλ∗1) (x, t)
}}

for a.e. (x, t) ∈ Q, (3.28)

u∗2(x, t) = max
{
u2,min

{
u2,−b3

−1 (r∗ + κλ∗2) (x, t)
}}

for a.e. (x, t) ∈ Q. (3.29)

The projection formulas above are standard conclusions from the variational inequalities (3.21)–(3.22).

3.3 Second-order sufficient optimality conditions

In this section, we establish the main results of this paper, using auxiliary results collected in the
Appendix. We provide conditions that ensure local optimality of pairs u∗ = (u∗1, u

∗
2) obeying the first-

order necessary optimality conditions of Theorem 3.2. Second-order sufficient optimality conditions
are based on a condition of coercivity that is required to hold for the smooth part Ĵ1 of Ĵ in a certain
critical cone. The nonsmooth part g contributes to sufficiency by its convexity. In the following, we
generally assume that (A1)–(A6), (C1)–(C3), and the conditions u1 < 0 < u1 and u2 < 0 < u2

are fulfilled. Our analysis will follow closely the lines of [55], which in turn follows [4], where a second-
order analysis was performed for sparse control of the FitzHugh–Nagumo system. In particular, we
adapt the proof of [4, Thm. 3.4] to our setting of less regularity.

DOI 10.20347/WIAS.PREPRINT.3020 Berlin 2023



Second-order conditions in the sparse control of tumor growth 15

To this end, we fix a pair of controls u∗ = (u∗1, u
∗
2) that satisfies the first-order necessary optimality

conditions, and we set (µ∗, ϕ∗, σ∗) = S(u∗). Then the cone

C(u∗) = {(v1, v2) ∈ L2(Q)2 satisfying the sign conditions (3.30) a.e. in Q},

where

vi(x, t)

{ ≥ 0 if u∗i (x, t) = ui
≤ 0 if u∗i (x, t) = ui

, i = 1, 2 , (3.30)

is called the cone of feasible directions, which is a convex and closed subset of L2(Q)2. We also need
the directional derivative of g at u ∈ L2(Q)2 in the direction v = (v1, v2) ∈ L2(Q)2, which is given
by

g′(u,v) = lim
τ↘0

1

τ
(g(u + τv)− g(u)) . (3.31)

Following the definition of the critical cone in [4, Sect. 3.1], we define

Cu∗ = {v ∈ C(u∗) : DĴ(u∗)[v] + κg′(u∗,v) = 0} , (3.32)

which is also a closed and convex subset of L2(Q)2. According to [4, Sect. 3.1], it consists of all
v = (v1, v2) ∈ C(u∗) satisfying

v1(x, t)


= 0 if | − h(x, t)p∗(x, t) + b3u

∗
1(x, t)| 6= κ

≥ 0 if u∗1(x, t) = u1 or (−h(x, t)p∗(x, t) = −κ and u∗1(x, t) = 0)

≤ 0 if u∗1(x, t) = u1 or (−h(x, t)p∗(x, t) = κ and u∗1(x, t) = 0)

, (3.33)

v2(x, t)


= 0 if |r∗(x, t) + b3u

∗
2(x, t)| 6= κ

≥ 0 if u∗2(x, t) = u2 or (r∗(x, t) = −κ and u∗2(x, t) = 0)

≤ 0 if u∗2(x, t) = u2 or (r∗(x, t) = κ and u∗2(x, t) = 0)

. (3.34)

Remark 3.5. Let us compare the first condition in (3.33) with the situation in the differentiable control
problem without sparsity terms obtained for κ = 0. Then this condition leads to the requirement that
v1(x, t) = 0 if | − h(x, t)p∗(x, t) + b3u

∗
1(x, t)| > 0, or, since κ = 0,

v1(x, t) = 0 if | − h(x, t)p∗(x, t) + κλ∗1(x, t) + b3u
∗
1(x, t)| > 0. (3.35)

An analogous condition results for v2.

One might be tempted to define the critical cone using (3.35) and its counterpart for v2 also in the
case κ > 0. This, however, is not a good idea, because it leads to a critical cone that is larger than
needed, in general. As an example, we mention the particular case when the control u∗ = 0 satisfies
the first-order necessary optimality conditions and when | − h p∗| < κ and |r∗| < κ hold a.e.
in Q. Then the upper relation of (3.33), and its counterpart for v2, lead to Cu∗ = {0}, the smallest
possible critical cone.

However, thanks to u∗1 = 0, the variational inequality (3.21) implies that −h p∗ + κλ∗1 + b3u
∗
1 = 0

a.e. in Q, i.e., the condition | − h(x, t)p∗(x, t) + κλ∗1(x, t) + b3u
∗
1(x, t)| > 0 can only be satisfied

on a set of measure zero. Moreover, also the sign conditions (3.30) do not restrict the critical cone.
Hence, the largest possible critical cone Cu∗ = L2(Q)2 would be obtained, provided that analogous
conditions hold for u∗2 and r∗ in Q.

In this example, the quadratic growth condition (3.43) below is valid for the choice (3.32) as critical cone
even without assuming the coercivity condition (3.42) below (here the so-called first-order sufficient
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J. Sprekels, F. Tröltzsch 16

conditions apply), while the use of a cone based on (3.35) leads to postulating (3.42) on the whole
space L2(Q)2 for the quadratic growth condition to be valid. This shows that the choice of (3.32) as
critical cone is essentially better than of one based on (3.35).

At this point, we derive an explicit expression for Ĵ ′′1 (u)[v,w] for arbitrary u = (u1, u2),v =
(v1, v2),w = (w1, w2) ∈ U. In the following, we argue similarly as in [58, Sect. 5.7] (see also
[17, Sect. 6]). At first, we readily infer that, for every ((µ, ϕ, σ),u) ∈ (C0([0, T ];H))3 × U and
v = (v1, v2, v3),w = (w1, w2, w3) such that (v,h), (w,k) ∈ (C0([0, T ];H))3 × U, we have

J ′′1 ((µ, ϕ, σ),u)[(v,h), (w,k)] = b1

∫∫
Q

v2w2 + b2

∫
Ω

v2(T )w2(T ) + b3

∫∫
Q

h · k, (3.36)

where the dot denotes the euclidean scalar product in R2. For the second-order derivative of the
reduced cost functional Ĵ1 at a fixed control u∗ we then find with (µ∗, ϕ∗, σ∗) = S(u∗) that

Ĵ ′′1 (u∗)[h,k] = D(µ,ϕ,σ)J1((µ∗, ϕ∗, σ∗),u∗)[(ν, ψ, ρ)]

+ J ′′1 ((µ∗, ϕ∗, σ∗),u∗)[((ηh, ξh, θh),h), ((ηk, ξk, θk),k)], (3.37)

where (ηh, ξh, θh), (ηk, ξk, θk), and (ν, ψ, ρ) stand for the unique corresponding solutions to the
linearized system associated with h and k, and to the bilinearized system, respectively. From the
definition of the cost functional (1.1) we readily infer that

D(µ,ϕ,σ)J1((µ∗, ϕ∗, σ∗),u∗)[(ν, ψ, ρ)] = b1

∫∫
Q

(ϕ∗ − ϕ̂Q)ψ + b2

∫
Ω

(ϕ∗(T )− ϕ̂Ω)ψ(T ).

(3.38)

We now claim that, with the associated adjoint state (p∗, q∗, r∗),

b1

∫∫
Q

(ϕ∗ − ϕ̂Q)ψ + b2

∫
Ω

(ϕ∗(T )− ϕ̂Ω)ψ(T )

=

∫∫
Q

[
P ′(ϕ∗)

(
ξk(θh − χξh − ηh) + ξh(θk − χξk − ηk)

)
(p∗ − r∗)

+ P ′′(ϕ∗)ξkξh(σ∗ + χ(1− ϕ∗)− µ∗)(p∗ − r∗) − F (3)(ϕ∗)ξhξkq∗
]
. (3.39)

To prove this claim, we multiply (2.37) by p∗, (2.38) by q∗, (2.39) by r∗, add the resulting equalities,
and integrate over Q, to obtain that

0 =

∫∫
Q

p∗
[
α∂tν + ∂tψ −∆ν − P (ϕ∗)(ρ− χψ − ν)

− P ′(ϕ∗)(σ∗ + χ(1− ϕ∗)− µ∗)ψ − f1

]
+

∫∫
Q

q∗
[
β∂tψ −∆ψ − ν − χρ+ F ′′(ϕ∗)ψ + F (3)(ϕ∗)ξhξk

]
+

∫∫
Q

r∗
[
∂tρ−∆ρ+ χ∆ψ + P (ϕ∗)(ρ− χψ − ν)

+ P ′(ϕ∗)(σ∗ + χ(1− ϕ∗)− µ∗)ψ + f1

]
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with the function f1 defined in (2.42). Then, we integrate by parts and make use of the initial and
terminal conditions (2.41) and (3.13) to find that

0 =

∫∫
Q

ν
[
− α∂tp∗ −∆p∗ − q∗ + P (ϕ∗)(p∗ − r∗)

]
+

∫ T

0

〈−∂t(p∗ + βq∗)(t), ψ(t)〉 dt + b2

∫
Ω

(ϕ∗(T )− ϕ̂Ω)ψ(T )

+

∫∫
Q

ψ
[
−∆q∗ + χ∆r∗ + F ′′(ϕ∗)q∗ + χP (ϕ∗)(p∗ − r∗)

− P ′(ϕ∗)(σ∗ + χ(1− ϕ∗)− µ∗)(p∗ − r∗)
]

+

∫∫
Q

ρ
[
− ∂tr∗ −∆r∗ − χq∗ − P (ϕ∗)(p∗ − r∗)

]
+

∫∫
Q

[
− P ′(ϕ∗)

(
ξk(θh − χξh − ηh) + ξh(θk − χξk − ηk)

)
(p∗ − r∗)

− P ′′(ϕ∗)ξkξh(σ∗ + χ(1− ϕ∗)− µ∗)(p∗ − r∗) + F (3)(ϕ∗)ξhξkq∗
]
,

whence the claim follows, since (p∗, q∗, r∗) solves the adjoint system (3.10)–(3.13). From this char-
acterization, along with (3.37) and (3.38), we conclude that

Ĵ ′′1 (u∗)[h,k] = b1

∫∫
Q

ξh ξk + b2

∫
Ω

ξh(T )ξk(T ) + b3

∫∫
Q

h · k

+

∫∫
Q

[
P ′(ϕ∗)

(
ξk(θh − χξh − ηh) + ξh(θk − χξk − ηk)

)
(p∗ − r∗)

+ P ′′(ϕ∗)(σ∗ + χ(1− ϕ∗)− µ∗)(p∗ − r∗)ξhξk − F (3)(ϕ∗)ξhξkq∗
]
. (3.40)

Observe that the expression on the right-hand side of (3.40) is meaningful also for increments h,k ∈
L2(Q)2. Indeed, in this case the expressions (ηh, ξh, θh) = S′(u∗)[h], (ηk, ξk, θk) = S′(u∗)[k],
and (ν, ψ, ρ) = S′′(u∗)[h,k] have an interpretation in the sense of the extended operators S′(u∗)

and S′′(u∗) introduced in Remark 2.5 and Remark 2.7. Therefore, the operator Ĵ ′′1 (u∗) can be
extended by the identity (3.40) to the space L2(Q)2 × L2(Q)2. This extension, which will still be
denoted by Ĵ ′′1 (u∗), will be frequently used in the following. We now show that it is continuous. Indeed,
we claim that for all h,k ∈ L2(Q)2 it holds∣∣∣Ĵ ′′1 (u∗)[h,k]

∣∣∣ ≤ Ĉ ‖h‖L2(Q)2 ‖k‖L2(Q)2 , (3.41)

where the constant Ĉ > 0 is independent of the choice of u∗ ∈ UR. Obviously, only the last integral
on the right-hand side of (3.40) needs some treatment, and we estimate just its third summand, leaving
the others as an exercise to the reader. We have, by virtue of Hölder’s inequality, the continuity of the
embedding V ⊂ L4(Ω), and the global bounds (2.9), (2.22), and (3.14),∣∣∣ ∫∫

Q

F (3)(ϕ∗)ξhξkq∗
∣∣∣ ≤ C

∫ T

0

‖ξh‖4 ‖ξk‖4 ‖q∗‖2 dt

≤ C ‖ξh‖C0([0,T ];V ) ‖ξk‖C0([0,T ];V ) ‖q∗‖L∞(0,T ;H) ≤ C ‖h‖L2(Q)2 ‖k‖L2(Q)2 ,
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as asserted.

In the following, we will employ the following coercivity condition:

Ĵ ′′1 (u∗)[v,v] > 0 ∀v ∈ Cu∗ \ {0} . (3.42)

Condition (3.42) is a direct extension of associated conditions that are standard in finite-dimensional
nonlinear optimization. In the optimal control of partial differential equation, it was first used in [5]. As
in [4, Thm 3.3] or [5], it can be shown that (3.42) is equivalent to the existence of a constant δ > 0
such that Ĵ ′′1 (u∗)[v,v] ≥ δ ‖v‖2

L2(Q)2 for all v ∈ Cu∗ .

We have the following result.

Theorem 3.6. (Second-order sufficient condition) Suppose that (A1)–(A6) and (C1)–(C3) are fulfilled
and that ui < 0 < ui, i = 1, 2. Moreover, let u∗ = (u∗1, u

∗
2) ∈ Uad, together with the associated

state (µ∗, ϕ∗, σ∗) = S(u∗) and the adjoint state (p∗, q∗, r∗), fulfill the first-order necessary optimality
conditions of Theorem 3.2. If, in addition, u∗ satisfies the coercivity condition (3.42), then there exist
constants ε > 0 and τ > 0 such that the quadratic growth condition

Ĵ(u) ≥ Ĵ(u∗) + τ ‖u− u∗‖2
L2(Q)2 (3.43)

holds for all u ∈ Uad with ‖u− u∗‖L2(Q)2 < ε. Consequently, u∗ is a locally optimal control in the
sense of L2(Q)2.

Proof. The proof follows that of [4, Thm. 3.4]. We argue by contradiction, assuming that the claim of
the theorem is not true. Then there exists a sequence of controls {uk} ⊂ Uad such that, for all k ∈ N,

‖uk − u∗‖L2(Q)2 <
1

k
while Ĵ(uk) < Ĵ(u∗) +

1

2k
‖uk − u∗‖2

L2(Q)2 . (3.44)

Noting that uk 6= u∗ for all k ∈ N, we define

rk = ‖uk − u∗‖L2(Q)2 and vk =
1

rk
(uk − u∗) .

Then ‖vk‖L2(Q)2 = 1 and, possibly after selecting a subsequence, we can assume that

vk → v weakly in L2(Q)2

for some v ∈ L2(Q)2. As in [4], the proof is split into three parts.

(i) v ∈ Cu∗ : Obviously, each vk obeys the sign conditions (3.30) and thus belongs to C(u∗). Since
C(u∗) is convex and closed in L2(Q)2, it follows that v ∈ C(u∗). We now claim that

Ĵ ′1(u∗)[v] + κg′(u∗,v) = 0. (3.45)

Notice that by Remark 3.1 the expression Ĵ ′1(u∗)[v] is well defined. For every r ∈ (0, 1) and all
v = (v1, v2), u = (u1, u2) ∈ L2(Q)2, we infer from the convexity of g that

g(v)− g(u) ≥ g(u + r(v − u))− g(u)

r
≥ g′(u,v − u)

= max
(λ1,λ2)∈∂g(u)

∫∫
Q

(
λ1(v1 − u1) + λ2(v2 − u2)

)
. (3.46)
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In particular, with uk = (uk1 , uk2),

Ĵ ′1(u∗)[v] + κg′(u∗,v) ≥ Ĵ ′1(u∗)[v] +

∫∫
Q

κ
(
λ∗1v1 + λ∗2v2

)
=

∫∫
Q

(
(−hp∗ + b3u

∗
1 + κλ∗1)v1 + (r∗ + b3u

∗
2 + κλ∗2)v2

)
= lim

k→∞

1

rk

∫∫
Q

(
(−hp∗ + b3u

∗
1 + κλ∗1)(uk1 − u∗1) + (r∗ + b3u

∗
2 + κλ∗2)(uk2 − u∗2)

)
≥ 0 , (3.47)

by the variational inequality (3.20). Next, we prove the converse inequality. By (3.44), we have

Ĵ1(uk)− Ĵ1(u∗) + κ (g(uk)− g(u∗)) <
1

2k
r2
k ,

whence, owing to the mean value theorem, and since uk = u∗ + rkvk, we get

Ĵ1(u∗) + rkĴ
′
1(u∗ + θkrkvk)[vk] + κg(u∗ + rkvk) < Ĵ1(u∗) + κg(u∗) +

1

2k
r2
k

with some 0 < θk < 1. From (3.46), we obtain κ(g(u∗+ rkvk)−g(u∗)) ≥ κg′(u∗, rkvk), and thus

rkĴ
′
1(u∗ + θkrkvk)[vk] + rkκg

′(u∗,vk) <
r2
k

2k
.

We divide this inequality by rk and pass to the limit k → ∞. Here, we invoke Corollary 4.2 of the
Appendix, and we use that g′(u∗,vk)→ g′(u∗,v). We then obtain the desired converse inequality

Ĵ ′1(u∗)[v] + κg′(u∗,v) ≤ 0 ,

which completes the proof of (i).

(ii) v = 0: We again invoke (3.44), now performing a second-order Taylor expansion on the left-hand
side,

Ĵ1(u∗) + rkĴ
′
1(u∗)[vk] +

r2
k

2
Ĵ ′′1 (u∗ + θkrkvk)[vk,vk] + κg(u∗ + rkvk)

< Ĵ1(u∗) + κg(u∗) +
r2
k

2k
.

We subtract Ĵ1(u∗) + κg(u∗) from both sides and use (3.46) once more to find that

rk

(
Ĵ ′1(u∗)[vk] + κg′(u∗,vk)

)
+
r2
k

2
Ĵ ′′1 (u∗ + θkrkvk)[vk,vk] <

r2
k

2k
. (3.48)

From the right-hand side of (3.46), and the variational inequality (3.20), it follows that

Ĵ ′1(u∗)[vk] + κg′(u∗,vk) ≥ 0 ,

and thus, by (3.48),

Ĵ ′′1 (u∗ + θkrkvk)[vk,vk] <
1

k
. (3.49)
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Passing to the limit k → ∞, we apply Lemma 4.3 and deduce that Ĵ ′′1 (u∗)[v,v] ≤ 0. Since we
know that v ∈ Cu∗ , the second-order condition (3.42) implies that v = 0.

(iii) Contradiction: From the previous step we know that vk → 0 weakly in L2(Q)2. Moreover, (3.40)
yields that

Ĵ ′′1 (u∗)[vk, vk] = b3

∫∫
Q

|vk|2 + b1

∫∫
Q

|ξk|2 + b2

∫
Ω

|ξk(T )|2

+

∫∫
Q

[
2P ′(ϕ∗)ξk(θk − χξk − ηk)(p∗ − r∗) − F (3)(ϕ∗)q∗ |ξk|2

]
+

∫∫
Q

P ′′(ϕ∗)(σ∗ + χ(1− ϕ∗)− µ∗)(p∗ − r∗)|ξk|2 , (3.50)

where we have set (ηk, ξk, θk) = S′(u∗)[vk], for k ∈ N. By virtue of Lemma 4.3, the sum of the
last four integrals on the right-hand side converges to zero. On the other hand, ‖vk‖L2(Q)2 = 1 for
all k ∈ N, by construction. The weak sequential semicontinuity of norms then implies that

lim inf
k→∞

Ĵ ′′1 (u∗)[vk,vk] ≥ lim inf
k→∞

b3

∫∫
Q

|vk|2 = b3 > 0 .

On the other hand, it is easily deduced from (3.49) and (2.47) that

lim inf
k→∞

Ĵ ′′1 (u∗)[vk,vk] ≤ 0 ,

a contradiction. The assertion of the theorem is thus proved.

Remark 3.7. For the particular case κ = 0 without sparsity functional, Theorem 3.6 improves the
second-order sufficient condition [17, Thm. 6.1]: indeed, our coercivity condition (3.42) is required on a
smaller critical cone (compare (3.35) with the condition [17, (6.10)]), and we have local optimality in an
L2-neighborhood, hence in a larger set than in an L∞-neighborhood as in [17]. We note at this place
that the formula (6.5) in [17], which resembles (3.50), contains three sign errors: indeed, the term in
the second line of [17, (6.5)] involving P ′′ should carry a “plus” sign, while the two terms in the third
line should carry “minus” signs. These sign errors, however, do not have an impact on the validity of
the results established in [17].

4 Appendix

In the following, we assume that (A1)–(A6) and (C1)–(C3) are fulfilled and that u∗ ∈ Uad is fixed with
associated state (µ∗, ϕ∗, σ∗) = S(u∗) and adjoint state (p∗, q∗, r∗). We also recall the definitions
of the spaces used below given in (2.11), (2.14), and (2.15).

Lemma 4.1. Let {uk} ⊂ Uad converge strongly in L2(Q)2 to u∗, and let (µk, ϕk, σk) = S(uk)
and (pk, qk, rk), k ∈ N, denote the associated states and adjoint states. Then

µk → µ∗ strongly in Z, (4.1)

ϕk → ϕ∗ strongly in Z ∩ C0(Q), (4.2)

σk → σ∗ strongly in Z, (4.3)

pk → p∗ weakly-star in Z and strongly in C0([0, T ];Lp(Ω)) for 1 ≤ p < 6, (4.4)

qk → q∗ weakly-star in H1(0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ), (4.5)

rk → r∗ weakly-star in Z and strongly in C0([0, T ];Lp(Ω)) for 1 ≤ p < 6. (4.6)
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Proof. The strong convergence ‖S(uk)− S(u∗)‖Z → 0 follows directly from (2.10). In addition, the
global bound (2.7) implies that {ϕk} is bounded in the space X̃ defined in (2.11), which, thanks to
the compactness of the embedding W0 ⊂ C0(Ω) and [53, Sec. 8, Cor. 4], is compactly embedded
in C0(Q). Therefore it holds ‖ϕk − ϕ∗‖C0(Q) → 0 (at first only for a suitable subsequence, but
then, owing to the uniqueness of the limit point, eventually for the entire sequence). The convergence
properties (4.1)–(4.3) of the state variables are thus shown. In addition, it immediately follows from the
mean value theorem and (2.9) that, as k →∞,

max
i=1,2,3

‖F (i)(ϕk)− F (i)(ϕ∗)‖C0(Q) → 0,

max
i=0,1,2

‖P (i)(ϕk)− P (i)(ϕ∗)‖C0(Q) → 0. (4.7)

Next, we conclude from the bounds (3.14) and (2.7) that there are a subsequence, which is again
labeled by k ∈ N, and some triple (p, q, r) such that, as k →∞,

pk → p weakly-star in Z ∩ L∞(Q), (4.8)

qk → q weakly-star in H1(0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ), (4.9)

rk → r weakly-star in Z ∩ L∞(Q). (4.10)

Moreover, by [53, Sect. 8, Cor. 4] and the compactness of the embedding V ⊂ Lp(Ω) for 1 ≤ p < 6,
we also have

pk → p, rk → r, both strongly in C0([0, T ];Lp(Ω)) for 1 ≤ p < 6. (4.11)

From these estimates and (4.7) we can easily conclude that, as k →∞,

F ′′(ϕk)qk → F ′′(ϕ∗)q, P (ϕk)(pk − rk)→ P (ϕ∗)(p− r),
P ′(ϕk)(σk − χ(1− ϕk)− µk)(pk − rk)→ P ′(ϕ∗)(σ∗ − χ(1− ϕ∗)− µ∗)(p− r), (4.12)

all weakly in L2(Q).

At this point, we consider the time-integrated version of the adjoint system (3.10)–(3.13) with test
functions in L2(0, T ;V ), written for ϕk, pk, qk, rk, k ∈ N. Passage to the limit as k → ∞, using
the above convergence results, immediately leads to the conclusion that (p, q, r) solves the time-
integrated version of (3.10)–(3.13) with test functions in L2(0, T ;V ), which is equivalent to saying that
(p, q, r) is a solution to (3.10)–(3.13). By the uniqueness of this solution, we must have (p, q, r) =
(p∗, q∗, r∗). The convergence properties (4.4)–(4.6) are therefore valid for a suitable subsequence,
and since the limit is uniquely determined, also for the entire sequence.

Corollary 4.2. Let {uk} ⊂ Uad converge strongly in L2(Q)2 to u∗, and let {vk} converge weakly
to v in L2(Q)2. Then

lim
k→∞

Ĵ ′1(uk)[vk] = Ĵ ′1(u∗)[v] . (4.13)

Proof. We have, with uk = (uk1 , uk2) and vk = (vk1 , vk2),

Ĵ ′1(uk)[vk] =

∫∫
Q

(−h pk + b3uk1)vk1 +

∫∫
Q

(rk + b3uk2)vk2 .

Owing to Lemma 4.1, we have, in particular, that {−h pk + b3uk1} and {rk + b3uk2} converge
strongly in L2(Q) to −h p∗ + b3u

∗
1 and r∗ + b3u

∗
2, respectively, whence the assertion immediately

follows.
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Lemma 4.3. Let {uk} and {vk} satisfy the conditions of Corollary 4.2, and assume that b3 = 0.
Then

lim
k→∞

Ĵ ′′1 (uk)[vk,vk] = Ĵ ′′1 (u∗)[v,v]. (4.14)

Proof. Let vk = (vk1 , vk2), v = (v1, v2), (ηk, ξk, θk) = S′(uk)[vk], and (η, ξ, θ) = S′(u∗)[v].
Since b3 = 0, we infer from (3.50) that we have to show that, as k →∞,

b1

∫∫
Q

|ξk|2 + b2

∫
Ω

|ξk(T )|2 +

∫∫
Q

2P ′(ϕk)ξk(θk − χξk − ηk)(pk − rk)

+

∫∫
Q

[
P ′′(ϕk)(σk + χ(1− ϕk)− µk)|ξk|2 − F (3)(ϕk)qk |ξk|2

]
→ b1

∫∫
Q

|ξ∗|2 + b2

∫
Ω

|ξ∗(T )|2 +

∫∫
Q

2P ′(ϕ∗)ξ∗(θ∗ − χξ∗ − η∗)(p∗ − r∗)

+

∫∫
Q

[
P ′′(ϕ∗)(σ∗ + χ(1− ϕ∗)− µ∗)(p∗ − r∗)|ξ∗|2 − F (3)(ϕ∗)q∗ |ξ∗|2

]
, (4.15)

where (pk, qk, rk) and (p∗, q∗, r∗) are the associated adjoint states. By Lemma 4.1 and its proof, the
convergence properties (4.1)–(4.6) and (4.7) are valid. Moreover, we have

(ηk, ξk, θk)− (η∗, ϕ∗, θ∗) = (S′(uk)− S′(u∗)) [vk] + S′(u∗)[vk − v] .

By virtue of (2.23) and the boundedness of {vk} in L2(Q)2, the first summand on the right-hand side
of this identity converges strongly to zero in Z. The second converges to zero weakly in Z × X̃ ×Z .
Hence, thanks to the compactness of the embedding Z ⊂ C0([0, T ];Lp(Ω)) for 1 ≤ p < 6 (see,
e.g., [53, Sect. 8, Cor. 4]),

(ηk, ξk, θk)→ (η∗, ξ∗, θ∗) strongly in C0([0, T ];Lp(Ω))3 for 1 ≤ p < 6. (4.16)

In particular, as k →∞,

b1

∫∫
Q

|ξk|2 + b2

∫
Ω

|ξk(T )|2 → b1

∫∫
Q

|ξ∗|2 + b2

∫
Ω

|ξ∗(T )|2 . (4.17)

Moreover, owing to the strong convergences in C0([0, T ];Lp(Ω)) for 1 ≤ p < 6, it is easily checked,
using Hölder’s inequality, that

P ′(ϕk)ξk(θk − χξk − ηk)(pk − rk) → P ′(ϕ∗)ξ∗(θ∗ − χξ∗ − η∗)(p∗ − r∗) ,
P ′′(ϕk)(σk + χ(1− ϕk)− µk)(pk − rk)|ξk|2 → P ′′(ϕ∗)(σ∗ + χ(1− ϕ∗)− µ∗)(p∗ − r∗)|ξ∗|2,

(4.18)

both strongly in L1(Q). It remains to show that, as k →∞,∫∫
Q

F (3)(ϕk)qk |ξk|2 →
∫∫

Q

F (3)(ϕ∗)q∗ |ξ∗|2 .

Since qk → q∗ weakly inL2(Q) by (4.9), it thus suffices to show that F (3)(ϕk) |ξk|2 → F (3)(ϕ∗) |ξ∗|2
strongly in L2(Q). However, this is a simple consequence of (4.7) and (4.16). The assertion is thus
proved.
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