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Abstract

We examine the e�ect of the breaking of vorticity conservation by viscous dissipation

on transport in the underlying 
uid 
ow. The transport of interest is between regimes

of di�erent characteristic motion and is a�orded by the splitting of separatrices. A base


ow that is vorticity conserving is assumed therefore to have a separatrix that is either

a homoclinic or a heteroclinic orbit. The corresponding vorticity dissipating 
ow, with

small time-dependent forcing and viscous parameter ", maintains an O(") closeness

to the inviscid 
ow in a weak sense. An appropriate Melnikov theory that allows for

such weak perturbations is then developed. A surprisingly simple expression for the

leading order distance between perturbed invariant (stable and unstable) manifolds is

derived which depends only on the inviscid 
ow. Finally, the implications for transport

in barotropic jets are discussed.

1 Introduction

Separatrices are distinguished Lagrangian trajectories that demarcate the boundary be-

tween regimes of di�erent characteristic motion in a 
uid 
ow. The breaking of a separatrix

under perturbation will augur the transport of 
uid between regimes of ostensibly di�erent

motion. When the separatrix is intact (before perturbation) it serves as an impermeable

boundary to 
uid parcels and therefore genuinely separates the di�erent regimes. When the

separatrix has split (after perturbation) 
uid parcels can move between these previously

distinct regions. If the perturbed 
ow enjoys periodic time dependence and the splitting

occurs as a transverse intersection of the stable and unstable manifolds involved in the

separatrix then the transport will have a chaotic signature and extensive stirring will take

place, see Ottino [18].

If a two-dimensional incompressible 
ow conserves vorticity then the 
ow �eld can be

treated as a Hamiltonian system with two degrees of freedom and the vorticity supplies

a second integral. This idea and its consequences are explored in the work of Brown and

Samelson, see [7]. If the 
ow �eld is periodic in time then this enforces certain structure

that e�ectively precludes chaotic transport. Indeed, we would expect in this situation to

have, for instance, vortical regions separated from laminar regimes by separatrices.

The basic question to be addressed in this paper is whether the addition of dissipation

to the system forces the separatrices to split and whether any resulting transport has a

chaotic nature, this feature being a consequence of the stable and unstable manifolds still

intersecting but only at isolated points and then transversely. The dissipation that is

physically most relevant comes from the inclusion of viscosity. This manifests itself as a

dissipative term in the vorticity equation. Of interest is then the fate of the separatrices

1



in the perturbed 
ow �eld. It should be emphasised here that the dissipation is being

added to the partial di�erential equation which is satis�ed by the 
ow �eld and not to the


ow �eld itself, for which there is no concrete analytic expression. This is then a highly

nontrivial exercise to ascertain the e�ect of the dissipation as it appears implicitly in the

perturbed 
ow �eld. It is clear that vorticity is no longer conserved with viscosity present

and thus the second integral is broken. However, the 
ow is still incompressible and thus the

Hamiltonian structure is una�ected. We are considering then a nonintegrable two-degree

of freedom Hamiltonian system.

To set the scene, let us assume that the streamfunction, the existence of which is guaranteed

by incompressibility, is denoted in the inviscid case by  0(x; y; t). The dynamics obey, to

a �rst approximation, the conservation of vorticity equation

Dq0

Dt
= 0; (1.1)

where the operator D
Dt represents the material derivative

D
Dt =

@
@t �

@ 0

@y
@
@x +

@ 0

@x
@
@y ; and

the vorticity is given by

q0(x; y; t) = � 0(x; y; t); (1.2)

where � is the Laplacian in the spatial variables. Notice that (1.1) can be considered a

nonlinear partial di�erential equation for the variable  0 alone:

@

@t
� 0

�

@ 0

@y

@� 0

@x
+
@ 0

@x

@� 0

@y
= 0:

The Lagrangian trajectories of 
uid parcels are then obtained by solving the ordinary

di�erential equation (ODE)

_x = �

@ 0

@y
(x; y; t)

_y =
@ 0

@x
(x; y; t):

(1.3)

We add viscosity and forcing to the system. Denoting the streamfunction by  (x; y; t),

(1.1) is replaced by
Dq

Dt
= " [�q + f(x; y; t)] ; (1.4)

where D
Dt

= @
@t
�

@ 
@y

@
@x

+ @ 
@x

@
@y
, and the vorticity and the streamfunction are again related

by

q(x; y; t) = � (x; y; t): (1.5)

The positive parameter " represents a measure of the viscosity. The corresponding partial

di�erential equation for  reads

@

@t
� �

@ 

@y

@� 

@x
+
@ 

@x

@� 

@y
= "

h
�2 + f(x; y; t)

i
:
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Of interest then is the Lagrangian dynamics associated with (1.4), that is the trajectories

of

_x = �

@ 

@y
(x; y; t)

_y =
@ 

@x
(x; y; t):

(1.6)

We consider (1.6) as a perturbation of (1.3). Note again that we only know of the full

vector �eld  and the inviscid vector �eld  0 that they satisfy their respective partial

di�erential equations. A fundamental di�culty is that the limiting behaviour of  as

"! 0 can only be established in a weak sense, see [1, 2]. This is an inevitable di�culty in

problems of vanishing dissipation, see, for instance, the references in [26]. For our purposes

the consequence is that it necessitates an adapted Melnikov theory which works in cases

that the perturbation is only weakly related to the limiting 
ow. A further complication

is that we cannot guarantee the existence of a perturbed vector �eld, in other words a

solution of (1.4), which is close to  0 for all time, even if the initial data are close. Since we

are interested in the behaviour of the associated dynamical system and, in particular, its

potentially chaotic nature it is natural to consider velocity �elds for the perturbed system

that are periodic. The existence, however, cannot always be guaranteed of such velocity

�elds. It is shown in Section 7 that periodic velocity �elds are unlikely to occur. We

therefore choose to develop the theory for the case of bounded velocity �elds, and this is

the subject of Theorem 1.

The key computation, and indeed the main result of this article, is then to calculate the

distance between stable and unstable manifolds in the ODE phase space after separation

due to a viscous perturbation. An explicit expression is derived for the leading order term

of this distance. Surprisingly, it depends only on the unperturbed (inviscid) 
ow and the

forcing term, see Theorem 3. It is then possible to draw conclusions about the nature of

transport after adding viscosity from the knowledge of the inviscid 
ow alone.

Much of the motivation for these results comes from oceanography. The relevance of oceanic

jets such as the Gulf Stream to 
uid transport in the oceans has evoked much recent interest

among oceanographers [3, 4, 5, 6, 11, 13, 15, 16, 17, 20, 21, 22, 23, 24, 27]. Under some

approximations, these jets can be modelled by barotropic motion: a reduction to the two

horizontal directions [10, 19]. Satellite photographs show that the Gulf Stream is, close to

continental America, an eastward 
owing meandering jet, 
anked by recirculating regions

called cat's eyes [24]. A typical (gross) 
ow pattern of such a jet is illustrated in Figure 1,

whose axes loosely correspond to the local eastward and northward directions. In fact, it

is traditional to assume that a phase portrait of the form of Figure 1 arises in a frame

moving eastward at some speed c [11, 17, 20, 21, 23, 27]. However, this apparent regularity
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Figure 1: A typical meandering (cat's eye) jet.

of motion is challenged by the observed motion of 
oats, which traverse seemingly random

trajectories near the Gulf Stream [5, 6]. The indications are that the Gulf Stream is best

modelled by a regular Eulerian 
ow which, nevertheless, has irregular Lagrangian motion.

We expect that perturbations will destroy the heteroclinic separatrices of Figure 1, pro-

ducing interaction between 
uid parcels of disparate origins. Many authors have ex-

ploited this fact in kinematic models to obtain, numerically and otherwise, chaotic mixing

[3, 13, 16, 23, 27]. However, these perturbations are often imposed without regard to the

dynamical equations that the 
ow must obey.

Seemingly key to the dynamics of the ocean is the near conservation of the potential vor-

ticity, which generalises the notion of viscosity to the oceanographic context by including

the e�ect of planetary vorticity. The barotropic �-plane potential vorticity is then given by

adding a linear term in y to the ambient vorticity

q0(x; y; t) = � 0(x; y; t) + �y: (1.7)

The positive constant � is the Coriolis parameter. The set-up described above can be

reinterpreted in the oceanographic context by replacing (1.2) with (1.7). Under this rein-

terpretation, and for the case of a meandering jet, the phase portrait of (1.3) in a frame

moving eastward at speed c is then assumed to have the structure of Figure 1, and particular

examples are given in [1, 7, 11, 21].

The issue of oceanographic interest is then to see if a velocity �eld resulting from a situation
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under which potential vorticity is not conserved does indeed involve transport between the

jet, the cat's eyes and the ambient water. This will be addressed exactly as above but

with the potential vorticity replacing the usual two-dimensional vorticity. Since the non-

oceanographic case is achieved by just setting � = 0 we shall in the following cast all the

results in oceanographic terms and refer to the potential vorticity.

This paper is organised as follows. In the next section, we develop the Melnikov theory

for weak perturbations. Estimates for the distances of inner separatrices of perturbed

cat's eyes are derived in Section 3. Section 4 deals with the validity of considering the

Eulerian velocity �eld resulting from the viscous dynamics (1.4) as a regular perturbation

on that produced by the inviscid limit (1.1). We combine these results in Sections 5 and

6, where we compute the distance between manifolds in the phase space after separation

due to a viscous perturbation. In Section 7, we come back to the Eulerian equations, and

comment on whether periodic streamfunctions occur. Finally, the implications on transport

in barotropic jets are discussed in Section 8.

2 Melnikov theory for weak perturbations

This section presents a Melnikov theory for base 
ows in two dimensions which possess

heteroclinic structures. The point here is that the perturbations are not necessarily con-

tinuous in ". The approach is motivated by that presented in Section 11.3 in Chow & Hale

for the smooth case [8]. Suppose 
 is a two-dimensional smooth surface, and u 2 
. Let

g0 : 
 ! IR
2 such that g0 2 Cr(
), r � 2. Consider as the unperturbed 
ow on 
 the

autonomous ODE

_u = g0(u): (2.1)

Firstly, we assume the presence of a heteroclinic orbit in the unperturbed system (2.1).

(H1) There exist hyperbolic equilibria A0 and B0 of (2.1) with one-dimensional stable and

unstable manifolds. A branch of the stable manifold of B0 (denoted WS
B0
) coincides with a

branch of the unstable manifold of A0 (denoted WU
A0
). This heteroclinic orbit is denoted by

�u(t).

Let r be the gradient operator with respect to the two-dimensional variable on 
 such

that rg0 is the Jacobian matrix of any function g0 : 
! IR
2.

As a consequence of (H1), the adjoint variational equation

_u = �rg0(�u(t))�u (2.2)
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along the heteroclinic orbit �u(t) possesses a unique, up to a constant multiple, bounded

non-zero solution '(t). If, for instance, (2.1) possesses a �rst integral Q0(u), the solution

'(t) is readily computed.

Lemma 1 ([12]) If (H1) is met and (2.1) possesses a �rst integral Q0(u), that is,

d
dt
Q0(u(t)) = 0 for any solution u(t) of (2.1), then '(t) = rQ0(�u(t)) satis�es (2.2).

Let " be a parameter in the interval I = [0; "0], where "0 is a positive number assumed to

be as small as required. We now consider the perturbed equation

_u = g0(u) + g1(u; t; "); (2.3)

where the function g1 satis�es the following hypothesis. The operator r, as before, will

pertain only to the spatial variable u.

(H2) g1 : 
� IR� I ! IR
2 satis�es the conditions

(i) g1 2 Cr(
� IR) for each " 2 I with uniform bounds, where r � 2,

(ii) g1(u; t; 0) = 0 for all (u; t) 2 
� IR, and

(iii) There is a positive constant C such that

jg1(u; t; ")j+ jrg1(u; t; ")j � C j"j

holds uniformly in (u; t) 2 
� IR.

Note that we deliberately do not assume any smoothness in " as we cannot guarantee

such smoothness in the application to 
uid 
ow. The condition (iii) is a form of Lipschitz

continuity at " = 0. On the other hand, if (H2) is satis�ed, implicit function theorems

are applicable since the perturbation is smooth in the spatial variable and its Jacobian is

small.

Under such a perturbation, the hyperbolic equilibrium A0 perturbs to a bounded solution

A"(t). Its stable and unstable manifolds persist for small enough ", since g1 is uniformly

bounded by (H2), and similarly for B0. The proof of this persistence is provided via

exponential dichotomies by the Roughness Theorem of Coppel [9]. The intention now is

to develop a distance function d(�; ") which measures the separation between the unstable

manifold of A"(t) and the stable manifold of B"(t) in the time slice ft = �g. We begin by

de�ning the space

B(IR) =
n
G : IR! IR

2 bounded and continuous
o
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with the norm jGj = supt2IR jG(t)j.

Thus, '(t) 2 B(IR), and moreover decays to zero exponentially as t ! �1. De�ne the

continuous projection operator P on B(IR) by

PG =
1R

1

�1
j'(s)j2 ds

'(t)

Z
1

�1

'(s) �G(s) ds:

The following lemma, which is essentially a Lyapunov-Schmidt reduction, now holds.

Lemma 2 If G 2 B(IR), the equation

_u = rg0(�u(t))u+ G(t) (2.4)

has a solution in B(IR) if and only if PG = 0. If the initial condition u(0) of (2.4) is

such that hu(0); g0(�u(0))i = 0, then the solution is unique. Moreover, the solution operator

Q : (id � P )B(IR)! B(IR) is linear and continuous.

Proof. See Lemma 3.2 in Section 11.3 of [8].

The result of Lemma 2 can be used to provide a mathematical characterisation for the

existence of a heteroclinic point of (2.3) near the unperturbed manifold. Let u(t) satisfy

(2.3), and set

u(t) = �u(t� �) + �(t� �):

The idea is to �nd a solution u(t) which remains close to the (unperturbed) heteroclinic

orbit �u(t� �). Thus a small solution �(t) is sought which must satisfy

_� = rg0(�u(t)) � + g0(�u(t) + �)� g0(�u(t))�rg0(�u(t)) � + g1(�u(t) + �; t+ �; ")

=: rg0(�u(t)) � +G(�; t+ �; "); (2.5)

where the above serves as a de�nition for the function G(�; t; "). The existence of a hete-

roclinic point of (2.3) near the heteroclinic orbit of the unperturbed case depends on the

existence of a bounded solution to (2.5), see [8]. By Lemma 2, this problem is equivalent

to solving the pair of equations

PG(�; �+ �; ") = 0; (2.6)

� = Q(id� P )G(�; �+ �; "): (2.7)

We now state the main theorem which gives a characterisation of the existence of a (trans-

verse) heteroclinic point in terms of Melnikov-type function. Recall that '(t) is the unique

bounded solution of the adjoint equation (2.2).
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Theorem 1 Suppose (H1) holds for the unperturbed 
ow (2.1), and that the perturbation

g1(u; t; ") satis�es (H2). Then, there exists a unique solution ��(�; ")(t) of (2.7) for small

enough ". Furthermore,

j
��(�; ")j � C j"j

for some positive constant C uniformly in � . De�ne the distance function

d(�; ") =

Z
1

�1

h'(t); G(��(�; ")(t); t+ �; ")i dt; (2.8)

then there exists a heteroclinic point of (2.3) in a neighbourhood of WU
A0

= WS
B0

for j"j < "0

if and only if " and � satisfy d(�; ") = 0. Moreover, the intersection is transverse if and

only if @
@�
d(�; ") 6= 0.

In other words, the unique solution ��(�; ")(t) of (2.7) satis�es (2.6) if and only if d(�; ") = 0.

Proof. We �x � 2 IR. By (H2), the Jacobian rg1 is small for " small. Thus, the operator

T (�; ") = Q(id � P )G(�; �+ �; ");

which consists of the sum of a quadratic term in � and the perturbation g1, is therefore a

uniform contraction on � for small enough ", and for � in a su�ciently small neighbourhood

around zero in B(IR). Suppose that the contraction constant with respect to � for this

operator is # 2 (0; 1). By the contraction mapping principle of Banach-Caccipoli (see, for

example, [8]), this implies that (2.7) has a unique solution ��(�; ")(t) for small enough ".

Recall that g1 is of order O(") by (H2). Hence, T (�; ") satis�es

jT (�; ")� T (�; 0)j � C j"j

for some positive constant C. Consider the solution �(") of (2.7). Since �(0) = 0, we have

j�(")j = jT (�("); ")j

� jT (�("); ")� T (�(0); ")j+ jT (0; ")� T (0; 0)j

� #j�(")j+ C j"j;

for some positive constant C, where the last step is because T (�; ") is a uniform contraction

in � and is small in ". Hence,

j�(")j �
C

1� #
j"j;

and the solution ��(�; ")(t) of (2.7) is small in ". Now, the existence of a heteroclinic point

is equivalent to the existence of solutions to the equations (2.6) and (2.7) as has been

described; Theorem 3.3 of [8] discusses this fact in greater detail. Therefore, a heteroclinic

point exists in the neighbourhood of WU
A0

= WS
B0

for " 2 I if and only if there is a solution

to (2.6) or equivalently, if there exists � and " 2 I such that d(�; ") = 0. The proof of

transversality is analogous to that given in [8].
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An expansion of the distance function d(�; ") is given in the following corollary.

Corollary 1 Suppose all the assumptions of Theorem 1 are met, and write

g1(u; t; ") = "~g1(u; t; "):

The distance function can then be written in the form

d(�; ") = "M(�; ") + O("2);

M(�; ") =

Z
1

�1

h'(t); ~g1(�u(t); t+ �; ")i dt:
(2.9)

Proof. Since we have su�cient smoothness in g0 and g1,

g0(�u(t) + �)� g0(�u(t))�rg0(�u(t)) � = O(j�j2)

g1(�u(t) + �; t+ �; ") = g1(�u(t); t+ �; ") + O(" j�j);

using (H2). However, Theorem 1 asserts that �(") = O(") holds. Thus, d(�; ") has the

required form.

We call d(�; ") the distance function, while the leading order term M(�; ") is referred to

as the Melnikov function. It is useful to note that the function d(�; ") measures a signed

distance between perturbed stable and unstable manifolds. Indeed, let uUA(�; ")(t) and

uSB(�; ")(t) be trajectories in the unstable manifold of A"(t) and the stable manifold of

B"(t) for equation (2.3), respectively, with the property that their scalar product with

g0(�u(0)) vanishes at t = 0. Then,

d(�; ") = h'(0); uUA(�; ")� uSB(�; ")(t)i: (2.10)

In particular, the sign of d(�; ") indicates the direction in which the heteroclinic connection

is broken.

3 Distance between invariant manifolds near perturbed het-

eroclinic loops

As indicated in Figure 1, a key component to a meandering jet are the 
anking cat's eyes,

that is, two heteroclinic orbits forming a loop as depicted in Figure 2(a). Chaotic transport

may occur if the loop is broken. In this section, estimates for the distances between stable

and unstable manifolds in a perturbed cat's eye are presented. Since the equations (1.6)

for Lagrangian trajectories are Hamiltonian, we de�ne

J =

�
0 �1

1 0

�
;
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A" A"B" B"

L1 L1

L2 L2

us(�; ")

�u1(t)

�u2(t)

uUA(�; ")

uSA(�; ")

uSB(�; ")

uUB(�; ")

(a) (b)

Figure 2: Unperturbed (a) and perturbed (b) cat's eye.

and consider

_u = Jr(h0(u) + h1(u; t+ �; ")); (3.1)

for u 2 
. The functions h0 and h1 satisfy the hypothesis:

(H3) The nonlinearities h0 and h1 are Cr+1 for some r � 2. Furthermore, rh0(u) vanishes

at most at isolated points in 
, and g1 := Jrh1(u; t; ") satis�es (H2).

Next, we assume that (3.1) has a cat's-eye structure.

(H4) For " = 0, there exist hyperbolic equilibria A0 and B0 of (3.1) such that branches

of their one-dimensional stable and unstable manifolds WU
A0

and WS
B0

as well as WU
B0

and

WS
A0
, respectively, coincide forming a cat's eye for the unperturbed 
ow of (3.1). Denote

the heteroclinic trajectories by �u1(t) and �u2(t), respectively, see Figure 2(a).

Under these assumptions, we may therefore apply the theory developed in the last section

for each of the two heteroclinic orbits �uj(t) with j = 1; 2. By Lemma 1, bounded solutions

'j(t) of the adjoint equation (2.2) along �uj(t) are given by rh0(�uj(t)). It then follows that

rh0(�uj(0)) is not zero since otherwise rh
0(�uj(t)) would vanish for all t contradicting (H3).

Therefore, 'j(t) is not the trivial zero solution.

We are interested in estimates for the distances between stable and unstable manifolds of

A"(t) for small non-zero ", see Figure 3(b) in Section 8. Denote the eigenvalues ofr
2h0(B0)

by �� with � > 0. De�ne sections L1 and L2 by

Lj = fu 2 
 j �uj(0)� u 2 spanrh0(�uj(0)); j�uj(0)� uj < �g

10



for some small � > 0 and j = 1; 2. Let uSA(�; ")(t) and uUA(�; ")(t) be trajectories in the

stable and unstable manifold of A"(t) for equation (3.1) such that uSA(�; ")(0) 2 L2 and

uUA(�; ")(0) 2 L1, see Figure 2. Similarly, uSB(�; ")(t) and uUB(�; ")(t) denote trajectories

contained in the perturbed stable and unstable manifolds of B"(t) satisfying u
S
B(�; ")(0) 2

L1 and u
U
B(�; ")(0) 2 L2, respectively. Let 
 > 0 be arbitrary but �xed.

The next lemma gives a determination of any solution starting in L1 and ending in L2 in

terms of the time needed to pass the solution B"(t).

Lemma 3 Suppose (H3) and (H4) are met, then there exist "0 > 0 and s0 such that for

any � , " and s with j"j < "0 and s > s0 the following holds: there is a unique solution

us(�; ")(t) of equation (3.1) de�ned for t 2 [0; 2s] such that

us(�; ")(0) 2 L1 and us(�; ")(2s) 2 L2: (3.2)

Moreover, D
rh0(�u1(0)); u

U
A(�; ")(0)� us(�; ")(0)

E
= d1(�; ")�

D
rh0(�u1(s)); �u2(�s)�B0

E
+R1(�; "; s) (3.3)D

rh0(�u2(0)); us(�; ")(2s)� uSA(� + 2s; ")(0)
E

= d2(� + 2s; ") +
D
rh0(�u2(�s)); �u1(s)�B0

E
+R2(� + 2s; "; s); (3.4)

where the remainder terms satis�es the estimate

jRj(�; "; s)j � C
(j"j+ e�2�s) e��(1�
)s (3.5)

for any 
 > 0. Moreover, dj(�; "), j = 1; 2 are the distance functions for the two intersec-

tions of stable and unstable manifolds de�ned in the previous section computed with respect

to 'j(t) = rh0(�uj(t)).

Proof. Existence and uniqueness follow as in [14]. In [14] only autonomous, smooth

perturbations are considered. It is straightforward to adapt the proof given there to the

situation studied here. We therefore refer to [14] for the details.

Note that we do not claim any smoothness properties for us(�; ") nor the remainder terms

Rj . By [25, Lemma 1.1], we have

rh0(�u1(s)); �u2(�s)�B0

�
= K1e

�2�s + R3(s)

rh0(�u2(�s)); �u1(s)�B0

�
= K2e

�2�s + R4(s)
(3.6)

for some positive constants K1 and K2, and, for any small 
 > 0,

jR3(s)j+ jR4(s)j � C
 e
�3�(1�
)s

holds as s!1. We will need the relation K1 = K2 proved in the next lemma.
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Lemma 4 Under the assumptions of Lemma 3, K1 = K2.

Proof. The constants K1 and K2 are determined by the unperturbed 
ow for " = 0. Let

us(�; 0)(t) =: us(t) being independent of � . We then have

h0(�u1(0))� h0(us(0)) = rh0(�u1(0)) � (�u1(0)� us(0)) + O(j�u1(0)� us(0)j
2)

=
D
rh0(�u1(0)); �u1(0)� us(0)

E
+O(j�u1(0)� us(0)j

2)

= �K1e
�2�s + O(e�3�(1�
)s)

and similarly

h0(�u2(0))� h0(us(2s)) = rh0(�u2(0)) � (�u2(0)� us(2s)) + O(j�u2(0)� us(2s)j
2)

= �

D
rh0(�u2(0)); us(2s)� �u2(0)

E
+ O(j�u2(0)� us(2s)j

2)

= �K2e
�2�s + O(e�3�(1�
)s)

obtains. Since h0 is a conserved quantity for equation (3.1) with " = 0, we conclude

h0(�u1(0))� h0(us(0)) = h0(�u2(0))� h0(us(2s)):

Indeed, h0(us(0)) = h0(us(2s)) and h
0(�u1(0)) = h0(�u2(0)) hold. Therefore, K1 = K2 by

choosing 
 su�ciently small.

The particular form Jrh1(u; t; ") of the perturbation guarantees that the 
ow is area-

preserving. Next, we assume that the splitting of stable and unstable manifolds is, to �rst

order, independent of the time-slice. This assumption is very restrictive, since we expect

transverse intersections of the invariant manifolds for almost any perturbation. However,

it is often enforced in the application to oceanography we are interested in, since then only

those perturbations are allowed which are solutions of the vorticity equation, see Section 8.

(H5) Suppose that dj(�; ") = "Mj(") + O("2), where Mj(") is independent of � .

It then follows that the splitting distances coincide to �rst order.

Lemma 5 Suppose that (H3), (H4), and (H5) are satis�ed, then jM1(") +M2(")j � Cj"j.

Proof. Note that div (Jr(h0(u) + h1(u; t; "))) = 0 vanishes identically, and therefore the


ow of (3.1) is area preserving. Denote the area enclosed by the unperturbed cat's eye by

V0. Then, the area V"(�) enclosed by the perturbed cat's eye in the time slice ft = �g can

be estimated by

jV"(�)� V0j � C" (3.7)
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uniformly in " and � . Here, the perturbed cat's eye refers to the pieces uUA(� + s; ")(�s)

and uUB(�+s; ")(�s) as well as u
S
A(��s; ")(s) and u

S
B(��s; ")(s) of the invariant manifolds

in the time slice ft = �g together with the pieces of the sections Lj connecting them, see

Figure 2(b). Here, s 2 IR
+.

We may assume that the gradients rh0(�uj(0)) both point into the interior of the cat's eye,

see Figure 2(a). Indeed, they point either both inside or both outside since the equilibria

are hyperbolic, that is r2h0(A0) is invertible. We shall quantify the e�ects of volume

leaving or entering the perturbed cat's eye. The distances of stable and unstable manifolds

in the time slice ft = �g measured in the direction of rh0(�uj(0)) are given by

D1 := uUA(�; ")(0)� uSB(�; ")(0) = "M1(")jrh
0(�u1(0))j

�1 +O("2)

D2 := uUB(�; ")(0)� uSA(�; ")(0) = "M2(")jrh
0(�u2(0))j

�1 +O("2):

by Lemma 3 and (H5). In particular, Mj < 0 and Mj > 0 correspond to volume leaving

and entering the perturbed cat's eye through the section Lj , respectively, for j = 1; 2. For

small time intervals of length T , the amount of volume 
owing through the section Lj is

given by

@jV"(�) := DjT (jrh
0(�uj(0))j+ O(")):

Substituting the expression for Dj , we obtain

@jV"(�) = "T (Mj(") + O(")); (3.8)

where the sign of @jV"(�) indicates whether volume is entering or leaving the perturbed

cat's eye. However, sinceMj(") is independent of � , this amount of volume keeps adding up

by considering several disjoint time intervals of length T , and it cannot be compensated by

a change of the area due to the remainder term O(") in (3.7). Therefore, area conservation

is possible only if M1(") = �M2(") + O(").

In the last section, the intersections between the unstable manifold of A" and the stable

manifold of B" have been analysed. Here, we are interested in intersections of the unstable

and stable manifold of A", that is, orbits homoclinic to A", see Figure 3(b) in Section 8 for

the geometry. After the separatrices �uj(t) are broken for " 6= 0, the unstable manifold of

A" may pass near B" and intersect with the stable manifold of A". We therefore de�ne

dhom(�; ") :=
D
rh0(�u2(0)); u

U
A(�; ")(2s�)� uSA(� + 2s�; ")(0)

E
;

where s� is chosen such that uUA(�; ")(t) intersects L2 for the �rst time at t = 2s�. The

quantity dhom(�; ") measures the distance between stable and unstable manifolds of the

solution A" at the section L2 in the time slice ft = � + 2s�g. Of course, the unstable

13



manifold uUA(�; ")(t) of A" may not intersect L2 at all; however, whenever it does, the

quantity dhom(�; ") is well-de�ned. We then have the following result which shows that the

intersections associated with an orbit homoclinic to A" occur only at higher order.

Theorem 2 Assume that (H3), (H4), and (H5) are met. Fix some � 2 (0; 1
2
), then,

whenever dhom(�; ") is de�ned, jdhom(�; ")j � C� j"j
1+� .

Proof. By Lemma 5, M1(") = M2(") + O("). We set M(") := M1("). Consider equation

(3.3) D
rh0(�u1(0)); u

U
A(�; ")(0)� us(�; ")(0)

E
(3.9)

= d1(�; ")�
D
rh0(�u1(s)); �u2(�s)� B0

E
+ R1(�; "; s) = 0:

Substituting (3.3), (3.6) and using Lemma 5, we obtain the equation

"M(")�K1 e
�2�s +R5(�; "; s) = 0 (3.10)

for some remainder term satisfying

jR5(�; "; s)j � C


�
j"j2 + (j"j+ e�2�s) e��(1�
)s

�
:

On account of the uniqueness statement in Lemma 3, the unstable manifold of A" will

intersect L2 if and only if (3.10) has a solution. Then the solutions u
U
A(�; ")(t) and us(�; ")(t)

coincide and we can therefore use equation (3.4) to estimate dhom(�; "). Assuming that a

solution (�; "; s) = (��; "�; s�) of (3.10) has been found, we obtain the estimate

e�2�s� � Cj"�j (3.11)

by inspecting (3.10). It remains to estimate

dhom(��; "�) =
D
rh0(�u2(0)); us�(��; "�)(2s�)� uSA(�� + 2s�; "�)(0)

E
= �"�M("�) +K2 e

�2�s� +R6(��; "�; s�);
(3.12)

where we substituted (3.4), (3.6) and used Lemma 5. Here,

jR6(�; "; s)j � C


�
j"j2 + (j"j+ e�2�s) e��(1�
)s

�
:

Adding (3.10) evaluated at (��; "�; s�) and (3.12) yields

dhom(��; "�) = R5(��; "�; s�) +R6(��; "�; s�):

Indeed, K1 = K2 holds by Lemma 4. Thus, using the estimate (3.11), we obtain

jdhom(��; "�)j � C


�
j"�j

2 + (j"�j+ e�2�s�) e��(1�
)s�
�

� C


�
j"�j

2 + j"�j
1+ 1

2
(1�
)

�
� C� j"�j

1+�

for any � < 1
2 .
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4 Viscous dynamics and vanishing viscosity

Throughout, we use the variables x and y as being those on the barotropic �-plane that

de�ne the eastward and northward directions respectively and let z = (x; y). Suppose

now that the dynamics of the barotropic jet are governed not by the exact conservation of

potential vorticity but by a potential vorticity dissipating, forced 
ow. The dynamics will

thus be assumed to satisfy

Dq

Dt
�

@q

@t
�

@ 

@y

@q

@x
+
@ 

@x

@q

@y
= " [�q + f(x; y; t)] ; (4.1)

where q(x; y; t) = � (x; y; t) + �y is the barotropic potential vorticity, f(x; y; t) is a uni-

formly bounded forcing function, and  is the streamfunction associated with the 
ow.

The parameter " lies in (0; "0], where "0 is assumed to be as small as needed, and repre-

sents the viscosity. The dissipative dynamics above can result from directly including the

Newtonian viscosity in the primitive equations or, more realistically in the oceanographic

context, by the dissipation caused by eddy di�usivity (the averaged e�ects of small scale

turbulence). In either case, " can be considered a small parameter for oceanic 
ows. The

function f(x; y; t) can be thought of as modelling wind forcing.

Of relevance is whether the 
ow of this dissipative equation is close to that of the exactly

potential vorticity conserving equation

Dq

Dt
= 0: (4.2)

This issue is addressed at some length in [1] and [2]. Recall that q, in either case, is related

to the associated streamfunction by q = � + �y. Suppose the streamfunction  0(x; y; t)

satis�es (4.2), while  (x; y; t; ") obeys (4.1). Let (x; y) 2 
, a two-dimensional smooth

surface with no boundary. The traditional �-plane, which is IR2, obeys this constraint as

does a torus and an in�nite cylinder which can be used via imposition of periodic boundary

conditions. Suppose the initial conditions r (x; y; 0; ") and r 0(x; y; 0) are O(") close in

the norm C3(
) and in the Sobolev norms H3(
) and H4(
). Let T > 0 be large but

�xed, and suppose it is known that the inviscid streamfunction is smooth enough so that

X
5�jkj�7




Dk 0(t)




L2(
)

and
X

4�jkj�7




Dk 0(t)




L4(
)

are bounded independently of t 2 [0; T ]. The generalised derivative symbol Dk used here is

assumed to act only on the spatial (x; y) variables. Then, it can be shown that, see [1, 2],

there exists a constant C(T ) such that

sup
t2[0;T ]




r (t; ")� r 0(t)




C3(
)

� "C(T ): (4.3)
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If the additional smoothness assumption on the inviscid streamfunction is removed, the

above can be derived in the norm of C0(
). Thus, the velocity �eld of the viscous dynamics

is O(") close to that of its inviscid counterpart. The derivation of (4.3) involves extensive

use of a priori estimates and the Sobolev Embedding Theorem [1, 2]. From (4.3), it is

possible to write

r (x; y; t; ") = r 0(x; y; t) + "r 1(x; y; t; ") (4.4)

for any t 2 [0; T ] and (x; y) 2 
 such that
P

0�jkj�4D
k 1(x; y; t; ") is bounded indepen-

dently of " 2 [0; "0] for �nite times.

For smooth, real-valued functions f; g : 
 ! IR, the Poisson bracket between f and g is

de�ned by

ff; gg :=
@f

@x

@g

@y
�

@f

@y

@g

@x
:

Using this de�nition, substitution of (4.4) in the dynamics (4.1) leads to the equation

D0q1

Dt
+
n
 1; q0

o
= �q0 + f + "

h
�q1 �

n
 1; q1

oi
; (4.5)

where the unperturbed material derivative

D0

Dt
=

@

@t
�

@ 0

@y

@

@x
+
@ 0

@x

@

@y

has been used, along with the notation

q0 = � 0 + �y and q1 = � 1:

Notice that (4.4) ensures all terms in (4.5) remain bounded for �nite times. The Lagrangian

trajectories generated by the inviscid streamfunction  0 satisfy the di�erential equation

_z = Jr 0(z; t); (4.6)

with z = (x; y) and

J =

�
0 �1

1 0

�
:

This possesses q0(x; y; t) as an integral of motion. In fact, (4.6) is formally integrable [7].

We additionally assume that (4.6) possesses the gross kinematics of an oceanic jet in that

heteroclinic trajectories exist between two saddle structures, see Figure 1. Mathematically

speaking, we impose (H1) on the 
ow (4.6). Such a heteroclinic represents the boundary of a

cat's eye, and its destruction would permit 
uid to travel across these apparent separatrices.

To apply the Melnikov theory developed in Section 2, we need to consider a perturbation

to the vector �eld in (4.6). This is readily accomplished by using instead the full viscous

streamfunction

 (x; y; t; ") =  0(x; y; t) + " 1(x; y; t; "); (4.7)
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and thus the Lagrangian trajectories of the perturbed 
ow will obey

_z = Jr (z; t; "): (4.8)

It is known by (4.3) that, for �nite times at least, the vector �eld of (4.8) is O(") close to that

of the integrable system (4.6), i.e., the �rst order term  1(x; y; t; ") is bounded. Assuming

that this closeness can be extended to all t 2 IR, the di�erence in the velocity �elds of

(4.8) and (4.6) would satisfy (H2). We are then in a position to use the distance function

d(�; "), developed in Section 2, to investigate intersections of the perturbed manifolds, that

is persistence of heteroclinic points.

5 Assumptions and simpli�cations

We now further restrict our attention to a particular class of 
ows that we call shifted

autonomous 
ows. These are frequently used in modelling potential vorticity conserving


ows [4, 11, 16, 17, 21, 22, 23]; in fact, to our knowledge, there are no known analytic models

which are not shifted autonomous while conserving barotropic potential vorticity. The time

dependence of these 
ows can be removed by transforming coordinates to a moving frame.

Alternatively, a shifted autonomous 
ow is a travelling wave solution of speed c.

(A1) Equation (4.6) is shifted autonomous; that is, there exists c and a function 	0(�; �)

such that  0(x; y; t) = 	0(x� ct; y) = 	0(�; �) where � = x� ct and � = y. The change of

variables (x; y; t)! (�; �; t) is called the shift.

It will be shown below that it indeed su�ces to consider shifted autonomous 
ows which

travel in the x-direction. We will consistently use (�; �) as the shifted variables in what

follows. Moreover, the relevant capital letter will be used to denote a variable in the shifted

coordinates, for example

 0(x; y; t) = 	0(�; �);

since there is no direct t dependence when  0 is shifted to the (�; �) coordinates by (A1).

Furthermore, noting that the spatial derivatives are invariant under a shift, we will use the

operators r, �, etc. as operating on either the (x; y) variables or the (�; �) variables; on

which shall be clear from the context. If (A1) is met, equation (4.6) transforms into

� _�

_�

�
= Jr

�
	0(�; �) + c�

�
(5.1)

with Hamiltonian given by 	0(�; �) + c�.
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Another hypothesis is now imposed on the unperturbed 
ow, namely, that equation (4.6)

in shifted coordinates possesses a structure as depicted in Figure 1.

(A2) Equation (5.1) has a homoclinic trajectory (��; ��) connecting the hyperbolic equilibrium

(�A; �A) to itself.

We should comment on hypothesis (A2). The structure shown in Figure 1 is formed by

two heteroclinic orbits connecting two di�erent equilibria with each other, and not by a

homoclinic solution. However, the structure is periodic in the easterly direction. Therefore,

we can view the equation on the in�nite cylinder 
 = S1
�IR or the torus 
 = S1

�S1 rather

than on the usual �-plane 
 = IR
2. With this choice of the domain 
, the two di�erent

equilibria appearing in Figure 1 are then identi�ed. Many models arising in the literature

are periodic in one of the spatial coordinates and therefore allow for such a reduction.

Notice, however, that then the forcing term F (�; �; t) has also to be periodic in the spatial

variables. Indeed, the partial di�erential equation (4.1) is then considered on a domain

where one or both spatial variables are periodic and the forcing term must be de�ned on

the same domain.

Assumption (A2) has been expressed in the shifted coordinates. For � 2 IR, let

(�z�(t); s(t)) = (�x�(t); �y�(t); t+ �) := (��(t) + c(t+ �); ��(t); t+ �) (5.2)

be the corresponding solution of the original equation (4.6)

_z = Jr 0(z; s)

_s = 1

written as an autonomous system.

We now require that, in addition to (A1) and (A2) on the unperturbed 
ow, the perturba-

tion also satis�es a constraint.

(A3) The function 	1
2 C4(
) is bounded in C4(
) uniformly in t 2 IR and " 2 (0; "0].

Here, 	1 denotes the function  1 satisfying (4.5) in shifted coordinates.

Recall that the assumptions in (A3) have only been proven for �nite times. The bounded-

ness assumption (A3) will ensure that (4.3), (4.4) and (4.5) are valid for all t 2 IR. Note

that (A3) is met whenever the perturbed streamfunction is periodic in time. We shall

comment in Section 7 on whether (A3) is satis�ed by equation (4.1). Equation (4.8) in

shifted coordinates reads

� _�

_�

�
= Jr

�
	0(�; �) + c� + "	1(�; �; t; ")

�
: (5.3)
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It turns out that, if hypothesis (A2) is met, the travelling waves we are considering must,

in fact, travel in an easterly direction.

Lemma 6 Assume that  0(x; y; t) satis�es (4.6) and that  0(x; y; t) = 	0(�; �) where

� = x� cxt and � = y � cyt. If (A2) is met with (5.1) replaced by

� _�

_�

�
= Jr

�
	0(�; �)� cy� + cx�

�
; (5.4)

then �cy = 0.

Proof. We observe that the potential vorticity q0(x; y; t) in shifted coordinates is given by

Q0(�; �; t) = �	0(�; �) + �(� + cyt): (5.5)

However,
d

dt
Q0(�(t); �(t); t) =

d

dt
q0(x(t); y(t); t) = 0 (5.6)

along any solution (�(t); �(t)) of (5.4), since q0 is conserved along trajectories. Picking the

equilibrium (�A; �A) which exists by hypothesis (A2), we then see that the left hand side

of (5.6) is given by
d

dt
Q0(�A; �A; t) = �cy

by evaluating (5.5). Therefore, by (5.6), we obtain �cy = 0.

If � = 0, we may always rotate coordinates to obtain cy = 0, since equation (4.2) is then

invariant under rotations in the (x; y)-plane.

6 Distance function computation

The key computation is contained in this section. An exact expression for the Melnikov

function, the �rst order term in the distance function, will be derived. The extraordinary

fact is that the expression is given explicitly in terms of the " = 0 
ow �eld, in fact

the inviscid potential vorticity, and the forcing. Usually a Melnikov function calculation

involves the perturbed 
ow �eld and this is unknown here. However, miraculously, with

the form of perturbed partial di�erential equation we are considering, i.e., perturbation by

viscosity and forcing, we do not need to know the perturbed 
ow �eld exactly.

Theorem 3 Suppose that the unperturbed 
ow (4.6) satis�es the shifted autonomous as-

sumption (A1). Suppose that equation (5.1), that is (4.6) in shifted coordinates, obeys
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(A2). Let the dynamics (4.1) generate the perturbation  1, which in shifted coordinates is

assumed to obey assumption (A3). Then the distance function for equation (5.3) computed

with respect to rQ0(��(0); ��(0)) has the form

d(�; ") = "M(�) + O("2); (6.1)

with

M(�) =

Z
1

�1

h
�Q0(��(t); ��(t))��Q0(�A; �A)

i
dt + (6.2)Z

1

�1

�
F (��(t); ��(t); t+ �)� F (�A; �A; t+ �)

�
dt;

where the upper case notation corresponds to the shifted variables.

Note that the functionM(�) as de�ned above coincides with the Melnikov functionM(�; ")

de�ned in Corollary 1 up to order O("). For this reason, with a slight abuse of notation,

we will also refer toM(�) as the Melnikov function since it constitutes the �rst order term

in the expression for the distance function d(�:").

Proof. Note that the theory developed in Section 2 is applicable to equation (5.3), which

is (4.8) in shifted coordinates, as (H2) is met on account of the boundedness assumption

(A3) and the results stated in Section 4. Furthermore, (A3) ensures that the dynamics

(4.5) is satis�ed for all t 2 IR. Notice that (A2) gives us at the outset that A0 = B0.

We observe that the potential vorticity q0(x; y; t) in shifted coordinates

Q0(�; �) = �	0(�; �)+ ��;

is time-independent. Moreover,

d

dt
Q0(�(t); �(t)) =

d

dt
q0(x(t); y(t); t) = 0

along any solution (�(t); �(t)) of (5.1). Therefore, by Lemma 1, we have '(t) =

rQ0(��(t); ��(t)).

Hence, on account of Corollary 1, the Melnikov function for (5.3), where  1 has been

de�ned in (4.7), is given by

M(�; ") =

Z
1

�1

rQ0(��(t); ��(t)) � Jr	1(��(t); ��(t); t+ � ; ") dt

=

Z
1

�1

rq0(�z� (t); t+ �) � Jr 1(�z� (t); t+ � ; ") dt

=

Z
1

�1

n
 1; q0

o
(�z� (t� �); t; ") dt (6.3)
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by transforming back to the original coordinates, see (5.2), and shifting time.

It is known by (4.3) that r 1 is bounded for �nite times, and (A3) permits the extension

to all t 2 IR. Moreover, rq0 decays exponentially to zero in the integrand as t! �1, and

hence the integral (6.3) is absolutely convergent for small enough ". We know that

rq0(A0(t); t) = 0

for all t where A0(t) := (�A + ct; �A) denotes the equilibrium in the original coordinates.

Therefore, evaluating (4.5) on (A0(t); t),

D0q1

Dt
(A0(t); t) = �q0(A0(t); t)+f(A0(t); t)+"

h
�q1(A0(t); t)�

n
 1; q1

o
(A0(t); t)

i
; (6.4)

where the terms multiplying " are bounded uniformly in t. Since (A0(t); t) is a trajectory of

the unperturbed 
ow, the material derivative D0

Dt
is exactly the total derivative evaluated via

the chain rule. In other words, note that for any function h(x; y; t) on 
� IR, if (x(t); y(t); t)

is a trajectory of the unperturbed 
ow, then

d

dt
h(x(t); y(t); t) =

@h

@x
_x(t) +

@h

@y
_y(t) +

@h

@t

=
@h

@x

 
�

@ 0

@y

!
+
@h

@y

 
@ 0

@x

!
+
@h

@t

=
D0

Dt
h(x(t); y(t); t): (6.5)

Therefore, (6.4) may be written as

dq1

dt
(A0(t); t) = �q0(A0(t); t) + f(A0(t); t) + "

h
�q1(A0(t); t)�

n
 1; q1

o
(A0(t); t)

i
: (6.6)

Fix � 2 IR, and pick the homoclinic trajectory

(�z� (t� �); t) = (�x�(t� �); �y�(t� �); t)

of (4.6). We evaluate the dynamical equation (4.5) on this trajectory to obtainn
 1; q0

o
(�z� (t� �); t)

=

�
�q0�

dq1

dt

�
(�z�(t� �); t) + f(�z� (t� �); t) + "

h
�q1�f 1; q1g

i
(�z� (t� �); t);

where the material derivative following the unperturbed 
ow has been replaced by d
dt

by virtue of (6.5). We now add and subtract the quantities "
�
�q1 � f 1; q1g

�
(A0(t); t),

�q0(A0(t); t), and f(A0(t); t) in appropriate places of the above to obtainn
 1; q0

o
(�z�(t� �); t) = (6.7)h

�q0(�z�(t� �); t)��q0(A0(t); t)
i
+[f(�z�(t � �); t)� f(A0(t); t)]

+

��
�q0+f+"

h
�q1�f 1; q1g

i�
(A0(t); t)�

dq1

dt
(�z� (t� �); t)

�

+ "
h�
�q1�f 1; q1g

�
(�z�(t � �); t)�

�
�q1�f 1; q1g

�
(A0(t); t)

i
:
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The operator
R 0
�1

dt is now applied to the above. The left hand side yields

Z 0

�1

n
 1; q0

o
(�z� (t� �); t) dt;

which we recognise as part of the integral de�ning M(�; "), see (6.3). We look at each of

the three terms in square brackets on the right hand side separately. The �rst we will keep,

while the second becomes

Z 0

�1

�
�q0(A0(t); t) + f(A0(t); t) + "

h
�q1 � f 1; q1g

i
(A0(t); t)�

dq1

dt
(�z�(t� �); t)

�
dt

=

Z 0

�1

d

dt

h
q1(A0(t); t)� q1 (�z� (t� �); t)

i
dt

=

�
q1(A0(t); t)� q1 (�z�(t� �); t)

�0
�1

= Q1(�A; �A; ")� q1(�z� (��); 0; "):

The �rst step of the above is by (6.6), while the last is because at the left endpoint, �z� (t��)

decays exponentially to A0(t). This is further facilitated by the knowledge of continuity

of q1 in its spatial variables provided by (4.3). Note that we have transformed the �rst

remaining term involving q1 back into shifted coordinates. The third term of (6.7) remains

O(") upon integration, since the " can be extracted from the integral, and the remaining

integrand consists of terms known to be uniformly bounded independent of ". Moreover,

the integral is �nite, since �z�(t � �) decays exponentially to A0(t) as t ! �1. Applying

the same arguments for t � 0 using the integral operator
R
1

0 dt and adding the resulting

terms yields

M(�; ") =

Z
1

�1

h
�q0(�z�(t� �); t)��q0(A0(t); t)

i
dt +Z

1

�1

[f(�z� (t� �); t)� f(A0(t); t)]dt+O("):

Note that it is here where we have used that the unperturbed solution is homoclinic. With-

out this assumption, additional terms would appear. The shifted autonomous assumption

(A1) is now used to convert the arguments in the integrands of the above expression to the

(�; �) variables as de�ned in (A1). Also,

(�z�(t� �); t) �! (��(t� �); ��(t� �); t);

where (��(t); ��(t)) is the parametrisation of the heteroclinic orbit in the shifted phase space,

see (5.2). However, the explicit time dependence miraculously disappears since �q0 is

autonomous in the new variables. Moreover, the Laplacian is invariant under the shift, and
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we obtain the surprisingly simple expression

M(�; ") =

Z
1

�1

h
�Q0(��(t); ��(t))��Q0(�A; �A)

i
dt+Z

1

�1

�
F (��(t); ��(t); t+ �)� F (�A; �A; t+ �)

�
dt+ O(");

by shifting the integration variable. Note from Corollary 1 that the distance function has

the form

d(�; ") = "M(�; ") + O("2);

which yields

d(�; ") = "
� Z 1

�1

h
�Q0(��(t); ��(t))��Q0(�A; �A)

i
dt+Z

1

�1

�
F (��(t); ��(t); t+ �)� F (�A; �A; t+ �)

�
dt
�
+ O("2)

as required.

Theorem 3 derives a powerful expression for the leading order term of the distance function

associated with viscosity induced perturbations. We reiterate that most surprising is the

fact that the leading order behaviour is known independently of the perturbation. Finally,

we write the distance function in the original coordinates.

Corollary 2 Under the assumptions of Theorem 3, the distance function in original coor-

dinates is given by

d(�; ") = "
� Z 1

�1

h
�q0(��(t) + c(t+ �); ��(t); t+ �)��q0(�A + c(t+ �); �A; t+ �)

i
dt+Z

1

�1

�
f(��(t) + c(t+ �); ��(t); t+ �)� f(�A + c(t+ �); �A; t+ �)

�
dt
�
+O("2):

7 Perturbed 
ow �eld models

In this section, we investigate perturbed streamfunctions. It is natural to expect that

the perturbed streamfunction will be periodic in time whenever the forcing term F is.

In the set-up of Section 4, we derive necessary conditions for periodicity of the perturbed

streamfunction. Also, we investigate viscosity-conserving models arising in the literature. It

is shown that there are speci�c choices of the forcing term f(x; y; t) for which the perturbed

streamfunction is bounded uniformly in time.

Throughout this section, we assume that (A1) is met and use shifted coordinates (�; �).

The perturbed streamfunction 	(�; �; t; ") then satis�es

@

@t
�	+ f	;�	g+ �	� � c�	� = "

�
�2	 + F

�
(7.1)
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for (�; �) 2 
. Writing

	(�; �; t; ") = 	0(�; �)+ "	1(�; �; t; "); (7.2)

we obtain
@

@t
�	1 + L0	

1 = �2	0 + F + "
�
�2	1

�

n
	1;�	1

o�
; (7.3)

exploiting the fact that 	0 is an equilibrium of (7.1) for " = 0, that is

n
	0;�	0

o
+ �	0

� � c�	0
� = 0: (7.4)

In addition, we have used the de�nition

L0	
1 :=

n
	0;�	1

o
+
n
	1;�	0

o
+ �	1

� � c�	1
�:

7.1 Periodicity of the perturbed streamfunction

As in Section 4, we assume that the two-dimensional domain 
 has no boundary. To be

more speci�c, we assume that 
 is given by IR
2, S1

� IR, or S1
� S1. Based on the results

stated in Section 4, we may assume that 	0 and 	1 are contained in H4(
). In addition,

suppose that �	0 does not vanish identically.

Observe that the operator L0 has two zero eigenvalues with associated eigenfunctions given

by 	0
� and 	0

�, respectively, on account of translational invariance. We denote the cor-

responding eigenfunctions of the adjoint operator L�0 by 	�E and 	�N for eastward and

northward translation, respectively. Denoting the L2-scalar product and L2-norm by h�; �i

and k � k, respectively, a straightforward calculation shows that

h�	0; L0	
1
i = 0 (7.5)

for all 	1
2 H3(
) as boundary terms do not arise when integrating by parts. Since

h�	0;	0
�i = h�	0;	0

�i = 0;

the eigenfunction �	0 of L�0 is linearly independent of 	�E and 	�N . Therefore, zero is an

eigenvalue of L0 (and L
�
0) with geometric multiplicity at least three.

(A4) Suppose that the wind forcing F (�; �; t) is periodic in t with period p > 0.

Under this assumption, we will derive conditions that are necessary for the perturbed

streamfunction 	(�; �; t) to be periodic.
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Proposition 1 Assume that (A4) is met. If 	(�; �; t) is periodic in t with period mp for

some m 2 IN, then the following equalities hold.D
	0; 1

p

R p
0 F (t) dt

E
+ k�	0

k
2 = 0D

	0; 1
p

R p
0 �F (t) dt

E
+ kr�	0

k
2 = 0D

	�E ;
1
p

R p
0 F (t) dt

E
+ h�	�E ;�	

0
i = 0D

	�N ;
1
p

R p
0 F (t) dt

E
+ h�	�N ;�	

0
i = 0:

In particular, on account of the second identity, 	(�; �; t) cannot be periodic in t with period

mp whenever F is independent of (�; �) and �	0 is not a constant function.

The �rst identity appearing in Proposition 1 is a consequence of conservation of potential

vorticity for the unperturbed streamfunction. The remaining three conditions are �rst order

expansions of (7.3) in the centre subspace spanned by the three known eigenfunctions of

L0 associated with the zero eigenvalue. As a consequence, periodicity of 	 requires that

F is contained in a codimension-four subspace of H2(
 � IR). Note that, if the last two

equations do not hold, drifting of the solution in the translational directions is expected.

Proof. Taking the scalar product of (7.1) with 	, we obtain

@

@t
kr	k2 = �2"

�
k�	k2 + hF;	i

�
; (7.6)

since the term

hf	;�	g+ �	� � c�	�;	i

vanishes. Thus, by applying the integral operator
Rmp
0 dt and substituting (7.2),

0 = �2"
�
mp k�	0

k
2 + 2"

�
�	0;

Z mp

0
�	1(t) dt

�
+ "2

Z mp

0
k�	1(t)k2 dt

+

�
	0;

Z mp

0
F (t) dt

�
+ "

Z mp

0
h	1(t); F (t)i dt

�
;

since the left hand side is zero because 	(�; �; t) is assumed to be periodic in t. Dividing

by " and using boundedness of 	1 in ", the �rst condition follows by setting " = 0.

The other equalities can be inferred similarly by taking the scalar product of (7.3) with

�	0, 	�E , and 	�N , respectively, and using the fact that these functions are eigenfunctions

of L�0 with eigenvalue zero. Thus the terms involving L0 disappear again.

7.2 Concrete models

Here, we will comment on several viscosity-conserving models arising in the literature and

their implications for chaotic transport after adding viscous dissipation. We will concentrate
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on the class of models in which the streamfunction and its Laplacian are linearly related,

see (7.7) below. Note that all known analytic models are formed by using this ansatz.

We point out that some of the models are posed on domains 
 possessing non-empty

boundaries. Others have streamfunctions which do not belong to L2(
). Therefore, the

results of Section 4 and the previous subsection do not necessarily apply. The main issue

is then to calculate the perturbed streamfunction and to verify the assumptions made in

Section 5.

We seek bounded solutions of (7.3), that is

@

@t
�	1 + L0	

1 = �2	0 + F + "
�
�2	1

�

n
	1;�	1

o�

for small ". A common feature of the models developed and collected in [1] is that they

obey

�	0 = c�	0: (7.7)

In other words, 	0 satis�es both terms arising in the unperturbed equilibrium equation

(7.4) separately. Note that (7.7) implies that Q0(�; �) and the Hamiltonian 	0(�; �) + c�

of the Lagrangian 
ow (5.1) are linearly dependent Q0(�; �) = �
c (	

0(�; �)+ c�).

(C1) The potential vorticity 	0 in shifted coordinates obeys (7.7).

We remark that if @
 were empty and 	0 in H4(
), (7.7) would imply that �=c is negative.

Indeed, taking the scalar product of (7.7) with 	0 and integrating by parts yields k	0
k
2 =

�
c
�
kr	0

k.

As a consequence of (C1), r	0 is an equilibrium of the Eulerian equation, that is, it satis�es

(7.4) for all r 2 IR. This suggests the ansatz

	1 = r	0 +	2: (7.8)

Using (7.7), it is straightforward to calculate that (7.3) is equivalent to

�

c

@r

@t
	0 +

@

@t
�	2 + L0	

2 =
�2

c2
(1 + "r)	0 + F + "

�
�2	2

�

n
	2;�	2

o�
: (7.9)

It would be di�cult to solve equation (7.9) for general forcing terms F (�; �; t). We therefore

restrict to forcing terms of the form

F (�; �; t) = A(t)	0(�; �); (7.10)

where A(t) is bounded. Substituting this expression and setting 	2 = 0, we see that (7.9)

is equivalent to
�

c

@r

@t
	0 =

�2

c2
(1 + "r)	0 +A(t)	0;
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and it su�ces to solve
@r

@t
=
�

c
"r +

�

c
+
c

�
A(t): (7.11)

We have then the explicit general solution

r(t; ") = e�"t=cr0 +

Z t

0
e�"(t�s)=c

��
c
+
c

�
A(s)

�
ds (7.12)

of (7.11). Multiplying with e��"t=c, we obtain

e��"t=cr(t; ") = r0 +

Z t

0
e��"s=c

��
c
+
c

�
A(s)

�
ds: (7.13)

For �=c < 0, the solution r(t; ") is therefore bounded for t ! �1 if and only if the limit

of the integral term on the right hand side of (7.13) exists for t ! �1. Setting " = 0, we

see that r(t; 0) is bounded for t!1 if and only ifZ t

0

��
c
+
c

�
A(s)

�
ds (7.14)

is bounded as t ! 1. Therefore, we impose the following condition on the forcing term

F (�; �; t).

(C2) The forcing term satis�es

F (�; �; t) = (�
�2

c2
+ a(t)) 	0(�; �);

for some smooth function a(t). Moreover, there exist constants � > 0, T � 0 and K; p 2 IR

such that the following holds.

(i) For t � �T , the amplitude a(t) is periodic in t with period p and has mean zero, that

is, a(t+ p) = a(t) for all t � �T , and
R
�T+p
�T a(t) dt = 0.

(ii) For t � �T , the amplitude a(t) decays exponentially, that is, ja(t)j � Ke�t for

t � �T .

We then state the following proposition.

Proposition 2 Suppose that (C1) and (C2) are met. In addition, we assume that �
c
< 0.

The perturbed streamfunction 	(t; ") given by

	(�; �; t; ") =
�
1 + "

c

�

Z t

�1

e�"(t�s)=c a(s) ds
�
	0(�; �)

is then bounded uniformly in t 2 IR and " 2 [0; "0], and satis�es (7.1). Moreover, there

exists a function F (t; ") periodic in t with period p such that

j	(�; �; t; ")� (1 + "F (t; "))	0(�; �)j � Ce�"t=c;

for some constant C and t � �T . In other words, for " > 0, the perturbed streamfunction

is asymptotically periodic in time.
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Proof. Comparing (7.10) and (C2), we have A(t) = �
�2

c2
+ a(t). Formula (7.12) for r(t; ")

then reads

r(t; ") = e�"t=cr0 +
c

�

Z t

0
e�"(t�s)=c a(s) ds:

Observe that

r0 :=
c

�

Z 0

�1

e��"s=c a(s) ds;

is well-de�ned since a(t) decays exponentially for t! �1 by (C2). We then have

r(t; ") =
c

�

Z t

�1

e�"(t�s)=c a(s) ds;

and it remains to show that r(t; ") is bounded for t ! 1. Since �
c
< 0, it su�ces to

consider the integral term

e�"t=c
Z t

0
e��"s=c a(s) ds:

Since a(t) is periodic in t for t � 0 and has mean zero, we may expand it in a Fourier series

a(t) =
1X
n=1

(an sin(2�nt=p) + bn cos(2�nt=p)):

Using the formula

e�"t=c
Z t

0
e��"s=c sin(2�ns=p) ds

= �

��2"2
c2

+
4�2n2

p2

�
�1
�
�"

c
sin(2�nt=p) +

2�n

p
cos(2�nt=p)�

2�n

p
e�"t=c

�

and the analogue for the cosine terms, the statement of the proposition follows.

Note that the results are still true for �c > 0 with t replaced by �t. However, the perturbed

streamfunction would then be asymptotically periodic for negative times.

Finally, (C1) and (7.10) allow us to derive an explicit formula for the Melnikov integralM .

Lemma 7 Assume that (A1) { (A2) and (C1) are met. Suppose that the forcing term

is given by (7.10), i.e., F (�; �; t) = A(t)	0(�; �). The Melnikov function M appearing in

(6.2) is then given by

M(�) =
�2

c

Z
1

�1

(�A � ��(t)) dt+ c

Z
1

�1

A(t + �)(�A � ��(t)) dt:

Proof. Equation (5.1) in shifted coordinates has the �rst integral H(�; �) = 	0(�; �)+ c�.

In particular, @
@tH(�(t); �(t)) = 0 and we obtain

	0(��(t); ��(t))�	0(�A; �A) = c(�A � ��(t))
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for all t. Therefore,

�Q0(��(t); ��(t))��Q0(�A; �A) =
�2

c
(�A � ��(t));

using (7.7) and Q0 = �	0 + ��, and the �rst integral of the Melnikov function in (6.2) is

equal to
�2

c

Z
1

�1

(�A � ��(t)) dt:

This result can be con�rmed by calculating the Melnikov integral for F (t) � 0 using the

explicit expression for the perturbed streamfunction 	 provided in Proposition 2. The

second integral is computed in a similar fashion.

Finally, we note that the results stated above remain valid for two-dimensional incom-

pressible, vorticity preserving 
ows, that is for � = c = 0, provided 	0 = �	0 is met.

Essentially, the fractions �=c are replaced by one in the proofs. As a consequence, we em-

phasise that the �rst term in the Melnikov integral must vanish. Indeed, the calculations

in the proof of Lemma 7 show that the �rst integrand

�Q0(��(t); ��(t))��Q0(�A; �A)

= 	0(��(t); ��(t))� 	0(�A; �A) = H(��(t); ��(t))�H(�A; �A) = 0

vanishes.

8 Chaotic transport

As discussed in the Introduction, the goal of this paper is to study the nature of transport

between the various component parts of a large-scale 
uid structure such as a meandering

ocean jet. A key role is played by the vortical structures that 
ank the jet, namely the

so-called cat's eyes. Of interest then is the transport of 
uid from the jet to the cat's eye

and from the cat's eye to the ambient, retrograde 
uid. Of speci�c interest is what physical

mechanisms might act as facilitators of such transport and whether this transport will have

a chaotic nature. In this work we have added to the equation of potential vorticity a term

re
ecting the dissipative e�ect of viscosity and a forcing that might crudely be viewed as

wind forcing on the surface of the ocean.

We then take a model for the inviscid 
uid which is a wave travelling in an easterly direction

with a meandering structure. We assume that this base wave is steady in the moving frame

and is, moreover, periodic in the easterly direction. A cat's eye 
anking the meandering

jet is identi�ed, in such a model, with a heteroclinic loop which can, in turn, be viewed as
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a homoclinic orbit if the periodicity in x is exploited and the problem cast on a cylinder.

The question is whether these homoclinic orbits split under the e�ect of the perturbing

terms, viscosity and forcing, introduced into the partial di�erential equation.

To answer this question, under the assumption that the perturbed 
ow �eld satis�es an

appropriate boundedness hypothesis (A3), we have derived the explicit expression

M(�) =

Z
1

�1

h
�Q0(��(t); ��(t))��Q0(�A; �A)

i
dt+ (8.1)Z

1

�1

�
F (��(t); ��(t); t+ �)� F (�A; �A; t+ �)

�
dt

for the Melnikov function that represents the �rst order term in the expansion of the

distance function d(�; ") = "M(�)+O("2), see Theorem 3. The surprising fact that emerges

is the independence of this expression from the perturbed 
ow �eld. This is an incredibly

useful feature of the calculation as the perturbed 
ow �eld is unknown.

A central assumption in our analysis is the boundedness hypothesis (A3). We have derived

some conditions under which this will hold as a consequence of the perturbed 
ow �eld being

periodic and we have also given a speci�c example under which it is satis�ed. However, in

general we cannot expect it to be met, see below, and we shall consider in a further paper

cases under which it fails.

In the following, we shall discuss the implications of our Melnikov analysis for various

di�erent types of forcing functions. Some surprising conclusions can be made about the

nature of the transport in each of these cases.

8.1 Spatially independent wind forcing

First, we assume that the forcing function does not depend on the spatial variables. In

other words, suppose that f = f(t) does not depend on x and y. It is then clear that it is

also independent of � and � in the moving frame, i.e., F = F (t). Under this condition, the

calculation of the Melnikov function can be considerably simpli�ed as the second integral

in (8.1) is identically zero.

The resulting distance function has then the form

d(�; ") = "

Z
1

�1

h
�Q0(��(t); ��(t))��Q0(�A; �A)

i
dt+O("2): (8.2)

If the integral in the �rst order term, i.e., the Melnikov function, is non-zero then there is a

striking implication for the separation of stable and unstable manifolds. Indeed, they must

separate a uniform distance apart, up to �rst order, independently of the time-slice. Thus,

in this situation, there can be no intersection of the relevant manifolds under a viscous
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Figure 3: A perturbed cat's eye. In the context of incompressible 
uids, Figure (b) must

occur leading to an avenue along which 
uid parcels pass from the northern to the southern

part, or vice versa.

perturbation consistent with (4.1) for small enough ". Moreover, it is a consequence of

Lemma 7 that, for the speci�c models we have considered, the Melnikov function is given

by
�2

c

Z
1

�1

(�A � ��(t)) dt;

which is likely to be non-zero if � 6= 0. In case � = 0, the non-oceanographic case, we

cannot conclude that intersections are forbidden, but they must happen at higher order.

Suppose now that there is a cat's eye in the unperturbed 
ow. Both the lower and the

upper heteroclinics will split if the Melnikov function is non-zero. This is shown in Figure 3.

As discussed in Section 3, the case depicted in Figure 3(a) is impossible for incompressible


uids due to area conservation. The splitting of the manifolds must occur then in the

manner depicted in Figure 3(b). The stable and unstable manifolds of the point A� may

still intersect and, also due to area conservation, in fact must intersect. It is a consequence

of Lemma 5 and Theorem 2 that the splitting distance between the manifolds is of higher

order, in fact O("1+�) for some � > 0. Indeed, both results are applicable since (H5) is a

consequence of Theorem 3, while (H3) is met with h0(�; �) = 	0(�; �)+c� and h1(�; �; t; ") =

	1(�; �; t; ").

The picture one gets here then is of the possibility of transport of 
uid between di�erent

regimes by virtue of a channel opening up, as depicted in Figure 3(b) for the North to South

case. Since the heteroclinics split at lower order than the inner homoclinic, the probability

is great that a 
uid particle would be carried past the vortex region forming the cat's eye,

rather than be entrained into it. In this situation therefore chaotic transport is severely
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inhibited. However, an avenue is opened up for 
uid to escape from one region to another

in a non-chaotic fashion. It is feasible that����
Z
1

�1

h
�Q0(��(t); ��(t))��Q0(�A; �A)

i
dt

���� > 0

for almost all nontrivial unperturbed 
ows, and hence the indications are that, in general,

chaotic mixing will not result from including viscous e�ects. This is unexpected since the

manifolds are known to exhibit tangling under almost any perturbation. For a model to

predict chaotic transport, it is therefore necessary that the inviscid 
ow disobey either the

shifted autonomous or the homoclinic assumption.

8.2 Meridional wind forcing

Next, we suppose that the wind forcing depends only on the meridional variable. In other

words, we set f = f(y), whence F (�) = f(�) in the moving frame. In this case the second

integral in (8.1) does contribute to the Melnikov function, but remains constant. Indeed,

M(�) =

Z
1

�1

h
�Q0(��(t); ��(t))��Q0(�A; �A)

i
dt+

Z
1

�1

[f(��(t))� f(�A)]dt;

which is clearly independent of � . Here, we have replaced the function F (�) by f(�) in the

second integrand.

One can imagine choosing f in di�erent ways that would produce a Melnikov function which

is either positive or negative (or zero). But, in any case, we would not have transverse

intersections of stable and unstable manifolds and thus the chaotic nature of the transport

would be inhibited as above.

8.3 Temporally independent wind forcing

If the wind forcing depends only on the spatial variables x and y, i.e., f = f(x; y), then

in the moving frame the forcing becomes dependent on time through its dependence on x.

Indeed,

F (�; �; t) = f(� + ct; �):

If we assume that the forcing f is periodic in x, which we actually have to do in order

to satisfy our hypotheses, then F is periodic in t. Replacing again F by f in the second

integral in (8.1), it follows that the Melnikov functionZ
1

�1

h
�Q0(��(t); ��(t))��Q0(�A; �A)

i
dt

+

Z
1

�1

�
f(��(t) + c(t+ �); ��(t))� f(�A + c(t+ �); �A)

�
dt
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is also periodic in � . Note that this periodicity holds even if the underlying 
ow �eld is not

periodic. It follows that if the Melnikov function has one zero then it has in�nitely many

zeroes. Moreover, it is not hard to concoct forcing functions f which render a zero of the

Melnikov integral.

8.4 General forcing

For general forcing functions the calculation of the Melnikov integral still holds as in (8.1),

but conclusions may be harder to make. If, however, the forcing f(x; y; t) enjoys some

periodicity in both x and t then the forcing function in a moving frame

F (�; �; t) = f(� + ct; �; t)

will be quasiperiodic in t. It follows again that the Melnikov function will have the same

property, namely be quasiperiodic in � . As before, if it has one zero, it will have in�nitely

many.

8.5 Perturbations without forcing

We close this section with a discussion of the simplest case, namely where there is no forcing

at all. In other words, we assume f = 0. This case falls under every one of the above but

the conclusions do not apply as a basic hypothesis is not satis�ed. Indeed, it follows from

equation (7.6) that the quantity Z Z
jr (x; y; t; ")j2dx dy

will decay to zero for " > 0 as t ! 1. But then it would be impossible to have a �eld

which is close to the " = 0 
ow �eld for all time when " is non-zero. Thus the boundedness

hypothesis does not hold.

It should be commented that the case of no forcing is that studied in [22] and there sta-

ble and unstable manifolds are found numerically to have many intersections. It would

be tempting to think that the boundedness hypothesis not being satis�ed supplied an ex-

planation for this discrepancy between the results of this paper, at least extrapolated to

the case of a decaying streamfunction, and those of [22]. However, we show in a further

paper that the case of an unbounded streamfunction is covered by our theory, provided

the streamfunctions stay close for long enough. An explanation must therefore be sought

elsewhere and further discussion of this point will appear in this forthcoming paper.
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