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Trajectorial dissipation of Φ-entropies for interacting
particle systems

Benedikt Jahnel, Jonas Köppl

Abstract

A classical approach for the analysis of the longtime behavior of Markov processes is to con-
sider suitable Lyapunov functionals like the variance or more generally Φ-entropies. Via purely
analytic arguments it can be shown that these functionals are indeed non-increasing in time
under quite general assumptions on the process. We complement these classical results via a
more probabilistic approach and show that dissipation is already present on the level of individ-
ual trajectories for spatially-extended systems of infinitely many interacting particles with arbitrary
underlying geometry and compact local spin spaces. This extends previous results from the set-
ting of finite-state Markov chains or diffusions in Rn to an infinite-dimensional setting with weak
assumptions on the dynamics.

1 Introduction

There are many different techniques to study the long-time behavior of Markov processes that excel
in different situations. One very common and powerful technique is the use of Lyapunov functionals,
i.e., functionals that are monotone in time. An example of such a functional is the variance

Varµ(f) := Eµ[f
2]− Eµ[f ]

2, f ∈ L2(µ),

where µ is an invariant measure for some Markov process with semigroup (Pt)t≥0. If we now fix an
observable f and consider the function

[0,∞) ∋ t 7→ Varµ(Ptf) ∈ [0,∞),

then it is easy to see that this is non-increasing and under some further assumptions one can even
show that it is strictly decreasing for all non-constant observables f . This whole viewpoint, however,
is purely based on functional analytic arguments and one does not even need to speak about the un-
derlying Markov process itself to carry out the corresponding calculations. From a probabilistic point of
view, this is somewhat unsatisfactory and we therefore want to specify this coarse and non-probabilistic
approach with a finer, more probabilistic technique that allows us to obtain trajectorial versions of these
results. Here, by trajectorial we mean results on the level of single realizations of a stochastic process,
as opposed to averaged quantities. Thereby our goal is to uncover more of the underlying probabilistic
mechanisms behind the decay of variance, or more generally the decay of Φ-entropies. For this, we
will first briefly recall the notion of Φ-entropies and then explain our main results and ideas with the
help of the simple example of a continuous-time Markov chain on a finite state space. The rest of the
article is then devoted to extending these ideas to the setting of spatially extended systems of infinitely
many interacting particles as e.g. considered in [Lig05].
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B. Jahnel, J. Köppl 2

1.1 Φ-entropies and their decay under Markovian dynamics

Let Φ : I → R be a smooth and convex function defined on a not necessarily bounded interval
I ⊂ R. Let (E,B(E)) be a Polish space equipped with its Borel σ-algebra and assume that µ is a
probability measure on (E,B(E)). The Φ-entropy functional is then defined on the set of µ-integrable
functions f : E → I by

(f) :=

∫
E

Φ(f)dµ− Φ

(∫
E

fdµ

)
= Eµ [Φ(f)]− Φ (Eµ [f ]) .

By Jensen’s inequality one can immediately deduce that the Φ-entropy functional takes its values in
R+ ∪ {+∞}. Moreover, (f) vanishes if its argument is constant and if Φ is strictly convex, then the
converse is also true. For special choices of Φ one can recover the classical variance and relative
entropy functionals since we have

Entu7→u2

µ = Varµ, Entu7→u log u
µ = h(·|µ).

Now let (X(t))t≥0 be a Markov process on our Polish space E with associated semigroup (Pt)t≥0

acting on Cb(E;R), the space of continuous and bounded real-valued functions on E. Let us assume
that there exists an invariant probability measure µ and denote by L the generator of the semigroup
(Pt)t≥0 with domain dom(L ) ⊂ Cb(E;R).

By invariance of µ and Jensen’s inequality one can now deduce that for all f ∈ Cb(E;R)

(Ptf) = Eµ [Φ(Ptf)]− Φ (Eµ [Ptf ]) ≤ Eµ [PtΦ(f)]− Φ (Eµ [f ]) = (f).

This tells us that the Φ-entropy is non-increasing as a function of t and can be used as a Lyapunov
function. More precisely, with purely analytic arguments, one can even deduce the following general
result about the decay of Φ-entropies.

Proposition 1.1 (DeBruijn like property for Markov semigroups, [Cha04]). Let (X(t))t≥0 be a Markov
process on a Polish space E equipped with its Borel σ-algebra B(E) and let (Pt)t≥0 be the associ-
ated Markov semigroup with generator L . Assume that µ is an invariant probability measure. Then,
for any continuous and bounded function f : E → I and any t > 0, it holds that

∂t (Ptf) = Eµ [Φ
′(Ptf)L (Ptf)] ≤ 0.

This result is classical, but we nevertheless recall its short analytic proof. We will later also provide a
more probabilistic argument to obtain the same result in the context of interacting particle systems.

Proof. The chain rule and the definition of the generator L directly imply that

∂t (Ptf) = Eµ

[
Φ′(Ptf)

d

dt
(Ptf)

]
= Eµ [Φ

′(Ptf)L (Ptf)] .

To see that the left-hand side is actually non-positive, it suffices to observe that the convexity of Φ
implies via Jensen’s inequality for conditional expectations

Φ(Pt+sg) ≤ Pt(Φ(Psg))

for any s, t ≥ 0 and hence for all f we have

(Pt+sf) ≤ (Psf),

by invariance of µ.

DOI 10.20347/WIAS.PREPRINT.3019 Berlin 2023



Trajectorial dissipation of Φ-entropies 3

By integrating one obtains the following classical corollary, which links exponential decay ofΦ-entropies
and functional inequalities involving Φ-entropies.

Corollary 1.2. In the setting of Proposition 1.1, the following two statements are equivalent.

i. There exists a constant c > 0 such that for all f ∈ dom(L )

(f) ≤ −cEµ [Φ
′(f)L f ] .

ii. There exists a constant c > 0 such that for all continuous and bounded f : E → I

(Ptf) ≤ e−
t
c (f).

Note that, in the special case Φ : u 7→ u2, one recovers the Poincaré inequality

Varµ(f) ≤ − c

2
⟨f,L f⟩L2(µ),

which is well-known to be equivalent to exponential L2 ergodicity, see e.g. [HS76]. For a more detailed
review of Φ-entropies and further results we refer the interested reader to [Cha04].

1.2 A finite state-space example for the trajectorial approach

As one can see, the results above can be obtained without even mentioning the underlying stochastic
process and just dealing with the semigroup and its generator. We want to supplement this viewpoint
with a more probabilistic approach that allows us to obtain a somewhat finer result on a trajectorial
level, which also implies the classical results by taking expectations.

For simplicity, we will discuss the main ideas for the example of a continuous-time Markov chain on
a finite state space. More precisely, let (Xt)t≥0 be a Markov chain on a finite set E with irreducible
generator L and strictly positive invariant measure µ. Hence, the corresponding Markov semigroup
is given by the matrix exponential (etL )t≥0. Denote the underlying probability space by (Ω,A,P) and
assume that X0 ∼ µ under P.

It is easy to check that for all bounded f : [0,∞) × E → R such that for all x ∈ E the partial
derivatives ∂tf(·, x) are continuous and bounded, the process defined by

f(t,Xt)−
∫ t

0

(∂s + L )f(s,Xs)ds, t ≥ 0, (1.1)

is a martingale with respect to the canonical filtration generated by (Xt)t≥0, see e.g. [RW00, Lemma IV.4.20].

If we now fix a finite time horizon T > 0 and consider the time-reversal (X̂t)0≤t≤T of (Xt)t≥0, where
X̂t = XT−t, then under P the time-reversed process is again a time-homogeneous Markov process
with generator L̂ , where

L̂ (x, y) =
µ(y)

µ(x)
L (y, x).

A short calculation now shows that, for each bounded g : E → R and T > 0, the process
(PT−sg(X̂s))0≤s≤T is a ((F̂t)0≤t≤T ,P)-martingale, where F̂t = σ(XT−s : 0 ≤ s ≤ t). Indeed,
we can use the chain rule to calculate

∂tPT−tg(x) = −L̂ PT−tg(x),
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so the correction term in (1.1) vanishes. Note that it is crucial to use the time-reversed process here,
since the correction term does not cancel out if one uses the forward process.

By convexity this directly implies that the time-reversed trajectorial Φ-entropy, i.e., the process defined
by

Φ(PT−sg(X(T − s))), 0 ≤ t ≤ T,

is a submartingale. This stochastic monotonicity can be seen as a trajectorial version of the classical
Φ-entropy decay and after taking expectations with respect to P, one obtains the classical results as
in Proposition 1.1. Therefore, one can interpret these trajectorial results as the probabilistic version of
the decay of Φ-entropies.

The main work is now to establish that a similar argument can also be used to treat infinite-dimensional
systems like the interacting particle systems we consider. To our best knowledge, the first results of
this kind, in the context of diffusions in Rn, have been achieved in [FJ16]. More recently, starting
with [KST20], these results have been extended to more and more classes of Markov processes,
including continuous time Markov chains on countable state spaces, see [KMS21]. The works [KY22]
and [TCY23] are also in a similar spirit.

The setting will be made precise in Section 2, but roughly speaking, we consider continuous-time
Markov jump processes on general configuration spaces Ω = ΩS

0 , where S is an arbitrary countable
set and Ω0 is a compact Polish space. We will refer to the elements of S as sites and call Ω0 the
local state-space. In most examples considered in the literature, S is the vertex set of some graph like
the d-dimensional hypercubic lattice Zd, a tree or the Cayley graph of a group. This underlying spatial
geometry dictates which particles can interact with each other and we are therefore not in the setting
of mean-field systems but in an infinite-dimensional setting. This of course brings with it its own set of
technical difficulties which need to be dealt with for making the time-reversal arguments work.

The main technical difficulties come from making sure that the time-reversal is again a well-defined
interacting particle system and from obtaining a description of its generator. This is made possible by
assuming some local regularity of the local conditional distributions of the time-stationary measure µ.
Namely, by the assumption that µ is actually a Gibbs measure with respect to a quasilocal specifi-
cation that additionaly satisfies a certain smoothness condition. This condition is e.g. satisfied if the
specification is given in terms of a potential Φ = (ΦB)B⋐S such that

sup
x∈S

∑
B⋐S: B∋x

|B| ∥ΦB∥∞ < ∞,

where the notation B ⋐ S means that B is a finite subset of S. Note that this condition is for example
satisfied for any translation-invariant finite-range potential, so our theory applies to a fairly large class
of models.

1.3 Organization of the manuscript

The rest of this article is organized as follows. We will first collect the necessary notation and formulate
our main results in Section 2. Then, as a first step, we investigate the time-reversal of interacting
particle systems in equilibrium in Section 3 with the main goal of obtaining an explicit representation of
the (formal) generator of the time-reversed dynamics. In Section 4, we will then apply these results to
establish pathwise properties of general Φ-entropy functionals and derive the classical DeBruijn-like
decay property as a corollary.

DOI 10.20347/WIAS.PREPRINT.3019 Berlin 2023



Trajectorial dissipation of Φ-entropies 5

2 Setting and main results

Let (Ω0,B0) be a compact Polish space equipped with its Borel σ-algebra and λ0 a probability mea-
sure on (Ω0,B0), which will serve as our reference measure. We will consider Markovian dynamics
on the configuration space Ω = ΩS

0 , where S is some countable set whose elements we will refer to
as sites. In most applications this will be the set of vertices of some graph, e.g. Zd or a tree. We equip
Ω with the product topology and corresponding Borel σ-algebra F . Note that F coincides with the
product σ-algebra ⊗x∈SB0. For ∆ ⊂ S we will also write Ω∆ := Ω∆

0 for the set of partial configura-
tions. We will also equip Ω∆ with the product σ-algebra and the probability measure λ∆ = ⊗x∈∆λ0.
For Λ ⊂ S, let FΛ be the sub-σ-algebra of F that is generated by the projections ω 7→ ω∆ ∈ Ω∆

for ∆ ⋐ Λ, where we write ⋐ to signify that a set is a finite subset of another set. For ∆ ⊂ S and
(partial) configurations η∆c ∈ Ω∆c and ξ∆ ∈ Ω∆, we will write ξ∆η∆c for the configuration that is
defined on all of S and agrees with η∆c on ∆c and with ξ∆ on ∆. For a topological space E, we will
denote its Borel σ-algebra by B(E) and the space of continuous real-valued functions on E by C(E).
The space of non-negative measures on E, or more precisely on B(E), will be denoted by M(E)
and is equipped with the topology of weak-convergence. The subset of probability measures, i.e.,
non-negative measures with total mass equal to one, will be denoted by M1(E). The total variation
distance on M(E) will be denoted by ∥·∥TV.

2.1 Interacting particle systems and Gibbs measures

2.1.1 Interacting particle systems

We will consider time-continuous Markovian dynamics on Ω, namely interacting particle systems char-
acterized by time-homogeneous generators L with domain dom(L ) ⊂ C(Ω) and the associated
Markovian semigroup (Pt)t≥0 on C(Ω). For interacting particle systems we adopt the notation and
exposition of the standard reference [Lig05, Chapter I].

In our setting, the generator L is given by a collection of transition measures (c∆(·, dξ))∆⋐S in finite
volumes ∆ ⋐ S, i.e., mappings

Ω ∋ η 7→ c∆(η, dξ∆) ∈ M(Ω∆).

These transition measures can be interpreted as the infinitesimal rates at which the particles inside
∆ switch from the configuration η∆ to ξ∆, given that the rest of the system is currently in state η∆c .
The full dynamics of the interacting particle system is then given as the superposition of these local
dynamics,

L f(η) =
∑
∆⋐S

∫
Ω∆

[f(ξ∆η∆c)− f(η)] c∆(η, dξ∆). (2.1)

In [Lig05, Chapter I] it is shown that the following conditions are sufficient to guarantee well-definedness.

(L1) For each ∆ ⋐ Ω the mapping

Ω ∋ η 7→ c∆(η, dξ∆) ∈ M(Ω∆)

is continuous.
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(L2) The total rate at which a single particle switches its state is uniformly bounded, i.e.,

sup
x∈S

∑
∆∋x

sup
η∈Ω

c∆(η,Ω∆) < ∞.

(L3) The total influence of all other particles on the transition rates of a single particle is uniformly
bounded, i.e.,

M := sup
x∈S

∑
∆∋x

∑
y ̸=x

δyc∆ < ∞,

where

δyc∆ := sup {∥c∆(η, ·)− c∆(ξ, ·)∥TV : ηyc = ξyc} .

Under these conditions, the core of the operator L is given by

D(Ω) :=

{
f ∈ C(Ω) : |||f ||| :=

∑
x∈S

δx(f) < ∞

}
,

where for x ∈ S

δx(f) := sup
η,ξ: ηxc=ξxc

|f(η)− f(ξ)|

is the oscillation of a function f : Ω → R at the site x. In addition, one can show the following
estimates for L and the action of the semigroup (Pt)t≥0 generated by L . We will need these later
on.

Lemma 2.1. Assume that the generator L satisfies (L1) − (L3) and denote by (Pt)t≥0 the semi-
group generated by L .

i. For f ∈ D(Ω) we have Ptf ∈ D(Ω) for all t ≥ 0 and

|||Ptf ||| ≤ exp ((M − ε)t) |||f |||.

ii. For all f ∈ D(Ω) it holds that

∥L f∥∞ ≤

(
sup
x∈S

∑
∆∋x

sup
η∈Ω

c∆(η,Ω∆)

)
|||f |||.

The constants are explicitly given by

M = sup
x∈S

∑
∆∋x

∑
y ̸=x

δyc∆ < ∞,

ε = inf
x∈S

inf
η,ζ : ηxc=ζxc ,ηx ̸=ζx

∑
∆∋x

( ∑
ξ∆:ξx=ζx

c∆(η, ξ∆) +
∑

ξ∆:ξx=ηx

c∆(ζ, ξ∆)

)
.

Proof. Combine the results from Proposition 3.2(a) and Theorem 3.9.(d) in [Lig05, Chapter I].

DOI 10.20347/WIAS.PREPRINT.3019 Berlin 2023



Trajectorial dissipation of Φ-entropies 7

For our purposes, the mere well-definedness of an interacting particle system is not sufficient and we
need to assume some more regularity. All the additional assumptions we put will be used to make the
generator of the time-reversal well-defined.

(R1) For each ∆ and η ∈ Ω the measure c∆(η, dξ∆) is absolutely continuous with respect to the
reference measure λ∆(dξ∆) with density c∆(η, ·).

(R2) For each ∆ ∈ Ω the map

Ω× Ω∆ ∋ (η, ξ∆) 7→ c∆(η, ξ∆) ∈ R

is continuous with respect to the product topology.

(R3) The total rate of transition for a single site is uniformly bounded from above

sup
x∈S

∑
∆∋x

sup
η∈Ω

∥c∆(η, ·)∥∞ < ∞.

(R4) The condition (L3) is satisfied, i.e.,

sup
x∈S

∑
∆∋x

∑
y ̸=x

δyc∆ < ∞.

(R5) There exists an R > 0 such that for all ∆ ⋐ Zd with |∆| > R we have

sup
η∈Ω,ξ∆∈Ω∆

c∆(η, ξ∆) = 0.

We will comment on where and why we need these assumptions and their connection to the classical
conditions (L1)− (L3) at the end of Section 2.1.2, after we have stated our assumptions on the local
conditional distribution of the time-stationary measure µ.

2.1.2 Gibbs measures and the DLR formalism

We will mainly be interested in the situation where the process generated by L admits a time-
stationary measure µ with a well-behaved local representation, namely that µ is a Gibbs measure
with respect to to a sufficiently nice specification γ. Let us therefore first recall the general definition of
a specification.

Definition 2.2. A specification γ = (γΛ)Λ⋐S is a family of probability kernels γΛ from ΩΛc to M1(Ω)
that additionally satisfies the following properties.

i. Each γΛ is proper, i.e., for all B ∈ FΛc it holds that

γΛ(B|·) = 1B(·).

ii. The probability kernels are consistent in the sense that if ∆ ⊂ Λ ⋐ S, then for all A ∈ F

γΛγ∆(A|·) = γΛ(A|·),

where the concatenation of two probability kernels is defined as usual via

γΛγ∆(A|η) =
∫
Ω

γ∆(A|ω)γΛ(dω|η).

DOI 10.20347/WIAS.PREPRINT.3019 Berlin 2023



B. Jahnel, J. Köppl 8

For the existence and further properties of Gibbs measures with specification γ one needs to impose
some conditions on the specification γ. One sufficient condition for the existence of a Gibbs measure
for a specification γ is quasilocality, see e.g. [FV17] or [Geo11]. For the following sections we will need
to assume some more regularity for the specification γ. In particular, these assumptions will guarantee
that γ is quasilocal.

(S1) For each ∆ ⋐ S and η ∈ Ω, the probability measure γ∆(dξ∆|η) is absolutely continuous with
respect to the reference measure λ∆(dξ∆) with density γ∆(·|η).

(S2) For all ∆ ⋐ S, the map

Ω× Ω∆ ∋ (η, ξ∆) 7→ γ∆(ξ∆|η∆c) ∈ [0,∞)

is continuous (with respect to the product topology).

(S3) The conditional densities on the single spin spaces are uniformly bounded away from zero and
infinity, i.e.,

0 < δ ≤ inf
x∈S

inf
η∈Ω

γx(ηx|ηxc) ≤ sup
x∈S

sup
η∈Ω

γx(ηx|ηxc) ≤ δ−1 < ∞.

(S4) We have

sup
x∈S

∑
∆∋x: c∆>0

∑
y ̸=x

δyγ∆ < ∞,

where

δyγ∆ = sup {∥γ∆(dξ∆|η)− γ∆(dξ∆|ζ)∥TV : ηyc = ζyc} .
Remark 2.3. Now that we have stated all of the conditions that we need, let us briefly comment on
why and where we need them.

i. Assumption (R3) clearly implies (L2) and together with (R4) ensures that the interacting parti-
cle system is well-defined.

ii. Assumption (R1) and (S1) allow us to write down the local transition density of the time-reversal
and (S3) makes sure that we are not performing a division by zero.

iii. The further regularity assumptions (R3), (R5) (S3), (S4) and the continuity assumptions (R2)
and (S2) make sure that the local transition densities of the time-reversal also give rise to a well-
defined interacting particle system.

iv. The quantity in (S4) is similar to the classical Dobrushin uniqueness condition, see [Geo11].
However, we only need it to be finite and not strictly smaller than one.

Example 2.4. One particular class of models to which our theory can be applied to are spin systems
for which the specification γ is defined via a potential Φ = (ΦB)B⋐S that satisfies

sup
x∈S

∑
B∋x

|B| ∥ΦB∥∞ < ∞,

and where the rates are of the form

c∆(η, ξ∆) =

{
exp

(
−β
∑

B:B∩∆ ̸=∅ΦB(ξ∆η∆c)
)
, if |∆| = 1,

0, otherwise.

Instead of these single-site updates one could also consider updates in larger regions with a bounded
diameter. Then the rates satisfy (R1) − (R5) and the specification satisfies (S1) − (S4), as one
can see by using similar arguments as in the proof of [FV17, Lemma 6.28].

DOI 10.20347/WIAS.PREPRINT.3019 Berlin 2023



Trajectorial dissipation of Φ-entropies 9

2.2 The time-reversal of an interacting particle system

In the notation of above, assume that µ ∈ G (γ) is Gibbs measure for a quasilocal specification γ,
i.e., assume that µ satisfies the DLR equations

µ(f) = µ(γΛ(f |·))

for all Λ ⋐ S and bounded measurable functions f . Further assume that µ is time-stationary with
respect to the Markovian dynamics with generator L . Denote the semigroup generated by L by
(Pt)t≥0 and the corresponding process on Ω by (η(t))t≥0. As discussed in Section 1.2, for each fixed
T > 0 the process (η(T − t))0≤t≤T is again a time-homogeneous Markov process and under some
suitable assumptions its associated semigroup has a generator L̂ . But what does this generator look
like? For general Markov processes it is not possible to give a closed form expression, but in our case
we can use the special structure of L as the superposition of local dynamics in finite volumes. In
each of these finite volumes, it is clear how the time-reversal with respect to µ should look and we can
hope that we can again write L̂ as the superposition of finite volume processes. With this Ansatz, the
probabilistic intuition dictates the educated guess

ĉ∆(η, ξ∆) = c∆(ξ∆η∆c , η∆)
γ∆(ξ∆|η∆c)

γ∆(η∆|η∆c)
(2.2)

for the transition densities appearing in the generator of the time-reversed interacting particle system.
However, at this stage, it is not obvious that the generator of the time-reversed system is again of the
form (2.1) and has precisely these rates. For Markov processes on finite state spaces this is an easy
calculation but we have to put in some more work, which will be carried out in Section 3. We obtain
the following result that extends results from [Kü84] to a much more general setting.

Proposition 2.5 (Time-reversal generator). Let the rates of an interacting particle system with gener-
ator L satisfy (R1)− (R5) and assume that µ is a time-stationary measure for the corresponding
Markov semigroup (P (t))t≥0 on C(Ω) that is generated by L such that µ is a Gibbs measure with re-
spect to a specification γ that satisfies (S1)−(S4). Then, the time-reversed process has a generator
L̂ whose transition densities (with respect to the reference measure λ0) are given by

ĉ∆(η, ξ∆) = c∆(ξ∆η∆c , η∆)
γ∆(ξ∆|η∆c)

γ∆(η∆|η∆c)
.

The proof of this can be found at the end of Section 3.

2.3 Trajectorial decay of Φ-entropies

With this auxiliary result at hand, we can then obtain the following result, which describes the dissipa-
tion of general Φ-entropies on a trajectorial level. Before we state the theorem, let us introduce some
further notation to express the main equation in a cleaner way. The Bregman Φ-divergence associated
with Φ : I → R is defined as

(p|q) := Φ(p)− Φ(q)− (p− q)Φ′(q), p, q ∈ I.

This is precisely the difference between the value of Φ at the point p and the value of the first-order
Taylor expansion of Φ around q, evaluated at p and is non-negative, since we assumed that Φ is
convex. Bregman divergences are sometimes also referred to as Bregman distances, despite not
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being a metric since they are in general not symmetric and do not satisfy the triangle inequality. They
are however still useful for applying techniques from optimization theory in more general contexts,
e.g. in statistical learning theory [BMDG05].

Note that we now have to be careful with the probability space and filtration we are working with, since
we are talking about results on a trajectorial level.

Theorem 2.6 (Trajectorial decay of Φ-entropies). Let (Ω,A,P) be a probability space on which the
interacting particle system (η(s))s≥0 is defined. Denote the generator of the interacting particle sys-
tem by L and assume that its rates satisfy (R1)− (R5) and assume that under P we have η0 ∼ µ,
where µ is a time-stationary measure for the corresponding Markov semigroup (Pt)t≥0 on C(Ω) that
is generated by L such that µ is a Gibbs measure with respect to a specification γ that satisfies
(S1)− (S4). Then, for any f ∈ D(Ω) and T > 0, the process defined by

LΦ,f (s) := Φ(PT−sf(ηT−s)), 0 ≤ s ≤ T, (2.3)

is a ((Ĝt)0≤t≤T ,P)-submartingale, where Ĝt = σ(η(T − s) : 0 ≤ s ≤ t). Its Doob–Meyer
decomposition is given by

LΦ,f (t) = MΦ,f (t) (2.4)

+

∫ t

0

∑
∆⋐S

∫
Ω∆

ĉ∆(η(T − s), ξ∆)(PT−s(f(ξ∆η∆c(T − s))|PT−sf(η(T − s)))λ∆(dξ∆)ds.

The proof of this theorem can be found at the end of Section 4. As mentioned before, by taking
expectations one recovers the classical DeBruijn-like decay of Φ-entropies as stated in Proposition
1.1.

TODO: Explain more in detail how this can be seen as a TRAJECTORICAL version of the DeBruijn
Theorem!! (If we go back up the trajectories, the functional increases (so morally: forward in time it
decreases).

For the sake of concreteness, let us write out the result explicitly for one of the simplest cases, namely
the trajectorial decay of variance, corresponding to Φ : u 7→ u2.

Corollary 2.7 (Trajectorial decay of variance). In the setting of Theorem 2.6, we have that, for any
f ∈ D(Ω) and T > 0, the process defined by (PT−sf(ηT−s))

2, 0 ≤ s ≤ T , is a ((Ĝt)0≤t≤T ,P)-
submartingale, where Ĝt = σ(η(T − s) : 0 ≤ s ≤ t). Its Doob–Meyer decomposition is given
by

(PT−sf(ηT−s))
2

= M f (t) +

∫ t

0

∑
∆⋐S

∫
Ω∆

ĉ∆(η(T − s), ξ∆) [f(ξ∆η∆c(T − s))− f(η(T − s))]2 λ∆(dξ∆)ds.

2.4 Outlook

Even though we were able to show the trajectorial decay for the relative entropy under quite gen-
eral assumptions on the dynamics, these results are not fully satisfactory in the context of statistical
mechanics. The usually more interesting Lyapunov functional in this setting is the so-called relative
entropy density, as e.g. considered in [FV17], which is not only defined for measures ν that are ab-
solutely continuous with respect to µ. Therefore, it would be much more natural to work with this
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functional h(·|µ) : Minv
1 (Ω) → R instead and one can show that is also a Lyapunov function for

interacting particle systems under quite general assumptions, see [JK22], but it is somewhat unclear
how to even formulate conjectures about the trajectorial properties of this functional, since one cannot
naively evaluate it pointwise.

As we already saw in the case of a continuous time Markov chain on a finite state space, the main
ingredient for this type of result is to obtain an explicit description of the generator of the time-reversed
process. Another class of processes that could be of interest and is not covered by our results are
systems which evolve continuously on their single spin spaces, as opposed to our pure-jump pro-
cesses. The first example that comes to mind are of course systems of (infinitely-many) interacting
diffusions, e.g. indexed by Zd. We expect that, if a given system of interacting diffusions admits a
Gibbs measure as an invariant probability measure, then a combination of the techniques in [KST20]
and this article should yield analogous results – of course under some suitable regularity conditions
on the coefficients.

3 The time-reversed interacting particle system and its genera-
tor

The main goal of this section is to prove Proposition 2.5, thereby establishing that the generator of the
time-reversal is indeed given by L̂ . For this we will need to establish some regularity properties for
the transition densities as defined in (2.2).

3.1 Upper and lower bounds for the conditional densities

Since we will need to deal with quotients involving the conditional densities γ∆ on arbitrary finite
subsets ∆ ⋐ S, we will need to lift the upper and lower bounds from (S3) to this more general case.
This is essentially the content of the following lemma.

Lemma 3.1. Let γ be a specification that satisfies (S1) and (S3). Then, there exists a constant
C ∈ (0,∞) such that for all ∆ ⋐ S we have the estimate

e−C|∆| ≤ inf
η∈Ω

γ∆(η∆|η∆c) ≤ sup
η∈Ω

γ∆(η∆|η∆c) ≤ eC|∆|.

This constant is precisely given by C = |log δ|.

Proof. For this, fix an enumeration i1, . . . , ik of the elements of ∆ and introduce the notation

[ij, ik] := {ij, ij+1, . . . , ik} , 1 ≤ j ≤ k.

With this notation at hand, we can use the chain rule for conditional probability densities to write

γ∆(η∆|η∆c) =
k∏

j=1

γ[i1,ij ](ηij |η[ij+1,ik]η∆c), (3.1)

where γ[i1,ij ](ηij |η[ij+1,ik]η∆c) is the marginal density of the measure γ[i1,ij ](dη[i1,ij ]|η[ij+1,ik]η∆c)
with respect to the site ij . But, using consistency of the specification γ, we have

γ[i1,ij ](ηij |η[ij+1,ik]η∆c) =

∫
γ[i1,ij ](dξ[i1,ij ]|η[ij+1,ik]η∆c)γij(ηij |ξ[i1,ij−1]η[ij+1,ik]η∆c),
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which is, by assumption, upper bounded by δ−1 and lower bounded by δ. In conjunction with the
representation (3.1) this implies the desired upper and lower bound where the constant C is explicitly
given by C = |log(δ)|.

As a corollary we now get the following estimate for the quotients that appear in the definition of
transition density of the time-reversal (2.2).

Lemma 3.2. Let ∆ ⋐ S and γ be a specification that satisfies (S1) and (S3). Then, for all ∆ ⋐ S,
η ∈ Ω and ξ∆ ∈ Ω∆, we have

0 < e−2C|∆| ≤ γ∆(ξ∆|η∆c)

γ∆(η∆|η∆c)
≤ e2C|∆|.

3.2 The switching lemma

Now that we can be sure that the densities as in (2.2) are actually well-defined and we are not per-
forming a division by zero, we can start showing that L̂ is indeed the generator of the time-reversed
process. The main technical tool will be the following lemma.

Lemma 3.3. Let the rates of a well-defined interacting particle system with generator L satisfy (R1)
and assume that µ is a time-stationary measure for L and µ is a Gibbs measure with respect to a
specification γ that satisfies (S1) and (S3). Then, we have for all bounded and measurable f, g :
Ω → R and ∆ ⋐ S that∫
Ω∆

∫
Ω

c∆(ω, ξ∆)f(ω)g(ξ∆ω∆c)µ(dω)λ∆(dξ∆) =

∫
Ω∆

∫
Ω

ĉ∆(ω, ξ∆)f(ξ∆ω∆c)g(ω)µ(dω)λ∆(dξ∆),

(3.2)

where

ĉ∆(η, ξ∆) = c∆(ξ∆η∆c , η∆)
γ∆(ξ∆|η∆c)

γ∆(η∆|η∆c)
.

To keep the notation for conditional expectations in the upcoming proof simple, we will denote integra-
tion with respect to µ by E[·].

Proof. As a first step, note that for fixed ∆ ⋐ S and ξ∆ ∈ Ω∆ the maps

Ω ∋ ω 7→ g(ξ∆ω∆c) ∈ R, Ω ∋ ω 7→ f(ξ∆ω∆c) ∈ R,

are F∆c-measurable. Therefore, we can use that γ is the local conditional distribution of µ and the
definition of the rates ĉ to obtain the µ-almost-sure identity

E [c∆(·, ξ∆)f(·)g(ξ∆·∆c)|F∆c ] (ω)

= g(ξ∆ω∆c)E [c∆(·, ξ∆)f(·)|F∆c ] (ω)

= g(ξ∆ω∆c)

∫
Ω∆

γ∆(ζ∆|ω∆c)c∆(ζ∆ω∆c , ξ∆)f(ζ∆ω∆c)λ∆(dζ∆)

= g(ξ∆ω∆c)

∫
Ω∆

γ∆(ξ∆|ω∆c)ĉ∆(ξ∆ω∆c , ζ∆)f(ζ∆ω∆c)λ∆(dζ∆).
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If we now integrate over ξ∆, exchange the order of integration (via Fubini) and apply the same argu-
ments in reverse – with f taking the role of g and vice versa – we get∫
Ω∆

E [c∆(·, ξ∆)f(·)g(ξ∆·∆c)|F∆c ] (η)λ∆(dξ∆) =

∫
Ω∆

E [ĉ∆(·, ζ∆)f(ζ∆·∆c)g(·)|F∆c ] (η)λ∆(dζ∆).

By integrating both sides with respect to µ, exchanging the order of integration, and applying the law
of total expectation we obtain∫
Ω∆

∫
Ω∆

(ω, ξ∆)f(ω)g(ξ∆ω∆c)µ(dω)λ∆(dξ∆) =

∫
Ω∆

∫
Ω

ĉ∆(ω, ζ∆)f(ζ∆ω∆c)g(ω)µ(dω)λ∆(dζ∆),

as desired.

3.3 Regularity of the time-reversal rates

To make sure that L̂ is actually the generator of a well-defined interacting particle system we now
show that the collection of transition measures (ĉ∆(·, ·))∆⋐S satisfies the three conditions (L1) −
(L3).

Proposition 3.4. Let the rates of an interacting particle system with generator L satisfy (R1)−(R5)
and assume that µ is a time-stationary measure for L and such that µ is a Gibbs measure with re-
spect to a specification γ that satisfies (S1)− (S4). Then, the transition measures (ĉ∆(·, dξ∆))∆⋐Zd

with λ∆-densities given by

ĉ∆(η, ξ∆) = c∆(ξ∆η∆c , η∆)
γ∆(ξ∆|η∆c)

γ∆(η∆|η∆c)

satisfy the conditions (L1)− (L3).

Proof. Ad (L1): This follows from the continuity assumptions (R2) and (S2), together with assump-
tion (S3) and Lemma 3.2.
Ad (L2): Note that for fixed ∆ ⋐ S, ξ∆ ∈ Ω∆ and η ∈ Ω we have by Lemma 3.2 and assumption
(R5)

|c∆(η, ξ∆)| =
∣∣∣∣c∆(ξ∆η∆c , η∆)

γ∆(ξ∆|η∆c

γ∆(η∆|η∆c)

∣∣∣∣ ≤ 1

δ
eRc∆(ξ∆η∆c , η∆).

So we get

sup
η∈Ω

ĉ∆(η,Ω∆) = sup
η∈Ω

∫
Ω∆

ĉ∆(η, ξ∆)λ∆(dξ∆) ≤
1

δ
eR sup

η∈Ω

∫
Ω∆

c∆(ξ∆η∆c , η∆)λ∆(dξ∆)

≤ 1

δ
eR sup

η∈Ω
∥c∆(η, ·)∥∞ .

Therefore, assumption (R3) implies that (L2) is also satisfied.
Ad (L3): Fix ∆ ⋐ S, y ∈ S and two configurations η1, η2 that only disagree at y. Then, for any
ξ∆ ∈ Ω∆ we have∣∣ĉ∆(η1, ξ∆)− ĉ∆(η

2, ξ∆)
∣∣ = ∣∣∣∣c∆(ξ∆η1∆c , η1∆)

γ∆(ξ∆|η1∆c)

γ∆(η1∆|η1∆c)
− c∆(ξ∆η

2
∆c , η2∆)

γ∆(ξ∆|η2∆c)

γ∆(η2∆|η2∆c)

∣∣∣∣
≤
∣∣c∆(ξ∆η1∆c , η1∆)

∣∣ ∣∣∣∣γ∆(ξ∆|η1∆c)

γ∆(η1∆|η1∆c)
− γ∆(ξ∆|η2∆c)

γ∆(η2∆|η2∆c)

∣∣∣∣
+

∣∣∣∣γ∆(ξ∆|η2∆c)

γ∆(η2∆|η2∆c)

∣∣∣∣ ∣∣c∆(ξ∆η1∆c , η1∆)− c∆(ξ∆η
2
∆c , η2∆)

∣∣ .
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To estimate this further, we will have to make a case distinction over whether the site y is contained in
∆ or not. If y is contained in ∆, then we can naively use Lemma 3.2 and assumption (R5) to obtain
the rough estimate

∣∣ĉ∆(η1, ξ∆)− ĉ∆(η
2, ξ∆)

∣∣ ≤ 4
1

δ
eR sup

η∈Ω,ξ∆∈Ω∆

|c∆(η, ξ∆)| ≤
4eRK(c)

δ
.

In the case where y is not contained in ∆, we can (and have to) be a bit more precise. Via the
elementary algebraic rule

ac− bd =
1

2
[(a− b)(c+ d) + (a+ b)(c− d)] ,

and Lemma 3.2 plus assumption (R5) one obtains

∣∣c∆(ξ∆η1∆c , η1∆)
∣∣ ∣∣∣∣γ∆(ξ∆|η1∆c)

γ∆(η1∆|η1∆c)
− γ∆(ξ∆|η2∆c)

γ∆(η2∆|η2∆c)

∣∣∣∣+ ∣∣∣∣γ∆(ξ∆|η2∆c)

γ∆(η2∆|η2∆c)

∣∣∣∣ ∣∣c∆(ξ∆η1∆c , η1∆)− c∆(ξ∆η
2
∆c , η2∆)

∣∣
=

1

2

∣∣c∆(ξ∆η1∆c , η1∆)
∣∣ ∣∣∣∣ 1

γ∆(η1∆|η1∆c)γ∆(η2∆|η2∆c)

∣∣∣∣
×
∣∣γ∆(ξ∆|η1∆c)− γ∆(ξ∆|η2∆c)

∣∣ ∣∣γ∆(η1∆|η1∆c) + γ∆(η
2
∆|η2∆c)

∣∣
+

∣∣∣∣γ∆(ξ∆|η2∆c)

γ∆(η2∆|η2∆c)

∣∣∣∣ ∣∣c∆(ξ∆η1∆c , η1∆)− c∆(ξ∆η
2
∆c , η2∆)

∣∣
≤ 1

2δ2
e2RK(c)K(γ)

∣∣γ∆(ξ∆|η1∆c)− γ∆(ξ∆|η2∆c)
∣∣+ 1

δ
eR
∣∣c∆(ξ∆η1∆c , η1∆)− c∆(ξ∆η

2
∆c , η2∆)

∣∣ .
Now, by integrating this pointwise difference of the densities over ξ∆, we obtain via all of the other
assumptions that

sup
x∈S

∑
∆∋x

∑
y ̸=x

δy ĉ∆ < ∞.

But this is precisely (L3) and the proof is finished.

With these two intermediate results at hand, we can now show that L̂ is indeed the generator of the
time-reversal of (ηt)t≥0 (with respect to the time-stationary measure µ).

Proof of Proposition 2.5. It only remains to show that for all f, g ∈ D(Ω) we have∫
Ω

f(ω)L g(ω)µ(dω) =

∫
Ω

(
L̂ f

)
(ω)g(ω)µ(dω),

since then the claimed time-reversal duality follows from Lemma A.4.

For this, we first note that it suffices to show that the duality relation for the generators holds for all
local functions f, g : Ω → R. Indeed, if it holds for all pairs of local functions, we can then extend
it to functions with bounded total oscillation by using the estimates from Lemma 2.1 and dominated
convergence. Therefore, let f, g be two local functions and let Λ ⋐ S be sufficiently large such that
both f and g only depend on coordinates in Λ. By first applying Lemma 3.3 and then using that µ is
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time-stationary with respect to the Markovian dynamics generated by L , we see that∫
Ω

f(ω)L g(ω)µ(dω)−
∫
Ω

(
L̂ f(ω)

)
g(ω)µ(dω)

=
∑

∆∩Λ ̸=∅

∫
Ω∆

∫
Ω

c∆(ω, ξ∆)[f · g(ξ∆ω∆c)− f · g(ω)]µ(dω)λ∆(dξ∆)

=

∫
Ω

L (f · g)(ω)µ(dω) = 0,

which finishes the proof.

4 Trajectorial decay of Φ-entropies

In this section we use the time-reversed process and a martingale argument to prove Theorem 2.6.

4.1 The time-dependent martingale property

The main technical tool will be the following lemma which can be seen as an extension of [RW00,
Lemma IV.20.12] to our setting.

Lemma 4.1. Let L be the generator of an interacting particle system (η(s))s≥0 such that its transition
rates satisfy (L1) − (L3) and let µ be a time-stationary measure with respect to L . Then, for all
f : [0,∞)× Ω → R such that

i. f(·, η) ∈ C1([0,∞)) for all η ∈ Ω and

ii. for all T > 0 it holds that
sup

0≤t≤T
|||f(t, ·)||| < ∞,

the process defined by

f(t, η(t))−
∫ t

0

(∂s + L )f(s, η(s))ds

is a martingale with respect to the filtration Gt := σ(η(u) : 0 ≤ u ≤ t).

The proof of this lemma is not difficult but hard to find in the existing literature, we therefore give it in
some detail.

Proof. For functions f as above, we define

M(s) := f(s, η(s))−
∫ s

0

(∂u + L )f(u, η(u))du, s ≥ 0

and denote by (Pt)t≥0 the Markov semigroup generated by (∂s + L ). Then, for s < t, the Markov
property and the elementary identity

d

dt
Pt = Pt(∂t + L ) = (∂t + L )Pt,
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give us

E
[
f(t, η(t))−

∫ t

0

(∂u + L )f(u, η(u))du
∣∣∣Gs

]
= Pt−sf(s, η(s))−

∫ s

0

(∂u + L )f(u, η(u))du−
∫ t

s

Pu−s(∂u + L )f(s, η(s))du

= Pt−sf(s, η(s))−
∫ s

0

(∂u + L )f(u, η(u))du−
∫ t

s

d

du
Pu−sf(s, η(s))du

= f(s, η(s))−
∫ s

0

(∂u + L )f(u, η(u))du.

This shows that the process (M(s))s≥0 is indeed a martingale.

This abstract tool now lets us establish the analogue of the first step in the case of a finite state space
considered in Section 1.2.

Proposition 4.2. Let (Ω,A,P) be a probability space on which the interacting particle system (η(s))s≥0

is defined. Denote the generator of (η(s))s≥0 by L and assume that the rates satisfy (R1)− (R5)
and assume that under P we have η(0) ∼ µ, where µ is a time-stationary measure for the corre-
sponding Markov semigroup (Pt)t≥0 on C(Ω) that is generated by L and that µ is a Gibbs measure
with respect to a specification γ that satisfies (S1) − (S4). Then, for all f ∈ D(Ω) and T > 0, the
process defined by

PT−sf(η(T − s)), 0 ≤ s ≤ T,

is a ((Ĝt)0≤t≤T ,P)-martingale, where Ĝt = σ(η(T − s) : 0 ≤ s ≤ t).

Proof. Note that by Lemma 2.1 we can apply Lemma 4.1 to the function

[0, T ]× Ω ∋ (s, η) 7→ PT−sf(η).

But since we have by the chain rule

∂sPT−sf = −L̂ PT−sf,

the correction term cancels out and we obtain the claimed martingale property.

4.2 Trajectorial decay of Φ-entropies

With this preliminary result in place, we can now come to the proof of our main result.

Proof of Theorem 2.6. Submartingale property: By Jensen’s inequality and Proposition 4.2 we imme-
diately see that the process (LΦ,f (t))t≥0, as defined in (2.3), is a submartingale.
Doob–Meyer decomposition: Here we want to apply Lemma 4.1 to the function

g : [0, T ]× Ω ∋ (s, η) 7→ Φ(PT−sf) ∈ R.

Via the chain rule we see that

∂sg(s, ·) = ∂sΦ(PT−sf(·)) = −Φ′(PT−sf(·))L̂ PT−sf(·).
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Applying the generator L̂ for fixed s ∈ [0, T ] yields

L̂ g(s, η) =
∑
∆⋐S

∫
Ω∆

ĉ∆(η, ξ∆) [Φ(PT−sf(ξ∆η∆c))− Φ(PT−sf(η))]λ∆(dξ∆).

By putting these two ingredients together and using the previously introduced notation for the Bregman
Φ-divergence we obtain

(∂s + L̂ )g(s, η) =
∑
∆⋐S

∫
Ω∆

ĉ∆(η, ξ∆)(PT−sf(ξ∆η∆c)|PT−sf(η))λ∆(dξ∆).

The claimed Doob–Meyer decomposition (2.4) of the submartingale LΦ,f now follows from Lemma
4.1.

A The time-reversal of Markov processes in equilibrium

In this section, we briefly summarize some properties of the time-reversal of a Markov process with
respect to a time-stationary measure. These results are classical but not particularly easy to find in
the literature, at least in this formulation.

We start by making precise what we mean by time-reversal of a stochastic process. Recall that any
time-stationary stochastic process (Xt))t≥0 can be extended (in law) to a process (Xt)−∞<t<∞ via
Kolmogorov’s extension theorem.

Definition A.1. Let (Xt)t≥0 be a time-stationary stochastic process. We call a process (Yt)t≥0 the
time-reversal of X if

Law((X−t)t≥0) = Law((Yt)t≥0).

The intuition behind this definition is that forward in time the process Y looks like the process X run
backwards. For Markov processes this notion can be characterized in terms of the semigroups and
generators as follows.

Proposition A.2. Let X = (Xt)t≥0 and Y = (Yt)t≥0 be Markov processes on a compact topological
space E with associated semigroups (Tt)t≥0 and (St)t≥0. Assume that X has a time-stationary
measure ν and for all f, g ∈ C(E) we have∫

E

(Ttf)gdν =

∫
E

f(Stg)dν. (A.1)

Then ν is also time-stationary for Y and Y is the time-reversal of X (with respect to ν).

Proof. By the duality relation (A.1), ν is also time-stationary for Y and we can extend it to a process
(Yt)−∞<t<∞ with Y0 ∼ ν. To show that Y is the time-reversal of X (with respect to ν) it suffices to
show that for arbitrary n ∈ N and times t0 < t2 < · · · < tn < tn+1 and functions f1, . . . , fn ∈
C(E) it holds that

EY0∼ν [f1(Yt1) · · · fn(Ytn)] = EX0∼ν [f1(X−t1) · · · fn(X−tn)] .
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We will do this as follows. First, we introduce the notation f0 = fn+1 ≡ 1 and define functions
g0, . . . , gn+1 and h0, . . . , hn+1 by g0 = hn+1 ≡ 1,

gl(x) := Ex

[
l−1∏
k=0

fk(Xtl−tk)

]
, 1 ≤ l ≤ n+ 1

and

hl(y) := Ey

[
n+1∏

k=l+1

fk(Ytk−tl)

]
, 0 ≤ l ≤ n.

With this notation it suffices to show that the quantity

αl :=

∫
E

gl(x)fl(x)hl(x)ν(dx), 0 ≤ l ≤ n+ 1,

does not depend on l. Indeed, by stationarity of X and Y , this will then imply that

EY0∼ν [f1(Yt1) · · · fn(Ytn)] =

∫
E

h0dν = α0

= αn+1 =

∫
E

gn+1dν = EX0∼ν [f1(X−t1) · · · fn(X−tn)] ,

exactly as we wanted. In order to show that αl does not depend on l, we use the duality relation as
follows. For 0 ≤ l ≤ n it holds that

αl =

∫
E

glflhldν

=

∫
E

gl(x)fl(x)Ttl+1−tl [fl+1hl+1](x)ν(dx)

=

∫
E

Stl+1−tl [glfl](x)fl+1(x)hl+1(x)ν(dx)

=

∫
E

gl+1fl+1hl+1dν = αl+1.

Therefore, αl does not depend on l and the claim follows.

The duality relation (A.1) for the semigroups can also be verified by checking a similiar property on
the level of generators. The main technical tool for establishing this relation between the generator of
a Markov process and its semigroup will unsurprisingly be the celebrated Hille–Yosida theorem which
we recall here.

Theorem A.3 (Hille–Yosida). There is a one-to-one correspondence between Markov generators on
C(E) and Markov semigroups on C(E). This correspondence is explicitly given by

i.

dom(L ) =

{
f ∈ C(E) : lim

t↓0

Stf − f

t
exists

}
, and

L f := lim
t↓0

Stf − f

t
, f ∈ dom(L ).
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ii.

Stf = lim
n→∞

(
Id − t

n
L

)−n

f, f ∈ C(E), t ≥ 0.

Moreover,

iii. if f ∈ dom(L ), then Stf ∈ dom(L ) for all t ≥ 0 and d
dt
Stf = L Stf = StL f and

iv. for g ∈ C(E) and λ ≥ 0, the solution to the resolvent equation f − λL f = g is given by

f =

∫ ∞

0

e−tSλtgdt.

Proof. See Theorem 1.2.6 and Theorem 4.2.2 in [EK86].

With this at hand, we can now formulate the time-reversal duality for generators.

Lemma A.4. Let (Tt)t≥0 and (St)t≥0 be two Markov semigroups on C(E) where E is a compact
topological space with time-stationary measure ν. Let (A , dom(A )) and (B, dom(B)) be their
generators. If for all f ∈ dom(A ) and g ∈ dom(B) it holds that∫

E

(A f) g dν =

∫
E

f (Bg) dν, (A.2)

then (A.1) holds. It suffices if (A.2) holds for f, g in a core of the respective generators.

Proof. The duality relation implies that for all f ∈ dom(A ), g ∈ dom(B) and λ ≥ 0 it holds that∫
E

f(g − λL g) dν =

∫
E

g(f − λL̂ f) dν.

Now we can replace f by (Id − λL )−1f and g by (Id − λL̂ )−1g to see that for all f, g ∈ C(Ω)∫
E

[(Id − λA )−1f ]g dν =

∫
E

[(Id − λB)−1g]f dν.

By iteratively applying this equality we obtain that for all n ∈ N and λ ≥ 0 it holds that∫
E

[(Id − λA )−nf ]g dν =

∫
E

[(Id − λB)−ng]f dν.

For fixed t ≥ 0 we can replace λ by t/n and use Part ii. of Theorem A.3 to see that

lim
n→∞

∫
E

[
(Id − t

n
A )−nf

]
g dν =

∫
E

gTtf dν

and

lim
n→∞

∫
E

[
(Id − t

n
B)−ng

]
f dν =

∫
E

fStg dν,

as desired.

To sum this up, in order to show that a stationary Markov process Y is the time-reversal of a stationary
Markov process X , it suffices to check that their generators satisfy the duality relation (A.2).
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