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Finite volumes for simulation of large molecules
Martin Heida

Abstract

We study a finite volume scheme for simulating the evolution of large molecules within their re-
duced state space. The finite volume scheme under consideration is the SQRA scheme developed
by Lie, Weber and Fackeldey. We study convergence of a more general family of FV schemes in
up to 3 dimensions and provide a convergence result for the SQRA-scheme in arbitrary space
dimensions.

1 Smoluchovski equation in high dimension

The evolution of a large molecule over time can be modelled using the Smoluchovski equation where
the state of the molecule is described by its position in the state space. While the true state space
consists of the positions and velocities of all atoms of the molecule, for large molecules we can often
identify several critical degrees of freedom that dominate the behavior and the state of the molecule,
which can be used to reduce the dimension of the state space. Considering e.g. a critical bond within
the molecule, which can vary its angles (θ, φ) ∈ [0, π)× [0, 2π). If the molecule has 3 such bonds, this
leads to a polygonal subset Q of a d = 6 dimensional state space X. The variable u(t, ·) : Q→ R
will henceforth be indicating the probability distribution to find the molecule in the state x ∈ Q at time
t and u0 = u(0, ·) is the initial distribution (or initial state u0 = δx0 , in case this is known precisely).
The evolution of u over time is described by the Smoluchovski equation with mobility κ and chemical
potential V

u̇ = ∇ · (κ∇u) +∇ · (κu∇V ) on [0, T ]×Q

Without going into details but refering to [5] we claim that the major point for the understandig of
long-term evolution of the molecule is the understanding of the right hand side linear operator, i.e. its
eigenvalues and eigenvectors.

From the numerical point of view, this results in the necessity to discretize the following elliptic equation:

−∇ · (κ∇u)−∇ · (κu∇V ) = f on Q (1.1)

and to study the convergence behavior of the discretization. For simplicity we assume in the following
that κ, V ∈ C2(Q), f ∈ L2(Q) are real-valued functions.

The assumption V ∈ C2(Q) implies strict positivity of π := exp(−V ). Using a transformation
U = u/π we find that (1.1) is equivalent with

−∇ · (πκ∇U) = f. (1.2)

The particular challenges we address are, first, the choice of discretization approach for π, as addressed
in [3], and second the issues that arise from high dimensionality of the problem, i.e. the curse of
dimensionality, and the issue arising from V (x) → +∞ as x → ∂Q at least for some models,
addressed in [4].
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1.1 Discretization

Discretizing (1.2) on an admissible mesh in the sense of Definition 10.1 in Chapter 3 of [1] or in
[2] we write T = (V , E ,P) for the mesh consisting of convex polytope control volumes V :=
{Ωi, i = 1, . . . , N} with mass mi,(d− 1)-dimensional flat interfaces EQ = {σi,j} with measure
mi,j and points PQ = {xi, i = 1, . . . , N} which we sometimes call the cell centers. Two cells Ωi, Ωj

are neighbors if σi,j := ∂Ωi ∩ ∂Ωj has positive measure and we write i ∼ j. If i ∼ j , the distance of
the cell centers is hi,j := |xi − xj|.
In order to formulate discrete Dirichlet conditions, we follow [2] and enrich the mesh with finitely many
points P∂Q = (yk)k ⊂ ∂Q and virtual interfaces E∂Q = {σi,k flat : ∃i with σi,k ⊂ ∂Q ∩ ∂Ωi}
i.e., for every flat segment σi,k ⊂ ∂Q ∩ ∂Ωi we chose yk ∈ σi,k such that (yk − xi)⊥σi,k and
denote mi,k := |σi,k| with hi,k := |yk − xi|. We further generalize the notation i ∼ j if σi,j ⊂ ∂Ωi

or σi,j ⊂ ∂Ωj . Then, when summing up over the interfaces in the calculations below, we do not have
to distinguish between inner interface of type ∂Ωi ∩ ∂Ωj and outer interfaces of type ∂Q ∩ ∂Ωi.

We finally denote P = PQ ∪P∂Q and E = EQ ∪E∂Q and write
∑

j: j∼i for the sum over all interfaces
belonging to Ωi and

∑
j∼i for the sum over all interfaces E .

Given a family of admissible meshes Th = (Vh, Eh,Ph) we denote for Ωi ∈ Vh the diameter
hi = diamΩi. The family of meshes is called quasi uniform if for every xi, xj ∈ Ph, i ∼ j, it holds
hi,j < h and if there exists R, r > 0 independent from Th such that the following holds: For every
Ωi ∈ Vh there exists x ∈ Ωi such that Brhi(x) ⊂ Ωi ⊂ BRhi(x).

We make the following proposal for a discretization of (1.2)

∀xi ∈ PQ −
∑
j: j∼i

mi,j

hi,j
Si,j (UT ,j − UT ,i) = mifT ,i, (1.3)

where fT ,i =
ffl

Ωi
f is the average of f over Ωi and Si,j = Sα,β (πi, πj) is a Stolarsky mean of πi

and πj [6], πi = e−Vi , Vi = V (xi) resp. Vi = V (yi) and

Sα,β (x, y) =

(
β (xα − yα)

α (xβ − yβ)

) 1
α−β

, α 6= 0, β 6= 0, α 6= β, x 6= y (1.4)

Stolarsky means can be extended to the critical points α = 0, β = 0, α = β, x = y in a continuous
way and generalize the logarithmic mean and other means. Interestingly, for a choice α = 0 β = −1
one obtains the Scharfetter–Gummel scheme with S0,−1(x, y) = xy(x − y)−1 log x

y
. While we do

not want to go into detail on this aspect, we mention that α = 1, β = −1 yields S1,−1(x, y) =
√
xy,

which is the SQRA scheme and refer for more information on motivation and background to [3].

From a discrete solution UT one can obtain a discrete uT reversing the above transformation U = u/π.
One obtains that uT ,i := UT ,iπi solves the discrete Smoluchovski

∀xi ∈ PQ −
∑
j: j∼i

mi,j

hi,j
Si,j

(
uT ,j
πj
− uT ,i

πi

)
= mifT ,i, (1.5)

In what follows we will provide convergence results for the above discretizations in low dimensions, i.e.
d ≤ 3 and in high dimensions for (1.3) only.
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1.2 Results and challenges

Our results are centered around two different questions that arise from the convergence analysis of
(1.3) and (1.5) in high dimensions: The first results in Section 2 deal with the convergence of (1.3) and
(1.5) in low dimensions up to d = 3. We will see that all schemes converge with the same rate for U
but that there is a different convergence behavior in u: The classical Scharfetter-Gummel scheme has
a better convergence behavior than the other schemes for high gradients of V . From the analytical
point of view, it is interesting that for any choice of the Stolarsky mean, the rate of convergence is not
worse than the consistency of the mesh for the ordinary Laplace operator, i.e. κ = π = 1.

The results of Section 3 are centered around the convergence of a general finite volume scheme of type
(1.3) in high dimensions when the resolution of the underlying grid is not homogeneous: In particular, we
assume that the expected solution is almost constant in some regions, where the resolution is chosen
rough, while the resolution is fine in regions of strong oscillations of the solution or the coefficients κ and
π. We will see that this can lead to good results by simultaneously bypassing the curse of dimensionality
to some extend. Furthermore, we deal with the case that the elliptic parameter degenerates locally
close to the boundary. This scenario is relevant in chemistry as the potential V might tend to +∞ in
some regions of the state space.

The mathematical challenge in the second case is that one cannot rely on the "classical"pointwise
evaluation of the limit function, but one has to compare the discrete solution with a locally averaged
continuous solution. In particular, Taylor arguments have to be carried out in an averaged sense and
one needs to be very careful that averaged lower order terms really cancel each other out. Furthermore,
also the proof of the Poincaré inequality has to rely on dimensionless averaging arguments.

2 Convergence results based on consistency, [3]

In this section, we assume κ = 1 for simplicity of notation, but mention that the results in [3] hold more
general. We then denote

L2(P) := {U : PQ → R} HT :=
{
U : P → R | U |P∂Q ≡ 0

}
with the embedding HT ↪→ L2(P) and for ṽ ∈ L2(P), v ∈ H:T we introduce

‖v‖2
HT

:=
∑
i∼j

mi,j

hi,j
(vj − vi)2 , ‖ṽ‖2

L2(P) :=
∑
Ωi

miṽ
2
i . (2.1)

Definition 2.1 (inf-sup stability). Let Th = (Vh, Eh,Ph) be a quasi uniform family of admissible
meshes. A family of bilinear forms ah on HTh is called uniformly inf-sup stable with respect to two
norms ‖·‖h,1, ‖·‖h,2 if there exists γ > 0 (independent from h) such that

∀u ∈ HTh : γ ‖u‖h,1 ≤ sup
v∈HTh

ah (u, v)

‖v‖h,2
.

We write (Rhu)i := (RThu)i := u(xi) on Ωi. For a continuous and coercive bilinear form a :
H1

0 (Q)×H1
0 (Q)→ mathbbR, the associated linear operator A : H2(Q)→ L2(Q) is defined by

∀u ∈ H2(Q) ∩H1
0 (Q), v ∈ H1

0 (Q) : a(u, v) =

ˆ
Q

v Au . (2.2)

DOI 10.20347/WIAS.PREPRINT.3018 Berlin 2023



M. Heida 4

Definition 2.2 (Consistency). Let a : H1
0 (Q) × H1

0 (Q) → R be bilinear and continuous with
linear operator A such that (2.2) holds and let Th = (Vh, Eh,Ph) be a family of admissible meshes
with ah : HTh × HTh → R continuous bilinear forms. The variational consistency error of ah in
u ∈ H2(Q) ∩H1

0 (Q) is the linear form Eh (u; · ) : HTh → R where

∀v ∈ HTh : Eh (u; v) :=
∑
i

vi

ˆ
Ωi

Au− ah (Rhu, v) . (2.3)

We say consistency holds for ‖ · ‖h,2 on HTh and u ∈ H2(Q) ∩H1
0 (Q) if

‖Eh (u; · )‖h,2,∗ := sup
υ∈HTh\{0}

|Eh (u; υ)|
‖υ‖h,2

→ 0 as h→ 0 .

A special role is played by

aD (u, v) =

ˆ
Q

∇u · ∇v , ah,D (u, v) =
∑
i∼j

mi,j

hi,j
(uj − ui) (vj − vi) ,

with the corresponding consistency error Eh,D. This is the underlying concept of the following definition:

Definition 2.3 (ϕ-consistency). Let Th = (Vh, Eh,Ph) be a quasi uniform family of admissible meshes.
We say that Th is ϕ-consistent for a continuous monotone increasing ϕ with ϕ(0) = 0 if for every
u ∈ H2(Q) ∩H1

0 (Q) there exists C ≥ 0 such that for every h > 0

‖Eh,D (u; · )‖H∗Th
≤ C ‖u‖H2 ϕ (h) .

Our main results are formulated in terms of ϕ-consistency as follows:

Theorem 2.4 ([3], Theorem 1.4). Let d ≤ 3 and Th = (Vh, Eh,Ph) be a quasi uniform family
of admissible meshes and let the above assumptions on κ, V and f hold. Moreover, let Th be ϕ-
consistent (Def. 2.3). If U ∈ H2(Q)∩H1

0 (Q) is the solution of (1.2) and UTh the solution of (1.3) with
discrete homogeneous Dirichlet boundary conditions then

‖UTh −RThU‖
2
HTh
≤ C1 ‖π‖2

∞ ϕ(h)2 + C2h
k ,

where k = 2 in general and k = 4 if the grid is cubic or d = 1. Here, C1 and C2 depend only on d
and Q, r and R.

Theorem 2.5 ([3], Theorem 1.5). Let d ≤ 3 and Th = (Vh, Eh,Ph) be a quasi uniform family
of admissible meshes and let the above assumptions on κ, V and f hold. Moreover, let Th be ϕ-
consistent (Def. 2.3). If u ∈ H2(Q) ∩H1

0 (Q) is the solution of (1.1) and uTh the solution of (1.5) with
discrete homogeneous Dirichlet boundary conditions then

‖uTh −RThu‖
2
HTh
≤ C1

(
‖u‖2

H2 + ‖u‖2
∞ ‖V ‖

2
H2

)
ϕ(h)2 + C2h

k ,

where k = 2 in general and k = 4 if α + β = −1 and where C1 depends on Q,d, r and R and C2

additionally depends on ‖V ‖C2 and ‖u‖H2 .

On cubic grids, the above estimates further simplify.

Theorem 2.6 ([3], Theorem 1.7). Let d ≤ 3 and Th = (Vh, Eh,Ph) be a sequence of cubic grids hZd
and let the above assumptions on κ, V and f hold. If u ∈ H2(Q) ∩H1

0 (Q) is the solution of (1.1)
and uTh the solution of (1.5) with discrete homogeneous Dirichlet boundary conditions then

‖uTh −RThu‖
2
HTh
≤ Chk ,

where k = 2 in general and k = 4 if α + β = −1 and where C depends on on Q,d, ‖V ‖C2 and
‖u‖H2 .
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3 Finite volume in high dimension, [4]

We will now focus on (1.2) with κ = 1. When we speak of periodic boundary conditions below, we
assume that Q is a cube. We further assume π ∈ C2(Q). Since molecules could face non self-
penetrating conditions, the event V (x) → +∞ as x → x0 ∈ Q, i.e. π(x0) = 0 is a plausible
scenario. However, we will be very general on our assumptions on π. For every Ωi ∈ T we take
a value πi and for every σ ∈ EQ we take a value πσ. It may or may not hold for σ = σij that
πij = πσij = Sα,β(πi, πj) but we always assume that the discretization is such that πi, πj, πij > 0
for every i ∼ k. Finally, for every cell Ωi we assume that there exist positive constants Ri > ri such
that

Bri(xi) ⊂ Ωi ⊂ BRi(xi) .

Since we are in high dimension and want to break the curse of dimensionality by using a high resolution
(i.e. small Ri) only in a region as small as possible, we will replace the typically used upper bound for
Ri by a distribution of Ri.

In what follows, we write H2
0 (Q) := H2(Q) ∩ H1

0 (Q) as well as H2
per(Q) for periodic H2(Q)

functions with mean value 0 and

H2
(0)(Q) :=

{
U ∈ H2(Q) |

ˆ
Q

U = 0, ∂νU = 0 on ∂Q

}
.

These spaces clearly correspond to homogeneous Dirichlet boundary conditions (BC), periodic or
homogeneous Neumann boundary conditions.

In what follows, we write Ei = {σij : i ∼ j} and for σ = σij ∈ Ei we write ∂i,σij = 1
hij

(Uj − Ui). If

σ ⊂ ∂Q ∩ ∂Ωi exists, we write Ei,∂ for the set of all such piecewise flat subsets σ and include Ei,∂
into Ei and write ∂i,σ accordingly.

We then define discrete spaces incorporating discrete boundary conditions (DBC) as follows:

� Dirichlet: HT ,0 := {U : P → R | ∀σ ∈ E∂ Uσ = 0}

� Neumann: HT ,(0) := {U : P → R | ∀i, σ ∈ Ei,∂ : ∂K,σU = 0 ,
∑

KmkUK = 0}

� Periodic: we periodize the discretization, consider discrete functions on the full space and require
identical values on "periodically shifted"cells. The corresponding space will be called HT ,per

In the following, we always match discrete with the corresponding continuous BC. When there is no
need to distinguish between the cases, we simply write H2

BC(Q) and HT ,BC and use the index BC
accordingly throughout this work. We study the discrete equation (3.1) i.e.,

∀i :
∑
σ∈Ei

mσπσ∂i,σUT = mifi , (3.1)

in either one of the spaces HT ,0, HT ,(0) or HT ,per and with the additional condition
´
Q
πU = 0 in

case of Neumann or periodic boundary conditions (BC) i.e.
∑

imiUT ,i = 0.

Defining L2(T ) := {v| PQ → R} and

‖v‖2
L2(T ) :=

∑
i∈V

miv
2
i , ‖v‖2

HT ,π
:=
∑
σ∈E

mσhσπσ |∂σv|2 , (3.2)

DOI 10.20347/WIAS.PREPRINT.3018 Berlin 2023



M. Heida 6

as well as the pair of operators

R̃T : L2(Q) → L2(T ) ,
(
R̃T U

)
i

:=

 
Bri (xi)

U , (3.3)

R∗T : L2(T ) → L2(Q) , (R∗T U) (x) := Ui if x ∈ Ωi (3.4)

We extend R̃T to account for discrete Dirichlet BC by (RT ,0U)i :=
(
R̃T U

)
i

and

∀σ ∈ E∂ : (RT ,0U)σ := 0 , (3.5)

and for Neumann BC byRT ,(0)U := R̃T U −
(∑

imi

(
R̃ThU

)
i

)
and

∀σ ∈ E∂ :
(
RT ,(0)U

)
σ

:= (RT U)K , K ∈ Vσ . (3.6)

For periodic BC, we setRT ,perU := R̃T U −
(∑

KmK

(
R̃ThU

)
K

)
and find the general relation

RT ,BC : H2
BC(Q)→ HT ,BC.

Theorem 3.1 ([4] Theorem 2.5). Given a polygonal bounded domain Q ⊂ Rd and U ∈ H2(Q) a
solution to (1.2) with f ∈ L2(Q) satisfying the boundary conditions BC then for every admissible
mesh T it holds: there exists a unique solution UT to (3.1) for fT given by (3.1) satisfying the discrete
boundary conditions BC. Furthermore

‖UT −RT ,BCU‖HT ,π ≤ (I1,T (U) + I2,T (U)) , (3.7)

I1,T (U) =

(∑
σ∈E

hσmσπ
−1
σ

( 
σ

|π − πσ| |∇U |
)2
) 1

2

,

I2,T (U) =

(∑
σ∈E

mσπσhσ

( 
σ

∇U · νσ,K − ∂σ,KRT U
)2
) 1

2

.

Furthermore, there exists a constant C > 0 depending only on d such that for every U ∈ H2(Q) ∩
H1

0 (Q) the following holds:

|I1,T (U)|2 ≤ C

(∑
i

R3
i

r3
i

R2
i

∥∥√π∇U∥∥2

H1(Ωi)
‖∇π‖2

L∞(Ωi)

∑
σ∈Ei

 
σ

1

πκσ

)
, (3.8)

|I1,T (U)|2 ≤ C

(∑
i

R3
i

r3
i

R2
i ‖∇U‖

2
H1(Ωi)

‖∇π‖2
L∞(Ωi)

∑
σ∈Ei

1

πσ

)
, (3.9)

|I2,T (U)|2 ≤ C

(∑
i

R2
i

(
Ri

ri

)d+1 ∥∥∇2U
∥∥2

L2(Ωi)

∑
σ∈Ei

πσ

)
. (3.10)

Theorem 3.1 provides only an estimate on the HT ,π-norm while we seek convergence also in L2(T ).
For this it is convenient to derive a Poincaré inequality. As the above discussion suggests, we will seek
for such an inequality with respect to the weighted norms. In what follows, we assume that Q has the
following structure, even though there are more general possible structures:
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Definition 3.2. Let Q be simply connected, let ω ⊂ Q be open convex and let π : Q → R be
a simple piecewise constant function. Let ω(π, π0) := {x ∈ ω|π(x) ≥ π0}. Given π0 ≥ π1 > 0
we say that π is pseudo monotone on ω w.r.t π0, π1 and an open ball B ⊂ ω(π, π0) if for every
x ∈ ω\ω(π, π0) and every y ∈ B there exists z ∈ ∂ω(π, π0) such that t 7→ π(x + t(z − x)) is
monotone increasing on [0, 1] and if π restricted to the closed convex hull of ω(π, π0) is bigger or
equal to π1.

Definition 3.3. Using
ET ,x,y := {σ ∈ E| [x, y] ∩ σ 6= ∅} .

we define πT (x) := (R∗T πT ) (x) and the following function for x ∈ ωi and corresponding Bij ⊂ ωi:

aπ,T (x) := min

{
(R∗T πT ) (x) , inf

y∈Bij
inf

σ∈ET ,x,y
πσ

}
,

π̃T (x) :=

{
(R∗T πT ) (x) if (R∗T πT ) (x) ≥ π0 and aπ,T (x) ≥ π1

aπ,T (x) else
.

Next, we introduce the notation π̃T ,K := m−1
K

´
K
π̃T . Based on this we write for U ∈ L2(T ):

πV :=

ˆ
Q

π̃T (x) , U
π̃

:=
1

πV

ˆ
Q

π̃TR∗T U .

Theorem 3.4 ([4] Theorem 2.14). Under the above assumptions on Q and π and T exists a constant
C depending only on d, Q̃, C(T , π0), π0 and ‖π‖∞ such that∑

K

π̃T ,KmK

(
UK − U

π̃
)2

≤ C ‖U‖2
HT ,π

. (3.11)

References

[1] R. Eymard, T. Gallouët, and R. Herbin. Finite volume methods. Handbook of numerical analysis, 7:713–1018, 2000.

[2] T. Gallouët, R. Herbin, and M. H. Vignal. Error estimates on the approximate finite volume solution of convection
diffusion equations with general boundary conditions. SIAM Journal on Numerical Analysis, 37(6):1935–1972, 2000.

[3] M. Heida, M. Kantner, and A. Stephan. Consistency and convergence for a family of finite volume discretizations of the
fokker–planck operator. ESAIM M2AN, 55:3017–3042, 2021.

[4] M. Heida, A. Sikorski, and M. Weber. Consistency and order 1 convergence of cell-centered finite volume discretizations
of degenerate elliptic problems in any space dimension. WIAS Preprint, 2913, 2022.

[5] H. C. Lie, K. Fackeldey, and M. Weber. A square root approximation of transition rates for a markov state model. SIAM
Journal on Matrix Analysis and Applications, 34:738–756, 2013.

[6] K. B. Stolarsky. Generalizations of the logarithmic mean. Mathematics Magazine, 48(2):87–92, 1975.

DOI 10.20347/WIAS.PREPRINT.3018 Berlin 2023


	Smoluchovski equation in high dimension
	Discretization
	Results and challenges

	Convergence results based on consistency, heida2020consistency
	Finite volume in high dimension, heida2023high

