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Quenched homogenization of
infinite range random conductance model

on stationary point processes
Yonas Bokredenghel, Martin Heida

Abstract

We prove homogenization for elliptic long-range operators in the random conductance model
on random stationary point processes in d dimensions with Dirichlet boundary conditions and
with a jointly stationary coefficient field. Doing so, we identify 4 conditions on the point process
and the coefficient field that have to be fulfilled at different stages of the proof in order to pass
to the homogenization limit. The conditions can be clearly attributed to concentration of support,
Rellich-Poincaré inequality, non-degeneracy of the homogenized matrix and ergodicity of the elliptic
operator.

1 Introduction

We consider a stationary ergodic point process in Rd or Zd with realization x = (xi)i∈N. A definition of
this concept is recalled in Section 2.3 below. We furthermore assume to be given a random coefficient
field jointly stationary with x:

α : x× x→ [0, 1] , (x, y) 7→ αx,y . (1.1)

We denote E the classical expectation and E0 the conditional expectation 0 ∈ x. Since x is stationary
we find for every jointly stationary random variable f that Ef = E0f and we demand

αx,y = αy,x , αx,x = 0 and 0 < E0

 ∑
z∈x\{0}

α0,z

 <∞ . (1.2)

Given ε > 0 we consider the sets xε, and the functions αε : xε × xε → R

xε := εx = (εxi)i∈N = (xεi )i∈N , αεx,y = αx
ε
, y
ε
.

Introducing the function spaces

Sε
x

:= {xε → R} and Sε
x
(Q) := {u ∈ Sε

x
: ∀xεi ∈ xε\Q u(xεi ) = 0}

we write ui := u(xεi ) for every u ∈ Sε
x

and introduce the linear operator on Sε
x
(Q):

∀xεi ∈ Q ∩ xε :
(
Lε
x,αu

)
i

:= ε−2
∑
j 6=i

αεxεj ,xεi
(uj − ui)
|xj − xi|2

.

We are particularly interested in the limit behavior of the discrete differential equation

−Lε
x,αu

ε = f ε in Q ∩ xε , uε(xεi ) = 0 if xεi ∈ xε \Q . (1.3)

DOI 10.20347/WIAS.PREPRINT.3017 Berlin 2023



Y. Bokredenghel, M. Heida 2

where f ε ∈ Sε
x
(Q) is a sequence that converges weakly in a sense to be specify below.

The homogenization of problem (1.3) has been studied successfully first in [9] for x = Zd. Writing
e1, . . . ed for the canonical basis of Rd, in [9] some additional condition of the type

E

(∑
i

α−1
0,ei

) d
2

<∞ (1.4)

is needed. The condition imposed in [9] is more general, but reads similar. Recently, a more general
result has been optained in [3] under the condition that for some p, q ∈ (1,∞) with 1

p
+ 1

q
< 2

d
it holds

E

(∑
z∈Zd

α0,z |z|2
)p

<∞ and E
∑
z∈Zd
|z|=1

α−q0,z <∞ . (1.5)

Since all recent results work on x = Zd and with αx,y > 0 for |x− y| = 1, our result is indeed
new. Like in our previous work [9] we use stochastic two-scale methods developed in [9] to show that
stationary ergodic point processes x in Zd with weights αx,y satisfying Assumptions 1.1 below lead
to a homogenization result for (1.3). In this context we further use recent results from finite volume
analysis [2, 5] to prove our compactness and uniform Poincaré inequalities in ε > 0. Furthermore,
the proof that the support of u ∈ Sε

x
(Q) – regarded as a function in L2(Q) – lies within a small ball

around Q is inspired by recently developed ideas by the author for continuous homogenization [13, 15].

We note at this point that up to now only little is known on long-range interaction besides the two
recent work [3, 9]. Another approach in terms of a random resistor network [8] was recently established
by Faggionato. It however separates the edges inside Q and accounts only for interaction between
points inside Q with those outside Q but not for “inside –inside”, e.g. nearest neighbor interaction. We
further note that in a previous work of the second author (e.g. the preprint [14]) the same problem was
considered in less generality for point processes in Zd.

1.1 Notation

We write BR(x) :=
{
y ∈ Rd : |x− y| < R

}
for the open ball of radius R around x ∈ Rd and more

general
BR(Q) :=

{
y ∈ Rd : ∃x ∈ Q s.t. |x− y| < R

}
.

Given xε =
(
xεj
)
j∈N we construct a Voronoi tessellation of cells gεj with center xεj and with mass

mε
j =

∣∣gεj∣∣ (the Lebesgue measure) respectively. We say that the Voronoi cells gεi and gεj are
neighbored if the d− 1 dimensional Hausdorff measure mε

i,j :=
∣∣∂gεi ∩ ∂gεj∣∣ is positive. We write

i ∼ j or xεi ∼ xεj if the cells gεi and gεj are neighbored and

N (xεi ,x
ε) :=

{
xεj ∈ xε : i ∼ j

}
with N (xεi ,x

ε) := εN (
xεi
ε
,x) . (1.6)

Given the random point process x we define

Γ = {γij :=
1

2
(xi + xj) : i 6= j} , Γε = {γεij := εγij} .
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Inifinte range random conductance model 3

We furthermore use the following short notations for sums

αij := αxi,xj , αεij := αεxεi ,xεj ,
∑
i

:=
∑
i∈N

,
∑
i,j

:=
∑
i,j∈N
i 6=j

and introduce the spaces

Gε
x

:= {Γε → R} and Gε
x
(Q) :=

{
u ∈ Gε

x
: ∀γεij ∈ Γε\Q u(γεij) = 0

}
By construction, it holds αεij = αij and we define the following semi-norm on Sε

x
:

∀u ∈ Sε
x

: bucαΓε :=

(
εd−2

∑
i,j

αεij
(uj − ui)2

|xj − xi|2

) 1
2

.

We will see below that under certain conditions, bucαΓε indeed is a norm on Sε
x
(Q).

For every x and every ε > 0 as well as for positive numbers (aεi )i∈N we find the scalar product
〈 · , · 〉axε and the corresponding norm ‖ · ‖axε on Sε

x
given by

〈u, v〉axε := εd
∑
xi∈xε

aεiuivi .

Typical examples are the choices

aεi ≡ 1 or aεi = mε
i . (1.7)

We defineRε,x : Lqloc(Rd)→ Sε
x

, 1 ≤ q <∞ and its adjointR∗ε,x : Sε
x
→ Lqloc(Rd) through

(Rε,xφ)i = |Gε
i |−1

ˆ
Gεi

φ , and
(
R∗ε,xu

)
[x] = u(xεi ) if x ∈ Gε

i .

Again, we drop the index x if no confusion is possible.

The above (semi-) norms as well asR∗ε,x can be restricted to Sε
x
(Q) using uxi = 0 for xi ∈ xε \Q.

1.2 Our setting

We make the following crucial assumptions, where, in line with the general definition of mε
i,j above, m0

is the mass of the cell corresponding to xi = 0 and m0,j is the Hausdorff mass of the Voronoi interface
between the neighbors xi = 0 and xj . :

Assumption 1.1.

1 Support-Condition: There exists βd > d+ 1 such that

fd(R) < R−βd , where fd(R) :=
1

2d
P(BR(0) ∩ x = ∅) (1.8)

2 Poincaré-Condition: Defining

βij :=

{
|∂mij| |xj − xi| , i ∼ j

0 , else.
(1.9)

there exists some p ∈
(

2d
d+2

, 2
)

such that it holds

E0

∑
0∼j

α0j

(
β0j

α0j

) 2
2−p

<∞ (1.10)
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3 Nondegeneracy-Condition: Let (ek)k=1,...,d be a orthonormal basis of Rd. Then there exists
C > 0 such that for k = 1, . . . , d

E0

∑
j∼0

β0,j
|xj · ek|
|xj|

> C (1.11)

4 Ergodicity-Condition(s): There exist qα, qm > 1 such that

E0m
−qm
0 + E0

∑
j

αqα0j <∞ .

Remark 1.2. Condition (1.8) is new compared to [9, 3] and is solely due to the fact that x 6= Zd.
Example 1.3. If P(x ∈ x) = p0 ∈ (0, 1) is distributed i.i.d. among all x ∈ Zd it is easy to see that

fd(R) < C exp(−Rd)

for some C > 0 depending on p0.

Remark 1.4. In case x = Zd, we fall back to βij = 1 for i ∼ j and mi = 1 and every cell has
a fixed diameter. Consequently, Assumption 1.1 collapses to the following condition: There exists
p ∈

(
2d
d+2

, 2
)

and q > 1 such that

E
∑
0∼j

α
−p
2−p
0j + E0

∑
j

αq0j <∞ (1.12)

This can be understood as a generalization of (1.4) by using p = 2d
d+2

and q > 1, even though we are
slightly worse than (1.2).

Theorem 1.5. Let x a stationary ergodic point process x = (xi)i∈N and α ∈ Gε
x

a jointly stationary
random function such that Assumption 1.1 is satisfied. Then almost surely the following properties are
satisfied by x, α and Lε

x,α and Ahom given by (5.1) below:

1 For some c > 0 it holds

∀x ∈ Q : c |ξ|2 ≤ ξ · Ahom(x)ξ ≤ c−1 |ξ|2

and Lε
x,α weakly G-converges to u 7→ ∇ · Ahom∇u in the following sense: If f ε ∈ Sε

x
(Q) is a

sequence and f ∈ L2(Q) such thatR∗ε,xf ε ⇀ f weakly in L2(Rd) and if uε ∈ Sε
x
(Q) is the

solution to
∀xεi ∈ Q ∩ xε : −

(
Lε
x,αu

)
i

= f εi ,

then there exists a unique u ∈ H1
0 (Q) such thatR∗ε,xuε → u strongly in Lq(Q) as ε→ 0, q

given in Assumption 1.1.4, and u is the solution to

−∇ · (Ahom∇u) = f in Q with u|∂Q ≡ 0 . (1.13)

2 There exists β ∈ (0, 1) such that for every u ∈ Sε
x
(Q) it holds suppR∗ε,xu ⊂ Bεβ(Q).

Furthermore it holdsR∗ε,xRε,xφ→ φ strongly in Lq(Rd) for every φ ∈ Lq(Q).

3 There exists a constant C > 0 such that for every ε > 0 with αεi = mε
xεi

it holds

∀U ∈ Sε
x
(Q) : ‖U‖mxε ≤ C bUcαΓε

and boundedness of buεcαΓε implies precompactness ofR∗ε,xuε in Lq(Rd).
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Inifinte range random conductance model 5

The proof of Theorem 1.5 will be given in Section 7.

Remark 1.6. The most surprising part of Theorem 1.5 is probably part 2., i.e. suppR∗ε,xu ⊂ Bεβ(Q)
instead of a result suppR∗ε,xu ⊂ BCε(Q) for some C > 0. The reason for that is that Voronoi cells
Gε
i in general might become arbitrary large, even for small ε. However, it is “very unlikely” that their

diameter becomes larger than Cεβ . We highlight at this point that β ∈ (0, 1) implies εβ � ε as ε→ 0
but still εβ → 0.

Remark 1.7. The case of x ⊂ Zd is but a special case of the above setting, see Section 2.4.

2 Probability space and ergodic theorems

2.1 Random measures

In what follows, letM(Rd) be the space of Radon measures (in Rd this equals to both Baire and
Borel measures) equipped with the Vague topology. The Vague topology is metrizable and defined as
the smallest topology such that for every f ∈ Cc(Rd) the map µ 7→

´
Rd f dµ is continuous ([4]). We

furthermore rely on the following definition (see [12]) of stationary random measures:

Definition 2.1. Let Ω ⊂ M
(
Rd
)

be an arbitrary (in particular also non-measurable) set and let
σΩ := {A ∩ Ω : A ∈ σM} be the Vague sigma-algebra restricted to Ω.

1 A random measure is a measurable surjective mapping µ : Ω̃→ Ω, ω̃ 7→ µω̃, where
(

Ω̃, σ̃, P̃
)

is a probability space. Since P := P̃ ◦ µ−1 is a probability measure on Ω, we also find the
following:

2 A probability measure P on (Ω, σΩ) is called a random measure. In order to highlight the
measure aspect, we write the identity on Ω as

Ω→M
(
Rd
)
, ω 7→ µω := ω .

We also say that (Ω, σΩ,P) induces the random measure ω 7→ µω.

3 For every bounded Borel sets A1, A2, . . . , Ak ⊂ Rd, k ∈ N we denote by

Fk(A1, . . . , Ak; x1, . . . , xk) = P(µω(Ai) ≤ xi; i = 1, . . . , k)

the finite dimensional distributions (fidi distributions) of µω.

4 A random measure µ• is called stationary if for every x ∈ Rd it holds τxΩ ⊂ Ω and the fidi
distributions of µ• and τxµ• are the same, i.e.

Fk(A1, . . . , Ak; x1, . . . , xk) = Fk(A1 + x, . . . , Ak + x; x1, . . . , xk) .

This is equivalent with P = P ◦ τx for all x ∈ Rd.

5 If Ω ⊂ M
(
Rd
)k

and 1.–4. holds componentwise, we speak of a k-dimensional random
measure.

In what follows, we summarize the theory outlined in the recent work [12].

DOI 10.20347/WIAS.PREPRINT.3017 Berlin 2023
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Theorem 2.2. Let µω be a stationary k-dimensional random measure. Then there exists a precompact
metric space Ω with a probability measue P and a family (τx)x∈Zd of continuous bijective mappings
τx : Ω 7→ Ω, having the properties of a dynamical system on (Ω,F ,P), i.e. they satisfy (i)-(iii):

(i) τx ◦ τy = τx+y , τ0 = id (Group property)

(ii) P(τ−xB) = P(B) ∀x ∈ Rd, B ⊂ Ω measurable (Measure preserving)

(iii) A : Rd × Ω→ Ω (x, ω) 7→ τxω is continuous (Continuity of evaluation)

Furthermore, for every Borel set A ⊂ Rd it holds µω(A− x) = µτxω(A) and there exists a measure
µP and Ω called Palm measure such that Campbells formula holds:

∀g ∈ Cc(Rd), ‖g‖L1(Rd) = 1, f ∈ L1(Ω;µP) :

ˆ
Ω

f dµP =

ˆ
Ω

ˆ
Rd
g(x)f(τxω) dµω(x) dP(ω) .

Finally if aω ∈ L1
loc(Rd;µω) is a family of stationary random functions withE

´
[−1,1]d

aω dµω <∞ then

there exists a function a : Ω→ R with a ∈ L1(Ω;µP) such that aω(x)dµω(x) := a(τxω)dµω(x).

The Campbell formula gives us for any Ball B around 0 and f ∈ Lp(Ω;µP), 1 ≤ p <∞:

0 = lim
k→∞
|B|
ˆ

Ω

|fk(ω)− f(ω)|pdµP(ω) = lim
k→∞

ˆ
Ω

ˆ
B

|fk(τxω)− f(τxω)|pdµω(x)dP .

and hence we have the following:

Corollary 1. If f ∈ Lp(Ω), 1 ≤ p <∞ than a.s. f(τxω) ∈ Lploc(Rd). If fk → f in Lp(Ω), then a.s.,
for a subsequence,

fkn(τ·ω)→ f(τ·ω) in Lploc(R
d).

Remark 2.3. The precompactness of Ω has many important implications: (i) First, the bounded
continuous functions Cb(Ω) will be dense in any Lp(Ω;µ), 1 ≤ p <∞ and any Borel measure µ on
Ω, including the probability measure P and any Palm measure µP . (ii) Second, the dynamical system
allows us to take a Dirac sequence (ϕn)n∈N, ϕn ∈ C∞c (Bn−1(0)) and any f ∈ Cb(Ω) and define

fn(ω) :=

ˆ n

R
ϕn(x)f(τxω) dx .

Then for every ω it holds x 7→ fn(τxω) is Lipschitz and |fn(τxω)−fn(τyω)| ≤ ‖∇ϕn‖∞‖fn‖∞|x−
y|. Furthermore fn → f pointwise and, as shown in [12], also in every Lp(Ω;µ), 1 ≤ p <∞. Thus
the following space is dense in every Lp(Ω;µ), 1 ≤ p <∞:

C0,1
b (Ω) :=

{
f ∈ Cb(Ω) : ∃C > 0 : ∀ω ∈ Ω, x, y ∈ Rd : |f(x)− f(y)| < C|x− y|

}
.

While the latter property is not used in this work, it could help to simplify some calculations and may still
be helpful in future studies.
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Inifinte range random conductance model 7

2.2 Ergodic theorems

Definition 2.4. A set A ⊂ Ω is almost invariant if P ((A ∪ τxA) \ (A ∩ τxA)) = 0 for every x ∈ Rd.
The family

I =
{
A ∈ F : ∀x ∈ Rd P ((A ∪ τxA) \ (A ∩ τxA)) = 0

}
(2.1)

of almost invariant sets is a σ-algebra and the probability measure is called ergodic if it holds: A ∈
I ⇔ P(A) ∈ {0, 1}. Often, also below, one says that τ is ergodic instead of P.

There exists an equivalent definition of ergodicity (see [4] Proposition 10.3.III), namly a dynamical
system τ is called ergodic w.r.t. P if

lim
n→∞

1

(2n)d

ˆ
[−n,n]d

P(A ∩ τxB)dx = P(A)P(B) . (2.2)

The importance of the concept of ergodicity stems from the following ergodic theorems:

Definition 2.5 (Intensity of a Measure). Let µ be a stationary random measure on Rn. The intensity I
of µ is defined as

I := E[µ([0, 1]n)].

Lemma 2.6 (see Chapter 13 of [4]). Let ω 7→ µω be a stationary random measure with finite intensity.
Then their unique Palm measure µP is finite e.g.

µP(Ω) <∞.

Theorem 2.7 (Ergodic Theorem I, Chapter 13 of [4]). Let the dynamical system τx be ergodic and
assume that the Palm measure µP of the stationary random measure µω has finite intensity. Then, with
µεω(B) := εdµω(ε−1B), for all g ∈ L1(Ω, µP), it holds

lim
ε→0

ˆ
A

g(τx
ε
ω)dµεω(x) = |A|

ˆ
Ω

g(ω)dµP(ω)

for P almost every ω and for all bounded Borel sets A that contain an open ball around 0.

Theorem 2.8 (Ergodic Theorem II, [10]). Let the dynamical system τx be ergodic and assume that the
stationary random measure µω has finite intensity. Then, defining µεω(B) := εdµω(ε−1B), it holds: for
all g ∈ L1(Ω, µP) we find for P-almost every ω, and all ϕ ∈ Cc(Rd) that

lim
ε→0

ˆ
Rd
g(τx

ε
ω)ϕ(x)dµεω(x) =

ˆ
Rd

ˆ
Ω

g(ω)ϕ(x)dµP(ω)dx.

2.3 The coefficients αij and the notation µΓ and µΓ,P

A particular case of the above is a random point process, which is a random measure such that each
realization is the sum of countably many delta distributions.

Definition 2.9 (Random point process). A random measure µω is a random point process if for every
ω there exist countably many points x(ω) = (xi(ω))i∈N such that

µx := µω(A) =
∑
i

δxi(ω)(A) with Palm measure µx,P .

DOI 10.20347/WIAS.PREPRINT.3017 Berlin 2023
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Lemma 2.10. We set CR the cube with length R and center 0 ∈ Rd. If E0

∑
j α0,j <∞ then also

∀R > 0 : E
∑

γij∈CR

αij <∞ . (2.3)

If α is stationary, then for almost every realization there exists a constant C > 0 such that

lim
R→∞

R−d
∑

γij∈CR

αij < C .

Proof. Without loss of generality, we prove (2.3) restricting ourselves to R = 1, since the other cases
can be obtained from a scaling x → Rx. Since C1 has edgelength 1, we can split Rd into cubes
C1(z) = C1 + z. Furthermore, we define

Zd+ :=
{
z = (z1 . . . zd) ∈ Zd : zk < 0⇒ k > 2 and ∃l < k : zl > 0

}
.

In other words: z ∈ Zd+ iff the first non-zero coordinate is positive. Thus it can be verified that for each
z 6= 0 either z ∈ Zd+ or −z ∈ Zd+ but not both. By construction of Γ, for any two points xi,xj ∈ x
with γij ∈ C1 and xi ∈ C1(z) it has to hold that xj ∈ B√d(C1(−z)). Therefore we can find the
following estimate:

E
∑
γij∈C1

αij ≤ E
∑

xi∈C1

∑
xj∈B√d(C1)

αij + E
∑
z∈Zd+

∑
xi∈C1(z)

∑
xj∈B√d(C1(−z))

αij

≤ E
∑

xi∈C1

∑
j

αij + E
∑

xi∈C1

∑
z∈Zd\{0}

∑
xj∈B√d(C1(z))

αij

≤ CE0

∑
j

α0,j .

The limit behaviour now follows from the ergodic theorem.

Let
ηij = exp(−|xi − xj|) (2.4)

which is jointly stationary with x and Γ and study

µηΓ(A) :=
∑
i,j

ηij(ω)δγij(ω)(A) .

Corollary 2. µηΓ is a stationary random measure and thus has a Palm measure µηΓ,P .

This is a consequence of Lemma 2.10. In fact, it holds more generally.

Theorem 2.11. Let x be a stationary random point process and let α : G → [0,∞). Then the
following are equivalent.
(i) αij : Γ→ R is jointly stationary with x and satisfies E0

∑
j α0,j <∞.

(ii) µαΓ(A) :=
∑
i,j

αij(ω)δγij(ω)(A) is a stationary random measure and there exists β ∈ L1(Ω;µηΓ,P)

such that almost surely αij(ω) = β(τγijω)ηij(ω) and for the Palm measure µαΓ,P of µαΓ holds
µαΓ,P = βµηΓ,P .

DOI 10.20347/WIAS.PREPRINT.3017 Berlin 2023
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Proof. Let (i) hold. Since the position of γij and αij are linked to xi and xj , µαΓ is a stationary random
measure provided it is almost surely a measre on Rd.

Since µαΓ is sigma additive by definition, this follows from Lemma 2.10.

Given R > 0, we set αR,ij = αij if |xi − xj| < R and αR,ij = ηij else. It is again clear from
the above that µαR,ω is a stationary random measure and if µηΓ,P is the Palm measure of µηΓ then
Theorem 2.2 implies that there exists βR ∈ L1(Ω;µηΓ,P) with αR,ij = βR,ijηij . Also for every R > 0
we have ˆ

Ω

βRdµηΓ,P = E
∑
γij∈C1

βR,ijηij = E
∑
γij∈C1

αR,ij ≤ E
∑
γij∈C1

αij

≤ CE0

∑
j

α0,j

Since for almost every ω and γij it holds βR,ij(ω)ηij = βR(τγijω)ηij = αR,ij ≤ αij , since
E
∑

γij∈C1
αij < ∞ and since αR,ij ↗ αij , this implies also βR ↗ β ∈ L1(Ω;µηΓ,P) with

β dµηΓ,P = dµαΓ,P .

The opposite direction of the statement is straight forward to prove.

We emphasize that
µΓ(ω)(A) :=

∑
i,j

δγij(ω)(A)

never can be a measure as the mass of any unit cube is infinite. Thus, at first glance it makes no
sense to consider a Palm measure of µΓ(ω). However, Theorem 2.11 provides us with some additional
degrees of freedom to interprete µΓ(ω):

Definition 2.12. We say that a stationary random function f satisfies fω ∈ Lploc(Rd;µΓ(ω)) if
E0

∑
j |f0,j|p <∞. Correspondingly, we say f ∈ Lp(Ω;µΓ,P) if there exists a stationary f such that

fω ∈ Lploc(Rd;µΓ(ω)) and fω(γij) = f(τγijω). In this case, we interpret

ˆ
Ω

fdµΓ,P := lim
R→∞

1

|BR(0)|
µf,Γ(ω) (BR(0)) ,

for every ω such that the ergodic theorem holds.

Theorem 2.13 (Double ergodic theorem). Let αij be a non-negative stationary random field on
Γ(ω) which is invariant under permutation αij = αji and with E0

∑
j α0,j < ∞. If ϕ ∈ Cc(Rd),

ψ ∈ C(Rd), ψεij is a sequence of functions Gε → R and there exists a continuous strictly monotone
increasing function o : [0,∞) → [0,∞) with o(0) = 0 such that |ψ(γεij) − ψεij| ≤ o(|xεi − xεj|)
whenever ϕ(xεi ) 6= 0 or ϕ(xεj) 6= 0 then

lim
ε→0

∑
i

ϕ(xεi )
∑
j 6=i

αijψ
ε
ij = lim

ε→0

∑
i∼j

(ϕ(xεi ) + ϕ(xεj))αijψ
ε
ij = 2

ˆ
Rd
ψϕµαΓ,P(Ω) .

Proof. LetQ be a bounded open domain around 0 with supp(ϕ) ⊆ Q, and δ > 0. SinceE0

∑
j α0j <

∞ we find a D > 0 such that

E0

∑
j:|xj |>D

α0j = lim
ε→0

εd
1

|Q|
∑
i∩Q

∑
j:‖xεj−xεi ‖>εD

αij < δ.
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If i ∈ Q and ‖xεj − xεi‖ ≤ εD we find |ψ(γεij)− ψεij| ≤ o(εD) and hence∣∣∣∣∣∣εd
∑
i∩Q

∑
j:‖xεj−xεi ‖≤εD

αijϕ(xεi )(ψ(γεij)− ψεij)

∣∣∣∣∣∣
< εd‖ϕ‖∞

∑
i∩Q

∑
j:‖xεj−xεi ‖≤εD

αij o(εD)→ 0.

while for the rest we obtain∣∣∣∣∣∣εd 1

|Q|
∑
i∩Q

∑
j:‖xεj−xεi ‖>εD

αijϕ(xεi )(ψ(γεij)− ψεij)

∣∣∣∣∣∣ ≤ δ4‖ϕ‖∞‖ψ‖∞ → 0.

Repeating the argument with 2ϕ(γεij)− (ϕ(xεi ) + ϕ(xεj)) we find with the ergodic theorem

lim
ε→0

∑
i∼j

(ϕ(xεi ) + ϕ(xεj))αijψ
ε
ij = lim

ε→0

∑
i∼j

2ϕ(γεij)αijψ(γεij) = 2

ˆ
Rd
ψϕµαΓ,P(Ω) .

2.4 Point processes on Zd

As mentioned in the introduction, there are also studies considering discrete elliptic operators on point
processes on subsets of Zd.

A stationary random point process in Zd is a random point process with x ⊂ Zd almost surely and the
property that for every z ∈ Zd the random measures µω and µω( · − z) have the same distribution.

Given a stationary ergodic point process in Zd, the above Definition 2.4 of ergodicity which is based on
Rd makes no more sense. Therefore we introduce the following modified version:

Definition 2.14. Given Ω the probablity space of a stationary random point process in Zd , a set
A ⊂ Ω is almost invariant if for every x ∈ Zd it holds P ((A ∪ τxA) \ (A ∩ τxA)) = 0. The family

I =
{
A ∈ F : ∀x ∈ Zd P ((A ∪ τxA) \ (A ∩ τxA)) = 0

}
(2.5)

of almost invariant sets is a σ-algebra and the probability measure is called ergodic if I = {Ω, ∅}.

Let Y := [0, 1)d be the half open unit cube with the topology of the torus and let

τ : Rd × Y→ Y , (x, y) 7→ τx(y) := (x+ y) mod Zd .

For every x ∈ Rd we write bxc ∈ Zd the element that satisfies x − bxc ∈ Y. Then we define
Ω̃ := Ω× Y as well as P̃ := P× Ld where Ld is the Lebesgue measure and the following

τ : Rd × Ω̃→ Ω̃ , (x, (ω, y)) 7→ (τbxcω, τxy) .

Furthermore, for every µω and y ∈ Y we define µτyω := µ( · −y) and extend this to µτxω := µ( · −x)
for every x ∈ Rd.
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Lemma 2.15. The map Ω× Rd →M(Rd) , (ω, x) → µτxω is continuous. Furthermore, the push
forward of P̃ from Ω̃ toM(Rd) using (ω, y)→ µτyω is ergodic.

Proof. This follows from (2.2) using that the integer- and noninteger-parts of τ act solely on Ω resp.
Y.

The implication of the last lemma is that we can consider any ergodic stationary random point process
in Zd as an ergodic stationary random point process in Rd by shifting it by y ∈ Y with a uniform
distribution.

3 Discrete differential operators

3.1 Discrete gradients in Rd

We introduce the following notation:

∂εiju :=
uεj − uεi
ε|xj − xi|

, νεij :=
xεj − xεi
|xεj − xεi |

.

Since νij = νεij is independent from ε, we will always omit this index. Introducing

∇εu : Γε → Rd : (∇εu)ij := ∂εijuνij ,

we observe that (∇εu)ij is invariant under the permutation of i and j. In order to turn (∇εu)ij into a
permutation invariant scalar, we introduce the following:

Definition 3.1 ( Normal Field). Let e0 = 0, (ei)i=1,...,n be the canonical basis of Rd, and let Sn :=
{x ∈ Rn+1 : ‖x‖ = 1} be unit n-sphere. Define

F :={ν ∈ Sn−1 | ∃m ∈ {1, ...n} : ν · ei = 0

∀i ∈ {0, 1, ...,m− 1} and ν · em > 0}.

Thus, for every ν ∈ Sn−1, it holds ν ∈ F if and only if −ν /∈ F and we can define

∀(i, j) : ν̃ij := νij if νij ∈ F or ν̃ij = νji = −νij if νji ∈ F .

Hence ν̃ij = ν̃ji is invariant under permutation of i and j and so is

(∇̃εu)(γεij) := (∇̃εu)ij := (∂εijuνij) · ν̃ij.

Lemma 3.2. The operator ∇̃ε is a linear operator Sε → Gε with adjoint −(divε ·) defined by

(divε φ)(xεi ) := (divε φ)i :=
∑
xεj

νij
ε|xj − xi|

· ν̃ijφεij.

For ε = 1, we simply write ∇̃ which is defined on S and div on G.
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Proof. Let u ∈ Sε and φ ∈ Gε. Then

〈(∇̃εu), φ〉Γε(ω) = εd
∑
ij

(∇̃εu)ijφ
ε
ij = εd

∑
ij

(uεjνij + uεiνji)

ε|xj − xi|
· ν̃ijφεij

= εd
∑
i

uεi (
∑
j

νji
ε|xj − xi|

· ν̃ijφεij)

= −εd
∑
i

uεi (
∑
j

νij
ε|xj − xi|

· ν̃ijφεij) = 〈u,−divε φ〉xε(ω).

Lemma 3.3. Let A : Gε → Gε given through A : gij 7→ αijgij . Then

(divε A∇̃εu)i = (Lεωu)i.

Proof. This follows from

(divε A∇̃εu)i =
∑
j

νij
ε|xj − xi|

· ν̃ij
(uεj − uεi )
ε|xj − xi|

νij · ν̃ijαij

= ε−2
∑
j

αij
(uεj − uεi )
|xj − xi|2

= (Lεωu)i.

In a similar way to the above proof, A computation for u, υ ∈ Sε shows

〈−Lεωu, υ〉xε(ω) = 〈−divε(A∇̃εu), υ〉xε(ω) = εd
∑
i

υi(−divε A∇̃εu)i

= εn
∑
ij

(∇̃ευ)ijA(∇̃εu)ij

= εn−2
∑
ij

αij
(uεj − uεi )
|xj − xi|

(υεj − υεi )
|xj − xi|

= 〈∇̃εu, ∇̃ευ〉αΓε(ω).

This directly implies that −Lεω is strictly positive definite on non-constant functions.

3.2 Gradients on Ω

We recall the notation µω = µx and µx,P from Definition 2.9 and also that due to Theorem 2.11 and
Definition 2.12 we can make sense of

µαΓε := αµΓε with Palm measure µαΓ,P := αµΓ,P .

Since νij and ν̃ij are jointly stationary with γij Theorem 2.2 yields that

there exists a measurable ν on Ω such that a.s. for every γij it holds νij(ω) = ν(τγijω) ,

and similar for ν̃. Also, for every f ∈ Cb(Ω) and fixed ω ∈ Ω the following functions are continuous:

fω,ε(x) := f(τx
ε
ω), and fω(x) := f(τxω)
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Provided now that 0 ∈ Γ(ω), which we can assume due to stationarity of Γ, for every f ∈ Cb(Ω) and
almost every ω ∈ Ω the expression

(∇̃Omf)(ω) := ε(∇̃εfω,ε)(0) = (∇̃fω)(0)

is well-defined and yields us a notion of a discrete gradient on Ω with the property

(∇̃Omf)(τγijω) = (∇̃fω)(γij) .

We observe that ∇̃Om is a linear operator on Cb(Ω) and define

(divOmf)ω,ε(x
ε
i ) :=

∑
j

ρ(τγijω)−1ν(τγijω) · ν̃(τγijω)f(τγijω) = ε(divεfω,ε)(x
ε
i ) (3.1)

where
ρω(γεij) := ε|xj(ω)− xi(ω)|.

Then (3.1) is consistent with

ε(divεfω,ε)(x
ε
i ) =

∑
j

ε(ρω(γεij))
−1νω(γεij) · ν̃ω(γεij)fω,ε(γ

ε
ij)

=
∑
j

ε
1

ε
ρ(τγijω)−1ν(τγijω) · ν̃(τγijω)f(τε−1γεij

ω)

=
∑
j

ρ(τγijω)−1ν(τγijω) · ν̃(τγijω)f(τγijω)

= (divOmf)ω,ε(x
ε
i ).

We will now show that −divOm = (∇̃Om)∗ holds true on Ω, at least in a modified sense. For this
reason, we define the scalar products

〈u, υ〉x,P :=

ˆ
Ω

uυdµx,P , 〈f, g〉αΓ,P :=

ˆ
Ω

fgdµαΓ,P ,

as well as the bilinear form

〈f, g〉Γ,P :=

ˆ
Ω

fgdµΓ,P .

Theorem 3.4. For every u ∈ Cb(Ω), f ∈ L1(Ω, µΓ,P ;Rd) with divOmf ∈ L2(Ω, µx,P) and every
ϕ ∈ Cc(Rd), it holds for almost every ω ∈ Ω

lim
ε→0

ε〈divε(fω,εϕ), uω,ε〉xε =

ˆ
Rd
ϕ(x)〈divOmf, u〉x,Pdx.

Proof. Let us first define some abbreviations for the functions we are using, fij(ω) := f(τγijω) =
f(τε−1γεij

ω), ui(ω) := u(τxiω), ϕεi := ϕ(xεi ), and ϕεij := ϕ(γεij). For readability, we omit ω where it
is possible. This leads to

ε〈divε(fω,εϕ), uω,ε〉xε = εεd
∑
xεi

ui
∑
xεj

fij
νij · ν̃ij
ε|xj − xi|

ϕεij

= εεd
∑
xεi

ui
∑
xεj

fij
νij · ν̃ij
ε|xj − xi|

ϕεi + εd
∑
xεi

ui
∑
xεj

fij
νij · ν̃ij
|xj − xi|

[ϕεij − ϕεi ].
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For the first term on the RHS, we get

εεd
∑
xεi

ui
∑
xεj

fij
νij · ν̃ij
ε|xj − xi|

ϕεi = ε〈divε(fω,ε), uω,εϕ〉Xε(ω)

= 〈(divOmf)ω,εuω,ε, ϕ〉Xε(ω). (3.2)

After Remark 2.3 (ii) Cb(Ω) lies dense in L2(Ω, µx,P). Therefore u divOmf ∈ L1(Ω, µx,P), and via
Theorem 2.8, for ε→ 0, converges (3.2) to

ˆ
Rd
ϕ(x)〈divOmf, u〉x,Pdx.

It is left to show that the second term on the RHS vanishes for ε→ 0. Since ϕ ∈ Cc(Rd), u ∈ Cb(Ω),
and f ∈ L1(Ω, µΓ,P ;Rd) we get

εεd
∑
xεi

ui
∑
xεj

fij
νij · ν̃ij
ε|xj − xi|

[ϕεij − ϕεi ] ≤ εd
∑
xεi

|ui|
∑
xεj

|fij|ε‖∇ϕ‖∞

≤ εd
∑
xεi

∑
xεj

ε|fij|‖u‖∞‖∇ϕ‖∞ ≤ εC‖f‖L1(Ω,µΓ,P ;Rd)‖u‖∞‖∇ϕ‖∞ → 0.

Corollary 3. The linear operator ∇̃Om : L2(Ω, µx,P ;Rd)→ L2(Ω, µαΓ,P) is the adjoint of−divOm(α·).

Proof. Let the functions be defined as in Theorem 3.4. A swift computation under the usage of the
Ergodic theorem 2.8 and Theorem 3.4 gets us

ˆ
Rd
ϕ(x)〈αf, ∇̃Omu〉Γ,Pdx = lim

ε→0
〈αω,εfω,εϕ, (∇̃Omu)ω,ε〉Γε(ω)

= lim
ε→0
〈αω,εfω,εϕ, ε∇̃εuω,ε〉Γε(ω)

= lim
ε→0

ε〈−divε(αω,εfω,εϕ), uω,ε〉Xε(ω)

=

ˆ
Rd
ϕ(x)〈−divOmαf, u〉x,Pdx.

Since ϕ ∈ Cc(Rd), the claim follows.

Finally, we introduce two subspaces of L2(Ω, µaΓ,P), the potential and solenoidal subspace.

Definition 3.5 ( L2
pot and L2

sol). Given a stationary random point process x and a stationary random
field α : Γ→ [0,∞) with E0

∑
j α0j <∞ we define the potentials and solenoidals on Ω as follows:

L2
pot(αΓ) = closureL2(Ω,µaΓ,P ){∇̃Omf : f ∈ Cb(Ω)} and L2

sol(αΓ) = L2
pot(αΓ)⊥.

Remark 3.6. We could equally define

L2
pot(αΓ) = closureL2(Ω,µaΓ,P ){∇̃Omf : f ∈ C0,1

b (Ω)} and L2
sol(αΓ) = L2

pot(αΓ)⊥

as the closure of differences of C0,1
b (Ω)-functions. However, this is not needed in the calculations

below.
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Corollary 4. L2
pot(αΓ) is well defined and not empty. Furthermore, if α̃ ≤ α pointwise almost surely

then L2
pot(αΓ) ⊂ L2

pot(α̃Γ).

Proof. This is a straight forward calculation.

Lemma 3.7. For every f ∈ L2
sol(αΓ), it holds divOm(fa) = 0 µΓ,P−almost surely. Hence for almost

every realization fω,ε holds divε(aω,εfω,ε) = 0 locally on Xε(ω).

Proof. Let f ∈ L2
sol(αΓ) and let ϕ ∈ Cc(Rd). Then for every u ∈ Cb(Ω) we get with the help of

Theorem 3.4 for some ω ∈ Ω

0 =

ˆ
Rd
ϕ(x)〈∇̃Omu, af〉Γ,Pdx = −

ˆ
Rd
ϕ(x)〈u, divOmaf〉X,Pdx

= − lim
ε→0
〈uω,εϕ, divε(aω,εfω,ε)〉Xε(ω).

This is true for every ϕ ∈ Cc(Rd) and every u ∈ Cb(Ω), hence the claim follows.

4 Properties of Sεx
In this section we provide some fundamental properties of functions in Sε

x
, particularly a Poincaré

inequality and a compact embedding result. For this we will use results from numerical analysis.
Furthermore, we will show that the support of functions in R∗ε,xSεx(Q) lies almost surely within a
bounded region around Q while the support decreases towards Q as ε→ 0. This will imply for every
φ ∈ L2(Q) thatR∗ε,xRε,xφ→ φ strongly in L2(Q) as ε→ 0.

4.1 Support ofR∗ε,xSεx(Q)

Lemma 4.1. Let x be a stationary point process in Rd with fd given in (1.8). Then, if G := (gi)i∈N is
the Voronoi tessellation for x = (xi)i∈N with maximal diameter

d(xi) := max
x,y∈gi

|x− y| , (4.1)

then

P(d > D) < fd

(
1

6
D

)
(4.2)

Proof. We define for a unit vector ν of unit length, 0 < α < π
2

and R > 0 the cone

Cν,α,R(x) := {z ∈ BR(x) : z · ν > |z| cosα} .

Because of the stationarity and because of P(A ∪B) ≤ P(A) + P(B) it holds for R ∈ Z and
E := {e1, . . . ed} ∪ {−e1, · · · − ed} ({e1, . . . ed} being the canonical basis of Rd)

P(∃e ∈ E : BR(2Re) ∩ x = ∅) ≤
d∑
i=1

∑
±

P((BR(±2Rei) ∩ x = ∅) ≤ fd(R) .
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In particular, for α = arctan
√

1/3 = π
6

we have the smallest opening angle such that BR(2Re) lies
completely inside Ce,α,3R (0) and we discover

P
(
∀e ∈ E : x ∩ Ce,π

6
,3R(0) 6= ∅

)
≥ 1− fd(R) . (4.3)

Now we take arbitrary points x±j ∈ C±ej ,α,3R(0) ∩ x. Then the planes given by the respective
equations

(
x− 1

2
x±j
)
·x±j = 0 define a bounded cell around 0, with a maximal diameterD(α,R) =

CR which is proportional to R. The constant C > 1 depends solely on the opening angle α = π
6

of
the cones and can be shown from some trigonometric calculations to be smaller than 6. Estimate (4.2)
now follows from

P(d > D) = P(d > CR) ≤ P (∃e ∈ E : x ∩ Ce,α,3R (0) = ∅) ≤ fd(R) = fd(
1

6
D) .

Lemma 4.2. Let Q ⊂ Rd be a bounded Lipschitz domain and let fd satisfy (1.8). Then for every
β ∈ (0, 1− d

βd
) there exists almost surely ε0 > 0 such that for every ε < ε0 and every u ∈ Sε

x
(Q) it

holds suppR∗ε,xu ⊂ Bεβ(Q). Furthermore, for a given bounded Lipschitz domain Q we define

N (Q,xε) := {x ∈ xε\Q : N (x,xε) ∩Q 6= ∅} . (4.4)

Then there exists almost surely ε0 > 0 and β ∈ (0, 1) such that for every ε0 > ε it holdsN (Q,xε) ⊂
Bεβ(Q). Furthermore, for every domain Q̃ ⊂ Q with Q̃ ⊂ Q there exists ε̃ > 0 such that for every
ε < ε̃ and every φ ∈ Cc(Q) it holds suppR∗ε,xφ ⊂ Q.

Proof. Let uε1(x) = 1 if x ∈ Q ∩ xε and uε1(x) = 0 else. Given N := ε−1, β0 = 1− β the event

BN :=

( ⋃
xi∈x∩NQ

Gi ⊂ BNβ0 (NQ)

)

is equivalent with the event
suppR∗ε,xuε1 ⊂ Bεβ(Q) .

For the complementary event ¬BN of BN it holds

P(¬BN) ≤ P(∃xi ∈ x ∩NQ : Bdi(xi) 6⊂ BNβ0 (NQ))

≤
∑
x∩NQ

P
(
d ≥ Nβ0

)
≤ C |Q|Ndfd

(
Nβ0

)
≤ CNd−β0βd .

If β0 ∈ ( d
βd
, 1) the support-condition (1.8) implies Nd−β0βd → 0 as N → ∞ and hence for almost

every ω there exists N0 such that ω ∈ BN for every N > N0 and the first statement of the lemma
holds.

The second statement can be proved similarly taking into account that every x ∈ N (NQ,x) satisfies
x ∈ B2di(xi) for some xi ∈ x ∩NQ. The last statement follows from the positive distance of ∂Q̃
and ∂Q as well as the first part applied to Q̃.

Lemma 4.3. Let Q ⊂ Rd be a bounded Lipschitz domain and let fd satisfy (1.8). Then for every
1 ≤ q <∞ almost surely for every φ ∈ Lq(Q) it holdsR∗ε,xRε,xφ→ φ in Lq(Q) as ε→ 0.
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Proof. Let Q̃ ⊃ B1(Q) be a large ball that contains 0. Given φ ∈ C1
c (Q̃) and using the notation (4.1)

we find ˆ
Rd

(
R∗ε,xRε,xφ− φ

)q ≤ ∑
xi∈x∩ε−1Q̃

(εd(xi) ‖∇φ‖∞)q εd |Gi|

≤ εq+d ‖∇φ‖q∞
∑

xi∈x∩ε−1Q̃

d(xi)
q |Gi| .

Because of Lemma 4.2 we know that almost surely for ε0 independent from φ and every ε < ε0 it holds
εd(xi) < diamQ̃ + 1 for every εxi ∈ Q̃. Hence for every D > 1 we find from the ergodic theorem

εq+d
∑

xi∈x∩ε−1Q̃

d(xi)
q |Gi| = εq+d

∑
xi∈x∩ε−1Q̃
d(xi)≤D

d(xi)
q |Gi|+ εd

∑
xi∈x∩ε−1Q̃
d(xi)>D

|εd(xi)|q |Gi|

≤ εq
∣∣∣Q̃∣∣∣Dq +

(
diamQ̃ + 1

)q ∞∑
k=0

εd
∑

xi∈x∩ε−1Q̃
D+k<d(xi)<D+k+1

d(xi)
d

≤ εq
∣∣∣Q̃∣∣∣Dq +

(
diamQ̃ + 1

)q ∞∑
k=0

εd
∑

xi∈x∩ε−1Q̃
D+k<d(xi)<D+k+1

(D + k + 1)d

→
(

diamQ̃ + 1
)q ∞∑

k=0

(D + k + 1)dP(D + k < d( · ) < D + k + 1)

≤ 2d
(

diamQ̃ + 1
)q ∞∑

k=0

(D + k)dfd(
1

6
(D + k))

≤ 2d
(

diamQ̃ + 1
)q (1

6

)βd ∞∑
k=0

(D + k)d−βd .

Since βd(D) > d+ 1 it follows

lim
ε→0

εq+d
∑

xi∈x∩ε−1Q̃

d(xi)
q |Gi| ≤ 2d

(
1

6

)βd (
diamQ̃ + 1

)q
Dd+1−βd → 0

as D →∞ and we obtain that

lim
ε→0

ˆ
Rd

(
R∗ε,xRε,xφ− φ

)q ≤ 0 . (4.5)

Furthermore for every φ ∈ Lq(Q) it holds

ˆ
Rd

(
R∗ε,xRε,xφ

)q
=
∑
i

ˆ
Gεi

(
1

mε
i

ˆ
Gεi

φ

)q

≤
∑
i

ˆ
Gεi

1

mε
i

ˆ
Gεi

φq =

ˆ
Q

φq . (4.6)

Now let φ ∈ Lq(Q) and let (φk)k∈N ⊂ C1
c (Q) be a sequence with ‖φ− φk‖Lq(Q) <

1
k

. Given δ > 0
we find (ˆ

Rd

(
R∗ε,xRε,xφ− φ

)q) 1
q

≤‖φ− φk‖Lq(Q) +
∥∥R∗ε,xRε,x (φ− φk)

∥∥
Lq(Q)
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+

(ˆ
Rd

(
R∗ε,xRε,xφk − φk

)q) 1
q

.

We chose k ∈ N such that ‖φ− φk‖Lq(Q) ≤
1
3
δ and with help of (4.5) we choose ε0 such that for

every ε < ε0 it holds
∥∥R∗ε,xRε,xφk − φk

∥∥
Lq(Q)

< 1
3
δ.

Due to (4.6) it also holds
∥∥R∗ε,xRε,x (φ− φk)

∥∥
Lq(Q)

< 1
3
δ. Then in total for every ε < ε0 it holds

(ˆ
Rd

(
R∗ε,xRε,xφ− φ

)q) 1
q

< δ .

4.2 Rellich-Sobolev-Poincare inequalities

In the following, we provide results from [2] and [5], which were formulated for a general family of
(non-random) grids that include Voronoi grids, but we will adapt them to our setting for the readers
convenience. To this aim we recall the definition of β in (1.9) and define the following (semi-) norms on
Sε
x

:

‖u‖mεxε,p :=

(
εd
∑
i

mε
i |ui|

p

) 1
p

bucβΓε,p :=

(
εd−p

∑
i∼j

βi,j
|uj − ui|p

|xj − xi|p

) 1
p

,

‖u‖mεxε,βΓε,p := ‖u‖mεxε,p + bucmεxε,βΓε,p .

Theorem 4.4 (Discrete Sobolev-Poincare Inequality). Let Q ⊂ Rd be a bounded domain and let x be
a stationary and ergodic point process in Rd. Then for every 1 ≤ p, q <∞ with 1− d

p
> −d

q
there

exists a constant C > 0 which only depends on p, q, d, and Q such that

‖u‖mεxε,q ≤ C bucβΓε,p

Proof. This is a direct consequence of [2], Theorem 6 Section 4.2.

Theorem 4.5 (Discrete Gagliardo-Nirenberg-Sobolev Inequality). Let x be a stationary and ergodic
point process in Rd. Then for any 1 ≤ p < n and 1 ≤ q ≤ m ≤ pn

n−p , there exists a constant C > 0
which only depends on p, q, n, and Q such that

‖u‖mεxε,m ≤ C bucθβΓε,p ‖u‖
1−θ
mεxε,m

where θ = (1
q
− 1

m
)(1
q

+ 1
n
− 1

p
)−1.

Proof. A proof can be found in [2], Theorem 7 Section 4.3.

Theorem 4.6 (Discrete Rellich Theorem). Let p ∈ [1,∞), x be a stationary and ergodic point
process in Rd. Then for any uε ∈ Sε0(Q)(ε−1 ∈ N) such that supε>0 bucβΓε,p <∞, the sequence
(R∗εuε)ε>0 is precompact in Lp(Rn).
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Proof. A proof can be found in [5], Lemma B.19.

Theorem 4.7 (Poincare Rellich Theorem). Let x a stationary ergodic point process x = (xi)i∈N with

points solely in Zd with α satisfying (1.10). Then for every q ∈ (2, dp
d−p) there almost surely exists a

constant Cα,x > 0 such that for every ε > 0 and every uε ∈ Sε
x
(Q) it holds

‖uε‖mεxε,q ≤ Cα,x buεcαΓε . (4.7)

Furthermore, any sequence uεkk ∈ Sεkx (Q), k ∈ N, with supk bu
εk
k cαΓεk <∞ is precompact in the

sense thatR∗εk,xu
εk
k is precompact in Lq(Rd).

Proof. Due to Lemma 4.2 we can assume w.l.o.g that for ε > 0 small enough it holds suppR∗ε,xu ⊂
B1(Q) for every u ∈ Sε

x
. Since p > 2d

d+2
it holds dp

d−p > 2 and we infer from the discrete Sobolev-
Poincaré inequality in Theorem 4.4 that for some constant C > 0 depending only on p, q, d, δ and Q

‖u‖p,xε,mε ≤ ‖u‖mεxε,q ≤ C bucβΓ,q . (4.8)

Using the discrete Gagliardo-Nirenberg-Sobolev inequality of Theorem 4.5 we furthermore infer the
existence of C > 0 depending only on p, q, d, δ and Q such that

‖u‖mεxε,q, ≤ C buc1−θβΓε,p ‖u‖
θ
mεxε,p (4.9)

where θ = d(1/p− 1/q) < 1. Finally, we obtain from Hölders inequality for 2−p
2

bucβΓε,p ≤

 ∑
xεi∈Q∩xε

∑
i∼j

αij

(
βij
αij

) 2
2−p


2−p

2

bucαΓε . (4.10)

The ergodic theorem together with the assumed Poincaré condition (1.10) on α and β imply the bound
bucβΓε,p ≤ Cα,x bucαΓε for Cα,x independent from ε.

Now let uεkk ∈ Sεkx , k ∈ N, be a sequence with supk bu
εk
k cαΓεk < ∞ then inequalities (4.8) and

(4.10) imply
sup
k
‖uεkk ‖mεkΓεk ,q <∞ . (4.11)

From Theorem 4.6 we infer that R∗εk,xu
εk
k is precompact in Lp(Q). Hence (4.11)–(4.9) imply also

precompactness ofR∗εk,xu
εk
k in Lq(Q).

5 The homogenized matrix

Let (ek)k=1,...,d be a orthonormal basis of Rd, and let χk ∈ L2
pot(αΓ) be the unique minimizers of the

functional

Ek : L2
pot(αΓ)→ R , χ→

ˆ
Ω

α|ν̃ · ek + χ|2dµΓ,P .

With this, we can finally define the matrix Ahom through

Ahom = (Ak,m)k,m=1,...,d, (5.1)

with Ak,m =

ˆ
Ω

α(ν̃ · ek + χk)(ν̃ · em + χm)dµΓ,P .

In the next theorem, we want to prove that the homogenized matrix is positive definite.
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Theorem 5.1. Let x satisfy (1.8) and let αij satisfy the Poincaré-condition (1.10) and the nondegener-
acy condition (1.11). Then the matrix Ahom is positive definite.

Proof. We recall β defined in (1.9) to show in the following that ν̃ · ek ∈ L2
sol(βΓ). For u ∈ Cb(Ω),

an open ball A = B1(0) and φ ∈ C∞c (A) we obtain from the double ergodic Theorem 2.13 (where
ψ = 1, ψij = 1)∣∣∣∣ˆ

A

φ〈∇̃Omu, βν̃ · ek〉Γ,Pdx

∣∣∣∣ = lim
ε→0

∣∣∣∣∣∣εd
∑

(ij)∩A

βij
1

2
(φi + φj)νij · ek

(uj(ω)− ui(ω))

|xj − xi|

∣∣∣∣∣∣ (5.2)

We add 0 =
∑
±Sε, where Sε = εd

∑
(ij)∩A βij

1
2
(ui + uj)νij · ek ε(φj(ω)−φi(ω))

ε|xj−xi| has the property

|Sε| ≤ εC‖u‖∞‖∇φ‖∞. Furthermore, with help of the Support Lemma 4.2 it holds φi = 0 as soon as
xεi 6∈ A and ε is small enough and we observe with help of (a1 +a2)(b1− b2)+(b1 + b2)(a1−a2) =
a1b1 − a2b2 that∣∣∣∣ˆ

A

φ〈∇̃Omu, βν̃ · ek〉Γ,Pdx

∣∣∣∣ ≤ lim
ε→0

∣∣∣∣∣∣εd
∑

(ij)∩A

βijνij · ek
(φjuj(ω)− φiui(ω))

|xj − xi|

∣∣∣∣∣∣+ Cε (5.3)

≤ lim
ε→0

∣∣∣∣∣εd∑
i∩A

ui(ω)φi
∑
j

βijνij · ek
|xj − xi|

∣∣∣∣∣ ≤ lim
ε→0

εd
∑
i∩A

∣∣∣∣∣∣
∑
(j∼i)

|∂Gij|νij · ek

∣∣∣∣∣∣ ‖uφ‖∞
= lim

ε→0
εd
∑
i∩A

∣∣∣∣ˆ
∂Gi

ν · ek
∣∣∣∣ ‖uφ‖∞ = lim

ε→0
εd
∑
i∩A

∣∣∣∣ˆ
Gi
div ek

∣∣∣∣ ‖uφ‖∞ = 0.

In the next step, we will use the nondegeneracy condition (1.11) which reads for some C > 0

Cξ :=

ˆ
Ω

β|ν̃ · ξ|2dµΓ,P ≥ C ‖ξ‖2.

In particular

‖ξ‖2 ≤ C−1

ˆ
Ω

β|ν̃ · ξ|2dµΓ,P = C−1

ˆ
Ω

β

(
d∑
k

ν̃ · ekξk

)2

dµΓ,P

= C−1

ˆ
Ω

β
d∑
m

d∑
k

(ν̃ · ek)(ν̃ · em)ξkξmdµΓ,P

= C−1

ˆ
Ω

β

 d∑
k=1

ξk ν̃ · ek︸ ︷︷ ︸
|...|≤1

( d∑
m=1

ξm (ν̃ · em + χm)

)
dµΓ,P (5.4)

≤ C−1

( ˆ
Ω

β2

α

(
d∑

k=1

ξk

)2

dµΓ,P

) 1
2

(5.5)

·
( ˆ

Ω

d∑
m,k=1

αξm(ν̃ · em + χm)ξk(ν̃ · ek + χk)dµΓ,P

) 1
2

≤M‖ξ‖
( d∑

m,k

ˆ
Ω

αξkξm(ν̃ · em + χm)(ν̃ · ek + χk)dµΓ,P

) 1
2

(5.6)
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= M‖ξ‖
( d∑

m,k

ξkξmAk,m

) 1
2

,

where we first used that ν̃ · ek ∈ L2
sol(βΓ) and χm ∈ L2

pot(βΓ), therefore 〈χm, βν̃ · ek〉Γ,P = 0 for
every k,m = 1, ..., n in (5.4), Cauchy-Schwartz to arrive at (5.5), and lastly used the finiteness of the
first term in (5.5) (Due to the Poincaré-condition), combined it with C−1 and abbreviated it to M‖ξ‖ in
(5.6).
In total, we arrive at

‖ξ‖ ≤M
√
ξ · Ahomξ.

Since C > 0 it follows that Ahom is positive definite.

Lemma 5.2. Under the assumption of Theorem 5.1 It holds Rd = span{
´

Ω
bν̃dµΓ,P : b ∈

L2
sol(αΓ)}.

Proof. We proceed similarly as the proof of Lemma 4.5 in [7].
Since χk ∈ L2

pot(αΓ) is the unique minimizer to the functional Ek, (ν̃ · ek + χk) ∈ L2
sol(αΓ), i.e

ˆ
Ω

(ν̃ · ek + χk)χmαdµΓ,P = 0, ∀m, k. (5.7)

Next we define V := span{
´

Ω
bν̃dµΓ,P : b ∈ L2

sol(αΓ)} ⊆ Rd and choose ξ ∈ V ⊥ \ {0}. Then

ˆ
Ω

ξ · ν̃(ν̃ · ek + χk)αdµΓ,P =

ˆ
Ω

d∑
m=1

ξm(em · ν̃)(ν̃ · ek + χk)αdµΓ,P = 0, (5.8)

for all k = 1, ..., n.
Multiplying (5.7) with ξm and adding it to (5.8) leads to

ˆ
Ω

d∑
m=1

ξm(ν̃ · em + χm)(ν̃ · ek + χk)αdµΓ,P = 0.

Multiplying this equation now with ξk and then summing over k gets us to

ˆ
Ω

d∑
k=1

d∑
m=1

ξkξm(ν̃ · em + χm)(ν̃ · ek + χk)αdµΓ,P = ξAhomξ = 0.

This is a contradiction since Ahom is positive definite. Therefore V ⊥ = 0 and thus the claim is
proven.

6 Stochastic two-scale convergence

We introduce stochastic two-scale convergence relying on previous works [9, 11, 16], but mostly on [12].
Since Cb(Ω) lies densely in the separable space L2(Ω, µαΓ,P), see remark 2.3, which is a separable
space, we can choose a countable dense family

Φ = (φi)i∈N ⊂ L2(Ω, µαΓ,P) with φi ∈ Cb(Ω).
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More precisely, since L2
pot(αΓ) is the closure of discrete gradients of Cb(Ω)-functions, the selection of

a countable dense family of Cb(Ω)-functions in L2
pot(αΓ) is straight forward. and also for subspaces

of L2(Ω, µαΓ,P), Φsol ⊂ L2
sol(αΓ) and Φpot ⊂ L2

pot(αΓ) where φ ∈ Φpot if φ = ∇̃Omu for some
u ∈ Cb(Ω), which is possible because of the definition of L2

pot. We assume that

Φ = Φpot ⊗ Φsol.

Further, we find a countable dense family

Ψ = (ψi)i∈N ⊂ C∞0 (Q) with ψi ∈ C∞c (Q).

Let ΩΦ ⊂ Ω be the set of all ω such that the ergodic theorems, 2.7, 2.8, and 2.13, hold for all φ ∈ Φ
and ψ ∈ Ψ. We call ΩΦ the set of typical realizations.

Definition 6.1 (Two-Scale Convergence). Let ω ∈ ΩΦ and let gε ∈ L2(Rd, µεαΓ(ω)) be a sequence
such that

sup
ε>0
‖gε‖αΓε(ω) <∞

and let g ∈ L2(Rd;L2(Ω;µαΓ,P)). We say that gε converges in two-scales to g, written gε
2s
⇀ω g if

for every φ ∈ Φ and every ψ ∈ Ψ it holds

lim
ε→0
〈gε, φω,εψαω,ε〉Γε(ω) =

ˆ
〈g(x, ·), φα〉Γ,Pψ(x)dx.

Lemma 6.2 (Existence of Two-Scale Limits [12]). For every ω ∈ ΩΦ it holds: Let gε ∈ L2(Rn) be a
sequence of functions such that

sup
ε>0
‖gε‖2

αΓε(ω) = sup
ε>0

∑
ij

αij(g
ε(γεij))

2 ≤ C. (6.1)

for someC > 0 independent from ε. Then there exists a subsequence gεk and g ∈ L2(Rd;L2(Ω;µΓ,P))

such that gεk
2s
⇀ω g.

In the following, we study the limit of the discrete gradient within two-scale convergence. For that, we
have to do some preparatory work.

Lemma 6.3. For all typical realisations ω ∈ ΩΦ and all Lipschitz functions υ : Rd → R there exists a
C ∈ (0,∞) such that

sup
ε>0
‖∇̃ευ‖2

αΓε(ω) ≤ C‖∇υ‖2
∞.

Proof. We have due to the ergodic theorem applied to α

‖∇̃ευ‖2
αΓε(ω) = εd

∑
γεij

αij(∇̃ευ)2
ij = εd

∑
γεij

αij((∂
ε
ijυνij) · ν̃ij)2 ≤ C‖∇υ‖2

∞, .

Lemma 6.4. Let β be a stationary random field with µβΓ,P(Ω) <∞. Then for every typical realisation
ω ∈ ΩΦ and every υ ∈ C∞c (Rd) it holds:

lim sup
ε→0

‖∇̃ευ − (∇υ) · ν̃‖βΓε(ω) = 0.
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Proof. Let Q be a bounded open domain around 0 with supp υ ⊆ Q. If xi ∈ Q, ‖xεj − xεi‖ ≤ εd
and υ ∈ C∞c (Q), we use a Taylor expansion around γεij such that∣∣∣∣ υεj − υεiε|xj − xi|

νij · ν̃ij −∇υ(γεij) · ν̃ij
∣∣∣∣

=

∣∣∣∣ 1

ε|xj − xi|

(
(xεj − xεi )

T∇υεij +
1

2
(
1

2
xεj −

1

2
xεi )

T∇2υεij(
1

2
xεj −

1

2
xεi )

− 1

2
(
1

2
xεi −

1

2
xεj)

T∇2υεij(
1

2
xεi −

1

2
xεj) +O(ε3)

)
νij · ν̃ij −∇υ(γεij) · ν̃ij

∣∣∣∣
≤ ‖∇2υ‖∞εD . (6.2)

The statement now follows from Theorem 2.13 applied to some non-negative ϕ ∈ Cc(Rd) with ϕ = 1
on the support of υ, as well as the choice ψ = 0 and ψε = ∇̃ευ − (∇υ) · ν̃.

Lemma 6.5. For all typical realisations ω ∈ ΩΦ it holds, if gε
2s
⇀ω g, then

∀υ ∈ C∞c (Rd) : lim
ε→0
〈gε, αω,ε∇̃ευ〉Γε(ω) =

ˆ
〈g(x, ·), α∇υ(x) · ν̃〉Γ,Pdx .

Proof. Let ν̃ · ek := ν̃k ∈ ΦΩ and∇υ ∈ Ψ for k = 1, ..., n. For gε
2s
⇀ω g it follows

lim
ε→0
〈gε, ν̃k∂ekυαω,ε〉Γε(ω) =

ˆ
〈g(x, ·), ν̃kα〉Γ,P∂ekυ(x)dx.

Summing over k we get

lim
ε→0
〈gε, ν̃ · ∇υαω,ε〉Γε(ω) =

ˆ
〈g(x, ·), ν̃ · ∇υ(x)α〉Γ,Pdx

first for our special choice of υ but by approximation for all υ ∈ C∞c (Q). It remains to show that

lim
ε→0
〈gε, (∇̃ευ − ν̃ · ∇υ)αω,ε〉Γε(ω) = 0.

Using the Cauchy-Schwartz inequality and the ergodic theorem for gε and Lemma 6.4 it follows that

εd
∑
ij

αij((∇̃ευ)ij −∇υ · ν̃ij)gεij

≤
(
εd
∑
ij

αij(g
ε
ij)

2

) 1
2
(
εd
∑
ij

αij((∇̃ευ)ij −∇υ · ν̃ij)2

) 1
2

=‖gε‖αΓε(ω)‖∇̃ευ − (∇υ) · ν̃‖αΓε(ω) → 0.

Due to Lemma 3.7 it follows that

〈∇̃εu, αω,εbω,ε〉Γε(ω) = 〈u,−divε(αω,εbω,ε)〉xε(ω) = 0.

and hence we find the following result.
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Corollary 5. For all ω ∈ ΩΦ and all b ∈ Φsol the following is true:

〈∇̃εu, αω,εbω,ε〉Γε(ω) = 0 for all u ∈ Sε(ω) with bounded support.

With all that done we can now prove the most important result of this chapter: the two-scale limit of a
discrete gradient.

Theorem 6.6 (Two-Scale Convergence for Gradients). Let Assumption 1.1 1.–3. hold and 2 < q ≤ dp
d−p .

For all typical ω ∈ ΩΦ such that uε ∈ Sε0(ω,Q) is a family of functions with supp(uε) ⊆ Q ∩ Xε(ω)
for all ε and

‖∇̃εuε‖αΓε(ω) + ‖uε‖xε ≤ C . (6.3)

Finally let either Assumption 1.1.4. hold with supε ‖uε‖∞ <∞ or let there be q∗α, q
∗
m > 2 such that

1
2

+ 1
q∗α

+ 1
q∗m

+ 1
q
< 1 and E0m

−q∗m
q

0 <∞.

Then there exists a subsequence uε, not relabeled, u ∈ H1
0 (Q)∩Lq(Q) and φ ∈ L2(Rn;L2

pot(αΓ))
such that

R∗εuε → u strongly in Lq(Q), ∇̃εuε
2s
⇀ω ∇u · ν̃ + φ as ε→ 0. (6.4)

Proof. Step 1: Due to (6.3) and Theorem 4.7 we get thatR∗εuε → u strongly in Lq(Q) for 2 < q ≤
dp
d−p . Furthermore, if supε ‖uε‖∞ <∞ we obtain from Lebesgues dominated convergence theorem

thatR∗εuε → u strongly in Lq(Q) for 2 < q <∞. So it remains to prove u ∈ H1
0 (Q) and (6.4).

By Lemma 6.2 there exists g ∈ L2(Rd;L2(Ω;µΓ,P)) and a subsequence of ∇̃εuε s.t.

∇̃εuε
2
⇀ω g,

Now choose bω,ε ∈ Φsol, where bij := bω,ε(γ
ε
ij) and υ ∈ C∞c (Q) according to Corollary 5 and use

the discrete product rule

(∇̃ευuε)ij =
1

2
((uεj + uεi )(∇̃ευ)ij + (υεj + υεi )(∇̃εuε)ij),

and get

0 = εd
∑
ij

αijbij
1

2
((uεj + uεi )(∇̃ευ)ij + (υεj + υεi )(∇̃εuε)ij). (6.5)

Step 2: We write uεij := 1
2
(uεj + uεi ) and υεij := 1

2
(υεj + υεi ). Since υ ∈ C∞c (Q) we get |υεij − υεij| <

ε|xi − xj| which implies by Theorem 2.13 that lim supε→0 ‖υεij − υεij‖αΓε = 0 and therefore

εd
∑
ij

αijυ
ε
ij(∇̃εuε)ijbij →

ˆ
Q

〈g(x, ·), bα〉Γ,Pυ(x)dx. (6.6)

Step 3: Next, we study the first part of (6.5). First we write Iε := {i ∈ N : xεi ∈ Q} and observe that
for ψε ∈ Gε (that is ψεij = ψεji) and q∗α, q

∗
m > 2 such that 1

2
+ 1

q∗α
+ 1

q∗m
+ 1

q
≤ 1 the general Hölder

inequality yields∣∣∣∣∣εd∑
ij

αiju
ε
ijψ

ε
ij

∣∣∣∣∣ ≤ εd
∑
i

|uεi |
∑
j

αijψ
ε
ij ≤ εd

∑
i

|uεi |(
∑
j

αij(ψ
ε
ij)

2)
1
2 (
∑
j

αij)
1
2 (6.7)
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≤

(∑
i∈Iε

mε
i |uεi |q

) 1
q
(
εd
∑
i∈Iε

m
−q∗m
q

i

) 1
q∗m
(
εd
∑
i∈Iε

∑
j

αij(ψ
ε
ij)

2

) 1
2
(
εd
∑
i∈Iε

(
∑
j

αij)
q∗α
2

) 1
q∗α

We make use of the last inequality by setting ψεij = bij((∇̃ευ)ij −∇υεij · ν̃ij) and observe that the
right hand side of (6.7) goes to 0: Lemma 6.4 applied to βij = αijb

2
ij together with boundedness of

R∗εuε in Lq(Q) and our assumptions on the distribution of α and m then ultimately yields that

lim
ε→0

εd
∑
ij

αiju
ε
ij(∇̃ευ)ijbij = lim

ε→0
εd
∑
ij

αiju
ε
ij∇υεij · ν̃ijbij. (6.8)

We now set ψεij = bij∇υεij · ν̃ij . Estimate (6.7) yields that

Lε : Sεx(Q)→ R , u 7→ εd
∑
ij

αijuijbij∇υεij · ν̃ij

satisfies for some C > 0 independent from ε that

Lε(u) ≤ C‖R∗εu‖Lq(Q) .

If we write for a continuous function φ ∈ Cc(Q) both φ̃εi := φ(xεi ) and φ̄εi :=
ffl
g
ε
i
φ we obtain from

the double ergodic theorem 2.13 and Lemma 4.3

lim
ε→0

Lε(φ̃ε) = lim
ε→0

Lε(φ̄ε) =

ˆ
Q

φ∇υ
ˆ

Ω

αbν̃dµΓ,Pdx . (6.9)

From the boundedness of Lε in the dual of Lq(Q) and the convergence (6.9) on a dense subset we
infer

lim
ε→0

Lε(uε) =

ˆ
Q

u∇υ
ˆ

Ω

αbν̃dµΓ,Pdx .

In case of Assumption 1.1.4. we note that we can choose q and q∗m arbitrarily large, and hence qm = q∗m
q

and qα = q∗α
2

can be arbitrary numbers larger than 1.

Step 4: Going back to (6.5) we get in total
ˆ
Q

〈g(x, ·), bα〉Γ,Pυ(x)dx = −
ˆ
Q

〈bα,∇υ(x) · ν̃〉Γ,Pu(x)dx. (6.10)

Then with Lemma 5.2 it follows now that for any k = 1, ..., n we can choose bk such that 〈bkα, ν̃〉Γ,P =
ek. Therefore∣∣∣∣ ˆ

Q

u(x)∇υ(x) · ekdx
∣∣∣∣ =

∣∣∣∣ ˆ
Q

υ(x)〈g(x, ·), αbk〉dx
∣∣∣∣

≤ ‖αb‖L2(Q,µΓ,P )

ˆ
Q

|υ(x)|‖g(x, ·)‖L2(Q,µΓ,P )dx

≤ ‖υ‖L2(Q)‖αb‖L2(Q,µΓ,P )

ˆ
Q

‖g(x, ·)‖L2(Q,µΓ,P )dx

And since g ∈ L2(Q, L2(Q, µΓ,P)) there exists a C <∞ s.t.∣∣∣∣ ˆ
Q

u(x)∇υ(x) · ekdx
∣∣∣∣ ≤ C‖υ‖L2(Q) ∀ k = 1, ..., n.

DOI 10.20347/WIAS.PREPRINT.3017 Berlin 2023



Y. Bokredenghel, M. Heida 26

Hence u ∈ H1(Q) and since u|Rd\Q = 0, u ∈ H1
0 (Q).

Integration by parts on the RHS of (6.10) now gives us
ˆ
Q

υ(x)〈(g(x, ·)−∇u · ν̃), bα〉Γ,Pdx = 0.

Since this holds for all υ ∈ Ψ and b ∈ Φsol we find

g = ∇u · ν̃ + φ, with φ ∈ L2(Rn;L2
pot(αΓ))

and therefore prove the claim.

7 Proof of Theorem 1.5

Proof of Theorem 1.5. In what follows, we make use of the concept of Dirichlet energy which is defined
as

Eεω(u) := 〈−Lεωu, u〉xε .

Furthermore, in Steps 2.–3. we assume

f∞ := sup
ε

sup
xεi∈Q

f εi
mε
i

<∞. (7.1)

In order for the last condition to make sense to the reader, simply consider the right hand side to be
given in a weak form as 〈f ε, gε〉Xε :=

´
Rd fR

∗
εg
ε, i.e. f εi := mε

i

ffl
g
ε
i
f .

Step 1: L2-estimates We observe for every test function gε ∈ Sε
x
(Q)

〈−Lεωuε, gε〉Xε = 〈A∇̃εuε, ∇̃εgε〉Γε = 〈f ε, gε〉Xε . (7.2)

We now choose gε = uε and apply the Poincare inequality 4.7 and Cauchy-Schwartz

‖uε‖2
xε ≤ CEεω(uε) = C〈f ε, uε〉xε ≤ C‖uε‖xε‖f ε‖xε .

Hence
‖∇̃εuε‖2

αΓε + ‖uε‖2
xε ≤ C‖f ε‖2

xε .

Step 2: Moser iteration and L∞ estimate Now, let (7.1) hold. We insert u = |uε|κsign(uε) into
the Dirichlet energy functional Eεω. Using the Poincaré inequality in Theorem 4.7, inequality (A2) from
[1], f∞ <∞ and Jensen’s inequality together with the support Lemma 4.2 we find C0 dependent on
f∞ and the constant Cα,x in Theorem 4.7, but independent from κ, uε, ε such that

‖R∗ε|uε|κq‖Lκq(Rd) ≤ CEεω(|uε|κsign(uε)) = εd
∑
i,j

∑
j

αij
(uεi |κsign(uεi )− |uεi |κsign(uεi ))

2

|xεi | − xεj|2

≤ κ2

2κ− 1
εd
∑
i

(uεi )
2κ−1 (−Lεωuε) (xεi )

≤ κ2

2κ− 1
C0 ‖R∗εuε‖

2κ−1
L2κ−1(Rd) ≤

κ2

2κ− 1
C0 ‖R∗εuε‖

2κ−1
L2κ(Rd) .
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We make use of ρ := q
2
> 1 and set κ = κj = ρj . Then the above inequality reads

‖R∗εuε‖L2ρj+1
(Rd) ≤ exp

(
j ln ρ

ρj

)
C

1

2ρj

0 ‖R∗εuε‖
1− 1

2ρj

L2ρj−1
(Rd)

(7.3)

We can iterate (7.3) over j = 1, . . . , J and obtain

‖R∗εuε‖L2ρJ (Rd) ≤ exp

(
ln ρ

J−1∑
j=1

j

ρj
+

lnC0

2

J−1∑
j=1

ρ−j

)
‖R∗εuε‖

κ̃
L2(Rd) (7.4)

where κ̃ =
∏J−1

j=0

(
1− 1

2ρj

)
< 1. Put differently, there exists 0 < C <∞ independent from κ, uε,

ε, such that for every J > 1 it holds

‖R∗εuε‖L2ρJ (Rd) ≤ C ‖R∗εuε‖L2(Rd) . (7.5)

However, for every v ∈ Sε
x
(Q), we find v∞ := supi |v(xεi )| <∞. Let m∞(v) be the positive mass

0 < m∞(v) < |Bεβ(Q)| of the support of v∞. Then there exists r > 0 such that ‖R∗εv‖L∞ <

2|m∞(v)| 1r v∞ < 2 ‖R∗εv‖Lr . Since there exists Jr with 2ρJr > r it follows from (7.5) that

sup
ε
‖R∗εuε‖L∞(Rd) <∞ . (7.6)

Step 3: Homogenization Let still f∞ <∞ such that (7.6) holds. Then by Theorem 6.6 and compact
embedding Theorem 4.7 there exists a u ∈ H1

0 (Q) and w ∈ L2(Q;L2
pot(αΓ)) and a subsequence,

not relabeled, s.t.

R∗εuε → u strongly in L2(Q) and ∇̃εuε
2s
⇀ω ∇u · ν̃ + w as ε→ 0

for all typical ω ∈ ΩΦ.
We now choose υ ∈ C∞c (Rn) with supp υ ⊆ Q and ϕ ∈ Cb(Ω) with ∇̃Omϕ ∈ Φpot and substitute
gε = ευϕω,ε in (7.2), again we use the standard abbreviations, then we observe for all ε > 0

〈−Lεωuε, ευϕω,ε〉xε = 〈f ε, ευϕω,ε〉xε (7.7)

=εd
∑
ij

(∇̃εuε)ijαij
1

ε

νij · ν̃ij
|xj − xi|

ε(υεjϕj − υεiϕi)

=εd
∑
ij

(∇̃εuε)ijαij
1

ε

νij · ν̃ij
|xj − xi|

ε

· 1

2
((υεj − υεi )(ϕi + ϕj) + (ϕj − ϕi)(υεi + υεj ))

=εd
∑
ij

1

2
(∇̃εuε)ijαij(ε(∇̃ευε)ij(ϕi + ϕj) + (∇̃Omϕ)ij(υ

ε
j + υεi )).

Then the first term on RHS vanishes for ε → 0 since Lemma 6.3 yields |α∇̃ευ| ≤ C‖∇υ‖∞ and
therefore bounded and ϕ is bounded by definition. For the second term follows that

εd
∑
ij

(∇̃εuε)ijαij(∇̃Omϕ)ij
1

2
(υεj + υεi )→

ˆ
Q

〈∇u · ν̃ + w, α∇̃Omϕ〉Γ,Pυ(x)dx,
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where the 1
2
(υεj + υεi ) → υεij , pointwise for fixed ij, as ε → 0, same reasoning as in Theorem 6.6

Equation (6.6), and the expression is rewritten as its two-scale limit. With Equation (7.7) it follows

ˆ
Q

〈∇u · ν̃ + w, α∇̃Omϕ〉Γ,Pυ(x)dx = 0. (7.8)

Since Φpot is dense in L2
pot(αΓ) and Ψ is dense in L2(Q)(compactly supported continuous functions

are dense in Lp), equation (7.8) holds for all ∇̃Omϕ ∈ L2
pot(αΓ) and υ ∈ L2(Q).

Let now χk be defined as in Chapter 5 and let χ := (χ1, ..., χn)T ∈ (L2
pot(αΓ))n. Since u ∈ H1

0 (Q),
(7.8) admits the solution w = ∇u · χ. The uniqueness of this solution follows directly from the Lax-
Milgram theorem.
In the next step we test again equation (7.2) with a function g ∈ C∞c (Rn) with supp g = Q. Then we
get

〈A∇̃εuε, ∇̃εg〉Γε = 〈f ε, g〉Xε .

Using Lemma 6.5, Theorem 6.6 and the unique solution for w = ∇u · χ on the LHS, as ε→ 0. On
the RHS we multiply it with 1Ω(τxω) = 1 and use the Ergodic theorem 2.8. Together we arrive at

ˆ
Q

〈(∇u(x)) · (ν̃ + χ), α∇g(x) · ν̃〉Γ,Pdx = µx,P(Ω)

ˆ
Q

f(x)g(x)dx. (7.9)

Next we set υ = ∂kg and ∇̃Omϕ = χk for k = 1, .., n in Equation (7.8), sum up over k and add this
result to (7.9) and we obtain

ˆ
Q

〈(∇u(x)) · (ν̃ + χ), α∇g(x) · (ν̃ + χ)〉Γ,Pdx = µx,P(Ω)

ˆ
Q

f(x)g(x)dx.

By nature of the definition of Ahom we get

ˆ
Q

∇u · (Ahom∇g) = µx,P(Ω)

ˆ
Q

fg for all g ∈ C∞c (Q).

The fact that Ahom is nonsingular yields that the above equation is the weak formulation of (1.13).
Hence from elliptic regularity theory, we get that u ∈ H2(Q) ∩H1

0 (Q). Since the solution u is unique,
the used subsequence is the entire sequence.

Step 4: General f ε We now drop the assumption f∞ < ∞. The operator −Lεα is strictly positive
definite on Sε

x
(Q). It follows that on Q its inverse Bε : Sε

x
(Q) → Sε

x
(Q) is well-defined. Similarly,

the inverse B0 : L2(Q)→ L2(Q) of −∇ · (Ahom∇u), is well-defined.

Since Ahom is positive definite and symmetric, B0 is positive, compact and self-adjoint by the theory of
elliptic partial differential equation, see e.g. [6, Chapter 6].

The operators Bε are uniformly bounded in ε by virtue of Step 1. Moreover, Bε are real and symmetric
by construction and therefore self-adjoint. Finally, their range are finite-dimensional and thus Bε are
compact.

Let v ∈ C(Q). Then

ˆ
Rd

(
R∗εuε

)
v =

ˆ
Rd

(
R∗εBεf ε

)
v =

ˆ
Rd
R∗εf εR∗ε

(
BεRεv

)
.
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SinceR∗εRεv ⇀ v in L2 and supε>0 ‖Rεv‖∞ <∞, Step 3. implies that BεRεv converges strongly
in L2 to B0v. It follows that

lim
ε→0

ˆ
Rd
R∗εf εR∗ε

(
BεRεv

)
=

ˆ
Rd
f
(
B0v
)

=

ˆ
Rd

(
B0f

)
v =

ˆ
Rd
uv ,

where we have used that the operator B0 is self-adjoint and where u ∈ H2(Q) ∩ H1
0 (Q) is the

solution to (1.13). SinceC(Q) is dense in L2(Q), it thus follows thatR∗εuε ⇀ u. By virtue of Theorem
4.7 we conclude thatR∗εuε → u strongly in Lq.
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