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Quenched homogenization of
infinite range random conductance model
on stationary point processes

Yonas Bokredenghel, Martin Heida

Abstract

We prove homogenization for elliptic long-range operators in the random conductance model
on random stationary point processes in d dimensions with Dirichlet boundary conditions and
with a jointly stationary coefficient field. Doing so, we identify 4 conditions on the point process
and the coefficient field that have to be fulfilled at different stages of the proof in order to pass
to the homogenization limit. The conditions can be clearly attributed to concentration of support,
Rellich-Poincaré inequality, non-degeneracy of the homogenized matrix and ergodicity of the elliptic
operator.

1 Introduction

We consider a stationary ergodic point process in R¢ or Z? with realization x = (Xi)ieN' A definition of
this concept is recalled in Section[2.3|below. We furthermore assume to be given a random coefficient
field jointly stationary with x:

a:xxx—[0,1], (,y) — gy - (1.1)

We denote [E the classical expectation and [E, the conditional expectation 0 € x. Since x is stationary
we find for every jointly stationary random variable f that Ef = E, f and we demand

Qpy =0y,, 0yy,=0 and 0<E Z o, | <00 (1.2)
zex\{0}

Given € > 0 we consider the sets x°, and the functions o : x* x x* - R
£ .__ _ ) _ € _
X = ex = (6Xi) ey = (X )ien s Qoy = Qz v
Introducing the function spaces

S:={x* >R} and S(Q):={uecs; : Vxex\Q u(x;)=0}

we write u; := u(x¢) for every u € SZ and introduce the linear operator on S2(Q):

Vx; € QNx°: (E;au)i =2 Z ozf(;’xs(uj;u?)z .

% ¢ — .
j#i XX

We are particularly interested in the limit behavior of the discrete differential equation

=L, uf=f in@Q@Nx°, ui(x5) =0 ifx; ex"\ Q. (1.3)
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Y. Bokredenghel, M. Heida 2

where f¢ € S5(Q) is a sequence that converges weakly in a sense to be specify below.

The homogenization of problem (1.3) has been studied successfully first in [9] for x = Z?. Writing
e1, . . . eq for the canonical basis of R?, in [9] some additional condition of the type

E (Z O‘a,;-) < 00 (1.4)

is needed. The condition imposed in [9] is more general, but reads similar. Recently, a more general
result has been optained in [3] under the condition that for some p, ¢ € (1, c0) with %} + é < % it holds

p
E(Z ao’z|z|2> <oo and EZO&&Z < 00. (1.5)

z€Z4 z2€7%
[21=1

Since all recent results work on x = Z% and with o, > 0 for |z — y| = 1, our result is indeed
new. Like in our previous work [9] we use stochastic two-scale methods developed in [9] to show that
stationary ergodic point processes x in Z¢ with weights Q. satisfying Assumptions below lead
to a homogenization result for (1.3). In this context we further use recent results from finite volume
analysis [2] 5] to prove our compactness and uniform Poincaré inequalities in € > 0. Furthermore,
the proof that the support of u € S(Q) — regarded as a function in L?(Q) - lies within a small ball
around @ is inspired by recently developed ideas by the author for continuous homogenization [13] [15].

We note at this point that up to now only little is known on long-range interaction besides the two
recent work [3} [9]. Another approach in terms of a random resistor network [8] was recently established
by Faggionato. It however separates the edges inside Q and accounts only for interaction between
points inside Q with those outside (Q but not for “inside —inside”, e.g. nearest neighbor interaction. We
further note that in a previous work of the second author (e.g. the preprint [14]) the same problem was
considered in less generality for point processes in Z<.

1.1 Notation

We write Bi(z) := {y € R?: |z — y| < R} for the open ball of radius R around z € R? and more
general

Br(Q) :={yeR’: 3z € Qst |z —y| <R} .

J
m; = !gﬂ (the Lebesgue measure) respectively. We say that the Voronoi cells g; and g are

neighbored if the d — 1 dimensional Hausdorff measure m; ; := |8g§ N 8g§| is positive. We write

Given x° = <X€‘)jeN we construct a Voronoi tessellation of cells g7 with center x; and with mass

i~ jorx; ~ x; if the cells g; and g; are neighbored and

N(x5,x°) = {X§ ex®:in~j} with N(x5,x%):= 6N(?i,x). (1.6)
Given the random point process x we define

1 . R R
I'={v; = E(Xl +x;) i # G}, = {fyij = €7} -
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Inifinte range random conductance model 3

We furthermore use the following short notations for sums

N g _ HF E . E E — E
Oél] - axi’xj 9 alj o Oéx7,§7X§ 3 — 5 =

i i€N i,j i,jEN
i#j

and introduce the spaces
Go={I* >R} and Gi(Q):= {u €Gs Yy € r\Q u(ﬁ]) = 0}

By construction, it holds af; = «;; and we define the following semi-norm on S;:

2\ 2
Yu € S5 \u] e = (5d_2 Zoﬁ-%) :

1,3
We will see below that under certain conditions, || . indeed is a norm on S5(Q).

For every x and every ¢ > (0 as well as for positive numbers (af)ieN we find the scalar product
(', * )uxe @nd the corresponding norm || - ||, . on S5 given by

. d €
(u,v), . =¢ g asu;v; .
X;EXE
Typical examples are the choices
g — g __ &€
a; = or a; =m; . (1.7)

R%) — 82,1 < ¢ < oo and its adjoint R* _, : S — LI (R?) through
X £,X X

loc

We define R. x : L}

loc
(Rex¢); = 1G5 [ 6, and  (RIu)[z] =u(xj) if ze€G5.
<

Again, we drop the index x if no confusion is possible.

The above (semi-) norms as well as R can be restricted to S%(Q) using uy, = 0 forx; € x° \ Q.

1.2 Our setting

We make the following crucial assumptions, where, in line with the general definition of mjj above, my
is the mass of the cell corresponding to x; = 0 and my ; is the Hausdorff mass of the Voronoi interface
between the neighbors z; = 0 and x;. :

Assumption 1.1.

1 Support-Condition: There exists 3, > d + 1 such that
1

fo(R) < R7P . where fo(R) = ZZMBR(O) Nx =0) (1.8)
2 Poincaré-Condition: Defining
By = {‘aminXj_Xi’ o (1.9
0 , else.

there exists some p € ( 2d 2) such that it holds

d+2?
8 72
Eo Y o, (ﬁ) < 0 (1.10)
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Y. Bokredenghel, M. Heida 4

3 Nondegeneracy-Condition: Let (€k)k,:1,...,d be a orthonormal basis of R%. Then there exists
C > Osuchthatfork =1,...,d

EUZBO,J' ’ij"ek| > (C (1.11)

4 Ergodicity-Condition(s): There exist q., ¢, > 1 such that

—q q
Eomy ™ + Eo g Qp; < 00.
J

Remark 1.2. Condition (1.8) is new compared to [9} [3] and is solely due to the fact that xx # Z¢.
Example 1.3. It P(z € x) = py € (0, 1) is distributed i.i.d. among all x € Z it is easy to see that

fo(R) < C exp(—R%)

for some C' > 0 depending on py.

Remark 1.4. In case x = Z?, we fall back to Bij = 1fori ~ jand m; = 1 and every cell has
a fixed diameter. Consequently, Assumption collapses to the following condition: There exists
p € (%, 2) and ¢ > 1 such that

_—p_
EY af” +Eo Y al < oo (1.12)
O~j J
This can be understood as a generalization of (1.4) by using p = % and g > 1, even though we are

slightly worse than (1.2).

Theorem 1.5. Letx a stationary ergodic point process x = (X;) ey @nda € G: a jointly stationary
random function such that Assumption is satisfied. Then almost surely the following properties are
satisfied by x, a and L5, , and Ayom given by (5.1) below:

1 Forsome c > (0 it holds
VeeQ:  cle <€ Apom(@)€ < P

and L3, , weakly G-converges tou + V - Ao Vu in the following sense: If f< € S5(Q) is a
sequence and f € L*(Q) such that R}  f* — f weakly in L*(R?) and ifu® € S5(Q) is the
solution to

Vx: € QNx": —(E;au)i: i

then there exists a unique u € H(Q) such that R} u® — u strongly in LY(Q) ase — 0, ¢
given in Assumption[1.1]4, and u is the solution to

-V (ApomVu) = f inQ with ulag = 0. (1.13)

2 There exists 3 € (0,1) such that for every u € S;(Q) it holds suppR; .u C B.s(Q).
Furthermore it holds R’ R x¢ — ¢ strongly in Li(RY) forevery ¢ € L(Q).

3 There exists a constant C' > (0 such that for every ¢ > 0 with o = mZ. it holds

YU eS(Q): ||U|l, e <CLU| e

mx®

and boundedness of |uF | .. implies precompactness of R , u® in L1 (R9).
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Inifinte range random conductance model 5

The proof of Theorem[1.5|will be given in Section

Remark 1.6. The most surprising part of Theoremis probably part 2., i.e. suppR: ,u C B.s(Q)
instead of a result suppR;  u C Be:(Q) for some C' > 0. The reason for that is that Voronoi cells
G in general might become arbitrary large, even for small €. However, it is “very unlikely” that their
diameter becomes larger than C's”. We highlight at this point that 3 € (0, 1) implies e >case —0
but still €# — 0.

Remark 1.7. The case of x C Z% is but a special case of the above setting, see Section

2 Probability space and ergodic theorems

2.1 Random measures

In what follows, let M(Rd) be the space of Radon measures (in R? this equals to both Baire and
Borel measures) equipped with the Vague topology. The Vague topology is metrizable and defined as
the smallest topology such that for every f € C..(IR?) the map 1 fRd f dp is continuous ([4]). We
furthermore rely on the following definition (see [12]) of stationary random measures:

Definition 2.1. Let () C M(Rd) be an arbitrary (in particular also non-measurable) set and let

oo :={ANQN: A€ or} bethe Vague sigma-algebra restricted to (2.

1 A random measure is a measurable surjective mapping p : Q- Q0 e, Where (Q, o, ]f”)

is a probability space. Since P := Po 1! is a probability measure on (2, we also find the
following:

2 A probability measure P on (2, 0() is called a random measure. In order to highlight the
measure aspect, we write the identity on €2 as

Q—>M(Rd), W fly =W,
We also say that (2, oq, P) induces the random measure w +— fi,.
3 For every bounded Borel sets Ay, As, ..., A, C R? k € N we denote by
Fr(Ay, o Ak x, o) = P(pw(A) <zgsi=1,... k)
the finite dimensional distributions (fidi distributions) of .

4 A random measure /i, is called stationary if for every z € R? it holds 7,2 C €2 and the fidi
distributions of (1, and 7, 1te are the same, i.e.

Fk(Al,...,Ak; $1,...,$k) = Fk<A1 +x,,Ak+x, 1}1,...,.1'k>.
This is equivalent with P = IP o 7, for all z € R<.

51Q C M(Rd)k and 1.—4. holds componentwise, we speak of a k-dimensional random
measure.

In what follows, we summarize the theory outlined in the recent work [12].

DOI 10.20347/WIAS.PREPRINT.3017 Berlin 2023
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Theorem 2.2. Let 11, be a stationary k-dimensional random measure. Then there exists a precompact
metric space ) with a probability measue P and a family (7,,),cza of continuous bijective mappings
7. : > €, having the properties of a dynamical system on (X2, .% , P), i.e. they satisty (i)-(iii):

(i) T4 © Ty = Taty , To = id (Group property)
(i) P(t_.B) =P(B) Vx € R% B C ) measurable (Measure preserving)

(i) A: RTxQ—Q  (z,w) > T,w is continuous (Continuity of evaluation)

Furthermore, for every Borel set A C R? it holds jui,,(A — x) = p.r,..,(A) and there exists a measure
wp and §) called Palm measure such that Campbells formula holds:

Vg € Col®Y, llgllaqaey = L. f € L@ prp) : /fdup—//Rd w) dpe () dP(w)

Finally ifa,, € Li (R ) is a family of stationary random functions with IE f[—1 e e dp,, < oo then
there exists a function a : Q0 — R witha € L' (Q; up) such that a,,(x)du,,(z) := a(rT,w)du, ().

The Campbell formula gives us for any Ball B around 0 and f € LP(; up), 1 < p < o0:

0= Jim B] [ 1fu(w) = F@)Pdup(e) = Jim [ [ [rs) = flro)Pamafa)p.
0 Q
and hence we have the following:

Corollary 1. If f € LP(Q),1 < p < oo thanas. f(T,w) € LY (RY). If fy — f in LP(Q), then a.s.,
for a subsequence,

fr, (Tw) = f(rw)in LY

loc

(RY).
Remark 2.3. The precompactness of {) has many important implications: (i) First, the bounded
continuous functions C,(€2) will be dense in any LP(€); 1), 1 < p < oo and any Borel measure 1t on

(2, including the probability measure [P and any Palm measure pp. (ii) Second, the dynamical system
allows us to take a Dirac sequence (¢y, )nen, ¢n € C°(B,-1(0)) and any f € C(£2) and define

fu(w) = /R” on(2) f(Tow) dz .

Then for every w it holds = — f,,(T,w) is Lipschitz and | f,, (Txw) — fu(T,w)| < [[Von ool fallso|z —
y|. Furthermore f,, — f pointwise and, as shown in [12], also in every L”(Q; i), 1 < p < co. Thus
the following space is dense in every LP(€); 1), 1 < p < o0:

CPH Q) = {feCy(Q): IC >0:VweQ, z,yeR: |f(z) - f(y)| < Clz —y|} .
While the latter property is not used in this work, it could help to simplify some calculations and may still

be helpful in future studies.
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Inifinte range random conductance model 7

2.2 Ergodic theorems

Definition 2.4. A set A C Q is almost invariant it P ((AU 7, A) \ (AN 7,A)) = 0 for every z € R%
The family

I ={AecZ Ve eRP(AUTA)\(ANTA) =0} 2.1)
of almost invariant sets is a o-algebra and the probability measure is called ergodic if it holds: A €

< P(A) € {0, 1}. Often, also below, one says that 7 is ergodic instead of P.

There exists an equivalent definition of ergodicity (see [4] Proposition 10.3.1lI), namly a dynamical
system 7 is called ergodic w.r.t. P if

lim

/ P(A N7, B)dz = P(A)P(B). 2.2)
n,n]?

The importance of the concept of ergodicity stems from the following ergodic theorems:

Definition 2.5 (Intensity of a Measure). Let i be a stationary random measure on R". The intensity /
of 1 is defined as

1:=E[u(j0.1]")]

Lemma 2.6 (see Chapter 13 of [4]). Letw > p,, be a stationary random measure with finite intensity.
Then their unique Palm measure [ip is finite e.g.

pp(€2) < oo

Theorem 2.7 (Ergodic Theorem |, Chapter 13 of [4]). Let the dynamical system 7, be ergodic and
assume that the Palm measure [ip of the stationary random measure [, has finite intensity. Then, with
pE(B) = elu,(e7B), forall g € L*(Q, jup), it holds

e—0

tim [ g(rew)di () = |A / ) dpip (o
A

for P almost every w and for all bounded Borel sets A that contain an open ball around 0.

Theorem 2.8 (Ergodic Theorem I, [10]). Let the dynamical system T, be ergodic and assume that the
stationary random measure 1, has finite intensity. Then, defining 1i£,(B) := e%u, (e B), it holds: for
allg € L'(2, up) we find for P-almost every w, and all o € C,.(R?) that

lim [ glrew)p(o)dis (@ / / 2)djip(w)da,
e—0 Rd € Rd

2.3 The coefficients «;; and the notation y and up p

A particular case of the above is a random point process, which is a random measure such that each
realization is the sum of countably many delta distributions.

Definition 2.9 (Random point process). A random measure (i, is a random point process if for every
w there exist countably many points x(w) = (x;(w)),cy Such that

P 1= fi,(A) = Z Ox,(w)(A)  with Palm measure fix p .

DOI 10.20347/WIAS.PREPRINT.3017 Berlin 2023



Y. Bokredenghel, M. Heida 8

Lemma 2.10. We set C i the cube with length R and center0 € RY. IfEg ; Cvo,j < 00 then also
7i;€CR
If o is stationary, then for almost every realization there exists a constant C' > 0 such that

; —d g
}%groloR Z a;; < C.

7:;€CR

Proof. Without loss of generality, we prove (2.3) restricting ourselves to R = 1, since the other cases
can be obtained from a scaling x — Rx. Since C'; has edgelength 1, we can split R? into cubes
C(z) = C; + z. Furthermore, we define

75 ={z=(21...20) €2%: % <0=k>2andI <k: z>0}.

In other words: z € Zi iff the first non-zero coordinate is positive. Thus it can be verified that for each
z # 0 either z € Z‘i or—z € Zi but not both. By construction of I', for any two points x;, X; € x
with 755 € C'1 and x; € C'1(2) it has to hold that x; € B /;(C'1(—z)). Therefore we can find the
following estimate:

EY ay<EY Y oy +EY D> Yoo ay

vi5€C1 xi€C1 x;€B _5(C1) zeZi x;,€C1(2) x;€B 5(C1(—2))
SEY D au+ERY >, )
x;€C1 J xi€C1 2€Z\{0} x;€B_5(C1(2))
< CE() Z Qpj -
J
The limit behaviour now follows from the ergodic theorem. O
Let
ni; = exp(—|x; — x;) (2.4)

which is jointly stationary with x and I" and study
pnr(A) = Z 1 (@) () (A) -
7;7.]'
Corollary 2. (i, is a stationary random measure and thus has a Palm measure (i, p.

This is a consequence of Lemma In fact, it holds more generally.

Theorem 2.11. Let x be a stationary random point process and let o : G — [0,00). Then the
following are equivalent.
(i) ciij = I' — R is jointly stationary with x and satisfies Ey ) j00,j < 00.

(ii) prar (A) == Z @i (W)0s,, () (A) is a stationary random measure and there exists 5 € L' (2; pur p)
2

such that almost surely c;j(w) = B(7,,;,w)ni;(w) and for the Palm measure pi,rp of jiar holds
Har,p = 5Mnr,P-

DOI 10.20347/WIAS.PREPRINT.3017 Berlin 2023



Inifinte range random conductance model 9

Proof. Let (i) hold. Since the position of 7;; and «;; are linked to X; and X, (. is a stationary random
measure provided it is almost surely a measre on R.

Since p,r is sigma additive by definition, this follows from Lemma

Given R > 0, we set ap;; = yj if [x; — x;| < R and ag,;; = n;; else. It is again clear from
the above that i, ., is a stationary random measure and if i, p is the Palm measure of y,r then
Theoremimplies that there exists g € L' (2; pyr p) With g ij = Br.ijnij- Also for every R > 0
we have

/ﬁRd,unFP_E Z BRU??Z] E Z QR ij SE Z Qg

v:;€C1 vi;€C1 v:;€C1
< CE, E ,j
J
Since for almost every w and v;; it holds Br;j(w)ni; = Br(7y,w)n; = ary < i, since

Ezwecl a;; < oo and since ag;; * ayj, this implies also S 2 8 € LY(Q; pyrp) with
ﬂ d,unF,'P - d,uozF,'P-

The opposite direction of the statement is straight forward to prove. O

We emphasize that

A) =0, ) (A
i

never can be a measure as the mass of any unit cube is infinite. Thus, at first glance it makes no
sense to consider a Palm measure of jip(,). However, Theorem provides us with some additional
degrees of freedom to interprete fir(,):

Definition 2.12. We say that a stationary random function [ satisfies f, € LI (R up(,) if
Eo Z | fo.;]P < co. Correspondingly, we say f € LP(); ur p) if there exists a stationary f such that
fo € LIOC(]Rd; prw)) and fu(vi;) = f(7,,w). Inthis case, we interpret

/fdMFP |BR1( )|qu7 (w )(BR<O)) )

for every w such that the ergodic theorem holds.

Theorem 2.13 (Double ergodic theorem). Let «;; be a non-negative stationary random field on
I'(w) which is invariant under permutation c;; = a;; and with Eg Y . cgj < 0o. If p € C.(RY),
Y € C(RY), ;; Is a sequence of functions G° — R and there exists a continuous strictly monotone
increasing function o : [0,00) — [0,00) with o(0) = 0 such that [t)(v5;) — ¥5| < o(|x§ — x5)
whenever p(x5) # 0 or p(x5) # 0 then

iy 37 0000) 3y = iy 3 (eto) 0 = 2 [ verarp().
1 Ve ’LN]

Proof. Let () be abounded open domain around 0 with supp(y) € @), and § > 0. Since Eq > _; ap; <
oo we finda D > 0 such that

Z agj_llj)r[l)8 @Z Z Oéij<($.

J:x;|>D iNQ j: HXE x;||>eD

DOI 10.20347/WIAS.PREPRINT.3017 Berlin 2023



Y. Bokredenghel, M. Heida 10

Ifi € Qand ||x5 —x5|| <eD wefind |¢)(v;;) — ¥5;| < o(eD) and hence

Y a5 - v)

iNQ j:||x5 —xZ||<eD

<elleled . D ayo(eD) = 0.

iNQ j:||x5—x5||<eD
while for the rest we obtain
1
Ed@z > (x5 (W(5) — v5)| < 04l |t ]l — 0.
iNQ ji||x§—x5||>eD

Repeating the argument with 2¢(7%;) — (p(x5) + ¢(x5)) we find with the ergodic theorem

lim ’ }(@(Xf) + p(x5)) iy, = £%22¢(7%)@ij¢(7§) = Q/Rd Yopiar,p(€2) .
i~ inj

2.4 Point processes on Z*

As mentioned in the introduction, there are also studies considering discrete elliptic operators on point
processes on subsets of Z¢.

A stationary random point process in Z is a random point process with x C Z¢ almost surely and the
property that for every z € Z% the random measures H, and g, (- — z) have the same distribution.

Given a stationary ergodic point process in Z¢, the above Definition of ergodicity which is based on
R makes no more sense. Therefore we introduce the following modified version:

Definition 2.14. Given () the probablity space of a stationary random point process in Z¢ , a set
A C Qis almost invariant if for every z € Z% it holds P (AU 7, A) \ (AN 1,A)) = 0. The family

I ={AeZ : Ve eZ'P(AUTA)\ (ANT,A)) =0} (2.5)

of almost invariant sets is a o-algebra and the probability measure is called ergodic if & = {Q, ()}.

Let Y := [0, 1)d be the half open unit cube with the topology of the torus and let
7 RIxY—=Y, (z,9)~ 7y :=(+y) mod Z%.

For every € R? we write [z € Z? the element that satisfies © — |z] € Y. Then we define
Q:=0QxYaswellas P := P x L% where £ is the Lebesgue measure and the following

i R'xQ—Q, (2, (w,y)) = (T2, oY) -

Furthermore, for every 11, and y € Y we define /i, := (- —y) and extend this to fir,,, := (- —x)
for every x € RY.

DOI 10.20347/WIAS.PREPRINT.3017 Berlin 2023



Inifinte range random conductance model 11

Lemma 2.15. The map Q2 x RY — M(RY), (w, ) = fir,. is continuous. Furthermore, the push
forward of P from € to M(R?) using (w,y) — fur. is ergodic.

Proof. This follows from (2.2) using that the integer- and noninteger-parts of 7 act solely on €2 resp.
Y. O

The implication of the last lemma is that we can consider any ergodic stationary random point process
in Z% as an ergodic stationary random point process in R? by shifting it by 4 € Y with a uniform
distribution.

3 Discrete differential operators

3.1 Discrete gradients in R?

We introduce the following notation:

F = M JE = ﬂ
T el T g

Since v;; = yfj is independent from <, we will always omit this index. Introducing
Veu : T2 = R (Vou);; = o5 uvij

we observe that (V°u);; is invariant under the permutation of ¢ and j. In order to turn (V°u),; into a
permutation invariant scalar, we introduce the following:

Definition 3.1 ( Normal Field). Let g = 0, (¢;);=1...., be the canonical basis of R?, and let 5" :=
{z € R"" : ||z|| = 1} be unit n-sphere. Define

F={vesS"'|3Ime{l,.n}:v-e=0
Vie{0,1,...,m—1}andv e, > 0}.

Thus, for every v € S~ it holds v € F if and only if —v gé JF and we can define

V(Z,j) : ﬁij = Vi if Vij e F or ﬁij = Vj; = —Vij if Vj; e F.

Hence 1;; = vy, is invariant under permutation of 7 and j and so is

(Veu) (75;) == (Vou)iy == (5 uvsy) - Ui

Lemma 3.2. The operator Ve is a linear operator §¢ — G* with adjoint —(div® ) defined by

Y e
5’Xj_xi| VZ]¢ZJ'

(div® §)(x5) = (div® )i ==

For e = 1, we simply write V which is defined on S and div on G.
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Proof. Letu € ¢ and ¢ € G°. Then

- . uum—i—uz/ﬂ) _.
<<V ) FE w)y =€ Z VE 1] =€ Z 5|XJ_X1 'Vij¢ij

_5dz Zm Vqub )
= DO g gy ) = (i D

O
Lemma 3.3. Let A : G° — G° given through A : g;; — «;;9;;. Then
J 7 9ij
(div® AV®u); = (L5u);.
Proof. This follows from
~ Uss (UE. — u?)
d. aAVa R — 2'] .~,. '] ¢ I/..i)a
( 1 u)z ; €‘Xj — Xi' zyglxj — Xi’ ¥ ij ig
-2 (uj —u7)
O

In a similar way to the above proof, A computation for u, v € S° shows

(= L2, V) e (o) = (—div (AVEu), V) e )-gdZUl —div® AVFu);

:gnQZOé”<uj_ui)(Uj_Uz‘) <Vu Ve >ars -

Yx; — x| x5 — x4

This directly implies that —L;, is strictly positive definite on non-constant functions.

3.2 Gradients on )

We recall the notation yi,, = pix and iy p from Definition[2.9)and also that due to Theorem [2.71]and
Definition we can make sense of

[are := Qe With Palm measure fioarp = Qlirp .
Since v;; and ;; are jointly stationary with y;; Theorem[2.2] yields that
there exists a measurable v on €2 such that a.s. for every ;; it holds v (w) = v(7,,w),

and similar for 0. Also, for every f € C}(§2) and fixed w € €2 the following functions are continuous:

foe(x) = f(r2w), and f,(z) = f(r.w)
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Inifinte range random conductance model 13

Provided now that 0 € I"(w), which we can assume due to stationarity of I, for every f € C,(2) and
almost every w € () the expression

(Vomf)(w) = e(V° fu,)(0) = (V£)(0)

is well-defined and yields us a notion of a discrete gradient on €2 with the property
(VOmf> (T’Yz'jw) - (vfw)(fyl]) .

We observe that @Om is a linear operator on C5(§2) and define
(divom fuwe( Z p( Ti; W oy T%]w) . D(T%.jw)f(T%.jw) = e(div® f,0)(x5) (3.1)

where
pu(755) = elxj(w) — x3(w)]-
Then (3.1) is consistent with

e(div® f,0) (x ZE Pu(V5)) (05 o (V) Faone (V5
- Z 5gp(7_%‘jw)_1y(7-%jw) ) ﬁ(ng'w)f(Taflvfjw)

= Z p T’YU V T’me) ' I;<T'Yijw)f(7_7ijw)

= (d“)Omf)w,e (Xf)

We will now show that —divp,, = (@Om)* holds true on €2, at least in a modified sense. For this
reason, we define the scalar products

<U7U>X,P ¢=/U0dﬂxm, <f79>ar,7> 3=/fgdﬂar,797
Q Q

as well as the bilinear form

(f,9)rp ZZ/Qfgd,up,p.

Theorem 3.4. Foreveryu € Cy(2), f € LY(Q, urp; R?) with divo, f € L*(S2, uxp) and every
¢ € C,(R?), it holds for almost every w €

lgg)g(dive(fw,sw),uwﬁ)xe :/ o(x)(divom f, u)x pd.

R4

Proof. Let us first define some abbreviations for the functions we are using, f;;(w) := f(T%jw) =
J(Tempz w), ui(w) = u(m,w), f = @(xF), and ¢f; := @(7;;). For readability, we omit w where it
is possible. This leads to

E{div® (fuep), tue)we = f:‘édZuZZf” Y

—€€dZUszm 801+5dzu12fzj|x V” @fj ©5].
J

- U
ul | Sof]

DOI 10.20347/WIAS.PREPRINT.3017 Berlin 2023



Y. Bokredenghel, M. Heida 14

For the first term on the RHS, we get
d Vij " Vij . ;e
e ur > Fir T = (i (fune), o)
— el - x
7 J

= <(diUOmf)w,€uw,sy S0>X5(w)- (3.2)

Atter Remark 2.3)(ii) C,(<2) lies dense in L*(2, i p). Therefore u divo,, f € L' (€2, fix,p), and via
Theorem [2.8] for ¢ — 0, converges (3.2) to

/ o(z){divom f, u)xpdz.
R4

It is left to show that the second term on the RHS vanishes for ¢ — 0. Since ¢ € C.(R%), u € Cy(9),
and f € LY(Q, ur p; RY) we get

esdzuzsz \é et — i) < e Dl 3 Vel Vil

< €dZZ€|fz’jll|U|looHV90||oo < O fller@pur pirn lulloo [ Volloo — 0.

1> €
x; x5

O

Corollary 3. The linear operatorV o, : L*(Q, i p; RY) — L2(Q, piar») is the adjoint of —divo,, (a-).

Proof. Let the functions be defined as in Theorem A swift computation under the usage of the
Ergodic theorem [2.8/and Theorem [3.4]gets us

/ 90<='L’> <Oéf7 @OmU>F,PdSL’ = 1im<aw,€fw,€§07 (ﬁomu)%€>r5(w)
R e—0

- li—{n[)(awyéfw,a@v 5v6uw7€>rs(w)

= lim & (—div® (e fuo ), o e) 2 ()

= / o(x)(—divomaf, u)x pd.
Rd
Since € C.(R?), the claim follows. O

Finally, we introduce two subspaces of L2(Q, Lar p), the potential and solenoidal subspace.

Definition 3.5 ( L2Ot and Lsol) Given a stationary random point process x and a stationary random
field o : I' — [0, oo) with Eo ) - ; ag; < 0o we define the potentials and solenoidals on (2 as follows:

L2

pot

(al) = L?

pot

()t

sol

(al') = cIosureLz(Q#aF,P){@Omf L feC(Q)}  and L2
Remark 3.6. We could equally define
L2 (aI') = closurerz(q . p){Vomf : f € CpH ()} and L2 (al)) = L2, (al)*

as the closure of differences of C£71(Q)-functions. However, this is not needed in the calculations
below.
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Corollary 4. Lgot(al“) is well defined and not empty. Furthermore, if & < « pointwise almost surely
then L2 ,(al') C L2, (aTl).

pot pot

Proof. This is a straight forward calculation. O

Lemma 3.7. Forevery f € L2, (al), it holds divom,(fa) = 0 ur p—almost surely. Hence for almost

every realization f,, . holds div®(ay . f...) = 0 locally on X*(w).

Proof. Let f € L% (al') and let ¢ € C.(R%). Then for every u € C,(£2) we get with the help of

sol

Theorem [3.4]for some w €

0= /Rd @(x)<@omu, af)rpde = — /Rd o(x)(u, divomaf)x pdx

- .li—r}(l)(u“’,ffgpa d?:'l}s<aw75fw7s)>xs (@)

This is true for every p € C.(R%) and every u € Cj(£2), hence the claim follows. O

4 Properties of 5%

In this section we provide some fundamental properties of functions in S, particularly a Poincaré
inequality and a compact embedding result. For this we will use results from numerical analysis.
Furthermore, we will show that the support of functions in R} S5 (Q) lies almost surely within a

bounded region around @ while the support decreases towards Q as € — 0. This will imply for every
¢ € L*(Q) that RZ , R.xp — ¢ strongly in L*(Q) as € — 0.

4.1 Supportof R! _S:(Q)

e,x%x

Lemma 4.1. Letx be a stationary point process in R% with f, given in (1.8). Then, if G := () ien 1S
the Voronoi tessellation for x = (x;),.y with maximal diameter

0(x;) := max |z —y| , (4.1)
zyce;
then
P(d> D) < f, (é D) (4.2)

Proof. We define for a unit vector v of unit length, 0 < o < 7 and R > 0 the cone
Cranr(x):={2€Bg(z) : z-v>|z|cosa} .
Because of the stationarity and because of P(AU B) < P(A) + P(B) it holds for R € Z and

E :={ei,...eqt U{—e1, - —eq} ({e1,...eq} being the canonical basis of RY)

P(Ee € B : Bp2Re) Nx=0) <> Y P((Ba(+2Re;) Nx = 0) < fo(R).

=1
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In particular, for o = arctan /'/3s = % we have the smallest opening angle such that B (2Re) lies

completely inside C. , 3r (0) and we discover
P(Ve € E: xNCez3r(0) #0) >1— fo(R). (4.3)

Now we take arbitrary points X.; € Clic;q,3r(0) N x. Then the planes given by the respective
equations (x — %xij) -x4; = 0 define a bounded cell around 0, with a maximal diameter D(a, R) =
C R which is proportional to R. The constant C' > 1 depends solely on the opening angle o« = % of
the cones and can be shown from some trigonometric calculations to be smaller than 6. Estimate
now follows from

P> D) =P@>CR) <P(Ee€E : xNConsr(0)=0) < fo(R) = fa(%D).
O

Lemma 4.2. Let Q C R? be a bounded Lipschitz domain and let f, satisfy (1.8). Then for every
ge(0,1— [%) there exists almost surely g > 0 such that for every e < gy and every u € S5(Q) it
holds suppR: ,u C B.s(Q). Furthermore, for a given bounded Lipschitz domain Q we define

NQ,x%) ={zex\Q: N(z,x°*)NQ # 0} . (4.4)

Then there exists almost surely eq > 0 and 3 € (0, 1) such that for every eq > ¢ itholds N (Q, x®) C

B.s(Q). Furthermore, for every domain Q C Q with Q C Q there exists £ > 0 such that for every
e < &andevery ¢ € C.(Q) it holds suppR; ¢ C Q.

Proof. Letu$(z) = lifx € Q Nx® and u§(x) = 0 else. Given N := ¢!, By = 1 — 3 the event

BN = ( U Gz C BNBO (NQ))

X, ExXNNQ

is equivalent with the event
suppR; uj C B.s(Q).

For the complementary event =By of By it holds

P(~By) <P(3x; € xNNQ : By, (x;) ¢ Bya (NQ))
< ) P> NP) <C|Q|Nf(NP)
xNNQ
< O NaPobo

If By € (5%, 1) the support-condition (T.8) implies N9~%% — () as N — oo and hence for almost
every w there exists Ny such that w € By for every N > N, and the first statement of the lemma
holds.

The second statement can be proved similarly taking into account that every x € A/ (NQ, x) satisfies
x € Bap, (x;) for some x; € x N NQ. The last statement follows from the positive distance of 9Q
and 0Q as well as the first part applied to Q. O

Lemma 4.3. Let Q C R? be a bounded Lipschitz domain and let f, satisfy (1.8). Then for every
1 < ¢ < oo almost surely for every ¢ € L(Q) it holds R} R.x¢ — ¢ in L1(Q) ase — 0.
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Proof. Let @ D B1(Q) be a large ball that contains 0. Given ¢ € C'}(Q) and using the notation @.1)
we find

[ (ReReo -0 s S (ot Vol G

x,ExNe~1Q

<e™MVelL Yo ax) |Gl

x,ExNe—1Q

Because of Lemma4.2|we know that almost surely for £y independent from ¢ and every € < & it holds
e0(x;) < dlamQ + 1 for every ex; € Q Hence for every D > 1 we find from the ergodic theorem

gt Z (%) |G| = 7+ Z (%) |G| + & Z o (x;)|* |G

x;€xNe~1Q x;exNe~1Q x;exNe~1Q
?(x;)<D (x;)>D
~ ~ q ©
<ef Q‘ D7 + (diamQ + 1) st Z o(x;)?
k=0 XiEXﬂ871Q
D+k<d(x;)<D+k+1
~ - q >
< g8 Q‘Dq+(diamQ+1) S e S (D+k+1)
k=0 xiexﬁe_lé

D+k<o(x;)<D+k+1

(D+k+1)P(D+k<d(-)<D+k+1)

Mg

— (diam@ + 1)q

e
Il

0
q

NE

< ot (diam@+1) (D + k) fa( (D +k))

ol
[e=]

_ q Bo 00
< 2t (diamQ + 1) ( ) (D + k)P

k=0

| =

Since (D) > d + 1 it follows

1\ 7 ~ q

A N |GLl <94 | = ( i ) d+1—P5

ll_I)I[l)é E 3 0(x;)? |Gy <2 (6) diam@Q +1) D —0
x;eExNe~1Q

as D — oo and we obtain that

lim [ (RE,Rexp— )" <0. (4.5)

e—0 R

Furthermore for every ¢ € L?(Q) it holds

|, (ReRe0)' Z/( / )qs;/agm%/quqz/ﬁq, s)

Now let ¢ € L4(Q) and let (¢ ) .oy € C2(Q) be a sequence with ||¢ — Drll o) < =.Givend > 0
we find

(/];d (R:,XR57X¢ - ¢)q) ' S ||¢ - ¢k’||LQ(Q) + HR:,XR57X (¢ - qbk)”]ﬂ(Q)
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+ (/Rd (R:,st,x¢k - ¢k)q) ‘ .

We chose k € N such that ||¢ — gkaLQ(Q) < %(5 and with help of (4.5) we choose ¢, such that for
every € < &g it holds ||72:’XR€,X¢/1C — gzﬁkHLq(Q) < %5.
Due to (4.6) it also holds HR;XRE,X (¢ — (bk)HLq(Q) < %(5. Then in total for every € < & it holds

(/]Rd (R:,st,xgb - (b) q) ‘ <4.

4.2 Rellich-Sobolev-Poincare inequalities

In the following, we provide results from [2] and [5], which were formulated for a general family of
(non-random) grids that include Voronoi grids, but we will adapt them to our setting for the readers
convenience. To this aim we recall the definition of /3 in (1.9) and define the following (semi-) norms on

S

1
p

[l e == <€dzm? |u2-|p>

' 1

p

N U

I‘UJBF57P Eh ( pZ/B’L,] ’X] XZ > 9

’L
’I/V]

HU| mexe BT p = ||U| mexe,p + LquEXE,BFE,p

Theorem 4.4 (Discrete Sobolev-Poincare Inequality). Let Q@ C R? be a bounded domain and let x be
a stationary and ergodic point process in R%. Then for every 1 < p,q < oo with 1 — ;—f > —g there
exists a constant C' > 0 which only depends on p, q, d, and QQ such that

HuHm5x5q — LuJIBFE

Proof. This is a direct consequence of [2], Theorem 6 Section 4.2. O

Theorem 4.5 (Discrete Gagliardo-Nirenberg-Sobolev Inequality). Let x be a stationary and ergodic
point process inR?. Then forany1 <p <nandl < qg<m < np—fp, there exists a constant C' > 0
which only depends on p, q, n, and Q) such that

||u||m5x5 m o — C LUJ,BFE HU|

mEXE

Proof. A proof can be found in [2], Theorem 7 Section 4.3. O

Theorem 4.6 (Discrete Rellich Theorem). Let p € [1,00), x be a stationary and ergodic point
process in R?. Then for any u® € S5(Q)(e™" € N) such that sup, [u] -, < 00, the sequence
(Riu®)eso is precompact in LP(R™).
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Proof. A proof can be found in [5], Lemma B.19. O

Theorem 4.7 (Poincare Rellich Theorem). Let X a stationary ergodic pointprocess X = (xz) en With
points solely in Z¢ with « satisfying (T.10). Then for every q € (2 ) there almost surely exists a
constant C, 5. > 0 such that for every ¢ > 0 and every u® & S;(Q) /t holds

||u€||maxs7q < Coe (U] ope - (4.7)

Furthermore, any sequence u;* € S*(Q), k € N, with sup,, | u;” |
sense that R u;* is precompact in L4(R%).

arer < 00 Is precompact in the

Proof. Due to Lemmawe can assume w.l.o.g that for € > 0 small enough it holds suppR*

B, (Q) for every u € St. Since p > d+2 it holds 7 > 2 and we infer from the discrete Sobolev-
Poincaré inequality in Theorem [4.4] that for some constant C > 0 depending only on p, ¢, d,  and Q

Hqu,xe,me S HuHmsxs,q S C LUJBF,(] . (48)

Using the discrete Gagliardo-Nirenberg-Sobolev inequality of Theorem we furthermore infer the
existence of C' > (0 depending only on p, q, d, 0 and @ such that

HuHTnExE,q7 S C LUJBFS,p HU’Hmsxf,p (49)

where 6 = d(1/p — 1/q) < 1. Finally, we obtain from Hélders inequality for ?

2—p

2

o, < | D2 Do (6 ”) [ ore - (4.10)

x5 €EQNXE irvj

The ergodic theorem together with the assumed Poincaré condition (7.70) on «v and (3 imply the bound
[u) gre , < Cox U] ope for Co x independent from e.

Now let u;* € S+, k € N, be a sequence with sup;, |u;" |

(4.10) imply

orer < 00 then inequalities (4.8) and

SUp [t | e pei g < 00 (4.11)

From Theorem we infer that R, u;* is precompact in L?(Q). Hence @T1)-@9) imply also
precompactness of R}, u;* in LI(Q). O

5 The homogenized matrix

Let (€))g—1,...a be a orthonormal basis of R?, and let x, € L2, (al’) be the unique minimizers of the
functional

Ey: L2 (al) >R, x— /Qa|ﬁ e + x|Pdprp .
With this, we can finally define the matrix Aj,,, through
Apom = (Akm)km=1.....d; (5.1)
with Ay ,,, = /Qa(ﬁ e+ xXk) (V- e 4 Xm)dpir p.

In the next theorem, we want to prove that the homogenized matrix is positive definite.
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Theorem 5.1. Let x satisfy (1.8) and let «v;; satisfy the Poincaré-condition (1.10) and the nondegener-
acy condition (1.11). Then the matrix Ay, is positive definite.

Proof. We recall 3 defined in (1.9) to show in the following that 7 - e¢;, € L2 (8T). For u € Cy(2),
an open ball A = B4(0) and ¢ € C°(A) we obtain from the double ergodic Theorem (where

v=11v;=1)
(uj(w) — ui(w))

x; — X

_lm% g4 Z 51]2 (i + @)V - ex

(i7)NA

(5.2)

/¢ Vomu, B - ex)r pda

We add 0 = > +S5., where S, = & Z(mm ﬁij%(ui S NE ek% has the property
|S:| < eCJul|oo]| V]| 0. Furthermore, with help of the Support Lemmal4.2]it holds ¢; = 0 as soon as
x5 ¢ A and ¢ is small enough and we observe with help of (a1 +a2)(by —ba) + (b1 + b2) (a1 —ag) =

a1b1 — Clgbg that

(Pjuj(w) — dpyui(w))

<
/(;5 Vomt, B0 - ex)rpde llr% g4 Z BijVij - €k %, — x| +Ce (5.3)
(ij)NA
d BisVi - ek o d
<l oD ) D T S et ) 310G e Fudl
iNA iNA | (j~i)
lim V- ekl [|[ug|eo = lli%g div eg| ||udlls = 0.

In the next step, we will use the nondegeneracy condition (T.77) which reads for some C' > 0

Ce 1—/5|ﬂ'€|2dur,7> > Ol
Q

In particular

d 2
1€]]* < Cl/ﬁﬁ";'fﬁdﬂnp = Cl/gﬁ (;17 . ekfk) durp
d d
= 0_1/522(5 cex) (V- em)Ek§mdir p
Q2 m k
d d
- /Q ’ Zg’“iﬁ’ﬁ (ﬂ; Em (V- €m + xm)) dpr,p (5.4)

=1 <
A CoVANEA
< 01( /Q ~ (; &) d/LDP) (5.5)
(/ Z Oégm U-en +Xm)€k:(7/ €L +Xk)d/1{‘73) ’
m,k=1
< Mij¢] (Z/Qafkfm(ﬁ “em + Xm) (V- ex + Xk)dMF,P> 2 (5.6)
m,k
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d !
=M||§||(ng§mAk,m) :
m,k

where we first used that o - e, € L2, (AT) and x,,, € L3, (6T), therefore (Xm, 67 - ex)r.p = 0 for

sol

every k,m = 1,...,nin (5.4), Cauchy-Schwartz to arrive at (5.5), and lastly used the finiteness of the
first term in (5.5) (Due to the Poincaré-condition), combined it with C'~! and abbreviated it to M/||£|| in

(5:9)-

In total, we arrive at
H§|| S M\/ € : Ahomé"

Since C' > 0 it follows that A;,,,, is positive definite. O

Lemma 5.2. Under the assumption of Theorem It holds R* = span{ [, bodurp : b €
L%, (al)}.

sol

Proof. We proceed similarly as the proof of Lemma 4.5 in [7].

Since xx € L2, (aI') is the unique minimizer to the functional Ey, (7 - ex + xx) € L2, (al'), i.e

/(’7 “ ek + Xk)Xmadprp =0, Vm, k. (5.7)
Q

Next we define V := span{ [, bvdurp : b€ L% (al')} € R and choose £ € V+\ {0}. Then

sol

d
/ §-0(0-ep + xi)adpurp = / Z Eml(em - ) (D - ep + Xi)adprp = 0, (5.8)
0 Qi

forallk =1,...,n.
Multiplying (5.7) with &, and adding it to leads to

d
/ Z gm(’7 “em T+ Xm)(l7 e+ Xk)Oéd/JJF,P = 0.
Q

m=1
Multiplying this equation now with &, and then summing over £ gets us to
d d
/ Z Z fkgm(ﬁ *Cm + Xm)(ﬁ © €k + Xk)ad,uF,P = fAhomg = 0.
Q=1 m=1

This is a contradiction since A}, is positive definite. Therefore V- = 0 and thus the claim is
proven. O

6 Stochastic two-scale convergence

We introduce stochastic two-scale convergence relying on previous works [9, 11} [16], but mostly on [12].
Since Cy(£2) lies densely in the separable space L*(€2, fiar p), see remark 2.3, which is a separable
space, we can choose a countable dense family

P = (¢i)ien C LQ(Q7NQF,P) with ¢; € C(92).
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More precisely, since L2_, (aI') is the closure of discrete gradients of Cy,(£2)-functions, the selection of
pot

a countable dense family of Cj,(£2)-functions in L?  (al') is straight forward. and also for subspaces

of L*(Q, ttarp), Psot C L2, (al’) and @y C L2, (al') where ¢ € Py if o = Vo for some

sol pot
u € Cy(£2), which is possible because of the definition of L7 ;. We assume that

¢ = (Ppot & q)sob
Further, we find a countable dense family

U = (¢i)ien C C7(Q) with ¢h; € C(Q).

Let Qg C €2 be the set of all w such that the ergodic theorems, 2.7} 2.8} and[2.13} hold for all ¢ € ®
and ¢ € W. We call (24 the set of typical realizations.

Definition 6.1 (Two-Scale Convergence). Let w € (g and let g° € L?(R?, MZF(@) be a sequence

such that
sup [|g°[|arew) < o0
e>0

and let g € L*(R% L?(Q; par.p)). We say that g% converges in two-scales to g, written ¢° 2, g if
for every ¢ € ® and every ) € W it holds

li_r}(l)(gsv ¢w,swaw,e>f‘5(w) = /(g(x, ')7 ¢Oé>r,7>¢(fc)dl'-

Lemma 6.2 (Existence of Two-Scale Limits [12]). For every w € g it holds: Let g° € L*(IR™) be a
sequence of functions such that

sup [|g°|2re ) = sup > _ i (g°(75))* < C. (6.1)
e>0 e>0 i

forsome C' > 0 independent from ¢. Then there exists a subsequence g°* and g € L?(R%; L*(Q; jur p))
such that g°* ﬁw g.

In the following, we study the limit of the discrete gradient within two-scale convergence. For that, we
have to do some preparatory work.

Lemma 6.3. For all typical realisations w € g and all Lipschitz functions v : R¢ — R there exists a
C € (0, 00) such that
SEIRID 2
sup [|[V*u|[are) < ClI Vvl
e>0

Proof. We have due to the ergodic theorem applied to «

Vo0l 2re ) = € ) i (Vo0 = e Y~ au(05vv) - 745)* < C|| V|2, -
'Yiej 'Yz‘gj

O

Lemma 6.4. Let [ be a stationary random field with ,u[gm;(Q) < o0. Then for every typical realisation
w € Qg and every v € C(R?) it holds:

limsup | Vv — (Vo) - 7] gre(w) = 0.

e—0
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Proof. Let () be a bounded open domain around 0 with supp v C Q. If x; € Q,
and v € C2°(Q), we use a Taylor expansion around 75, such that

x5 —x5|| < ed

V¢ — Uf
J ? ~ £ ~
ey ] T V)
1 € e\T 5 1.1 € 1 eNT72, e 1 € 1 €
1.1 e 1 e 5 1 e 1 e ~ e ~
< |[V*0||loeD . 6.2)

The statement now follows from Theorem applied to some non-negative ¢ € C.(RY) with p = 1
on the support of v, as well as the choice 1) = 0 and ¢* = Vv — (V) - 1. O

Lemma 6.5. For all typical realisations w € ¢ it holds, if g° ﬁw g, then

Yo € C°(RY) : 11_1’>I(1]<g8,06w756€’l}>1"s(w) = /(g(x, ), aVu(z) - U)rpde.

Proof. Letv - ey := 1 € Pgand Vv € Wfork =1, ...,n. For g° ﬁw g it follows

l%(ge,ﬁkﬁekvaw,a>ps(w) = /(g(m, ), Uk pOe, U()dx.

Summing over k we get

e—0

hm(.qgv - vvaw,s>F5(w) = /(g(:c, ')7 - VU(SIJ)CY)ndeZ

first for our special choice of v but by approximation for all v € C'°((). It remains to show that

lim(g®, (Vv — 7 - VU) g e)re(w) = 0.

e—0

Using the Cauchy-Schwartz inequality and the ergodic theorem for g and Lemma|6.4]it follows that

e Z aij((@ev)zj - Vu- ﬂij)gfj
ij

< <Ed ZZ: Ozij(gfj)Q) : <5d ZZ: i (VEv)y — Vo - ﬁz’j)2>

=[|gllar<@ [IVE0 = (V0) - 7llars(w) — 0.

N

Due to Lemma[3.7lit follows that
<@€u7 &w,ebw,s>f‘5(w) = <u7 _divg(aw,sbw,s»xf(w) =0.

and hence we find the following result.
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Corollary 5. Forallw € Q4 and allb € g, the following is true:

<@Eu, Vo by )1 () = 0 for allu € S°(w) with bounded support.

With all that done we can now prove the most important result of this chapter: the two-scale limit of a
discrete gradient.

Theorem 6.6 (Two-Scale Convergence for Gradients). LetAssumption 1.-3. holdand?2 < q < ddTpp.
For all typical w € Qg such thatu® € S§(w, Q) is a family of functions with supp(u®) C Q N X*(w)
for all € and

Vel ||are ) + [|u]|xe < C'. (6.3)

Finally let either Assumption|1.14. hold with sup, ||u® ||~ < oo or let there be ¢, ¢, > 2 such that
7q;‘n

sttt o<landEym,’ < oc.

Then there exists a subsequence u®, not relabeled, u € Hy(Q)NLY(Q) and ¢ € L*(R™; L2 (al'))

such that

Riu® — wu strongly in LY(Q), Veus ﬁw Vu-v+ ¢pase — 0. (6.4)

Proof. Step 1: Due to (6.3) and Theorem[4.7|we get that R:u® — w strongly in L9(Q) for 2 < g <

ddT”p. Furthermore, if sup. ||u¢||,. < 0o we obtain from Lebesgues dominated convergence theorem

that Ru® — u strongly in L4(Q) for 2 < ¢ < co. So it remains to prove u. € Hj(Q) and (6.4).
By Lemmathere exists g € L*(R%; L?(€2; ur.p)) and a subsequence of Veu® s.t.

~ 2
e, €
Veus =, g,

Now choose b,, . € D1, Where b;; := bw,e(%‘?j) and v € C'°(Q) according to Corollaryand use
the discrete product rule

(Vevus)y; = (g + us) (Vo) + (U5 + 05) (Voud)sy),
and get
d 1 5 YAl 15 €\ (\VIE, €
0=¢ ZO&Z]bUE((U] + UZ)(V U)ij + (Uj + UZ)(V u )2]) (65)

Step 2: We write T5; := 5 (u5 4 u$) and TF; := 3(v5 4 05). Since v € C°(Q) we get [T5; — v5;| <
e|x; — x;| which |mpI|es by Theorem njthat lim sup, _, [|T5; — v5;]lare = 0 and therefore

dZaU U3 u®);5bs; —>/ ), ba)r pu(z)dx. (6.6)

Step 3: Next, we study the first part of (6.5] . First we write ] = {z € N a: € Q} and observe that
for ¢° € G° (thatis ¢j; = ;) and g, q;, > 2 such that 1 st o + + < 1 the general Holder
inequality yields

dZaU us s | < dZ]u ]Z&l]wa §5d2\u I( Za” % ZO‘” % (6.7)
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< (z m?|u?|q>
i€l

We make use of the last inequality by setting ¢7; = bw((V V)ij — VUU 7;7) and observe that the
right hand side of (6.7) goes to 0: Lemmaapplled to B;; = ozwsz together with boundedness of
Riufin LY(Q) and our assumptions on the distribution of cv and m then ultimately yields that

Q|

<€dzmiqm> : <5d22%‘( Z)2> (fde(ZOéij)qu)

i€l i€ele j i€l J

d —E g d >,
1 7 17 .
hm € E iU, V lm € E Oé”u \Y% U " Vij bU (6.8)

We now set ¢f; = b;;Vug; - ;;. Estimate (6.7) yields that

L Si(Q) — R, U — Z‘fd Z az-jﬂijbz-jVUfj : DZJ
i
satisfies for some C' > (0 independent from ¢ that

L7 (u) < CRZul[Laq)

If we write for a continuous function ¢ € C.(Q) both ¢f := $(x5) and ¢f := fgs ¢ we obtain from
the double ergodic theorem[2.13|and Lemma[4.3] '

hn% L (¢°) = hm L#(¢°) / gbVU/ abvdpur pdx . (6.9)
e—
From the boundedness of L¢ in the dual of L9(Q) and the convergence (6.9) on a dense subset we

infer
lim L*(u /UVU/Oédelurpdl‘
e—0
[

In case of Assumption|1.1/4. we note that we can choose g and ¢, arbitrarily large, and hence ¢,,, = =
p m q

and ¢, = %‘* can be arbitrary numbers larger than 1.

Step 4: Going back to we get in total
/ <g(l’7 ')a bOé)F"pU(I)dl' == / <bOé, V’U(l’> ) D>F,Pu(x)d$' (6.10)
Q Q

Then with Lemmal5.2]it follows now that for any & = 1, ..., n we can choose b* such that (b*a, 7)p p =

er. Therefore
' / ), ab®)dx

‘/ x)Vu(z) - epdz| =
< bl 120 n) /Q o(@)lg(@s )2 myde

< ||U||L2(Q)HO‘bHLQ(Q,ur,P)/QHg(mv')HLQ(Q,ur,P)dx

And since g € L*(Q, L*(Q, urp)) there exists a C' < oo sit.
‘ / u(z)Vou(z) - erdx
Q
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Hence u € H'(Q) and since uga\g = 0, u € Hj(Q).
Integration by parts on the RHS of (6.10) now gives us

/ v(z){(g(z,-) — Vu-0),ba)r pdx = 0.
Q

Since this holds for all v € ¥ and b € &, we find
g=Vu-v+¢with¢ e L*(R"; L2 (ol))

and therefore prove the claim. O

7 Proof of Theorem 1.5

Proof of Theorem[1.5. In what follows, we make use of the concept of Dirichlet energy which is defined
as

E-(u) = (=L u, u)xe
Furthermore, in Steps 2.—3. we assume

6
foo :=sup sup = < . (7.1)
e x5 EQm

In order for the last condition to make sense to the reader, simply consider the right hand side to be
given in a weak form as (f<, ¢°)x= := [pu fRIg%, ie. f :=m fgf f.
Step 1: L2-estimates We observe for every test function g° € SZ(Q)

(—Lou, g )xe = (AVoU, Vogire = (f°, 07 )xe. (7.2)
We now choose g° = u° and apply the Poincare inequality [4.7jand Cauchy-Schwartz

el < CEL(WT) = C{f% u)xe < Ol x| £

Hence
IVl 2pe + J|uf]2e < C|1 £

Step 2: Moser iteration and 1> estimate Now, let (7.1) hold. We insert u = |u®|"sign(u®) into
the Dirichlet energy functional £7. Using the Poincaré inequality in Theorem inequality (A2) from
[, fs < oo and Jensen’s inequality together with the support Lemmawe find Cy dependent on
foo and the constant C,, 5 in Theorem but independent from k, u®, € such that

E K clk E 2
IR | pra ey < CEL(|u|"sign(u®)) = sdzz i|"sign(uf) — [uj|"sign(u;))

|5 | _Xj|2

/{2
< g 2 (L) ()

2k — 1

2

-Col|Rzu s gy <

* 2rk—1
= 9%k CO ||R 8||L2H Rd)

_25
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We make use of p := % > landsetk = k; = pJ Then the above inequality reads

* jl * 37
IR oy < 050 (L2067 IR0, 2 73)
We can iterate over j = 1,...,J and obtain
N InCy=
0 —4 * R
IREUF]] oy ay < exp (hl ZE 5 dor ]> IR w72 ray (7.4)
7j=1 j=1

where k = H (1 — ﬁ> < 1. Put differently, there exists 0 < C' < oo independent from &, u%,
g, such that for every J > 1 it holds

IR 207 oy < CIRZW || 2 ey - (7.5)

However, for every v € S5(Q), we find v, := sup, |v(x5)| < 0o. Let mq,(v) be the positive mass
0 < moo(v) < |B.s(Q)| of the support of vs. Then there exists » > 0 such that [|Rv||;. <
2 Moo (V)] 7 Voo < 2 |Rzv||,.. Since there exists J, with 2p” > 7 it follows from that

sup [ R[] oo (gay < 00 (7.6)
3

Step 3: Homogenization Let still ., < oo such that (7.6) holds. Then by Theoremand compact
embedding Theoremthere existsau € Hj(Q) and w € L*(Q; L2 (al')) and a subsequence,
not relabeled, s.t.

Riu® — u strongly in L*(Q) and Veus 2, V- i+ wase — 0

for all typical w € Q. )
We now choose v € C2°(R™) with supp v C Q and ¢ € C,(€2) with Vo0 € Dot and substitute
g° = vy, . in (7.2), again we use the standard abbreviations, then we observe for all € > 0

(—ﬁi)ua, €USOUJ78>X5 = <f‘S EVPw, 5) (7.7)

1 Vjs ﬁ»
d

ij
d 5 a 1 Vij - VZ]
=€ E V Zj(){” —
€ |x; — x;
i

05 =) 25) + (25— @) 0f +05))

1 ~ ~ -
==Y 5 (Veu)ijai; (5(VEUR)ij (@i + 95) + (Vome)i (V5 + 7))

]

Then the first term on RHS vanishes for ¢ — 0 since Lemmayields laVeu| < O V)| and
therefore bounded and ¢ is bounded by definition. For the second term follows that

1
dz )ijuij VOmgp)UQ(v + 5 —>/ (Vu -7+ w, &Vomcp>ppv( )dx,
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where the 5 (v5 + vf) — vj;, pointwise for fixed ij, as ¢ — 0, same reasoning as in Theorem 6.6

Equation (6.6), and the expression is rewritten as its two-scale limit. With Equation (7.7) it follows

/ (V- 7+ w,aVomp)rpv(z)ds = 0. (7.8)
Q
Since @, is dense in L2 (al') and ¥ is dense in L*(Q)(compactly supported continuous functions

are dense in LP), equation holds for all Vo € L2 (al) and v € L*(Q).

Let now X, be defined as in Chapterand let X := (X1, s Xn)" € (L3 (al'))". Since u € H}(Q),
admits the solution w = Vu - x. The uniqueness of this solution follows directly from the Lax-
Milgram theorem.

In the next step we test again equation with a function g € C2°(RR™) with supp g = Q. Then we
get

(AVEw, Vog)re = (%, 9)x.

Using Lemma 6.5, Theorem[6.6]and the unique solution for w = Vu - x on the LHS, as ¢ — 0. On
the RHS we multiply it with 1o (7,w) = 1 and use the Ergodic theorem [2.8] Together we arrive at

/ (Vu(z)) - (74 x), aVg(x) - V)rpdr = psxp(E) / f(x)g(x)d. (7.9)
Q Q

Next we set v = Jig and @Omgo = x for k = 1, .., n in Equation 1} sum up over k and add this
result to (7.9) and we obtain

/ (Vu(@)) - (7 + %), aVg(2) - (7 + X)) pde = i p(S) / f(2)g(x)d.
Q Q

By nature of the definition of Ay, we get

[ Vi V) = p(@) [ fotorag € C(Q)
Q Q

The fact that Ay, is nonsingular yields that the above equation is the weak formulation of (1.13).
Hence from elliptic regularity theory, we get that u € H*(Q) N H}(Q). Since the solution u is unique,
the used subsequence is the entire sequence.

Step 4: General f° We now drop the assumption f., < co. The operator — L, is strictly positive
definite on S5(Q). It follows that on @ its inverse B°: S5(Q) — S5(Q) is well-defined. Similarly,
the inverse By: L*(Q) — L*(Q) of —V -+ (Apem V), is well-defined.

Since Ao is positive definite and symmetric, 13, is positive, compact and self-adjoint by the theory of
elliptic partial differential equation, see e.g. [6, Chapter 6].

The operators 3¢ are uniformly bounded in € by virtue of Step 1. Moreover, 3% are real and symmetric
by construction and therefore self-adjoint. Finally, their range are finite-dimensional and thus 3¢ are
compact.

Letv € C(Q). Then

/Rd (Rzus) V= /Rd (R:gsfs) v = /Rd RIfR (BEREU) .
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Since RER.v — vin L? and sup,. || Rev||oe < 00, Step 3. implies that 3R .v converges strongly
in L2 to Byv. It follows that

lim [ RESR (B R) = / f (Byv) = / (Bof) v = / w,
e=0 Jpd Rd R4 R4

where we have used that the operator By is self-adjoint and where v € H%(Q) N H}(Q) is the

solution to (T-13). Since C(Q) is dense in L?(Q), it thus follows that R*u® — wu. By virtue of Theorem

[4.7|we conclude that R:u® — u strongly in L. O
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