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Bayesian estimation of laser linewidth from
delayed self-heterodyne measurements

Lutz Mertenskötter, Markus Kantner

Abstract

We present a statistical inference approach to estimate the frequency noise characteristics
of ultra-narrow linewidth lasers from delayed self-heterodyne beat note measurements using
Bayesian inference. Particular emphasis is on estimation of the intrinsic (Lorentzian) laser linewidth.
The approach is based on a statistical model of the measurement process, taking into account the
effects of the interferometer as well as the detector noise. Our method therefore yields accurate
results even when the intrinsic linewidth plateau is obscured by detector noise. The regression
is performed on periodogram data in the frequency domain using a Markov-chain Monte Carlo
method. By using explicit knowledge about the statistical distribution of the observed data, the
method yields good results already from a single time series and does not rely on averaging over
many realizations, since the information in the available data is evaluated very thoroughly. The
approach is demonstrated for simulated time series data from a stochastic laser rate equation
model with 1/f–type non-Markovian noise.

1 Introduction

Ultra-narrow linewidth lasers are critical components of many applications in modern science and
technology, ranging from precision metrology, e.g., gravitational wave interferometers [1] and optical
atomic clocks [2], to coherent optical communication systems [3] and ion-trap quantum computers
[4]. To perform well in these technologies, the laser requires a high degree of spectral coherence,
i.e., a well-defined phase, and/ or a sharply defined frequency and thus low frequency noise. The
(intrinsic) laser linewidth is quantified by the width of the optical power spectrum, which in real systems
is usually broadened by additional 1/f–like technical noise (also flicker noise) [5–7]. As the width
of the optical power spectrum is dominantly determined by the frequency noise, the corresponding
frequency noise power spectral density (FN–PSD) provides an almost complete characterization of
the spectral quality of the laser, where the effects of non-Markovian noise can be well separated from
that of white noise. The latter manifests itself as a plateau in the high-frequency part of the FN–PSD,
from which the intrinsic (Lorentzian) laser linewidth [8, 9] can be deduced, that is of major interest for
most of the aforementioned applications. In ultra-narrow linewidth lasers, the determination of the white
noise plateau can be challenging, since it often sets in only at very high frequencies and is obscured by
1/f–type noise (at low frequencies) or by detector noise (at high frequencies).

The standard technique for the experimental measurement of the laser linewidth is the delayed self-
heterodyne (DSH) method [10, 11], which involves measuring the beat signal between the optical field
with a delayed and frequency-shifted copy of itself. This method is attractive because it can provide
a direct measurement of the linewidth without the need for an external frequency standard or active
frequency stabilization. Evaluation of the DSH measurement data is however non-trivial, as both the
footprint of the interferometer as well as the detector noise must be removed in order to obtain an
artifact-free reconstruction of the FN–PSD [12].
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Fig. 1. Experimental setup of the DSH method, where an acousto-optic modulator (AOM) separates the incoming laser beam
into two beams. One part of the signal is delayed by a long fiber and frequency shifted. The two beams are superimposed at
a photodetector, which captures only the slow beat note signal. The picture is reprinted with permission from Ref. [12].

In this paper, we present a Bayesian estimation approach to infer on the laser’s FN–PSD from time
series data. Our method is based on statistical modeling of the DSH measurement process and allows
to extract accurate estimates of key parameters such as the intrinsic linewidth, even when the white
noise plateau is obscured by detector noise. The method is demonstrated for simulated time series
data based on a stochastic rate equation model for a single-mode semiconductor laser.

2 Delayed Self-Heterodyne Method

2.1 Experimental Setup

The DSH method is a standard technique for measuring the laser linewidth [11], particularly of ultra-
narrow linewidth lasers. It involves splitting of the laser beam into two paths using an acousto-optic
modulator (AOM), where one of the two beams is also frequency-shifted, see Fig. 1. The frequency-
shifted beam is then delayed using a long fiber before being finally superimposed with the other beam
at a photodetector. The optical field received by the detector E (t) = Re (E (t)) is given by

E (t) =
√

P (t) ei(ω0t+ϕ(t)) +
√

P (t− τd) e
i((ω0+∆ω)(t−τd)+ϕ(t−τd)) + ξE (t) , (1)

where ω0 is the nominal continuous wave (CW) frequency, τd is the interferometer delay, ϕ (t) is the
(randomly fluctuating) optical phase, P (t) is the (fluctuating) amplitude and ∆ω is the frequency shift
induced by the AOM. Moreover, ξE (t) describes additive detector noise. Conventional photodetectors
capture only the slow beat note in the intensity signal I (t) ∝ |E (t)|2. The spectrum analyzer then
further downshifts the beat frequency and removes the DC component of the signal. From this signal
and its quadrature component (generated by a Hilbert transform), one can then extract the phase jitter
and finally conclude on the fluctuations of the instantaneous laser frequency [12].

2.2 Periodogram and Power Spectral Density

The power spectral density (PSD) Sz,z (ω) of a stationary stochastic process z (t) is given by the Fourier
transform of its auto-correlation function Cz,z (τ) = ⟨z (t) z (t+ τ)⟩ (Wiener–Khinchin theorem).
Given only a sample of the trajectory (in discrete time), the PSD is typically estimated from the
periodogram [13, 14], which is given by the absolute square of the (discrete) Fourier transform of the
time series

Ŝz,z (ω) = |F [z (t)] (ω)|2 . (2)

The PSD then follows as the expectation value of the periodogram (ensemble mean)

Sz,z (ω) = ⟨Ŝz,z (ω)⟩. (3)
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Fig. 2. Simulated time series of frequency fluctuations ω (t) = ϕ̇ (t) around the nominal continuous wave frequency ω0.
The instantaneous laser frequency exhibits characteristic drifts, which are commonly observed in semiconductor lasers. The
time series has been simulated using the SDE model (14), where frequency drifts are induced by the 1/f–type colored
noise contributions. The trajectory in the plot shows a moving average (over 50 ns) to improve the visibility of the effect.

Our goal is to estimate the FN–PSD of the free-running laser, which will be denoted by Sx,x (ω) in
the following. As the frequency follows from the optical phase by differentiation with respect to time
ω (t) = ϕ̇ (t), their PSDs are connected by

Sx,x (ω) = ω2Sϕ,ϕ (ω) . (4)

Note that the FN–PSD Sx,x (ω) is not directly observed in the experiment, but must be reconstructed
from the phase jitter ϕ (t)− ϕ (t− τd), that can be deduced from the slow beat note of the intensity
time series corresponding to Eq. (1).

In the following, we describe the measured signal of the DSH experiment (in terms of frequency
fluctuations) by

z (t) = (h ∗ x) (t) + ξ (t) , (5)

where z (t) is the observed time series, the convolution kernel h (t) = δ (t)− δ (t− τd) is the transfer
function of the interferometer, x (t) is the hidden time series of the instantaneous frequency fluctuations
of the laser (i.e., x (t) =̂ ω (t)− ω0 = ϕ̇ (t)) and ξ (t) is (colored) additive measurement noise (not
correlated with the hidden signal). A sample time series of frequency fluctuations x (t), which exhibits
characteristic frequency drifts as commonly observed in semiconductor lasers, is shown in Fig. 2. Our
goal is to characterize the statistical properties of the fluctuating time series x (t). Fourier transform of
Eq. (5) yields a relation between the PSDs of the observed and the hidden signal

Sz,z (ω) = |H (ω)|2 Sx,x (ω) + Sξ,ξ (ω) , (6)

where the Fourier transformed transfer function reads

H (ω) = 1− exp (iωτd). (7)

The PSDs of the hidden signal and the detector noise are assumed to obey the following functional
forms [12]

Sx,x (ω) =
C

|ω|ν
+ S∞, Sξ,ξ (ω) = σ2ω2. (8)

The model equation for Sx,x (ω) is a phenomenological relation [5, 6] that includes both 1/f ν–type
noise (described by C and ν) and a white noise plateau, where S∞ quantifies the intrinsic linewidth.
The detector noise PSD Sξ,ξ (ω) follows from the assumption of spectrally white phase fluctuation
measurement noise, which must be multiplied by ω2 to arrive at the corresponding measurement noise
for the frequency fluctuations, cf. Eq. (4). Figure 3 shows a double-logarithmic plot the PSDs considered
here.
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Fig. 3. (a) Periodogram Ŝz,z (ω) of an observed time series z (t) along with the power spectral density Sz,z (ω) estimated
using the MCMC method. The signal features sharp dropouts at the roots of the transfer function (7) at frequencies
fn = n/τd, n ∈ Z. (b) Estimated FN–PSD Sx,x (ω) and periodogram Ŝx,x (ω) of the hidden time series x (t). The
detector noise PSD Sξ,ξ (ω) has a quadratic frequency dependency. Both PSDs are obtained from statistical inference on

the observed periodogram Ŝz,z (ω).

3 Parameter Inference

For estimation of the parameters characterizing the FN–PSD of the laser, we perform a Bayesian
regression on the PSD Sz,z (ω) of the detected signal using the transfer function (7) and the model
relations (8), which have a highly nonlinear frequency dependency. In the regression procedure, we
regard the periodogram Ŝz,z(ω) (available at a set of discrete frequencies) as observed data. In order to
conduct a maximum likelihood estimation using frequency domain data, knowledge about the expected
statistical distribution of the periodogram Ŝz,z(ω) is required.

The frequency fluctuations x (t) and the measurement noise ξ (t) are assumed to normally distributed,
which is in excellent agreement with experimental data. The detected time series z (t) observed at
discrete instances of time is thus a multi-variate Gaussian characterized by its covariance matrix. By
random variable transformation [13] we then find the periodogram of the measured time series to be
exponentially distributed

Ŝz,z (ω) ∼ Exp (λ (ω,θ)) , (9)

where the probability distribution function (PDF)

p
(
Ŝz,z (ω) , λ (ω,θ)

)
= λ (ω,θ) e−λ(ω,θ) Ŝz,z(ω), (10)

is characterized by a parameter λ that depends on frequency ω and the unknown parameters θ =
(C, ν, S∞, σ)T . We identify the parameter function λ (ω,θ) with the inverse expectation value of the
periodogram data given by Eq. (6) such that

1

λ (ω,θ)
= Sz,z (ω,θ) = |H (ω)|2 Sx,x (ω,θ) + Sξ,ξ (ω,θ) . (11)

The likelihood of observing a certain realization of the periodogram Ŝz,z (ωk) (at a discrete set of
frequencies ωk) given a set of parameters θ is then given by the likelihood function

L (θ) =
∏
k

p
(
Ŝz,z (ωk) , λ (ωk,θ)

)
, (12)

where the function p is given by Eq. (10). Note that the underlying joint probability distribution factorizes
here completely, as the periodogram data Ŝz,z (ω) at different frequencies are statistically independent.
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Fig. 4. Histograms of estimated parameters characterizing the FN–PSD obtained using the MCMC method. The sampled
distributions are shown along with normally (Gaussian) and log-normally distributed probability density distributions. The
dashed black line indicates the position of the maximum likelihood estimate. The estimation results are summarized in
Tab. 1.

Bayesian regression on the parameters θ is now performed by maximizing the likelihood function
(12) using a Markov chain Monte Carlo (MCMC) approach [15]. We employ the Metropolis–Hastings
algorithm to sample a Markov chain of parameter sets θ(j−1) → θ(j) → . . . that is distributed
according to L (θ). The maximum of this distribution is then located at the parameter set θ∗ which is
most likely to underlie the observed data.

We would like to stress that in the present scenario the regression on spectral data (i.e., on the
periodogram Ŝz,z (ω)) as described above is advantageous compared to the direct estimation on time
domain data. The reason for this is that the construction of the likelihood function for the observed
time series is either conceptually challenging due to the long interferometer delay or would require a
high-dimensional Markovian embedding. Furthermore, the system exhibits long-range time correlations
due to the presence of 1/f–type noise, which would require very long time series to be considered
in the regression. These issues render the estimation procedure in the time domain computationally
expensive, but can be easily overcome by transforming the problem into the frequency domain.

4 Results

We demonstrate the estimation method described above for simulated data using the stochastic laser
rate equations given in Appendix A. The DSH measurement is simulated as described in Ref. [12] with
simulation code that is available online [16].

Figure 4 shows histograms of the sampled Markov chains θ(j), which are estimators of the marginal
distributions of the joint PDF of the parameters that is proportional to L (θ). A notable feature of
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parameter (unit) mean ± std MLE

C (s1−ν) (8.6± 4.8) · 1010 9.6 · 1010

ν 1.42± 0.04 1.44

S∞ (Hz) 448.8± 5.9 449.6

σ (s1/2) 1.74 · 10−6 ± 6.4 · 10−9 1.74 · 10−6

Tab. 1. Mean values and standard deviations (std) of the marginal distributions and the maximum likelihood estimator (MLE)
of the parameters θ obtained using the MCMC method.

the MCMC method is that it provides not only an estimate of the most probable set of parameters
but rather their entire distribution, allowing to asses the uncertainty of the estimates, see Tab. 1. In
addition to the histogram, the plot also indicates the position of the maximum of L (θ) as a dashed
line. The corresponding parameter set θ∗ is denoted as the maximum likelihood estimator (MLE), i.e.,
the maximum of the joint PDF. It should be noted that these values partially differ significantly from the
means of the marginal distributions. The reason for this is that the different parameters are strongly
correlated, and the marginal distribution of C has a maximum far from its mean. The mutual correlation
of all parameter estimates is quantified by the matrix of Pearson correlation coefficients

ρi,j =
Cov (θi, θj)√

Var (θi) Var (θj)
, (13)

which is obtained as

ρ =


C ν S∞ σ

C 1 0.93 0.41 −0.14
ν 1 0.47 −0.16

S∞ 1 −0.46
σ 1

.

Indeed, one observes in Fig. 4 (b)–(d) that the MLE and the means of the marginal distributions differ
more significantly, the stronger the respective parameter estimate is correlated with C . Moreover, we
observe that the estimates of all parameters entering the signal PSD Sx,x (ω) are negatively correlated
with the estimate of the detector noise parameter σ, which is expected from Eq. (6).

The MCMC routine was run with normally distributed proposal functions for the parameters ν, S∞
and σ and with a log-normal proposal distribution for C . The latter automatically enforces C > 0 and
provides an efficient sampling as it matches the shape of the target distribution. With the variances
of the proposal distribution tuned appropriately, we achieved an acceptance rate of the proposed
parameter samples of around 30%.

5 Conclusions

The application of Bayesian inference methods to data from DSH laser linewidth measurements allows
for an accurate extraction of the parameters characterizing the FN–PSD along with its uncertainties.
Based on statistical modeling of the underlying measurement process, the method enables a reliable
characterization of the spectral coherence of the laser even when the intrinsic linewidth plateau
is obscured by detector noise. Furthermore, by invoking explicit assumptions about the statistical
distribution of the measured data, the method extracts the information encoded in the available data
very extensively, so that no averaging over many realizations or long times is required.
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Appendix

A Stochastic Laser Rate Equations

We describe a set of Itô-type stochastic differential equations (SDEs) modeling the fluctuation dynamics
of a generic single-mode semiconductor laser. In the presence of noise, the evolution of the photon
number P , the optical phase ϕ and the carrier number N in the active region is described by:

dP = (−γ (P − Pth) + Γvgg (P,N)P + Γvggsp (P,N) + σP (P )FP (t)) dt (14a)

+
√

γ (1 + Pth)P dW P
out +

√
γPth (1 + P ) dW P

in +
√

Γvggsp (P,N) dW P
sp

+
√

Γvggsp (P,N)P dW P
st−em +

√
Γvggabs (P,N)P dW P

st−abs,

dϕ =

(
Ω0 +

αH

2
Γvgg (P,N) +

σP (P )

2P
Fϕ (t)

)
dt (14b)

+
1

2P

(√
γ (1 + Pth)P dW ϕ

out +
√
γPth (1 + P ) dW ϕ

in +
√

Γvggsp (P,N) dW ϕ
sp

+
√
Γvggsp (P,N)P dW ϕ

st−em +
√

Γvggabs (P,N)P dW ϕ
st−abs

)
,

dN =

(
ηI

q
−R (N)− Γvgg (P,N)P − Γvggsp (P,N) + σN (N)FN (t)

)
dt (14c)

+

√
ηI

q
dWI +

√
R (N) dWR −

√
Γvggsp (P,N)P dW P

st−em

−
√

Γvggabs (P,N)P dW P
st−abs −

√
Γvggsp (P,N) dW P

sp.

Here, γ is the optical loss rate, Pth is the thermal photon number (Bose–Einstein factor), Γ is the optical
confinement factor, vg is the group velocity, Ω0 is a detuning from the nominal CW frequency, αH is the
linewidth enhancement factor (Henry factor), η is the injection efficiency, I is the pump current and q is
the elementary charge. The net-gain is modeled as

g (P,N) =
g0

1 + εP
log

(
N

Ntr

)
,

where g0 is the gain coefficient, ε is the inverse saturation photon number (modeling gain compression)
and Ntr is the carrier number at transparency. Following [9], the rate of spontaneous emission into the
lasing mode is modeled as

gsp (P,N) =
1

2

g0
1 + εP

log

(
1 +

(
N

Ntr

)2
)
,

which does not require any additional parameters and shows the correct asymptotics at low and
high carrier numbers. The rate of stimulated absorption entering the noise amplitudes follows as
gabs (P,N) = gsp (P,N)− g (P,N). Finally, non-radiative recombination and spontaneous emission
into waste modes is described by

R (N) = AN +
B

V
N2 +

C

V 2
N3.
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We refer to Ref. [12] for a list of parameter values used in the simulation.

The model equations (14) include white and colored noise contributions. Here, dW ∼ Normal (0, dt)
denotes the increment of the standard Wiener processes modeling Gaussian white noise. Wiener
processes with different sub- and superscripts are statistically independent. Colored noise sources
FP,ϕ,N (t) are constructed as superpositions of Ornstein–Uhlenbeck processes, where the parameters
are calibrated to result in power spectral densities showing a 1/f ν–type frequency dependency. See
Ref. [12] for details.
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