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On forward and inverse uncertainty quantification for a model for
a magneto mechanical device involving a hysteresis operator

Carmine Stefano Clemente, Daniele Davino, Olaf Klein, Ciro Visone

Abstract

Modeling real world objects and processes one may has to deal with hysteresis effects but
also with uncertainties. Following D. Davino, P. Krejčí, and C. Visone: Fully coupled modeling
of magneto-mechanical hysteresis through ‘thermodynamic’ compatibility. Smart Mater. Struct.,
22(9), (2013) 0950099, a model for a magnetostrictive material involving a generalized Prandtl-
Ishlinskiı̆-operator is considered here.

Using results of measurements, some parameters in the model are determined and inverse
Uncertainty Quantification (UQ) is used to determine random densities to describe the remaining
parameters and their uncertainties. Afterwards, the results are used do perform forward UQ and
to compare the results with measured data. This extends some of the results from O. Klein,
D. Davino, and C. Visone. On forward and inverse uncertainty quantification for models involving
hysteresis operators. Math. Model. Nat. Phenom. 15 (2020) 53.

1 Uncertainty quantification and hysteresis: motivation and top-
ics

1.1 Uncertainties in models with hysteresis operators

Considering magnetization, piezo-electric effects, elasto-plastic behavior, or magnetostrictive materi-
als, one has to take into account hysteresis effects. Many models involve therefore hysteresis operators
and are also subject to uncertainties:

� Parameters in the models are identified using results from measurements. Hence, they can be
influenced by measurement errors.

� Parameters being identified for some sample specimens are also used for other specimens.

� Material/device may change after performing the measurements, for example, due to tempera-
ture changes or aging.

� Moreover, if one is performing several measurements, there can be conditions not considered
in the model that change between the measurements, creating quite different measurement
results that corresponds to different parameter values in the used model.

The parameters in the hysteresis operators used to model hysteresis effects are therefore also sub-
ject to uncertainties. In the following, methods of Uncertainty Quantification (UQ), will be applied to
describe/determine the uncertainties and to investigate their influence.
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1.2 Uncertainty quantification

Following e.g. [17, 18], we consider as Uncertainty Quantification (UQ): Use of probability theory to
deal with uncertainties, i.e. parameters with uncertain values are represented by random variables
modeling the information/assumptions/beliefs on the values and the uncertainties of the parameter
values. In the current paper, the following aspects of UQ will be discussed:

Forward UQ Starting from representations of the uncertain parameter values by random variables,
one considers the model output as random variable and computes properties like expected
value, variation, probabilities for outputs entering some interval, credible intervals, and other
Quantities of Interest (QoI).

Inverse UQ Using data and measurements to determine values and the uncertainty of the parame-
ters, i.e. to determine a random variable taking into account the information provided by the data
and the measurements, and use the random variable to represent the parameters afterwards.

Other subjects of/related to UQ, like sensitivity analysis, where one is investigating which input pa-
rameters have the largest effect (in terms of uncertainty) on the output quantity, will not be discussed
here.

1.3 UQ for a model for magneto-mechanical components — Topic of this pa-
per

A model with a hysteresis operator is used to describe a magnetostrictive actuator. Using measure-
ments for this actuator, parameters in the hysteresis operator and their uncertainty are identified by
inverse UQ. Afterwards, forward UQ is performed.

This work extends results from Section 5 in [7].

2 Hysteresis operators

2.1 Hysteresis operators - general definition

In this section, we assume that some T > 0 is given.

Following [2, 10, 19], we define:

Definition 2.1. Let non-empty sets X, Y be given. Let H : D(H) → Map ([0, T ], Y ) with ∅ 6=
D(H) ⊆ Map ([0, T ], X) be given.

a) H is a hysteresis operator :⇐⇒H is rate-independent and causal.

b) H is rate-independent :⇐⇒∀ v ∈ D(H),∀ α : [0, T ]→ [0, T ] being continuous and increasing
(not necessary strictly increasing), with α(0) = 0, α(T ) = T , and v ◦ α ∈ D(H) it holds:
H[v ◦ α] = H[v] ◦ α.

c) H is causal :⇐⇒∀ v1, v2 ∈ D(H), ∀ t ∈ [0, T ]: If v1(τ) = v2(τ) ∀ τ ∈ [0, t] thenH[v1](t) =
H[v2](t).
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On forward and inverse UQ for a model for a magneto mech. device invol. a hysteresis op. 3

2.2 The play-operator – definition and properties

Definition 2.2. Considering some yield limit r ≥ 0 and some initial state z, the play-operator Pr[z, ·]
maps u ∈ C([0, T ];R) being piecewise monotone to Pr[z, u] ∈ C([0, T ];R) which is also piece-
wise monotone and it holds (see e.g. [2, 9, 10, 19])

Pr[z, u](0) = max (u(0)− r,min (u(0) + r, z)) , (2.1)

Pr[z, u](t) =

{
max (Pr[z, u](t∗), u(t)− r)) , if u is increasing on [t0, t],

min (Pr[z, u](t∗), u(t) + r)) , if u is decreasing on [t∗, t],
(2.2)

for all t∗, t ∈ [0, T ] with t∗ < t such that u is monotone on [t∗, t].

As an example, we consider the evolution of P2[0, u] for some input function u combined with plots
for u + 2 and u − 2 as shown in Fig. 1. Moreover, the corresponding input-output diagram, showing
the evolution of (u,P2[0, u]), is presented in Fig. 2.

2 4 6 8

-2

2

4

6

Input function u

u+r=u+2

u-r=u-2

2[0,u]

Figure 1: Evolution of the input u(t), of u(t) − 2, of u(t) + 2 and of the output of the play-operator
P2[0, u](t).

Remark 2.3. Using e.g. [2, 9, 10, 19], one can show:

a) It holds for all r ≥ 0 and all z ∈ R: the play-operator defined above can be continuously extended
to the well known and well defined play-operator Pr[z, ·] from C ([0, T ];R) to C ([0, T ];R), being
also a hysteresis operator.

b) Let λ0 : [0,∞)→ R being Lipschitz-continuous with Lipschitz constant 1 be given such that there
exists some R > 0 with λ0(r) = 0 for all r ≥ R. Then it hold for all u ∈ C ([0, T ];R) and all
t ∈ [0, T ]: the mapping P·[λ0(·), u](t) : [0,∞)→ R defined by [0,∞) 3 r 7→ Pr[λ0(r), u](t)
is continuous and there is some Ru,t > 0 such that Pr[λ0(r), u](t) = 0 for all r > Ru,t.

2.3 Prandtl-Ishlinskiı̆-operator

Following [2, 9, 10, 19], we define:

Definition 2.4. Let ζ ∈ L1
loc([0,∞)) be given.

a) Let λ0 : [0,∞)→ R being Lipschitz-continuous with Lipschitz constant 1 be given such that there
exists some R > 0 with λ0(r) = 0 for all r ≥ R. Let PIζ [λ0, ·] : C([0, T ];R)→ C([0, T ];R)
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3

4

2[0,u]

Figure 2: Input-output-diagram, derived using the data leading to Fig. 1. Therein, the evolution of
(u(t),P2[0, u](t)) is shown.

be the Prandtl-Ishlinskiı̆-operator for the weight function ζ and the initial state function λ0 defined
by mapping u ∈ C([0, T ];R) to the function PIζ [λ0, u] ∈ C([0, T ];R) with

PIζ [λ0, u](t) =

∫ ∞
0

ζ(r)Pr[λ0(r), u](t) dr , ∀ t ∈ [0, T ]. (2.3)

b) The Prandtl-Ishlinskiı̆-operator PIζ [0, ·] for the weight function ζ and the trivial initial state is
defined as the operator in a) with λ0 ≡ 0 on [0,∞).

c) The Prandtl-Ishlinskiı̆-operator PIζ [·, ·] for the weight function ζ maps (λ0, u) with λ0 as in a)
and u ∈ C([0, T ];R) to PIζ [λ0, u] as in a).

d) The initial loading curve ΨPI,ζ(s) for the Prandtl-Ishlinskiı̆-operatorPIζ [·, ·] is defined by request-
ing that for all β ∈ R:

ΨPI,ζ(β) := PIζ [0, uβ](T ) with uβ ∈ C([0, T ];R) defined by uβ(t) = β/T, ∀ t ∈ [0, T ].
(2.4)

Remark 2.5. Let ζ ∈ L1
loc([0,∞)) be given. For the initial loading curve ΨPI,ζ for the Prandtl-

Ishlinskiı̆-operator PIζ [·, ·] it holds for all s ∈ R that

ΨPI,ζ(s) =


∫ s
0
ζ(r)(s− r) dr , if s > 0,

0, if s = 0,∫ −s
0

ζ(r)(s+ r) dr , if s < 0,

= −ΨPI,ζ(−s). (2.5)

2.4 Identification of initial loading curve from measurements

Remark 2.6. Using [11, 14, 4], one can show:

For u ∈ C([0, T ];R) and 0 ≤ ta < tb < tc ≤ T with u being monotone on [ta, tb] and on [tb, tc]
and u(ta) = u(tc) it holds that

∀ t ∈ [tb, tc] : ΨPI,ζ

(
u(t)− u(tb)

2

)
=

1

2
(PIζ [λ0, u](t)− PIζ [λ0, u](tb)) . (2.6)
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Remark 2.7. If one is considering some process mapping time-dependent input functions to some
measurable time-dependent output quantity Q, then one may like to model this by applying a Prandtl-
Ishlinskiı̆-operator. To identify a corresponding weight function, one can use a function u with a cycle
as in Remark 2.6 as an input to this process and determine given/measured values for u and Q at
times s0 < s1 < · · · < sK with tb = s0 and sK = tc. Hence, one gets 0 = v0 < v1 < · · · < vK
and ψ0, ψ1, . . . , ψK ∈ R defined by

vi :=

∣∣∣∣u(si)− u(s0)

2

∣∣∣∣ , ψi :=
1

2

{
Q(si)−Q(s0), if u(sK) ≥ u(s0),

Q(s0)−Q(si), if u(sK) ≤ u(s0).
(2.7)

By recalling (2.6), we see that one is looking for some weight function ζ with

ΨPI,ζ(vi) ≈ ψi, ∀ i ∈ {0, . . . , K}. (2.8)

Since the definition yields that v0 = 0 and ψ0 = 0, we deduce from (2.5) that the equation in (2.8)
is satisfied for k = 0 for all admissible weight functions ζ , such that for determining ζ one can ignore
k = 0 in (2.8) .

Remark 2.8. Starting from data as in Remark 2.7 one can derive an approximation for an initial loading
curve on [0, vK ] by considering a function Ψ that is linear on [v0, v1], [v1, v2], . . . , [vK−1, vK ] and
satisfies Ψ(vk) = ψk for all k ∈ {0, . . . , K}.
Remark 2.9. The considerations in Remark 2.7 can be extended to the following situation: one is
considering a function u ∈ C([0, T ];R) and tb, tc ∈ [0, T ] with tb < tc such that u is monotone on
[tb, tc] and one is able to show somehow that the equation in (2.6) is at least approximately valid for
all t ∈ [tb, tc].

3 Uncertainties in a model for magneto-mechanical components

3.1 General considerations

In [3, Sec. 5], a model for magneto-mechanical devices has been derived. Therein, a generalized
Prandtl-Ishlinskiı̆-operator, see also [8, 20],

Gc1,c2,c3 [λ0, H](t) := PIζc1,c2 [λ0, tanh(c3H)](t) (3.1)

with ζc1,c2(r) := c1e
−r/c2 for all r ≥ 0, c1, c2, c3 > 0 and λ0 : [0,∞]→ R satisfying the conditions

discussed above is considered. In [3], it is shown that this operator provides an approximation for the
magnetization of Galfenol for an applied magnetic field H ; with c3 depending on the applied stress.

In the following, we will assume that the applied magnetic field H is proportional to the applied cur-
rent I such that we can consider Gc1,c2,c3 [λ0, I] (with an appropriate updated value for c3) instead of
Gc1,c2,c3 [λ0, H].

The initial loading curve ΨPI,ζc1,c2 for PIζc1,c2 satisfies

Ψc1,c2(s) := ΨPI,ζc1,c2 (s) = sc1c2 + c1c
2
2

(
e
− s

c2 − 1
)
, ∀s ≥ 0. (3.2)
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In [1], a magnetostrictive Terfenol-actuator is investigated and the hysteresis between the current gen-
erating the magnetic field and the resulting displacement is considered. In this paper, data creating a
First-Order-Reversal-Curves (FORC)–diagram quite similar to the one in Fig. 3 were used to determine
the parameter field/values in a Preisach-operator and a generalized Prandtl-Ishlinskiı̆-operator.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
corrente

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

se
ns

or

FORC + one inc. seq.  for corrente

Figure 3: A FORC-diagram for a magnetostrictive Terfenol-actuator similar to the one considered in
[1], and one additional curve derived for increasing current.

3.2 Considerations and results in [7, Sec. 5]

The data used to prepare the FORC-diagram in Fig. 3 and one additional data set with increas-
ing current measured directly afterward are shown in Fig. 4. In [7, Sec. 5], these data have been
used to identify parameter values c1, c2, c3 > 0 such that the generalized Prandtl-Ishlinskiı̆-operator
Gc1,c2,c3 [λ0, I](t) creates approximations for these data. The resulting value for c3 = ctanh = 0.682138
will be used in the following. Moreover, the uncertainties for c1 and c2 were also investigated.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Data used for parameter identification

length change (norm)
corrente (norm)

Figure 4: Measured data used to generate the FORC-diagram in Fig. 3, and one additional data set
with increasing current (corrente) measured directly afterward.

In the following, we will denote the times of local extrema for the current I by t0, t1, . . . , t58 and L will
be the relative length change determined from measurements of a corresponding sensor. Thanks to
the measurements, we have values for I and L at times s0,j, s1,j, . . . sK∗j ,j ∈ [tj−1, tj] with tj−1 =

DOI 10.20347/WIAS.PREPRINT.3009 Berlin 2023
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s0,j < s1,j < · · · < sK∗j ,j = tj for all j ∈ {1, . . . , 58} and

K∗1 = 29, K∗2 = K∗3 = 28, K∗4 = K∗5 = 27, . . . , K∗54 = K∗55 = 2, K56 = 1, K57 = 2, K58 = 29.
(3.3)

In the following, we will use results from a reformulation of Section 2 by replacing therein every “[0, T ]”
with “[t0, t58]”, “α(0) = 0” and “α(T ) = T ” in Definition 2.1.b) with “α(t0) = t0” and “α(t58) = t58”,
respectively, “[0, t]” in Definition 2.1.c) with “[t0, t]”, “0” in (2.1) with “t0”, and “0 ≤ ta < tb < tc ≤ T ”
in Remark 2.6 with “t0 ≤ ta < tb < tc ≤ t58”.

Considering any j ∈ {2, . . . , 57} and investigating the evolution of u := tanh(c3I) on [tj−2, tj−1]
and on [tj−1], tj] , we see that one is dealing with the situation discussed in Remark 2.6 with tj−2 =:
ta, tj−1 =: tb and tj =: tc.

For any i ∈ {1, . . . , 28}, we see that u is increasing on [t2i−1, t2i] = [s0,2i, sKi,2i] with Ki := K∗2i.
Hence, by following Remark 2.7, we can compute v0,i, . . . , vKi,i and ψ0,i, . . . , ψKi,i defined by

vk,i :=
1

2
|tanh (c3I(sk,2i))− tanh (c3I(s1,2i))| =

1

2
(tanh (c3I(sk,2i))− tanh (c3I(s1,2i))) ,

(3.4a)

ψk,i :=
1

2
(L (sk,2i)− L (s1,2i)) , (3.4b)

for k = 0, . . . , Ki. Now, in view of (2.6) and (2.8), one would like to find some density ζi for the
Prandtl-Ishlinskiı̆-operator such that ΨPI,ζi (vk,i) ≈ ψk,i for all k ∈ {0, . . . , Ki}.
Moreover, one can either combine the return point memory property of the Prandtl-Ishlinskiı̆ operator
with its continuity or investigate the graphs [0,∞) 3 r 7→ Pr[λ0(r), u](t) and compute the resulting
integrals to show for tb := t57 and tc := t58 that one is in a situation as in Remark 2.9. Hence, we
can derive the equation above also for i = 29.

For any i ∈ {31, . . . , 58}, we see that u is decreasing on [t2(i−30), t2(i−30)+1] = [s0,2(i−30)+1, sKi,2(i−30)+1]
with Ki := K∗2(i−30)+1 and that we are in the situation discussed in Remark 2.6. Hence, by following
this remark, we can compute v0,i, . . . , vKi,i and ψ0,i, . . . , ψKi,i by

vk,i :=
1

2

∣∣tanh
(
c3I(sk,2(i−30)+1)

)
− tanh

(
c3I(s0,2(i−30)+1)

)∣∣
=

1

2

(
tanh

(
c3I(s0,2(i−30)+1)

)
− tanh

(
c3I(sk,2(i−30)+1)

))
, (3.5a)

ψk,i :=
1

2

(
L
(
s0,2(i−30)+1

)
− L

(
sk,2(i−30)+1

))
, (3.5b)

for k = 0, . . . , Ki. Now, again in view of (2.6) and (2.8), one would like to find some density ζi for the
Prandtl-Ishlinskiı̆-operator such that ΨPI,ζi (vk,i) ≈ ψk,i for all k ∈ {0, . . . , Ki}.
Moreover, since the experiment is supposed to generate measurements allowing to generate a FORC-
diagram, we can assume that the preparation phase of the measurement has been done in such a
way that (2.6) is valid with tb := t0 = t2(30−30) and tc := t1 = t2(30−30)+1, such that we can also
perform the above considerations for i = 30.

Combining the above considerations, it holds for any j ∈ {1, . . . , 58} that we have determined Kj ,
v0,j, . . . , vKj ,j and ψ0,j, . . . , ψKj ,j such that one would like to find some density ζj for the Prandtl-
Ishlinskiı̆-operator satisfying

ΨPI,ζj (vk,j) ≈ ψk,j, ∀ k ∈ {0, . . . , Kj}. (3.6)
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Figure 5: For every i ∈ {1, 2, . . . , 58} the approximation of an initial loading curve generated from
the points (v0,i, ψ0,i) , (v1,i, ψ1,i) , . . . , (vKi,i, ψKi,i) following Remark 2.8 is shown.

Following Remark 2.8, we can also derive an approximation for an initial loading curve from this data
set. In Figure 5, these approximations are shown.

As pointed out before (2.8), for determining ζj we can ignore k = 0 in the above equation. If one
is only interested in dealing with densities as in Section 3.1, one has ζj = ζc1,j ,c2,j with appropriate
values c1,j, c2,j ∈ (0,∞) such that it holds, thanks to (3.2),

Ψc1,j ,c2,j (vk,j) ≈ ψk,j, ∀ k ∈ {1, . . . , Kj}. (3.7)

Remark 3.1. In [7, Sec. 5] appropriate pairs (c1,KDV,1, c2,KDV,1) , (c1,KDV,2, c2,KDV,2) , . . . ,
(c1,KDV,58, c2,KDV,58) were computed such that (3.7) is satisfied for c1,j = c1,KDV,j and c2,j =
c2,KDV,j for all j ∈ {1, . . . , 58}.
Afterwards, a simple inverse UQ calculation was performed: for a subset ((c1,KDV,i, c2,KDV,k))

55
i=30

of nice parameter pairs the discrete mean and the standard deviation were calculated. Afterwards, c1
and c2 were represented by independent random variables with the corresponding normal distributions
truncated to [0.0000001,∞] and some forward UQ computations were performed.

Performing a further simple inverse UQ by also computing the discrete mean and the discrete standard
deviation using all pairs ((c1,KDV,i, c2,KDV,k))

58
i=1, it turned out that the discrete mean for c2 was

4.71742 and the discrete standard deviation for c2 was 7.94603, such that using a truncated normally
distributed distribution does not seem to be an appropriate description for c2. Moreover, it turned
out that the values in ((c1,KDV,i, c2,KDV,k))

58
i=1 show a significant correlation and considering their

distribution (see [7, Fig 14]), it became obvious that these pairs do not represent samples of two
independent truncated normally distributed random variables.

Also, the values in the subset ((c1,KDV,i, c2,KDV,k))
55
i=30 of nice parameter pairs show a significant

correlation and investigating the distribution of these pairs, see [7, Fig 15], it became obvious that
these pairs also do not represent samples of two independent truncated normally distributed random
variables.

Because of these observations, it was tried in [7, Sec. 5] to find a random variable on (0,∞)2 such
that the above pairs could be typical samples for this random variable, by applying a formulation of
Bayes’ Theorem as in [6, Theorem 3.1], see also Sec. 3.4.

DOI 10.20347/WIAS.PREPRINT.3009 Berlin 2023
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3.3 Likelihood and Bayes’ Theorem

The following definition of the likelihood (compare, e.g. [17, 16, 6]) is quite often applied in situations
with Vq being equal to the value of some model evaluated at q with additional noise that is normally
distributed with mean 0.

Definition 3.2. Let m,n ∈ N be given. Let Q ⊂ Rm be a set of parameter values. Assume that for
every q ∈ Q we have a continuous Rn-valued random variable Vq with probability density ρ(·; q) on
Rn.

For all q ∈ Q and all v ∈ Rn it holds that the likelihood L(q|v) is defined by

L(q|v) := ρ(v; q) = ρ(Vq = v; q). (3.8)

The likelihood function L(·|v) for v is mapping q ∈ Q to L(q|v).

This combination of assumptions with be used in the following:

Assumption 3.3. Assume that we are in the situation of Definition 3.2 and that integrals onQ are well
defined. Assume that a known probability density π0 onQ, denoted as prior density, is given. Assume
that some vobs ∈

⋃
q∈Q Vq is given, such that

∫
Q
L (q′|vobs) π0(q′)d q′ > 0.

Having a close look at the proof of [6, Theorem 3.1], one realizes that the first equation on page 51
only holds if the prior density is just the density of the to be identified random variable representing the
parameters. Adapting now the formulation of Bayes’ Theorem of Inverse Problems such that the proof
is valid, one ends up with the following Theorem allowing to compute the solution of the corresponding
Bayesian inverse problems (BIP) with (3.9). Similar formulations can also be found, e.g. in [17, Res.
8.1] or [12, Sec. 2.1.2].

Theorem 3.4. Assume that Assumption 3.3 is satisfied and that a random variable X0 with values in
Q is given such that π0 is its probability density, that vobs can be considered as a sample of VX0 .and
that there exists a joint probability density for X0 and VX0 .

A Baysian’s belief πnew combining the information in X0 and in the observed datum vobs is the poste-
rior probability density πnew (·|VX0 = vobs) of X0, given the data vobs, and it holds that

πnew (q|VX0 = vobs) =
L (q|vobs) π0(q)∫

Q
L (q′|vobs) π0(q′)d q′

, ∀ q ∈ X0. (3.9)

In [18, Sec 6.22], the formulation is adjusted to the situation that Q is a subset of a general separable
Banach space and Vq is of the form described before Definition 3.2.

As one can see, the derived density does not depend onX0, such that the following theorem is proved.

Theorem 3.5. Assume that Assumption 3.3 is satisfied and that a random variable X0 with values in
Q exits such that the assumptions in Theorem 3.4 are satisfied.

A Baysian’s belief combining the information in π0 and in the observed datum vobs by using Bayes’
Theorem of Inverse Problems is the posterior probability density for the prior density π0, given the data
vobs which is defined as the posterior probability density πnew (·|VX0 = vobs) of X0, given the data
vobs as in Theorem 3.4.
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Remark 3.6. Assume that Assumption 3.3 is satisfied and that we try to identity some fixed, true, and
unknown value qtrue ∈ Q. Assume that the informations/beliefs on the value of qtrue in advance of
an observation are summarized by the prior probability density π0 on Q. Assume that vobs is some
sample of Vqtrue that has been observed. A Baysian’s belief combining the information in π0 and in the
observed datum vobs by using Bayes’ Theorem of Inverse Problems as in Theo. 3.5 is the posterior
probability density for the prior density π0, given the data vobs which is defined following Theorem
3.5, if it holds that there exists a random variable X0 with values in Q such that the assumptions in
Theorem 3.4 are satisfied. (This implies that we need to request that vobs is also a sample of VX0 .)

Remark 3.7. For the “identification of a true value“ formulation of Bayes’ Theorem as in Remark 3.6
it holds that by subsequently applying the theorem for different observations, using the last computed
posterior density as new prior density, one can show some kind of convergence of the computed
densities to the true value with the Bernstein-von Mises Theorem (see, e.g., [18, Theorm 6.17]).

Hence, this yields that in most situations the posterior density computed by Bayes’ Theorem provides
a better approximation to the true value then the prior density.

Remark 3.8. In some references, e.g. [6, Theorem 3.1], a more general situation then in Remark 3.6
seems to be considered. Therein, the authors deal with the situation that there is some fixed, true
random variable Utrue with values in Q, such that the observations are samples of VUtrue . If one has
a prior probability density π0 on Q representing the information on/beliefs about Utrue in advance of
the observation(s) it is pointed out that for any observed datum vobs of this kind one can use Bayes’
Theorem of Inverse Problems as in Theorem 3.5 to get the posterior probability density for the prior
density π0, given the data vobs.

Warning: The posteriori density one gets in this situation is the same as the posterior density one
would get if one is considering Bayes’ Theorem for the identification of a true value as in Remark 3.6.
There are some situations, in which the computed posterior density can be a better approximation for
Utrue then the prior density, but contrary to the expectation, this does not hold typically. Instead, one
can easily produce situations with some given and known Utrue such that the posterior density is the
less accurate approximation of Utrue. especially if Vq is of the form described before Definition 3.2.

3.4 Adapting the identification problem to Bayes’ Theorem

Adapting the situation considered in Section 3.2 to the framework of of Bayes’ Theorem, we assume
that there are independent random variables Γ1,1, . . . ,ΓK1,1,Γ1,2, . . . ,ΓK2,2, . . . ,Γ1,L, . . . ,ΓKL,L

and samples γk,` of Γk,` such that (3.7) can be rewritten as

ΨPI,c1,`,c2,` (vk,`) + γk,` = ψk,`, ∀ k ∈ {1, . . . , K`}, ` ∈ {1, . . . , L}. (3.10)

In [7] it was assumed that Γ2,1, . . . ,ΓK1,1,Γ2,2, . . . ,ΓK2,2, . . . ,Γ2,L, . . . ,ΓKL,L have the distribution
N(0, σ2) and that Γ1,1,Γ1,2, . . . ,Γ1,L have the distributionN (0, (2σ)2) for some given σ.

In view of the formulation of Bayes’ Theorem as in [6, Theorem 3.1], see also Remark 3.8, it was
believed that appropriate application of Bayes’ Theorem should allow the determination of a posterior
density such that ((c1,KDV,i, c2,KDV,i))

58
i=1 as in Remark 3.1 could be considered as typical samples

for a random variable with this density. An idea to achieve this aim was to subsequently apply Bayes
theorem to (3.10) for the different values of ` ∈ {1, 2, . . . , 58}, using the last computed posterior
density as new prior density in each step.

But an inspection of this procedure yielded that the resulting density would represent the information
that one would get for c1,all, c2,all ∈ (0,∞) such that (3.10) holds with c1,` replaced by c1,all and c2,`
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replaced by c2,all for all ` ∈ {1, . . . , 58}. Considering the likelihoods for σ = 0.01 and σ = 0.02,
shown in [7, Fig 16, Fig 17], one observes that these functions are very small except for a quite small
region, but the values for ((c1,KDV,i, c2,KDV,i))

58
i=1 are distributed over a much larger region, see [7,

Fig 14]. The pairs in the considered subset ((c1,KDV,i, c2,KDV ik))
55
i=30 of nice parameter pairs are

also distributed over a much larger region, see [7, Fig 15].

Hence, with a normal choice for the priori density it will also hold that the posterior density is concen-
trated in a small region and a random variable with this density will not produce one of these sets of
parameter values or a smaller one as typical samples.

4 Inverse and Forward UQ computations performed after com-
pleting [7]

4.1 Reformulation of problems to be considered for Bayes’ Theorem, use of
UQLab

In the following, Bayes’ Theorem will be applied for appropriate parts of the Bayesian inverse problems
(BIP) considered before and afterwards a convex combination of the resulting posterior densities will
be determined.

To be able to deal with the posterior density and integrals involving this density, this density will be
represented by samples resulting from dealing with BIPs using Markov-Chain-Monte-Carlo (MCMC)-
computations. This has been done by applying UQLab, the “The Framework for Uncertainty Quantifi-
cation”, see [13, 21] and https://www.uqlab.com/.

For subsets L of {1, 2, . . . , L}, it will be assumed that for all ` ∈ L it holds that the corresponding
equations in (3.10) are evaluated with c1,` replaced by c1,L and c2,` replaced by c2,L. Hence, we get

ΨPI,c1,L,c2,L (vk,`) + γk,` = ψk,`, ∀ k ∈ {1, . . . , K`}, ` ∈ L. (4.1)

Moreover, we will assume that the independent random variables Γk,` have the distributionN (0, σ2
L)

for all k ∈ {1, . . . , K`} and for all ` ∈ L for some appropriate σL > 0 that must be identified.

Hence, we consider (ψk,`)k=1,...,K`, `∈L as sample of
(
ΨPI,c1,L,c2,L (vk,`) + Γk,`

)
k=1,...,K`, `∈L

. There-
fore, similar to [21, (1.17)], we get the likelihood

LL

((
c1,L, c2,L, σ

2
L

) ∣∣∣∣ (ψk,`)k=1,...,K`, `∈L

)
=
∏
`∈L

K∏̀
k=1

1√
2πσ2

L

exp

(
1

2σ2
L

(
ψk,` −ΨPI,c1,L,c2,L (vk,`)

)2)
. (4.2)

4.2 Approximation of length change and shift value

If one plans to use the results of inverse UQ to perform forward UQ and to reconstruct the measured
length change, it is important to take into account the following considerations:

If one is considering a triple c1, c2, c3 and would like to construct an approximation of the measured
length change, it holds:
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Variant 1 One could try to identify the initial internal state λ0 describing the internal state of the
specimen before the measurement started that corresponds to the 0-length change situation
such that Gc1,c2,c3 [λ0, I] with some shift should reproduce the measurements.

Variant 2 One could take advantage of the fact that in the situation considered in the measurements
(also after the identification period is finished) it holds that there is a constant difference between
Gc1,c2,c3 [λ0, I] and Gc1,c2,c3 [0, I], with Gc1,c2,c3 [0, I] denoting the generalized Prandtl-Ishlinskiı̆-
operator involving the Prandtl-Ishlinskiı̆-operator with trivial initial state as in Definition 2.4.b).
Then, one just needs to determine some shift-value such that Gc1,c2,c3 [0, I] + shift is an
approximation for the measured length change.

In the following, we will use Variant 2 and will determine the value for shift by computing the output
of the generalized Prandtl-Ishlinskiı̆-operator with trivial initial state at a time t being a minimum, i.e.
t ∈ {t1, t3, . . . , t57} and compare the result with the measured length change L at this time.

Remark 4.1. If one is investigating the properties of the play-operator with trivial initial state with the
modification that t0 is the start of the considered time interval, see the discussions of reformulation of
Sec. 2 in Sec. 3.2, it holds that

Gc1,c2,c3 [0, I](t0) = PIζc1,c2 [0, tanh(c3I)](t0) = Ψc1,c2 (tanh(c3I(t0)) . (4.3)

Moreover, following the discussion for the derivation of (3.6) for i = 30, we see that (2.6) is valid with
tb = t0, t = t1 and u = tanh(c3I). Using also (2.5) and simplifying the notations by using that the
value of c3 is fixed, we get

Gc1,c2,c3 [0, I](t1) = gc1,c2(t1), with (4.4)

gc1,c2(t) := Ψc1,c2

(
tanh(c3I(t0))

)
− 2ΨPI,c1,L,c2,L

(
1

2
(tanh (c3I(t))− tanh (c3I(t0)))

)
,

∀ t ∈ [t0, t59]. (4.5)

Taking advantage of the return-point memory of the generalized Prandtl-Ishlinskiı̆-operator and ignor-
ing that there may be some differences since the values of the minima have some small variations, we
get

Gc1,c2,c3 [0, I](ti) ≈ gc1,c2(ti), ∀ i ∈ {1, 3, 5, . . . , 57}. (4.6)

Now, considering the situation as in Sec. 4.1, for some subset L of {1, . . . , L}, one equation or
several equations involving shiftL and one or several measurements of length changes needs/need
to be formulated.

When doing forward UQ by considering samples representing the unknown parameters one also
needs to somehow determine samples for shiftL.

Variant 1 If only one equation involving shiftL is formulated, the following simple ansatz was used in
previous computations: In the first step, one can perform inverse UQ using the likelihood formu-
lated in Sec. 4.1 to generate a set of sample triple

((
c1,L,n, c2,L,n, σ

2
L,n

))N
n=1

representing the
joint posterior density for c1,L, c2,L, and σ2

L. In the second step, one computes for each pair the
corresponding sample value shiftL,n by inverting the equation discussed above. Afterwards,

one could consider the samples quadruple
((
c1,L,n, c2,L,n, shiftL,n, σ

2
L,n

))N
n=1

as samples of
some joint density representing c1,L, c2,L, shiftL, and σ2

L.
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Variant 2 The more complicated ansatz is to perform the inverse UQ already with shiftL as a com-
ponent and to use also the equation(s) for the shift value in the formulation of the Bayesian
inverse problems (BIP). In the following, results for these kind of computations are presented.

To derive a BIP combining (4.1) with an equation for shiftL, we need to formulate one equation or
several equations for this quantity such that the error can be estimated. Moreover, to implement this
within the framework of UQLab, we need to formulate equations such that the error should be a sample
of a random variable having the distributionN (0, σ2

L).

To prepare this, we will consider the times for minima belonging to the data sets used to create
((vk,`, ψk,`))k=1,...,K`, `∈L. Hence, we consider

L∗ :=
{

2i
∣∣ i ∈ L, i ≤ 29

}
∪
{

2(i− 30) + 1
∣∣ i ∈ L, i ≥ 30

}
(4.7)

and assume now that

η∗k,j,L := Gc1,c2,c3 [0, I] (sk,j) + shiftL − L (sk,j) (4.8)

for k ∈ {0, . . . , K∗j } and for j ∈ L∗ are samples for independent random variables all having the
distributionN (0, σ2

L,∗) for some appropriate σL,∗ > 0. (Here, we ignore that in view of (4.9) and other
already requested independencies one may not be able to satisfy all the requested independencies.)
Considering any ` ∈ L with ` < 29 and any k ∈ {1, . . . , K`}, we can recall (4.1), (3.4), and (2.6) to
deduce that

γk,` =
1

2
(L(sk,2`)− L(s0,2`))−ΨPI,c1,L,c2,L

(
1

2
(tanh (c3I(sk,2`))− tanh (c3I(s0,2`)))

)
=

1

2

(
L(sk,2`)− Gc1,L,c2,L,c3 [0, I] (sk,2`)− shiftL

)
− 1

2

(
L(s0,2`)− Gc1,L,c2,L,c3 [0, I] (s0,2`)− shiftL

)
= −1

2
η∗k,2`,L +

1

2
η∗0,2`,L. (4.9)

Recalling the assumption for η∗i,2`,L and Lemma 6.1, we deduce that the difference on the right-hand

side is a sample of a random variable with distribution N

(
0,
(

1√
2
σL,∗

)2)
, and that this therefore

also holds for γk,`.

Considering any ` ∈ L with ` > 29 and any k ∈ {1, . . . , K`}, we can recall (4.1), (3.5), and (2.6)
to deduce with a similar computation that γk,` = −1

2
η∗0,2(`−30)+1,L + 1

2
η∗k,2(`−30)+1,L. Recalling the

assumption for η∗i,2(`−30)+1,L and Lemma 6.1, we deduce that this is a sample of a random variable

with distribution N

(
0,
(

1√
2
σL,∗

)2)
.

Since it holds for all ` ∈ L and all k ∈ {1, . . . , K`}, that γk,` is by assumption a sample of a
random variable with distribution N (0, σ2

L), but also a sample of a random variable with distribution

N

(
0,
(

1√
2
σL,∗

)2)
, we deduce that

1√
2
σL,∗ = σL. (4.10)

DOI 10.20347/WIAS.PREPRINT.3009 Berlin 2023



C. S. Clemente, D. Davino, O. Klein, C. Visone 14

4.3 Bayesian inverse problem for data sets with increasing current

Considering the approximation for initial loading curves generated by following Remark 2.8 for the data
sets with increasing current, as shown in Figure 6, we see that they all seem to approximate the same
function on different intervals.
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Figure 6: For the data sets involving increasing current, i.e. for every i ∈ {1, 2, . . . , 29}, the approxi-
mation of an initial loading curve generated from the points (v0,i, ψ0,i) , (v1,i, ψ1,i) , . . . , (vKi,i, ψKi,i)
following Remark 2.8 is shown.

To get samples representing the approximation of this function, a BIP for all data sets with increas-
ing current is considered, i.e. we deal with L = {1, . . . , 29}. Using (4.7), we see that L∗ =
{2, 4, . . . , 58}.
Equation for shift:

In a situation without any noise or any model errors, one could compute the average over all val-
ues for Gc1,c2,c3 [0, I] evaluated in the 29 minima of the current at t1, t3, . . . , t57 and afterwards add
shift{1,...,29} to this average. The result should be equal to the average over all values for L evaluated
in the 29 minima of the current.

In a situation with noise, one needs to consider the difference between these expressions and one
has to check if it can considered as the sample of some random variable. Denoting the difference by
δ{1,...,29}, we get

δ{1,...,29} =
1

29

29∑
i=1

Gc1,c2,c3 [0, I] (t2i−1) + shift{1,...,29} −
1

29

29∑
i=1

L (t2i−1)

=
1

29

29∑
i=1

(
Gc1,c2,c3 [0, I] (s1,2i) + shift{1,...,29} − L (s1,2i)

)
=

29∑
i=1

1

29
η∗1,2i,{1,2,...,29}.

Recalling Lemma 6.1, the assumption on η∗1,2i,{1,2,...,29}, and (4.10), we see that the sum on the right-

hand side is a sample for a random variable with distribution N
(

0,
∑29

i=1

(
1
29

)2
σ2
{1,2,...,29},∗

)
=

N
(

0, 1
29
σ2
{1,2,...,29},∗

)
= N

(
0, 2

29
σ2
{1,2,...,29}

)
. In view of Lemma 6.1, we see that

√
29
2
δ{1,...,29}

would be a sample of a random variable with distributionN
(

0, σ2
{1,2,...,29}

)
. Hence, using also (4.6),
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we see that
√

29
2

1
29

∑29
i=1 L (t2i−1) is a sample of a random variable with distribution

N
(√

29
2

(
1
29

(∑29
i=1 gc1,c2(t2i−1)

)
+ shift{1,...,29}

)
, σ2
{1,2,...,29}

)
.

Attaching this random variable to
(
ΨPI,c1,L,c2,L (vk,`) + Γk,`

)
k=1,...,K`, `=1,...,29

, ignoring in the follow-
ing computations that the involved random variables are not independent, and considering (4.2) with
L = {1, 2, . . . , 29}, we get for the resulting likelihood

Lfull{1,2,...,29}

((
c1,{1,2,...,29}, c2,{1,2,...,29}, shift{1,2,...,29}, σ

2
{1,2,...,29}

) ∣∣∣∣∣(
(ψk,`)k=1,...,K`, `=1,...,29 ,

√
29

2

1

29

29∑
i=1

L (t2i−1)

))

= L{1,2,...,29}

((
c1,{1,2,...,29}, c2,{1,2,...,29}, σ

2
{1,2,...,29}

) ∣∣∣∣ (ψk,`)k=1,...,K`, `=1,2,...,29

)
· L∗{1,2,...,29}

((
c1,{1,2,...,29}, c2,{1,2,...,29}, shift{1,2,...,29}, σ

2
{1,2,...,29}

) ∣∣∣∣
√

29

2

1

29

29∑
i=1

L (t2i−1)

)
(4.11)

with

L∗{1,2,...,29}

((
c1,{1,2,...,29}, c2,{1,2,...,29}, shift{1,2,...,29}, σ

2
{1,2,...,29}

) ∣∣∣∣
√

29

2

1

29

29∑
i=1

L (t2i−1)

)
=

1√
2πσ2

{1,2,...,29}

· exp

 1

4 · 29σ2
{1,2,...,29}

(
29∑
i=1

L (t2i−1)−

(
29∑
i=1

gc1,{1,2,...,29},c2,,{1,2,...,29}(t2i−1)

)
− 29shift{1,2,...,29}

)2
 .

(4.12)

Now, we use the product of appropriate uniform probability densities for c1,{1,2,...,29}, c2,{1,2,...,29},
shift{1,2,...,29}, and σ2

{1,2,...,29} as prior density. Ignoring that the prior density should not involve any
information derived by using the observations to be considered in Bayes’ Theorem, the data pairs
((c1,KDV,i, c2,KDV,k))

58
i=1 and the subset ((c1,KDV,i, c2,KDV,k))

55
i=30 of nice data pairs computed in

[7, Sec. 5] by using this observation, see Remark 3.1, have been used to define the prior. Moreover,
the results of other inverse UQ computations for the considered observation have also been used.

1 The interval [0, 100] used for c1,{1,2,...,29} is chosen such that all values (c1,KDV,i)
55
i=30 and

almost all values (c1,KDV,i)
58
i=31 are within this interval.

2 The interval [0.00001, 4] used for c2,{1,2,...,29} satisfies that most of the values (c2,KDV,i)
55
i=30

and many of the values for (c2,KDV,i)
58
i=1 are within this interval. The used upper bound 4 for

c2,{1,2,...,29} was derived by some heuristic considerations to ensure that there is still some
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Figure 7: Scatter plot showing the samples
(
c1,{1,2,...,29},n, c2,{1,2,...,29},n, shift{1,2,...,29},n

)
repre-

senting the posterior density following from dealing with all data sets for increasing current.

reasonable dependence of L{1,2,...,29}

(
(c1, c2, σ

2)

∣∣∣∣ (ψk,`)k=1,2,...,K`, `=1,2,...,29

)
on c2 on the

complete interval.

3 Using data pairs for (c1, c2) derived by performing inverse UQ without the shift, and computing
the shift by inverting the considered equation, many samples for shift had been computed.
The interval [−3, 3] is containing almost all of them.

4 In view of other results for dealing with the considered problem, using the interval [0, 10−3] to
defined the prior density for σ2

{1,2,...,29} seemed reasonable.

Following Remark 3.6, we are interested in the posterior density according to Bayes’ Theorem of
Inverse Problems as in Theo. 3.5.

To approximate the resulting posterior a set of samples is computed by using the affine invariant
ensemble algorithm, see [21, Sec. 1.3.4], a special Markov-Chain-Monte-Carlo scheme, implemented
in UQLab. An ensemble of 200 chains, denoted as walker, was considered, and 6000 iterations steps
were performed. Afterwards, some walkers with improper evolutions were removed and the initial
90 % of the iterations steps in the remaining walkers were also removed. Hence, we got samples((
c1,{1,2,...,29},n, c2,{1,2,...,29},n, shift{1,2,...,29},n, σ

2
{1,2,...,29},n

))115800
n=1

.

These samples, i.e. a sufficient number of samples randomly selected from these samples are pre-
sented in the scatter plot in Fig. 7.

4.4 Result of forward UQ for data sets with increasing current

As pointed out in [21], the posterior predictive density can be computed by “averaging” the model
output with additional noise over the posterior distribution. Thanks to (3.3) and Gauss summation, we
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Figure 8: Violin plot of samples reflecting the posterior predictive density, derived by using some of the
samples shown in Fig. 7 and marks for data points.

see that this is a density with
∑29

`=1K` + 1 =
∑29

`=1K
∗
2` + 1 =

∑29
`=1 ` + 1 = 29∗30

2
+ 1 = 436

components.

Following [21, Sec. 1.2.6], one can generate samples for the posterior predictive density:

Starting with some sample
(
c1,{1,2,...,29},n, c2,{1,2,...,29},n, shift{1,2,...,29},n, σ

2
{1,2,...,29},n

)
reflecting

the posterior density, we get a sample ξn ∈ R436 reflecting the posterior predictive density by the
following computation.

� Considering some index k∗ ∈ {1, . . . , 435}, we define ` := min
{
`∗ ∈ {1, . . . , 29}

∣∣∑`∗

i=1Ki ≥ k∗
}

and afterwards define k = k∗ if ` = 1, and k = k∗ −
∑`∗−1

i=1 Ki otherwise. Now, ξn(k∗) will
be the sum of Ψc1,{1,...,29},n,c2,{1,...,29} (vk,l) and a sample of a random variable with distribution

N
(

0, σ2
{1,...,29},n

)
.

� Moreover, ξn(436) will be the sum of√
29
2

(
1
29

(∑29
i=1 gc1,{1,...,29},n,c2,{2,...,29},n (t2i−1)

)
+ shift{1,...,29}

)
and a sample of a random

variable with distributionN
(

0, σ2
{1,...,29},n

)
.

The considered data vector is

(
ψ1,1, . . . , ψK1,1, ψ1,2, . . . , ψK2,2, . . . , ψ1,29, . . . , ψK29,29,√

29
2

1
29

∑29
i=1 L (t2i−1)

)
.

To somehow plot the posterior predictive density, one is randomly choosing 1000 samples (ξni
)1000i=1 ,

and is showing a violin-plot for (ξni
(k))1000i=1 for each k ∈ {1, . . . , 436}, see [15, Sec. uq_violinplot].

In the plot, marks for the value of the components of the data vector are also shown. In Figure 8 this
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Figure 9: Blow-up of a part of Fig. 8

is shown for all 436 components, in the blow-up in Figure 9 one can see the result for the components
143, . . . , 149.

4.5 Bayesian inverse problem for data sets with decreasing current

Considering the approximation for initial loading curves generated for data sets with decreasing cur-
rent, we see that the curves look different, see Fig. 10.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.5 abs(  (tanh(c
tanh

 input )) diff ) 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.
5 

ab
s(

ou
tp

ut
 d

iff
)

generated init load curves for decreaing corrente
30

3132
333435

36
37

3839
40

41
42

43
44

45

46

47

48

49

50
51

52
53

5455565758

Figure 10: For the data sets involving decreasing current, i.e. for every i ∈
{30, 31, . . . , 58} the approximation of an initial loading curve generated from the points
(v0,i, ψ0,i) , (v1,i, ψ1,i) , . . . , (vKi,i, ψKi,i) following Remark 2.8 is shown.

To get samples representing the approximation of these different functions, 29 Bayesian inverse prob-
lems are considered, one per data set with decreasing current.
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Let any i ∈ {30, . . . , 58} be given. Considering now L = {i}, we get from (4.7) that L∗ = {2(i −
30) + 1}.
Equation for shift{i}: The data set ((vk,i, ψk,i))

K
k=1 is derived from information on the current and

the length change on the interval [t2(i−30), t2(i−30)+1]. Since the current is decreasing on this interval,
it is minimal at the end t2(i−30)+1 = sKi,2(i−30)+1 of the interval.

Since η∗Ki,2(i−30)+1,{i} is a sample of a random variable having the distribution N (0, σ2
{i},∗), we de-

duce by recalling Lemma 6.1 and (4.10) that 1√
2
η∗Ki,2(i−30)+1,{i} is a sample of a random variable

having the distributionN (0, σ2
{i}). Considering (4.8) for k = Ki = K∗2(i−30)+1 and (4.6) we see that

1√
2
L
(
t2(i−30)+1

)
is a sample of a random variable with distribution

N
(

1√
2

(
gc1,{i},c2,{i}

(
t2(i−30)+1

)
+ shift{i}

)
, σ2
{i}

)
. Attaching this random variable to(

ΨPI,c1,{i},c2,{i}2 (vk,i) + Γk,i

)Ki

k=1
, ignoring in the following computations that the involved random

variables are not independent, and considering (4.2) with L = {i}, we get for the resulting likelihood

Lfull{i}

((
c1,{i}, c2,{i}, shift{i}, σ

2
{i}
) ∣∣∣∣ ((ψk,i)

Ki

k=1 ,
1√
2
L
(
t2(i−30)+1

)))
= L{i}

((
c1,{i}, c2,{i}, σ

2
{i}
) ∣∣∣∣ (ψk,i)Ki

k=1

)
L∗{i}

((
c1,{i}, c2,{i}, shift{i}, σ

2
{i}
) ∣∣∣∣ 1√

2
L
(
t2(i−30)+1

))
(4.13)

with

L∗{i}

((
c1,{i}, c2,{i}, shift{i}, σ

2
{i}
) ∣∣∣∣ 1√

2
L
(
t2(i−30)+1

))
=

1√
2πσ2

{i}

exp

(
1

4σ2
{i}

(
L
(
t2(i−30)+1

)
− gc1,{i},c2,{i}

(
t2(i−30)+1

)
− shift{i}

)2)
. (4.14)

As in Sec. 4.3, we use the product of appropriate uniform probability densities for c1,{i}, c2,{i}, shift{i},
and σ2

{i} as prior density. Moreover, similar to Sec. 4.3, the interval [0, 100] is used for c1,{i}, the in-

terval [−3, 3] is used for shift{i}, and the interval [0, 10−3] is used for σ2
{i}.

The interval [0.00001, c2,up,{i}] is used for c2,{i} with an upper bound c2,up,{i} derived by some heuris-

tic considerations to ensure that there is still some reasonable dependence ofL{i}

(
(c1, c2, σ

2)

∣∣∣∣ (ψk,`)Ki

k=1

)
on c2 on the complete interval. It holds that c2,up,{30} = 4, c2,up,{40} = 3.29284, c2,up,{50} =
1.76305, , c2,up,{58} = 0.200779.

As in Sec. 4.3, we follow Remark 3.6 and are interested in the posterior density according to Bayes’
Theorem of Inverse Problems as in Theo. 3.5. Again, the affine invariant ensemble algorithm imple-
mented in UQLab is applied.

In a first series of computations it turned out that for some values of i there are problems with the
convergence of the algorithm; it seems that the scheme was not able to find the region wherein the
corresponding likelihood is not very small since this region is much smaller then the overall considered
domain.
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Figure 11: Resulting scatter plot of parameter samples
(
c1,{30},n, c2,{30},n, shift{30},n, σ

2
{30},n

)
for

the first data set with decreasing current, i.e. the data set No. 30.

Hence, to support the algorithm somehow, it was decided that the starting values for the walker should
no longer be determined using samples of the random variable having the prior density and is therefore
uniform on [0, 100]× [0.00001, c2,up,{i}]× [−3, 3]× [0, 10−3].

Instead, these initial values for the walkers were defined as the values of the walkers at the end of com-
putations for some appropriate BIP performed as preparation. In this BIP it is requested that (4.1) is
valid for L = {j} for all j ∈ {30, . . . , 59}, i.e. it is requested that (4.1) is valid for L = {30, . . . , 59}.
Moreover, is requested in this BIP that the result of an incorrect derivation of the equation for shift in
section 4.3 applies, wherein it is assumed incorrectly that δ{1,...,29} is a sample for a random variable

with distributionN
(

0, σ2
{1,2,...,29},∗

)
. The resulting modification of the likelihood in (4.12) multiplied by∏58

`=30 L{`}

((
c1,{30,...,58}, c2,{30,...,58}, σ

2
{30,...,58}

) ∣∣∣∣ (ψk,`)K`

k=1

)
results in the likelihood considered

for dealing with this intermediate BIP. This BiP considered with the a priori density as for i = 1, being
the same as the one considered in Section 4.3. This intermediate BIP is solved by applying the affine
invariant ensemble algorithm with 200 walkers and 6000 iterations steps.

After removing 5 walkers with improper evolutions, the reaming 195 values were stored. These values
were afterwards used as starting values for the 195 walkers used when the algorithm is applied to to
deal with the BIP derived above for L = {i}.

4.6 Results of inverse and of forward UQ for first data set for decreasing cur-
rent

Results of inverse UQ for the first data set with decreasing current, i.e. the data set No. 30, are samples(
c1,{30},n, c2,{30},n, shift{30},n, σ

2
{30},n

)
as shown in Fig. 11.
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Figure 12: Violin plots for the first data set with decreasing current, i.e. for data set No. 30, showing the
predictive description density for the predicted values of the initial loading curve (data index 1, . . . , 29)
and for 1√

2
of the predicted length change at t1 (data index 30).

Similar to Sec. 4.4, we can generate samples for the posterior predictive density: Dealing with the first
data set with decreasing current, i.e. with data set No. 30, it holds that the posterior predictive density
has K30 + 1 = 29 + 1 = 30 components.

Starting from some sample
(
c1,{30},n, c2,{30},n, shift{30},n, σ

2
{30},n

)
reflecting the posterior density,

we get a sample ξn ∈ R30 reflecting the posterior predictive density by the following computation:

� For k ∈ {1, . . . , 29}, ξn(k) will be the sum of Ψc1,{30},n,c2,{30},n (vk,30) and a sample of a

random variable with distributionN
(

0, σ2
{30},n

)
.

� Moreover, ξn(30) will be the sum of 1√
2

(
gc1,{30},n,c2,{30},n (t1) + shift{30}

)
and a sample of

a random variable with distributionN
(

0, σ2
{30},n

)
.

The considered data vector is
(
ψ1,30, . . . , ψ29,30,

1√
2
L (t1)

)
. In Fig. 12, the resulting violin plot and

the data vector values are shown.

4.7 Further results of Bayesian inverse problem for data sets with decreasing
current

It was observed that for the data sets 22, . . . , 29 with decreasing current, i.e. the data sets 51, . . . , 58
in the complete numbering, the MCMC-scheme has not reached convergence or may not reach con-
vergence. Hence, only the data sets for the first 21 data sets with decreasing current will be considered,
i.e. the data set 29, . . . , 51. A convex combination of the resulting posterior probability densities is ap-
proximated by randomly choosing some samples from each data set (number determined by some
heuristic considerations involving the number of data points in the data sets), and afterwards merging
all these samples to derive the merged sample set for decreasing current, see Fig. 13.

4.8 Merging sample sets for data sets with increasing current and decreasing
current

A number of samples are randomly chosen from the sample set considered in the last section, and
the same number of samples are randomly chosen from the sample set for increasing currents, see
Fig. 7 and Fig. 15. Afterwards, both these sample sets are merged, see Fig. 14.

4.9 Result of forward UQ for merged data sets
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Figure 13: Scatter plot for merged sample set for decreasing current.

Figure 14: Samples derived by merging the samples for data sets with decreasing current, see Fig.
13, and those for data sets with increasing current, see Fig. 7 and also Fig. 15. The means of theses
samples sets are also shown.
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Figure 15: Scatter plot for the samples derived for 29 data sets with increasing currents is shown, and
therein also the mean of these samples is also marked. These samples are also presented in Fig. 7.
In the current figure the intervals for plotting c1, c2, shift and σ2 are the ones also used in Fig. 14.
Moreover, the mean of the samples shown in Fig. 14, i.e. the merge of the samples for data sets with
decreasing current and those for data sets with increasing current, is also marked.

In the following, we consider for every sample (c1,n, c2,n, shiftn, σ
2
n) the function [t0, t58] 3 t 7→

Gc1,n,c2,n,c3 [0, I](t) + shiftn for the given value for c3 and the trivial initial state. This generates a set
of sample functions.

Now, for each of the time steps t in the measurement, samples values are created by performing the
following computation for all considered n: the sample function No. n is evaluated at t and

√
2 times

a sample for a random variable with distribution N (0, σ2
n) is added.

Some quantiles values are computed from the resulting samples for posterior predictive density:

� the value of the 0.05–quantiles at some time t indicating that 5 % of all output samples values
at time t are below this value and 95% are above this value,

� the value of the 0.95–quantiles at some time t indicating that 95 % of all output samples values
at time t are below this value and 5% are above this value.

In Fig. 4, the measured data used for identification are shown. Now, the shown evolution of the mea-
sured length change in the identification period and the results of forward UQ can be compared, see
Fig. 16.
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Figure 16: Result of forward UQ for merged data sets and measured length change during identifica-
tion period.
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Figure 17: Evolution of current (input) and length change after identification period.

Now, the evolution of the measured length change after the identification period and the results of
forward UQ are also compared, see Fig. 17.

� For the period not used for identification with 210 data points it holds that for 61 data points, i.e.
for 29 %, the measured value is not in the interval [0.05–quantile value, 0.95–quantile value].
The values for 27 points are smaller than the 5%–quantile value and the value for 34 are larger
than the 95%–quantile value.

� For the period used for identification with 872 data points it holds that for 398 data points, i.e.
for 46 %, the measured value is not in the interval [0.05–quantile value, 0.95–quantile value].
The values for 182 points are smaller than the 5% quantile values and the values for 216 data
points are larger than the 95% quantile values.

� Further investigations indicate that modeling using the generalized Prandtl-Ishlinskiı̆-operator
produces a systematic error, somehow reflecting the systematic difference between the approx-
imations for the initial loading curve for decreasing current and the corresponding approxima-
tions for increasing current.
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Figure 18: Result of forward UQ for merged data sets and measured length change, after identification
period.

4.10 Consequences of the result of forward UQ

� The consideration in the subsection before indicate that one may have to replace the general-
ized Prandtl-Ishlinskiı̆-operator in the model by another one.

� FORC Diagrams are typically used to identify measures in so-called Preisach-operators, special
kinds of hysteresis operators.

� In view of the model derivation in [3, Sec. 5], one should not use the generalized Prandtl-
Ishlinskiı̆-operator to model the length change, but its counterclockwise admissible potential that
is a Preisach-Operator. (Then it holds that the generalized Prandtl-Ishlinskiı̆-operator should
be used to model the magnetization.) Some tests yield that using this operator generates a
better approximation for the data generated for increasing current, but the approximation for the
data generated for decreasing current time intervals gets worse. Since the data generated for
decreasing current are the more relevant in this data set, it seems that one should consider
some other operator instead.

5 Conclusion

Conclusion: � Output of hysteresis operators depends on parameters, whose values may not be
exactly known when modeling real world processes.

� Inverse UQ to identify these parameters and their uncertainty has been performed.

� Forward UQ has been performed with the sample derived from inverse UQ; the results
have been compared to measurements.

6 Appendix

It holds, see e.g. [17, Theorm 4.21] or [5, Ex 4.9.3]:
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Lemma 6.1. Let (Ω,F,P) be a probability space. LetX1, . . . , Xn : Ω→ R be independent continu-
ous random variables such that there is some σ ∈ (0,∞) with Xi ∼ N (0, σ) for all i ∈ {1, . . . , n}.
Let a1, . . . , an ∈ R \ {0} be given. Then it holds that

n∑
i=1

aiXi ∼ N

0,

√√√√ n∑
i=1

a2i

σ

2
 = N

(
0,

(
n∑
i=1

a2i

)
σ2

)
. (6.1)

References

[1] M. Al Janaideh, C. Visone, D. Davino, and P. Krejčí, The generalized Prandtl-Ishlinskii model:
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