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Convergence to self-similar profiles
in reaction-diffusion systems

Alexander Mielke, Stefanie Schindler

Abstract

We study a reaction-diffusion system on the real line, where the reactions of the species
are given by one reversible reaction pair αX1 
 βX2 satisfying the mass-action law. We de-
scribe different positive limits at x → −∞ and x → +∞ and investigate the long-time be-
havior. Rescaling space and time according to the parabolic scaling with τ = log(1+t) and
y = x/

√
1+t, we show that solutions converge exponentially for τ → ∞ to a similarity profile.

In the original variables, these profiles correspond to asymptotically self-similar behavior describ-
ing the phenomenon of diffusive mixing of the different states at infinity.

Our method provides global exponential convergence for all initial states with finite relative
entropy. For the case α = β ≥ 1 we can allow for self-similar profiles with arbitrary equilibrated
states, while for α > β ≥ 1 we need to assume that the two states at infinity are sufficiently
close such that the self-similar profile is relative flat.

1 Introduction

For a nonlinear coupled reaction-diffusion systems with mass-action kinetics satisfying a detailed
balance condition, the long-time behavior of its solutions is investigated. While there already exists
a wide variety of literature for these systems posed on bounded domains [Ali79, Smo94, DeF06,
DeF07, BJ∗14, MHM15], much less is known if the underlying domain is chosen to be the whole space
Ω = Rd, see e.g. [HH∗18] for the case with finite mass. We will see that in the case of unbounded
domains and infinite mass, similarity profiles can be a crucial tool to describe their asymptotic behavior
qualitatively. Here we follow the ideas on diffusive mixing as developed in [BrK92, CoE92, GaM98];
however, our approach is completely different. Instead of doing a local analysis of the relevant simi-
larity profile, whose existence is established in [MiS23a], we use the relative Boltzmann entropy and
derive exponential convergence globally, i.e. for all initial conditions with finite relative entropy. Thus,
our work is closer to [BJ∗14] which derives global energy-dissipation estimates for suitable relative en-
tropies to study exponential convergence to (non-equilibrium) steady states on bounded domains but
with nontrivial prescribed Dirichlet boundary data. To the best of the authors’ knowledge, the present
work is the first relative-entropy approach to systems with infinite mass.

Asymptotic self-similar behavior for scalar, nonlinear diffusion equations is a classical theory in the
case of finite mass, see e.g. [CaT00, Váz07] and the references therein. The case of inifinite mass
was initiated in [Pel71] and extended in [vaP77, Ber82], where the theory was based on comparison
principles. Systems of partial differential equations with different limits at x → −∞ and x → ∞ are
studied in [MaP01] in the context of adiabatic gas flow through a porous medium. The Convergence
to asymptotic profiles is established using local estimates with weighted Sobolev norms.

For our model, we consider two species X1 and X2 on Ω = Rd and denote their concentrations at
time t > 0 and at position x ∈ Rd by ũ(t, x) =

(
ũ(t, x), ṽ(t, x)

)>
. The species diffuse with diffusion
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A. Mielke, S. Schindler 2

coefficients d1, d2 > 0 and interact through the single reversible chemical reaction pair αX1

k

 βX2

with each other. Here α, β ≥ 1 are the stoichiometric coefficients and k > 0 denotes the reaction
strength. The change of the concentrations can be described by the corresponding reaction-diffusion
system

ũt = D∆ũ + R(ũ) for t > 0, x ∈ Rd, (1.1)

with diffusion matrix D = diag(d1, d2) and, by using the law of mass action, reaction term

R(ũ) = k(ṽβ−ũα)

(
α

−β

)
.

Additionally, we require that the solutions are prescribed at infinity by states that are in reactive equi-
librium. In the case d = 1 this simply means that we require that the solutions are in equilibria at both
sides of infinity, thus we have ũ(t,±∞) = (Aβ±, A

α
±)> for two given constantsA−, A+ ≥ 0. Here we

use that our system (1.1) has the special property that it possesses a continuum of constant solutions.
In contrast to reaction-diffusion systems with a finite number of constant steady states, where the typi-
cal long-time behavior is given by traveling waves or pulses (see for example [Smo94, VVV94, Vol14]),
we show that the solutions converge to so-called self-similar profiles when time goes to infinity. This
asymptotically self-similar behavior is called diffusive mixing in [CoE92, GaM98, MSU01], where it
was studied for the special system of the real Ginzburg-Landau equation.

The existence of relevant self-similar profiles is established in [MiS23a, Sec. 5]. In the present paper,
we focus on proving the convergence towards these profiles. Our analysis is based on two crucial
steps:

� instead of the physical variables (t, x) we use the parabolic scaling variables (τ, y) defined via
τ = log(t+1) and y = x/

√
t+1 and

� we derive energy-dissipation estimates for a relative entropy (of Boltzmann type).

Doing the transformation u(τ, y) = ũ(t, x), the scaled system reads

uτ = Duyy +
y

2
uy + eτ R(u) with u(τ,±∞) = (Aβ±, A

α
±)>. (1.2)

Note that we cannot scale the size of the variables u and v because of the fixed boundary conditions.
Clearly, the parabolic scaling is good for the diffusion term, but we see that an additional time depen-
dent factor appears in front of the reaction term. As the prefactor is exponentially growing in time, it
forces the reaction to decay fast in order to equilibrate the whole system. This is indeed established in
[GaS22] for the case α = 2 and β = 1.

The equation for the asymptotic profile U = (U, V ) : R → R2 can be motivated as follows. We
consider (1.2) with the constraint R(u) = 0 and replace the limit eτ R(u) → “∞0” by a vector-
valued Lagrange multiplier λ = Λ(y)

(
α
−β

)
. This leads to the profile equation for U in the form

0 = DU′′(y) +
y

2
U′(y) + Λ(y)

(
α

−β

)
, 0 = R(U(y)), U(±∞) =

(
Aβ±
Aα±

)
. (1.3)

We refer to [MiS23a] for the treatment of this and more general profile equations, where the approach
from [GaM98] relying on the theory of monotone operators is generalized to the vector-valued case.

The idea is to use entropy estimates to study the asymptotic behavior of solutions of reaction-diffusion
systems with mass-action kinetic (and detailed balance). It traces back to the works of [Grö83, Grö92,
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Convergence to self-similar profiles in RDS 3

GGH96] and has been refined by many authors in recent years, see for example [DeF06, DeF07,
MHM15, FeT17, PSZ17]. The usual strategy is to take a relative entropy given by

Eφ(u(τ) |U) =

∫
Ω

j∗∑
j=1

φ
(
uj(τ, y)/Uj(y)

)
Uj(y)dy

for a convex entropy function φ satisfying φ(ρ) > φ(1) = 0 for all ρ 6= 1, and to show that Eφ is a
Lyapunov function, i.e. along solutions a so-called entropy-dissipation relation

d

dτ
Eφ(u(τ) |U) = −Dφ(u(τ)) ≤ 0

holds with a non-negative dissipation functionalDφ. If one can establish a lower boundDφ ≥ µEφ with
µ > 0, then Grönwall’s lemma gives Eφ(u(τ)|U) ≤ e−µτEφ(u(0)|U) which implies convergence of
u(τ) to U because Eφ(u|U) = 0 if and only if u = U.

Due to the mass-action kinetics, the relative Boltzmann entropy EB with Boltzmann function φ = λB :
z 7→ z log z− z+ 1 is the only choice in order to obtain the right sign for the dissipation term coming
from the reaction with α 6= β. This can be seen in more detail in Proposition 3.1 and will be important
in Section 5. We will see in Section 4.2 that for α = β other entropies are useful.

The classical studies on the long-time behavior of solutions for the unscaled system (1.1) in a bounded
domain Ω (see. e.g. [Grö83, DeF06, Mie17] and the references therein) rely exactly on this approach.
However, in our case we will not obtain a true Lyapunov function on the unbounded domain Ω = R1,
because of the fact that U = (U, V )> is not a true steady state of our scaled system (1.2), see the
Lagrange multiplier Λ in the profile equation (1.3). Only in the very special case α = β and d1 = d2

one has Λ ≡ 0, and we easily will obtain EB(u(τ)|U) ≤ e−
1
2
τEB(u(0)|U).

In Section 2 we explain our method by applying it to the scaled linear diffusion equation uτ = Duyy +
y
2
uy with boundary conditions u(τ,±∞) = A± > 0. This leads to the energy-dissipation estimate

d

dτ
Eφ(u|U) = −IFisher(u)− 1

2
Eφ(u|U) with IFisher(u) = D

∫
R
φ′′(u/U)

(
(u/U)y

)2
U dy.

The new and very helpful term −1
2
Eφ(u |U) arises from the drift term y

2
uy which stems from the

parabolic scaling. Using IFisher ≥ 0, we obtain Eφ(u(τ)|U) ≤ e−
1
2
τEφ(u(0)|U) without using any

Poincaré or log-Sobolev estimate on R. For that reason, the factor 1/2 will be called the bonus factor,
subsequently.

In Section 3 we show that in our case we have d
dτ
EB(u(τ)|U) = −DB(u) with a dissipation func-

tional that can be written as

DB = IFisher + eτ Dreact +
1

2
EB − IΛ with Dreact =

∫
R
kUα Γ

(( u(y)

U(y)

)α
,
( v(y)

V (y)

)β)
dy,

where Γ(a, b) ≥ 0 is defined by

Γ(a, b) :=


(a−b)

(
log a− log b

)
≥ 0 for a, b > 0,

0 for a = b = 0,

∞ for (0, c) and (c, 0) for c > 0.

(1.4)

Here IFisher consists of two non-negative terms, one for u and one for v. The special form of Dreact

and its positivity arise from the special interaction of the mass-action law and the Boltzmann en-
tropy, namely with DEB(u|U) =

(
log u
log v

)
and the logarithm rules one finds (uα−vβ)

(
α
−β

)
·
(

log u
log v

)
=
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A. Mielke, S. Schindler 4

Γ(uα, vβ) ≥ 0. Again we have the bonus factor 1/2 arising from the drift term y
2
uy. The new and

difficult term is the mixed term

IΛ(u) =

∫
R

((
1− u

U

)
α−

(
1− v

V

)
β
)

Λdy,

which arises from the fact that U is not a steady state, but needs the Lagrange multiplier Λ, see the
profile equation (1.3). In particular, IΛ does not have a specific sign.

The derivation of the useful splitting of DB is part of Section 3.2 and the precise statement can be
found in Proposition 3.1. Because of the unboundedness of Ω = R1 we will not be able to take
advantage of the Fisher information IFisher, but we can rely on the bonus factor 1/2. Moreover, the
reactive dissipation Dreact has the factor eτ in front, from which we will benefit in Sections 4 and 5
to control IΛ. Since the mixed term IΛ has no fixed sign, it is possible that the relative Boltzmann
entropy EB may grow, i.e. it is not a true Lyapunov function. So our aim will be to show that

1

2
EB(u |U) + eτDreact(u)− IΛ(u) ≥ (η−µ e−τ ) EB(u |U)−Ke−στ for τ ≥ 0 (1.5)

for some η, σ > 0 and µ, K ≥ 0. From this, our convergence results in Theorems 4.1 and 5.2 will
follow.

The control of the problematic term IΛ is different in the simpler case α = β ≥ 1 (see Section 4)
and in the more difficult case α > β ≥ 1 (see Section 5). For α = β ≥ 1, the integrand of IΛ

only depends on u
U
− v

V
and thus can be controlled by Dreact alone. Hence, we obtain (1.5) with

η = 1/2 and σ = 1 if α = β ∈ [1, 2) or σ = 1/(α−1) for α = β ≥ 2, without any restriction
on the self-similarity profile U. Using a version of Grönwall’s inequality (see Lemma 3.3), we find for
α = β ∈ [1, 3) the decay EB(u(τ) |U) ≤ Ce−min{η,σ}τ = Ce−τ/2, whereas for α = β > 3 we
have a slower decay like e−τ/(α−1).

For α > β ≥ 1 it is more difficult to control IΛ and we need to exploit the term 1
2
EB with the bonus

factor. From [MiS23a] we know that for small |A+−A−| also ‖Λ‖∞ is small. Thus, for sufficiently
small |A+−A−|, we have

θ := (α−β) sup
{

Λ(y)/V (y)
∣∣ y ∈ R

}
< 1/2,

and Theorem 5.2 shows that (1.5) holds for η = 1/2− θ > 0 and suitable K and σ. It remains open
whether in the case α > β the asymptotic profiles with large difference |A+−A−| are stable or not.
We remark that a flatness condition for the profile U (which is encoded in ‖Λ‖∞ ≤ C|A+−A−|)
appears also in [MaP01, Thm. 1.1].

We expect that our approach based on energy-dissipation estimates is flexible enough to allow for
several generalizations. Based on the vector-valued existence results for similarity profiles in [MiS23a],
it should be possible to treat general reaction systems for i∗ species interacting via r∗ reaction pairs
with mass-action kinetics, wherem∗ := i∗−r∗ ≥ 1 provides the dimension of the equilibrium manifold
which will then include the similarity profile U. Of course, the problem of controlling the mixed term IΛ

will be more involved, because IΛ now involves m∗ Lagrange multipliers. Moreover, our convergence
theory works equally well for space dimension d ≥ 2: as soon as the existence of similarity profiles is
established, the energy-dissipation estimates can be done with a bonus factor d/2.

DOI 10.20347/WIAS.PREPRINT.3008 Berlin 2023



Convergence to self-similar profiles in RDS 5

2 Convergence to self-similarity for the linear diffusion equation
on the whole space

In this section, we demonstrate our proceeding to the well-studied linear diffusion equation

ũt = D ∆̃ũ on Rd, (2.1)

with diffusion constant D > 0. For initial data ũ0 ∈ L1(Rd), it is already known that the solutions
behave asymptotically like a Gaussian, see e.g. [Jün16, Sec. 2.4]. In this paper, we are interested in
the long-time behavior of solutions which have nontrivial boundary conditions for |x| → ∞, such that
the solutions have infinite mass.

In the one-dimensional case, we consider the diffusion equation (2.1) together with the boundary
conditions

ũ(t,±∞) := lim
x→±∞

ũ(t, x) = A±

and ask how the solution mixes these two steady states A± when time t goes to∞. Because of the
linearity, it is not difficult to prove that for every given pair (A−, A+) ∈ R2 of asymptotic boundary
conditions, the solution converges uniformly in x ∈ R to the following self-similar solution

U(x/
√
t) :=

1

2
(A+−A−) erf

(
x/
√

4Dt
)

+
1

2
(A++A−), (2.2)

where erf(x) := 2√
π

∫ x
0

exp(−z2) dz is the error function. However, we do not want to use the
linearity to verify this convergence, neither the exact representation of the profile given by the error
function, with the idea in mind to generalize the following strategy to the given nonlinear reaction-
diffusion system. Hence, we will use entropy estimates to prove this convergence.

Before doing so, we look at the profile function (2.2) from a different perspective. We see that U
depends on the quotient x/

√
t instead of the variables t and x separately. This motivates to do a

transformation into the so-called parabolic scaling variables given by y = (1+t)−1/2x ∈ Rd and
τ = log(1+t). Returning to the multi-dimensional case, we define

u(τ, y) := ũ(t, x) = ũ
(
eτ−1, eτ/2y

)
and find the scaled diffusion equation with the same asymptotic boundary conditions:

uτ = D∆u+
1

2
y · ∇u and u(τ, y)− U(y)→ 0 for |y| → ∞, (2.3)

where ∆ and∇ are now taken with respect to y ∈ Rd. The asymptotic boundary conditions are given
by a fixed function U : Rd → R, which we take as a self-similar profile, i.e. it satisfies the profile
equation

D∆U +
1

2
y · ∇U = 0 on Rd. (2.4)

Clearly, the solutions in (2.2) provide all possible solutions for the case d = 1. For d ≥ 2 the set of
solutions is much richer, even when restricting to the case U ∈ C2(Rd) with inf U ≥ U > 0. Of
course, we again see that ũ(t, x) = U

(
(1+t)−1/2x

)
is an exact self-similar solution of the unscaled

equation (2.1).

To prepare for the subsequent analysis for reaction-diffusion system, we now show convergence of all
solutions of the scaled linear diffusion equation in the sense that the relative entropy

Eφ(u|U) :=

∫
R
φ(u/U)U dy =

∫
R
φ(ρ)U dy, where ρ = u/U,

DOI 10.20347/WIAS.PREPRINT.3008 Berlin 2023



A. Mielke, S. Schindler 6

converges exponentially to 0. Here φ is an arbitrary convex entropy function fulfilling φ(ρ) ≥ φ(1) = 0
for all ρ ≥ 0. We call the arising exponential decay rate d/2 the bonus factor, because it solely comes
from the scaling, i.e. from the drift term 1

2
y · ∇u.

Proposition 2.1 (Decay in the linear diffusion equation) Consider the scaled linear diffusion equa-
tion and let U ∈ C2

b(Rd) be the similarity profile satisfying (2.4) and U(y) ≥ U > 0. Then, all
solutions u of the Cauchy problem (2.3) fulfilling Eφ(u0|U) =

∫
Rd φ(u0/U)U dy < ∞ converge to

U in the sense that

Eφ(u(τ)|U) ≤ e−dτ/2 Eφ(u0|U) for all τ > 0.

Proof. To simplify the calculation we use the relative density ρ(τ, y) := u(τ, y)/U(y) and observe
that the scaled diffusion equation (2.3) takes the form

Uρτ = D
(
U∆ρ+ 2∇U · ∇ρ+ ρ∆U

)
+

1

2
y ·
(
U∇ρ+ρ∇U

)
= D

(
U∆ρ+ 2∇U · ∇ρ

)
+

1

2
U y · ∇ρ,

where the last identity follows by inserting the profile equation (2.4) for U .

We compute the time derivative of the relative entropy. It holds

d

dτ
Eφ(u(τ)|U) =

∫
Rd
φ′(ρ)ρτU dy =

∫
Rd
φ′(ρ)

{
D
(
U∆ρ+ 2∇U · ∇ρ

)
+

1

2
Uy · ∇ρ

}
dy

∗
=

∫
Rd

{
−Dφ′′(ρ)|∇ρ|2U +

(
D∇U +

1

2
Uy
)
·
(
φ′(ρ)∇ρ

)}
dy

∗
=

∫
Rd

{
−Dφ′′(ρ)|∇ρ|2U −

(
D∆U +

1

2
y · ∇U +

1

2
(div y)U

)
φ(ρ)

}
dy

= −IFisher(ρ) − 0 − d

2

∫
Rd
φ(ρ)U dy =: −Dφ(ρ).

Here
∗
= indicates an integration by parts where we use ρ(y)→ 1 and φ′(1) = 0. For the second last

identity we used the Fisher information

IFisher(ρ) := D

∫
Rd
φ′′(ρ)|∇ρ|2U dy ≥ 0

and the profile equation D∆U + 1
2
y · ∇U = 0 once again. The bonus factor arises from 1

2
div y =

d/2.

Thus, the dissipation Dφ is non-negative and satisfies Dφ(ρ) ≥ d
2
Eφ(u|U) yielding

d

dτ
Eφ(u(τ)|U) = −Dφ(ρ) ≤ −d

2
Eφ(u(τ)|U).

By Grönwall’s Lemma, we obtain exponential convergence in τ . More precisely, we have

Eφ(u(τ)|U) ≤ e−dτ/2Eφ(u(0)|U) for τ > 0,

as it was claimed.

In the above proof, we see the essential benefit of the parabolic scaling. The extra term 1
2
y · ∇u

featuring in the scaled diffusion equation (2.3) leads to the so-called bonus factor d/2 in the differential
inequality for the relative entropy, which in turn provides convergence and an explicit decay rate.

DOI 10.20347/WIAS.PREPRINT.3008 Berlin 2023
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3 The reaction-diffusion system

The first part of this section is dedicated to introduce the coupled reaction-diffusion system (1.1) and
the scaled one (1.2) together with its important properties in more detail. Then in Section 3.2, we
derive the dissipation functional for the scaled system and prove an appropriate splitting of it.

3.1 The system and its similarity profile

Consider a coupled system of two nonlinear reaction-diffusion equations on the unbounded domain
Ω = R1 which present the concentration change of the diffusing species X1 and X2 interacting
through the single reversible reaction αX1 
 βX2 with each other. When we denote their densities
with ũ, ṽ ≥ 0, respectively, the mass-action law leads to the system

ũt = d1ũxx + αk(ṽβ−ũα),

ṽt = d2ṽxx − βk(ṽβ−ũα),
(3.1)

for t > 0 and x ∈ R1, where the diffusion constants d1, d2 and the reaction rate k are assumed to be
positive. The set of constant steady states is a one-parameter family given by{

(Aβ, Aα)
∣∣ A > 0

}
.

We are interested in the behavior of solutions where the initial data (u0, v0) is in equilibria at infinity,
i.e. where for two given constants A−, A+ > 0 the continuous initial data satisfies the asymptotic
boundary conditions(

ũ0(±∞), ṽ0(±∞)
)

:= lim
x→∞

(
ũ0(±x), ṽ0(±x)

)
=
(
Aβ±, A

α
±
)
.

Motivated by Section 2, we transform the system (3.1) into parabolic scaling coordinates

y = x/
√
t+1 and τ = log(t+1).

Then the transformed system reads

uτ = d1uyy +
y

2
uy + eταk(vβ−uα),

vτ = d2vyy +
y

2
vy − eτβk(vβ−uα).

(3.2)

Accordingly, the continuous initial data (u0, v0) satisfies the asymptotic boundary conditions(
u0(±∞), v0(±∞)

)
=
(
Aβ±, A

α
±
)
. (3.3)

Note the exponential factor that appears in front of the reaction terms in (3.2) as the reaction does
not transform like the parabolic terms. At a first glance, one might say that the transformed system
looks much more complicated than the original one since it is now non-autonomous. On top of that,
the factor is exponentially growing in time, which could impair convergence. On further consideration,
however, we will see that the prefactor eτ is beneficial from a technical point of view and makes things
work in the end. Luckily, the reaction term comes with a difference; thus, the prefactor indicates how
the solutions probably behave for large times. To prove rigorously that this is true is the aim of Sections
4 and 5.

DOI 10.20347/WIAS.PREPRINT.3008 Berlin 2023
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But already now we can imagine that the exponentially growing factor forces the reaction to equilibrate
for τ → ∞. However, there might still be nontrivial reaction fluxes q = keτ (vβ − uα) for τ → ∞,
which can be seen as the limit of the type “∞ · 0”. As discussed in [MiS23a, MiS23b], the similarity
profile y 7→ U(y) = (U(y), V (y))> has to satisfy the following differential-algebraic system(

0

0

)
=

(
d1U

′′(y)+y
2
U ′(y)

d2V ′′(y)+y
2
V ′(y)

)
+Λ(y)

(
α

−β

)
, U(y)α = V (y)β,

(
U(±∞)

V (±∞)

)
=

(
Aβ±
Aα±

)
. (3.4)

It is possible to eliminate Λ and V = Uα/β algebraically to obtain a nonlinear ODE for U alone,
namely (

βd1U + αd2U
α/β
)′′

+
y

2

(
βU + αUα/β

)′
= 0, with U(±∞) = Aβ±.

In [MiS23a] it is shown that for all (A−, A+) there exists a unique solution U of (3.4).

We call the functions U = (U, V )> similarity profiles and aim to prove that solutions u = (u, v)> to
(3.2)–(3.3) converge towards the profiles in the sense that the relative Boltzmann entropy EB satisfies
the qualitative estimate

EB(u(τ) |U) ≤ C̃ e−ητ EB(u(0) |U) + K̃ e−στ , (3.5)

where the rates η, σ > 0 and the constants C̃, K̃ depend only on the given problem data, but not on
the initial condition u(0). This then implies exponential convergence of EB(u(τ) |U) with exponential
rate min{η, σ} > 0.

In [MiS23a, Lem. 3.2] it is additionally shown that the profiles U = (U, V )> solving (3.4) are mono-
tone, i.e. for A− < A+ one has U ′(y), V ′(y) > 0 for all y ∈ R. As a consequence, we have
U(y) > Aβ− > 0 and V (y) > Aα− > 0 for all y ∈ R so that the relative entropy, where we have the
relative densities ρ = u/U and ζ = v/V in the argument of the Boltzmann function, is well-defined.

3.2 Suitable split of dissipation

Let us recall that the usual procedure is to take a relative entropy Eφ and to show that it fulfills for all
times the so-called entropy-dissipation relation

d

dτ
Eφ(u |U) = −Dφ(u) ≤ 0

for a non-negative dissipation functional Dφ. In our case, we cannot expect the monotonicity of the
mapping τ 7→ Eφ(u(τ) |U) as it is posed on the whole space and U is not a true steady state.
This is in contrast to [DeF06, DeF07, BJ∗14, Mie17], where the unscaled system (3.1) is studied on
bounded domains and where exact steady states exist. However, in Sections 4 and 5 we will prove
that the entropy-dissipation relation is correct up to exponentially decaying terms, see (1.5) or Lemma
3.3.

Let us take the relative Boltzmann entropy

EB(u |U) =

∫
R

(
λB(ρ)U + λB(ζ)V

)
dy where ρ :=

u

U
and ζ :=

v

V
,

as it goes hand in hand with the mass-action kinetics.

The aim of this section is first to derive the dissipation functional DB that fulfills

d

dτ
EB(u |U) =: −DB(ρ, ζ), (3.6)
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Convergence to self-similar profiles in RDS 9

and second to find a suitable partition of it in good and problematic terms, which is useful since DB

has – as we already suspect – no fixed sign in our setting. Thus, we will examine the terms of which it
consists in an appropriate way. Note that we will write the dissipation terms as functions of the relative
densities ρ = u/U and ζ = v/V , whereas we keep the relative entropy in standard form in terms of
u = (u, v)>.

Proposition 3.1 The dissipation DB fulfilling (3.6) can be decomposed as

DB(ρ, ζ) = IFisher(ρ, ζ) +
1

2
EB(u |U)− IΛ(ρ, ζ) + eτ Dreact(ρ, ζ),

where Dreact(ρ, ζ) :=
∫
R kU

αΓ(ρα, ζβ) dy ≥ 0 is the reactive dissipation and IFisher(ρ, ζ) :=∫
R d1Uλ

′′
B(ρ)ρ2

y + d2V λ
′′
B(ζ)ζ2

y dy ≥ 0 is known as the Fisher information. The bonus term 1
2
EB

stems from the transport term y
2
∂yu, and the remaining term

IΛ(ρ, ζ) :=

∫
R

(
(1−ρ)α− (1−ζ)β

)
Λdy, (3.7)

arises because of the Lagrange multiplier Λ which features in the profile equation (3.4). This term is
called the mixed term, because it is the only addend without sign.

Proof. Take the relative Boltzmann entropy EB given by the functional

EB(u |U) =

∫
R
UλB(ρ) + V λB(ζ)dy.

The relative densities ρ(τ, y) := u(τ, y)/U(y) and ζ(τ, y) := v(τ, y)/V (y) satisfy

Uρτ = d1

(
Uρyy + 2U ′ρy + U ′′ρ

)
+
y

2

(
Uρy + U ′ρ

)
+ αkeτUα(ζβ−ρα),

V ζτ = d2

(
V ζyy + 2V ′ζy + V ′′ζ

)
+
y

2

(
V ζy + V ′ζ

)
− βkeτV β(ζβ−ρα).

Thus, computing the time derivative of the relative entropy yields

d

dτ
EB(u |U) =

∫
R
Uλ′B(ρ)ρτ + V λ′B(ζ)ζτ dy

=

∫
R
λ′B(ρ)

{
d1

(
Uρyy + 2U ′ρy + U ′′ρ

)
+
y

2

(
Uρy + U ′ρ

)}
dy

+

∫
R
λ′B(ζ)

{
d2

(
V ζyy + 2V ′ζy + V ′′ζ

)
+
y

2

(
V ζy + V ′ζ

)}
dy

− eτ
∫
R
kUα

(
βλ′B(ζ)− αλ′B(ρ)

)
(ζβ−ρα)dy

=: −Ddiff(ρ, ζ)− eτDreact(ρ, ζ),

where we used the relation Uα = V β to simplify the reaction terms. Let us consider the reactive
dissipation first. We can use the logarithmic identities to obtain a sign for Dreact. It holds

Dreact(ρ, ζ) :=

∫
R
kUα

(
βλ′B(ζ)− αλ′B(ρ)

)
(ζβ−ρα)dy =

∫
R
kUαΓ(ρα, ζβ)dy ≥ 0,
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A. Mielke, S. Schindler 10

where Γ is defined in (1.4). Next, we explore the remaining diffusive dissipation Ddiff . We re-sort and
obtain

Ddiff(ρ, ζ) = −
∫
R
d1Uλ

′
B(ρ)ρyy + d2V λ

′
B(ζ)ζyy dy

−
∫
R
λ′B(ρ)ρ

(
d1U

′′ +
y

2
U ′
)

+ λ′B(ζ)ζ
(
d2V

′′ +
y

2
V ′
)

dy

−
∫
R
λ′B(ρ)ρy

(
2d1U

′ +
y

2
U
)

+ λ′B(ζ)ζy
(
2d2V

′ +
y

2
V
)

dy.

In the same manner as for the scaled diffusion equation, the idea is to integrate by parts twice. For
the boundary terms, we use the limits ρ(y) → 1 and ζ(y) → 1 for y → ±∞ and the property
λ′B(1) = 0. The first integral addend leads to the Fisher information

IFisher(ρ, ζ) :=

∫
R
d1Uλ

′′
B(ρ)ρ2

y + d2V λ
′′
B(ζ)ζ2

y dy ≥ 0.

Hence, we obtain

Ddiff(ρ, ζ) = IFisher(ρ, ζ)−
∫
R
λ′B(ρ)ρ

(
d1U

′′ +
y

2
U ′
)

+ λ′B(ζ)ζ
(
d2V

′′ +
y

2
V ′
)

dy

−
∫
R
λ′B(ρ)ρy

(
(2d1−d1)U ′ +

y

2
U
)

+ λ′B(ζ)ζy
(
(2d2−d2)V ′ +

y

2
V
)
.

In the last line, we see the total derivatives of λB(ρ) and λB(ζ), respectively. Thus, integration by
parts of these integral terms yields the factors d1U

′′ + y
2
U ′ + 1

2
U = −αΛ + 1

2
U and d2V

′′ +
y
2
V ′ + 1

2
V = βΛ + 1

2
V , respectively, where we used the profile equation (3.4). Using additionally

λ′B(ρ)ρ−λB(ρ) = ρ−1 we arrive at

Ddiff(ρ, ζ) = IFisher(ρ, ζ) +
1

2
EB(u |U)−

∫
R

(
(1−ρ)αΛ− (1−ζ)βΛ

)
dy

= IFisher(ρ, ζ) +
1

2
EB(u |U)− IΛ(ρ, ζ),

which verifies the desired decomposition.

In the proof of Proposition 3.1, we saw that due to the mass-action kinetics, the relative Boltzmann
function φ = λB is the only choice for the given reaction-diffusion system if α 6= β in order to obtain a
sign for the reactive dissipationDreact. However, if α = β, also other entropy functions can be chosen.
A common family of entropy functions is given by

Fp(z) :=


1

p(p−1)

(
zp − pz + p− 1

)
for p ∈ R \ {0, 1},

z log z − z + 1 for p = 1,

z − log z − 1 for p = 0,

(3.8)

which is determined by the conditions F ′′p (z) = zp−2 and Fp(1) = F ′p(1) = 0. Further, it satisfies
the following lower bounds:

For all p ∈ (0, 1) and z > 0 : Fp(z) ≥ 1

p
F1(z) =

1

p
λB(z), (3.9a)

for all p > 0 and z > 0 : Fp(z) ≥ 1/2

max{p, 1−p}
F1/2(z), (3.9b)
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Convergence to self-similar profiles in RDS 11

see [MiM18, Eqn. (3.2)]. In fact, using this family of entropies in the case α = β leads to improved
estimates as we will see in Section 4.2. But also in Section 5, where for α 6= β the convergence of
the relative Boltzmann entropy is studied, the family of entropy functions (3.8) is used, but in this case
only for technical reasons during the estimates.

We can define the relative entropy associated to the function Fp by

Ep(u(τ) |U) :=

∫
R
U(y)Fp(ρ(y)) + V (y)Fp(ζ(y))dy where ρ := u/U and ζ := v/V,

such that E1 = EB. The entropy E1/2 is special because F1/2(u/U)U = 2
(√

u−
√
U
)2

. Hence we
have ∫

R
F1/2(u/U)U dy = 2

∥∥√u−√U‖2
L2 =: 2He(u, U)2,

where He denotes the Hellinger distance between two (densities of) non-negative measures. Using
(3.9a) we see that the Hellinger distance between u = (u, v)> and U = (U, V )> can be controlled
by Ep for all p > 0. Indeed we have

He(u, U)2 + He(v, V )2 =
1

2
E1/2(u |U) ≤ max{p, 1−p}Ep(u |U). (3.10)

As last part of this section, we will derive the corresponding dissipation functional Dp which fulfills

d

dτ
Ep(u(τ) |U) = −Dp(ρ, ζ)

and clarify the terms of which it consists. Notice that the following is only true if the stoichiometric
coefficients coincide.

Proposition 3.2 Let α = β and p 6∈ {0, 1}. The dissipation functional Dp fulfilling the above can be
written as

Dp(ρ, ζ) = Ip,Fisher(ρ, ζ) +
1

2
Ep(u |U)− Ip,Λ(ρ, ζ) + eτDp,react(ρ, ζ),

where Dp,react(ρ, ζ) :=
∫
R kU

α α
p−1

(ζp−1−ρp−1)(ζα−ρα) dy ≥ 0 is the reactive dissipation, the

Fisher information takes the form Ip,Fisher(ρ, ζ) :=
∫
R d1Uρ

p−2ρ2
y + d2V ζ

p−2ζ2
y dy ≥ 0, and the

mixed term, given by

Ip,Λ(ρ, ζ) :=

∫
R

1

p

(
ζp−ρp

)
αΛdy

is again the only addend without sign.

Proof. Following the steps of the proof of Proposition 3.1 and using α = β yields

d

dτ
Ep(u |U) = −Dp,diff(ρ, ζ)− eτDp,react(ρ, ζ),

where the reactive dissipation takes the form

Dp,react(ρ, ζ) =

∫
R
kUαα

(
F ′p(ζ)− F ′p(ρ)

)
(ζα−ρα)dy

=

∫
R
kUα α

p−1
(ζp−1−ρp−1)(ζα−ρα)dy ≥ 0,
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A. Mielke, S. Schindler 12

and where for the diffusive part a similar integration by parts gives

Dp,diff(ρ, ζ) = Ip,Fisher(ρ, ζ) +
1

2
Ep(u |U)

−
∫
R

(
F ′p(ρ)ρ− Fp(ρ)

)(
d1U

′′ +
y

2
U ′
)

+
(
F ′p(ζ)ζ − Fp(ζ)

)(
d2V

′′ +
y

2
V ′
)

dy

= Ip,Fisher(ρ, ζ) +
1

2
Ep(u |U)−

∫
R

((
F ′p(ζ)ζ − Fp(ζ)

)
−
(
F ′p(ρ)ρ− Fp(ρ)

))
αΛdy,

since α = β. Further, with F ′p(ρ)ρ− Fp(ρ) = 1
p
(ρp−1), this leads to

Dp,diff(ρ, ζ) = Ip,Fisher(ρ, ζ) +
1

2
Ep(u |U)−

∫
R

1

p
(ζp−ρp)αΛdy.

3.3 Decay estimates

After deriving the entropy-dissipation relation (3.6), the next step requires to find a so-called entropy-
dissipation estimate, that is an estimate of the formDφ(u) ≥ Ψ(Eφ(u)) for a non-negative function Ψ.
Under appropriate assumptions on Ψ, this usually gives exponential convergence to the equilibrium,
where for specific Ψ the rate can be estimated explicitly. For instance, if one even obtains the inequality
Dφ(u) ≥ η Eφ(u) for a positive constant η, one can easily see that η is exactly the desired rate by
using Grönwall’s inequality. Since the dissipation functional Dφ from Proposition 3.1 has no fixed sign
due to the mixed term, these bounds above can scarcely be expected for the given problem. But in fact,
the nonnegativity for all times is not a necessary assumption to obtain convergence. If a dissipation
functional without sign can be estimated by

Dφ(u) ≥ η Eφ(u)−Ke−γτ , (3.11)

for example, with γ > 0 and K ≥ 0, then this will still yield convergence with a rate that is the
minimum of η and γ (see Lemma 3.3 below for the precise statement). The non-negative function
τ 7→ Ke−γτ can be interpreted then as an upper bound for the relative entropy for not being a true
Lyapunov function. Since the function decays exponentially in time, this error is well-behaved when
time is large enough. We will see later that in some cases, namely for the stoichiometric coefficients
fulfilling α, β ≥ 2, the inequality (3.11) is exactly what we will prove for the given dissipation DB from
Proposition 3.1. In the other case for α, β ∈ [1, 2), we need the following more general statement.

Lemma 3.3 Let E : [0,∞) → R ∪ {∞} be a function satisfying E(0) < ∞ and the ordinary
differential inequality

d

dτ
E(τ) ≤ −(η−µe−τ )E(τ) +Ke−γτ

for η, γ > 0 and K,µ ≥ 0. Then we have E(τ) <∞ for all τ > 0 and

E(τ) ≤ e−ητ+µ
(
E(0) +R(τ)

)
with R(τ) := K

∫ τ

0

e(η−γ)sds.

Calculating the function R gives E(τ) ≤ e−min{η,γ}τ+µ
(
E(0) + 2K|η − γ|−1

)
if η 6= γ and

E(τ) ≤ e−ητ+µ
(
E(0) +Kτ

)
in the case η = γ.

The proof of this lemma can be found in the appendix. We see that this weaker version of an entropy-
dissipation estimate is enough to obtain the desired convergence (3.5). In the following sections this
differential inequality is exactly what we want to derive for the relative entropy as a function of time.
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Convergence to self-similar profiles in RDS 13

4 Convergence for the special case α = β

Let us begin with considering the special case α = β ≥ 1. That is, we study the solutions u =
(u, v)> of the reaction-diffusion system

uτ = d1uyy +
y

2
uy + eταk(vα−uα),

vτ = d2vyy +
y

2
vy − eταk(vα−uα)

(4.1)

together with continuous initial data u0 = (u(0), v(0))> fulfilling the asymptotic boundary conditions

u0(±∞) = (Aα±, A
α
±)>. (4.2)

In this special case, the mixed term IΛ from (3.7) simplifies significantly, namely

IΛ(ρ, ζ) =

∫
R

(
ζ − ρ

)
αΛdy.

The main point is that Dreact is able to control ζ−ρ through the term Γ(ρα, ζα), which will be part of
Section 4.1, where we focus on the Boltzmann entropy. Afterwards, in Section 4.2, we will allow more
general entropy functions and aim to control Ip,Λ with Dp,react from Proposition 3.2 in a similar way.

Another much less important point is that the profile equation (3.4) simplifies also significantly, such
that U, V , and Λ can be solved explicitly. Indeed, by inserting α = β one can see that the profile
U = (U, V )> is characterized by solving the linear ODE

d1+d2

2
U ′′(y) +

y

2
U ′(y) = 0 with U(±∞) = Aα±,

V (y) = U(y) and Λ =
d2−d1

2α
U ′′(y).

(4.3)

This means that U is of error-function type like the profile (2.2) for the linear diffusion equation, but
with respect to the average of the diffusivities (d1+d2)/2. However, we do not need this outcome in
the following calculations; thus, we do not close the door for further generalizations as this is not true
if α 6= β. The aim of this section is twofold: in Section 4.1 we show exponential convergence for the
case of the relative Boltzmann entropy EB, and in Section 4.2 we show that in this case estimates
with different relative entropies are possible and even more advantageous. In both cases, the result is
obtained by proving a suitable bound for the dissipation functional, like inequality (3.11).

4.1 The case α = β ≥ 1 with Boltzmann entropy

Here we restrict to the case that φ is given by the Boltzmann function λB(z) = z log z− z+ 1, which
is intrinsically linked to reaction diffusion systems, see e.g. [DeF06, Mie11] and the recent justification
via Large Deviation principles in [MPR14, MP∗17, Mit18].

Our convergence result reads as follows.

Theorem 4.1 (Convergence for α = β ≥ 1 with Boltzmann entropy) Consider the relative Boltz-
mann entropy E(τ) := EB(u(τ) |U) for the unique similarity profile U that solves (4.3). Then, for
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all solutions u of the scaled system (4.1) with E(0) < ∞, the following differential inequalities are
satisfied:

For α = 1, it holds Ė(τ) ≤ −
(1

2
− µ0e−τ

)
E(τ) +K0 e−τ for all τ > 0, (4.4a)

for 1 < α < 2, we have Ė(τ) ≤ −
(1

2
− µ1e−τ

)
E(τ) +K1 e−τ for all τ > 0, (4.4b)

and if α ≥ 2, then Ė(τ) ≤ −1

2
E(τ) +K2 e−τ/(α−1) for all τ > 0, (4.4c)

where all constants µ0, µ1, K0, K1, and K2 only depend on the problem data and are precisely
defined in Lemmas 4.5, 4.7, and 4.8, respectively.

Here we provide estimates for the relative Boltzmann entropy EB = E1 only and refer to Theorem 4.10
and Corollary 4.11 for relative entropies Ep(u|U).

Notice that all constants above are explicit and depend only on the given data and not on the solutions.
The proof of this result relies on a series of lemmas and will be completed at the end of this section.
We will see that the essential step in the case α = β is to use that IΛ can be written as a function
of ρ − ζ and hence can be controlled by Dreact alone. This simplifies the analysis and gives better
convergence results. In particular, we do not need additional assumptions on the similarity profile U,
as will be needed in Section 5. We start by summarizing our results on the mixed term discussed
above.

Lemma 4.2 In the case α = β, the mixed term from Proposition 3.1 reduces to

IΛ(ρ, ζ) =

∫
R

(
ζ(y)−ρ(y)

)
αΛ(y)dy, where Λ(y) =

d2−d1

2α
U ′′(y).

Notice that the simplified mixed term IΛ vanishes if we have equal diffusivities d1 = d2 as then Λ ≡ 0.
This means that in the very special case where additionally to α = β also the diffusivities coincide,
EB is a true Lyapunov function, and we have an explicit decay rate through the bonus factor 1/2.

Corollary 4.3 In addition to the assumptions of Theorem 4.1, assume d1 = d2 and α = β ≥ 1.
Then, we obtain exponential convergence of all solutions u to the profile U:

EB(u(τ) |U) ≤ e−τ/2 EB(u(0) |U) for τ > 0.

Let us continue with two diffusivities d1, d2 > 0 that do not coincide in general. At first, the dissipation
functional can naively be estimated by omitting the Fisher information

DB(ρ, ζ) ≥ 1

2
EB(u |U)− IΛ(ρ, ζ) + eτ Dreact(ρ, ζ).

Since we have the bonus factor, we are not dependent on exploiting the Fisher information in order to
obtain a qualitative convergence result. Most often, estimation of the Fisher information, for example
by using the Logarithmic Sobolev inequalities, leads to the fact that the dissipation functional can be
bounded in terms of the relative entropy. Thanks to the parabolic scaling, the corresponding term is
1
2
EB(u|U), so we can drop the Fisher information, in contrast to [Grö83, DeF06, Mie17, MiM18],

where the unscaled system (3.1) is studied on bounded domains. Even more, the fact that we can
consider unbounded domains at all is precisely due to the scaling and the resulting bonus factor.
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Convergence to self-similar profiles in RDS 15

Nevertheless, it might be possible to improve the estimates if the Fisher information can be used. But
in contrast to bounded domains, it seems to be much more complicated on the unbounded domain R.
And to the authors’ best knowledge no way is found until now.

The idea is now to control the mixed term with the reactive dissipation and its useful prefactor eτ . As
mentioned earlier, the simple structure of the mixed term in Proposition 4.2 makes it easier to bound
the dissipation functional from below. Indeed, Lemma 4.2 implies

IΛ(ρ, ζ)− eτDreact(ρ, ζ) =

∫
R
(ζ−ρ)αΛdy − eτ

∫
R
kUαΓ(ρα, ζα)dy

=

∫
R
ρ
(ζ
ρ
−1
)
αΛ− eτk(ρU)α

(ζα
ρα
−1
)

log(ζα/ρα)dy.

Next, we set z := ζ
ρ
− 1 as a new auxiliary variable and define, for α ≥ 1, the following family of

functions

Φα(z) :=

{(
(z+1)α−1

)
log
(
(z+1)α

)
for z > −1,

+∞ for z ≤ −1.
(4.5)

Note that for all τ > 0 and y ∈ R, we have z > −1. We only need to extend Φα for technical
reasons. This leads to

IΛ(ρ, ζ)− eτDreact(ρ, ζ) =

∫
R
αΛρz − eτk(ρU)αΦα(z)dy.

With respect to the auxiliary variable z, the integrand can be seen as the difference of a linear term
and the function Φα. Remember that for a (not necessarily convex) function Φ, its Legendre transform
Φ∗ is defined as Φ∗(ξ) := supz

{
〈ξ, z〉 − Φ(z)

}
. Thus, we obtain

IΛ(ρ, ζ)− eτDreact(ρ, ζ) ≤
∫
R

eτ k (ρU)α Φ∗α

( αΛ

kUα
ρ1−αe−τ

)
dy

=

∫
R

eτ k (ρU)α Φ∗α

(
Λ̃ρ1−αe−τ

)
dy with Λ̃(y) :=

αΛ(y)

kUα(y)
=

(d2−d1)

2k

U ′′(y)

U(y)α
. (4.6)

Unfortunately, the Legendre transform Φ∗α cannot be calculated explicitly, but a suitable estimate of
Φ∗α from above is sufficient to continue with (4.6). For this, we have the following auxiliary result, which
is proved in Appendix A.

Lemma 4.4 Consider for α ≥ 1 the function Φα defined in (4.5). Its Legendre transform Φ∗α satisfies,

for all ξ ∈ R, the following estimates, where c̃α =
(

2
α2

)1/(α−1) α−1
α

:

1 For α = 1 we have Φ∗1(ξ) ≤ eξ − ξ − 1;

2 for α ∈ (1, 2] it holds Φ∗α(ξ) ≤ max
{
c̃α |ξ|α/(α−1), 1

2α
ξ2
}

;

3 and if α ≥ 2 then Φ∗α(ξ) ≤ c̃α |ξ|α/(α−1).

Moreover, for all α ≥ 1 we have Φ∗α(ξ) ≤ 1
2α
ξ2 for |ξ| ≤ α.

The bounds on the Legendre transform Φ∗α will help us to find a bound for the dissipation functional.
We start with the mathematically easier case α = β ≥ 2. In this case the dissipation functional fulfills
the estimate (3.11), which is the inequality from Lemma 3.3 with µ = 0. The other case α ∈ [1, 2)
will be treated afterwards.
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Lemma 4.5 Let α = β ≥ 2. The dissipation functional DB from Proposition 3.1 can be bounded
from below by

IΛ(ρ, ζ)− eτDreact(ρ, ζ) ≤ K2 e−τ/(α−1) for K2 :=
c̃α

k1/(α−1)

∫
R

∣∣∣αΛ(y)

U(y)

∣∣∣α/(α−1)

dy <∞

with c̃α from Lemma 4.4.

Proof. We start from estimate (4.6) and insert the upper estimate for Φ∗α from Lemma 4.4 (case
α ≥ 2) to arrive at

IΛ(ρ, ζ)− eτDreact(ρ, ζ) ≤ eτk

∫
Ω

(ρU)α c̃α

∣∣∣Λ̃ ρ1−αe−τ
∣∣∣α/(α−1)

dy

= e−τ/(α−1) c̃α
k1/(α−1)

∫ ∣∣∣αΛ(y)

U(y)

∣∣∣α/(α−1)

dy = K2 e−τ/(α−1).

The dependence on ρ is exactly canceled out, such that the assertion is established.

Although we certainly lose some optimality in estimating the function Φ∗α, we see that we get a prof-
itably bound. Estimating by a function with exponent α/(α−1) is the only choice that leads to a
uniform bound for all solutions, because only then ρ cancels out. However, we obtain a decay rate
e−τ/(α−1) only, which is not really optimal in terms of decay for τ → ∞ as is shown in the following
remark. But it has the advantage that it is valid globally, i.e. for all solutions.

Remark 4.6 (Improved decay rate) Using the exponential convergence of u = ρU to U (with the
smaller decay rate from above) and parabolic regularity theory (involving the term IFisher dropped so
far), it is possible to show that ρ(τ, y) ∈ [c, c] for all y ∈ R and τ ≥ τ1, where 0 < c < 1 < c <∞
and τ1 may depend on ρ. Thus, we can use the better quadratic estimate 1

2α
ξ2 for Φ∗α(ξ) for |ξ| ≤ α,

see the end of Lemma 4.4. Setting τ2 = log
(
‖Λ̃‖∞/(αcα−1)

)
we obtain for τ ≥ max{τ1, τ2} the

better decay estimate

IΛ(ρ, ζ)− eτDreact(ρ, ζ) ≤ eτk

∫
Ω

(ρU)α

2α

∣∣∣Λ̃ e−τ

ρα−1

∣∣∣2 dy ≤ e−τ
α

2 k

cα

cα1

∫
Λ(y)2U(y)α−2 dy.

Another way of deriving the optimal decay like e−τ/2 is given in Corollary 4.11, where EB = E1 is
replaced by the higher order entropies Ep with p = α−1, see estimate (4.10a).

With Lemma 3.3, we identified a bound for the dissipation functional that still yields the desired conver-
gence although its sign is not necessarily non-negative for all times. In the previous proof, we obtained
the estimate (4.4) with µj = 0. Next, we study the cases α = β ∈ (1, 2) and α = β = 1 and will see
that the additional term µje

−τ will appear then. That is because there will be some terms containing
ρ that cannot be estimated uniformly, so they need to be estimated by the relative entropy.

Lemma 4.7 Let α = β ∈ (1, 2). Then for all times τ > 0 the dissipation functional DB can be
bounded from below by

IΛ(ρ, ζ)− eτDreact(ρ, ζ) ≤ µ1 e−τEB(u |U) +K1 e−τ ,

where the constants µ1 and K1 are given by

µ1 =
1

k

∥∥∥α2Λ2

U3−α

∥∥∥
L∞

and K1 =

∫
R

( α2Λ2

kU2−α +
c̃α

k1/(α−1)

∣∣∣αΛ

U

∣∣∣α/(α−1))
dy.
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Convergence to self-similar profiles in RDS 17

Proof. We again start with the estimate (4.6) and insert the upper estimate for Φ∗α as derived in Lemma
4.4, where we estimate max{a, b} ≤ a+ b:

IΛ(ρ, ζ)− eτDreact(ρ, ζ) ≤
∫
R

eτkUαραΦ∗α

(
Λ̃ ρ1−α e−τ

)
dy

≤
∫
R

eτ k (ρU)α
( 1

2α
Λ̃2ρ2−2αe−τ + c̃α

∣∣Λ̃∣∣α/(α−1)
ρ−α e−τα/(α−1)

)
dy

≤ e−τ
∫
R

α2Λ2

k U2−α
ρ2−α

2α
dy + e−τ/(α−1)

∫
R

c̃α
k1/(α−1)

∣∣∣αΛ

U

∣∣∣α/(α−1)

dy.

In the second term we can estimate e−τ/(α−1) ≤ e−τ because of α ∈ (1, 2). In the first term we still
need to estimate ρ2−α where the exponent is less than 1. For this we use ρ2−α/(2α) ≤ λB(ρ) + 1
for ρ ≥ 0 and α ∈ [1, 2] and obtain

IΛ(ρ, ζ)− eτDreact(ρ, ζ) ≤ e−τ
∫
R

( α2Λ2

kU2−α

(
λB(ρ)+1

)
+

c̃α
k1/(α−1)

∣∣∣αΛ

U

∣∣∣α/(α−1))
dy

≤ e−τ
1

k
‖α2Λ2/U3−α‖∞

∫
R
λB(ρ)U dy + e−τ K1,

with K1 as in the assertion. The desired result follows from
∫
R λB(ρ)U dy ≤ EB(u |U).

The remaining case α = β = 1 is important as this linear case relates to the case of Markov semi-
groups. We proceed similarly as above but obtain a rather large bound because Φ∗1 has exponential
growth. A better bound for this case is obtained in Section 4.2.

Lemma 4.8 For α = β = 1 the dissipation functional DB can be bounded from below by

IΛ(ρ, ζ)− eτDreact(ρ, ζ) ≤ µ0 e−τEB(u |U) +K0 e−τ ,

where the constants µ0 and K0 are given in terms of λ∗ :=
∥∥Λ/U

∥∥
L∞

by

µ0 =
(λ∗)2 eλ

∗/k

2k
and K0 =

eλ
∗/k

k

∫
R

α2Λ2

U
dy.

Proof. As before we start from (4.6) and now need to estimate Φ∗1(Λ̃ ρ0 e−τ ). The decisive advantage
is that ρ0 = 1 provides automatically a bound independently of ρ, and the exponential growth does
not harm too much.

Clearly, we have |Λ̃(y)e−τ | ≤ λ∗/k for all τ ≥ 0 and y ∈ R. Using (Φ∗1)′′(ξ) = eξ we obtain the
quadratic upper estimate

Φ∗1(ξ) ≤ eλ
∗/k

2
ξ2 for |ξ| ≤ λ∗/k.

Inserting this into (4.6) first and using ρ ≤ λB(ρ)+2 we find

IΛ(ρ, ζ)−eτDreact(ρ, ζ) ≤
∫
R

eτk(ρU)
eλ
∗/k

2
Λ̃2 e−2τ dy

≤ e−τ
eλ
∗/k

2k

∫
R

(
λB(ρ)+2

)
U
α2Λ2

U2
dy ≤ e−τ µ0 EB(u | U) +K0e−τ ,

which is the desired result.
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The estimate in Lemma 4.8 has rather large constants because of the term eλ
∗/k. Since the linear

case has many applications, in particular as Kolmogorov forward equation for Markov processes, we
provide a better bound in Corollary 4.11. There we replace the Boltzmann entropy EB = E1 by the
relative entropy Ep with p = 1/2, which gives exactly the Hellinger distance, see (3.10).

As we have covered now all the cases α = β ≥ 1 we are now ready to summarize which completes
the proof of our main result.

Proof of Theorem 4.1. Abbreviate the relative Boltzmann entropy byE(τ) := EB(u(τ) |U). At first,
Proposition 3.1 and the nonnegativity of the Fisher information give

d

dτ
E = −DB with DB ≥

1

2
E + eτ Dreact − IΛ.

Since α=β, the mixed term reduces to IΛ(ρ, ζ) =
∫
R

(
ζ−ρ

)
αΛdy. In all three cases for α we have

shown IΛ− eτDreact ≤ µje
−τE(τ) +Kje

−σjτ with µ2 = 0. Inserting this we arrive exactly at (4.4),
and our result is established.

4.2 The case α = β with general entropies

While for the case α 6= β it is really necessary to take the Boltzmann entropy, we have more flexibility
with the choice of entropy functions if α = β. In this section, we choose general entropies which will
improve the results, in particular for the case α = β = 1.

Recall the family of entropy functions Fp introduced in (3.8) and consider p 6∈ {0, 1} so that all the
formulas are well-defined. Of course, it is possible to consider the cases p = 0 and p = 1 by passing
to the limit and use that limp→0

1
p
(ζp−1) = log(ζ).

We can define the relative entropy associated to the function Fp by

Ep(u(τ) |U) :=

∫
R
U(y)Fp(ρ(y)) + V (y)Fp(ζ(y))dy with ρ := u/U and ζ := v/V.

From Proposition 3.2 we know

d

dτ
Ep(u |U) = −Dp(ρ, ζ) ≤ −1

2
Ep(u |U)− eτDp,react(ρ, ζ) + Ip,Λ(ρ, ζ).

Thus, the strategy is to estimate the difference Ip,Λ− eτDp,react, like in the previous section. We have

Ip,Λ(ρ, ζ)− eτDp,react(ρ, ζ) =

∫
R

1

p

(
ζp−ρp

)
αΛ− eτkUα α

p−1
(ζp−1−ρp−1)(ζα−ρα)dy

=

∫
R

1

p
ρp
(ζp
ρp
−1
)
αΛ− eτkUα α

p−1
ρα+p−1

(ζp−1

ρp−1
−1
)(ζα

ρα
−1
)

dy.

Defining z := ζp

ρp
−1 > −1 as an auxiliary variable and the following two-parameter family of functions

Φp,α(z) :=

{
α
p−1

(
(z+1)

p−1
p −1

)(
(z+1)

α
p−1

)
for z > −1,

+∞ for z ≤ −1.
(4.7)

as a generalization of (4.5), this yields

Ip,Λ(ρ, ζ)− eτDp,react(ρ, ζ) ≤
∫
R

1

p
ρp αΛz − eτkUαρα+p−1 Φp,α(z)dy

≤
∫
R

eτkUαρα+p−1 Φ∗p,α
(

1
p
Λ̃ρ1−αe−τ

)
dy with Λ̃(y) :=

αΛ(y)

kUα(y)
=

(d2−d1)

2k

U ′′(y)

U(y)α
. (4.8)
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Convergence to self-similar profiles in RDS 19

From our theory above, we know that it is advantageous to estimate Φp,α from below by a multiple of
z2, because then Φ∗p,α has a quadratic upper bound. Hence, we prepare the following result.

Lemma 4.9 (Quadratic bound for Φ∗p,α) For α > 0 and p ∈
(
0,max{α/2, α−1}

]
we have

M̂p,α := sup
{ α2

4p2

z2

Φp,α(z)

∣∣∣ z ∈ R \ {0}
}
<∞

and the quadratic upper bound Φ∗p,α(ζ) ≤ M̂p,α

(
p
α
ζ
)2

for all ζ ∈ R.

In the given range we always have M̂p,α ≥ 1/4.

For p = 1/2 and α ≥ 1 we have M̂1/2,α ≤ α/2 and M̂1/2,1 = 1/2.

For p > 0 and α = p+1 we have M̂p,p+1 = 1/4.

Proof. We fix a pair (α, p) in the given range and set f(z) = z2/Φp,α(z) for z ∈ (−1, 0) ∪ (0,∞).

We first observe that z 7→ Φp,α(z) behaves like z2 for z ≈ 0. Hence, f is bounded near z = 0.
Moreover, Φp,α is bounded from below on intervals (−1,−1+δ) for small δ. Since Φp,α is analytic
in (−1, 0) and in (0,∞), the same is true for f . Thus, f is bounded on the interval (−1, R) for
all R > 0. To obtain boundedness of f it suffices to study its polynomial growth. Indeed, we have
f(z) ∼ zγ with γ = 2 − max{0, (p−1)/p} − α/p. However, the range for (α, p) was chosen

exactly such that γ ≤ 0, hence M̂p,α is finite.

From Φp,α(z) ≥
(
α
p
z
)2
/(4M̂p,α) we obtain Φ∗p,α(ζ) ≤ M̂p,α

(
p
α
ζ
)2

by the properties of the Fenchel-

Legendre transformation. With Φp,α(z) = α2

p2
z2 + h.o.t., we find M̂p,α ≥ 1/4.

For the two explicit estimates we argue as follows. For p = 1/2 and α ≥ 1 we have for all z > −1
the estimate

Φ1/2,α(z) = 2α
z

z+1

(
(z+1)2α−1

)
≥ 2α

z

z+1

(
(z+1)2−1

)
=

2αz2(z+2)

z+1
≥ 2αz2, (4.9)

where we use (z+1)2α ≥ (z+1)2 for z > 0 and (z+1)2α ≤ (z+1)2 for z < 0. Thus, we have

M̂1/2,α ≤ α/2. Using Φ1/2,α(z) = 4α2z2 +h.o.t., we obtain M̂1/2,α ≥ 1/4. For the case α = 1 we

observe that the first “≥” in (4.9) is an equility, such that Φ1/2,1(z) ≥ 2z2 is optimal, and M̂1/2,1 =
1/2 follows.

For the case α = p+1 > 1 we set λ = 1/p > 0 and w = z+1. For w > 0 we have

Φp,p+1(z) = p+1
p−1

(
w(p−1)/p − 1

)(
w(p+1)/p − 1

)
= (p+1)2

p2
Gλ(w) with Gλ(w) = 1

1−λ2
(
w2 − w1−λ − w1+λ + 1

)
.

Calculating the first three derivatives of Gλ, we find G′′′λ (w) = λ(wλ−2 − w−λ−2) and conclude

G′′λ(w) ≥ G′′λ(1) = 2. This implies Gλ(w) ≥ (w−1)2 and hence Φp,p+1(z) ≥ (p+1)2

p2
z2. This

provides M̂p,p+1 = 1/4, because optimality follows by taking z → 0.

Using this estimate we can now estimate the relative entropies with Fp instead of λB, the technique
being exactly the same as above.
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Theorem 4.10 (Exponential decay of Ep(u(τ))) For α ≥ 1 choose any p > 0 with α−1 ≤ p ≤
max{α/2, α−1} and define the relative entropy Ep(τ) := Ep(u(τ) |U) for the similarity profile
U = (U, V )> satisfying (4.3). Then, all solutions u = (u, v)> of the scaled system (4.1) with
Ep(0) <∞ satisfy the estimate

d

dτ
Ep(τ) ≤ −

(1

2
− µ̃p,αe−τ

)
Ep(τ) + K̃p,αe−τ ,

where the constants µ̃p,α and K̃p,α are given by

for 2 ≤ α = p+ 1 : µ̃α−1,α = 0 and K̃α−1,α =
1

4 k

∫
R

Λ2

Uα
dy,

for 1 ≤ α < 2 : µ̃p,α =
κ

k
M̂p,α

∥∥∥ Λ2

Uα+1

∥∥∥
L∞

and K̃p,α =
1

k
M̂p,α

(
κF ∗p (κ)+1

) ∫
R

Λ2

Uα
dy,

where κ =
√

1+p−α.

Proof. We continue with estimate (4.8) and obtain

Ip,Λ(ρ, ζ)− eτDp,react(ρ, ζ) ≤ e−τ M̂p,α

∫
R
ρ1+p−α Λ2

k Uα
dy.

For α ≥ 2 we have p = α−1, and the integrand is independent of ρ. Hence, the assertion is clear in
this case.

For α ∈ [1, 2) we observe κ =
√

1+p−α ∈ (0, 1] and estimate as follows:

ρ1+p−α = ρκ
2 ≤ κ2ρ+ (1−κ2) ≤ κ

(
κ ρ
)

+ 1 ≤ κ
(
Fp(ρ) + F ∗p (κ)

)
+ 1.

With this we find

Ip,Λ(ρ, ζ)− eτDp,react(ρ, ζ) ≤ e−τ
M̂p,α

k

(
κ
∥∥ Λ2

Uα+1

∥∥
L∞
Ep(u) +

(
κF ∗p (κ)+1

) ∫
R

Λ2

Uα
dy

)
,

which gives the desired result for α ∈ [1, 2).

The following corollary provides some natural consequences of the above result. First, we show that
for α ≥ 3 we again have exponential decay like e−τ/2 if we use the relative entropy Eα−1(u|U). This
improves the result in Theorem 4.1, where E1 = EB only decays like e−τ/(α−1). Second, we show that
for the linear case with α = 1 we can significantly improve the constants µ0 and K0 in Lemma 4.8 by
using E1/2 instead of E1 = EB.

Corollary 4.11 (Decay of Ep for α = β) We have the following estimates:

For α ≥ 2 :
d

dτ
Eα−1(u|U) ≤ −1

2
Eα−1(u|U) + e−τ

∫
R

Λ2

4k Uα
dy, (4.10a)

for α = 1 :
d

dτ
E1/2(u|U) ≤ −

(1

2
− µ̃∗

)
E1/2(u|U) + e−τ

∫
R

11+
√

2

14 k

Λ2

U
dy, (4.10b)

where µ̃∗ =
∥∥Λ/U

∥∥2

L∞
/(k
√

8).

Proof. The estimate in (4.10a) is a simple rewriting of the corresponding case in Theorem 4.10. The
second estimate in (4.10b) follows similarly from the case α = 1 and p = 1/2 by observing κ =√

1 + p− α = 1/
√

2 and F ∗1/2(ζ) = 2ζ/(2−ζ).
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5 Convergence for the case α > β ≥ 1

In this section, we consider the case α 6= β. Without loss of generality, we assume that α > β.
We aim to show that solutions to the Cauchy problem (3.2),(3.3) converge to the similarity profile
U = (U, V )> characterized by the equations (3.4), but in contrast to the special case α = β, there
is no meaningful possibility to simplify the mixed term IΛ(ρ, ζ) =

∫
R

(
(ζ−1)β−(ρ−1)α

)
Λ dy. Let

us recall that in this general setting, Λ is given as

Λ =
1

β
(d2V

′′ +
y

2
V ′) = − 1

α
(d1U

′′ +
y

2
U ′),

where the last equality follows by (3.4). As in Section 4.1, we need to control the mixed term IΛ in
order to estimate the dissipation functionalDB from Proposition 3.1. The difference to the case α = β
is that the mixed term IΛ cannot be estimated with the reactive dissipation term−eτDreact alone, but
we need to steal parts of the bonus factor 1/2. More precisely, we do the following

IΛ(ρ, ζ) =

∫
R

(
(ζ−1)β−(ρ−1)α

)
Λdy

=

∫
R

(
Ψ(ζβ)−Ψ(ρα)

)
Λdy +

∫
R

((
ζ−1− 1

β
Ψ(ζβ)

)
β −

(
ρ−1− 1

α
Ψ(ρα)

)
α
)

Λdy

=: IΛ,1(ρ, ζ) + IΛ,2(ρ, ζ) (5.1)

for a suitable function Ψ that will be selected below. That is, we split the mixed term into the two terms
IΛ,1 and IΛ,2 with the strategy to estimate them separately in the following way:

1 We aim to control the integral term IΛ,1 with−eτDreact in a similar way as it is done in Section
4.

2 The integral term IΛ,2 will be estimated exploiting −1
2
EB. To this end, we need to choose the

function Ψ in such a way that we can globally estimate

α
∣∣ρ−1− 1

α
Ψ(ρα)

∣∣ ≤ CαλB(ρ) and β
∣∣ζ−1− 1

β
Ψ(ζβ)

∣∣ ≤ CβλB(ζ), (5.2)

for constants Cα, Cβ ≥ 0. Further, the profile functions U and V have to satisfy Λ/U ∈
L∞(R) and Λ/V ∈ L∞(R). Even more, we need

max
{
Cα‖Λ/U‖∞, Cβ‖Λ/V ‖∞

}
< 1/2,

where 1/2 is the bonus factor. This can be achieved if A− and A+ are close enough to each
other so that the profiles are flat and hence ‖Λ‖∞ is small enough, we refer to [MiS23a,
Rem. 5.1].

The considerations above lead to the function

Ψ(r) := max{α, β}(r1/max{α,β}−1) = α(r1/α−1).

First, it satisfies Ψ(1) = 0 and Ψ′(1) = 1 for all α, which is a necessary condition for the inequalities
(5.2). Second, it allows us to use the same technique with the Legendre transform in order to control
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Ψ(ζβ)−Ψ(ρα) through Γ(ρα, ζβ), as we will see later. Let us start considering point 2. If we insert
the ansatz for Ψ, we obtain

α
∣∣ρ−1− 1

α
Ψ(ρα)

∣∣ ≡ 0 and β
∣∣ζ−1− 1

β
Ψ(ζβ)

∣∣ =
(
β−β

2

α

)
Fβ/α(ζ) ≤ (α−β)λB(ζ),

where Fβ/α denotes the entropy function defined in (3.8) for p = β/α so that we can use the property
Fp(z) ≤ 1

p
F1(z) = 1

p
λB(z), see (3.9a). With this, the following lemma is established.

Lemma 5.1 For all α > β ≥ 1, the second addend IΛ,2 of the mixed term IΛ can be bounded by

IΛ,2(ρ, ζ) ≤ θ EB(u |U), with θ = (α−β) ‖Λ/V ‖∞.

After the preliminary considerations, we can formulate the main theorem of this section.

Theorem 5.2 (Convergence for α > β ≥ 1) Consider the relative Boltzmann entropy E(τ) := EB

(u(τ) |U) for the unique similarity profile U = (U, V )> which is characterized by (3.4). Assume
further that |A−−A+| is small enough such that

θ := (α−β) ‖Λ/V ‖∞ < 1/2.

Then, for all solutions u = (u, v)> of the Cauchy problem (3.2),(3.3) with finite initial entropy E(0) <
∞, the following differential inequalities hold true:

For α ∈ (1, 2), it holds Ė(τ) ≤ −
(1

2
−θ−µ1e−τ

)
E(τ) +K1 e−τ for all τ > 0, (5.3a)

and if α ≥ 2, then Ė(τ) ≤ −
(1

2
−θ
)
E(τ) +K2 e−τ/(α−1) for all τ > 0, (5.3b)

where µ1, K1 and K2 were already defined in Section 4.1, in Lemma 4.5 and 4.7, respectively.

The proof can be found at the end of this section. Notice that the case α = 1 does not occur since
α > β ≥ 1. Moreover, we see that we obtain here the same constants µ1, K1 and K2 as in the
special case α = β. But one has to be careful, the constants only coincide if Λ is given in its general
form, namely Λ = 1

β
(d2V

′′+ y
2
V ′) = − 1

α
(d1U

′′+ y
2
U ′), while in Section 4 there is the possibility to

simplify Λ due to α = β and U = V .

The fact that they coincide, up to the possible simplification of Λ, already indicates that we can trace a
part of the proof back to what we already did in Section 4. In the following, we will find out how it works
explicitly.

Thus, we turn our attention to point 1 of our strategy. Luckily, we will see that the function Ψ(r) =
α
(
r1/α−1

)
is a well-working function for estimating IΛ,1 as well. We aim to estimate the difference

IΛ,1 − eτDreact in a suitable way. It holds

IΛ,1(ρ, ζ)− eτDreact(ρ, ζ) =

∫
R

(
Ψ(ζβ)−Ψ(ρα)

)
Λ− eτkUαΓ(ρα, ζβ)dy

=

∫
R
αρ
(ζβ/α

ρ
−1
)

Λ− eτkUαρα
(ζβ
ρα
−1
)

log(ζβ/ρα)dy.
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Next, we take the very same function Φα defined in (4.5). However, in this general case we have to

define z := ζβ/α

ρ
− 1 to ensure everything fits together. This yields

IΛ,1(ρ, ζ)− eτDreact(ρ, ζ) =

∫
R
αρΛz − eτ k(Uρ)α Φα(z)dy

≤
∫
R

eτ k(Uρ)α Φ∗α

(
Λ̃ρ1−αe−τ

)
dy, with Λ̃ :=

αΛ

kUα
= −

d1U
′′ + y

2
U ′

kUα
. (5.4)

Comparing this estimate above with that from Section 4, we realize that we end up with the same
inequality like in (4.6), with the only difference that Λ is in its general setting. With this, we can easily
proof the following by replicating the steps of Lemma 4.7 and 4.8.

Lemma 5.3 Under the assumptions of Theorem 5.2, for the inequality (5.4) the following bounds from
below hold true for all τ > 0:

For α ∈ (1, 2), we have IΛ,1 − eτDreact ≤ µ1e−τEB(u |U) +K1 e−τ (5.5a)

and for α ≥ 2, it holds IΛ,1 − eτDreact ≤ K2 e−τ/(α−1), (5.5b)

with µ1, K1 and K2 precisely defined in Lemma 4.7 and 4.8, respectively.

We are now ready to prove the main theorem of this section.
Proof of Theorem 5.2. Denote the relative Boltzmann entropy by E(τ) := EB(u(τ) |U) and use
Proposition 3.1 together with the nonnegativity of the Fisher information which yield

d

dτ
E = −DB with DB ≥

1

2
E + eτ Dreact − IΛ.

In this general setting, the mixed term is given by IΛ(ρ, ζ) =
∫
R

(
(ζ−1)β−(ρ−1)α

)
Λ dy. So, in

(5.1) we split IΛ into IΛ,1 and IΛ,2 and estimated both addends separately. First, using Lemma 5.1
yields IΛ,2 ≤ θ E(τ) for all α > β ≥ 1. Second, Lemma 5.3 provides in both cases α ∈ (1, 2)
and α ≥ 2 that IΛ,1 − eτ Dreact ≤ µje

−τE(τ) + Kje
−σjτ for j = 1, 2, with µ2 = 0. Inserting all

estimates, we obtain (5.3) as claimed.

This proof concludes the section and therefore also completes the new results we can formulate on the
convergence towards similarity profiles. Through this, it provides a qualitative statement on the long-
time behavior of solutions to the given reaction-diffusion system under the difficulty of considering the
whole space, i.e. unbounded domains, and infinite mass. In the current paper, new approaches are
used which allow to treat these difficulties. In particular, this means the transformation of the system
into parabolic scaling variables, which generates the bonus factor d/2 and thus allows the energy-
dissipation estimates (of Boltzmann type), that are well-studied on bounded domains, to be applied
to the whole space. In the case α 6= β, we have seen that additional restrictions must hold on the
similarity profile, namely that |A−−A+| is sufficiently small. The question, whether the convergence
holds true for solutions with arbitrary boundary values, remains open. Furthermore, the considered
system, especially the reaction αX1 
 βX2, is still very simple. Perhaps, the methods presented
above provide a starting point for more complicated systems admitting a family of steady-states.

Our approach based on energy-dissipation estimates seems to be flexible enough to treat more com-
plicated reaction-diffusion systems, where more species and more reactions can be involved. For the
general setup we refer to [MiS23a] where the existence result for similarity profiles is proved for these
general situations. The main task is then the control of the mixed term IΛ, which may now involve
more than one Lagrange multiplier.
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A Appendices

In this appendix, we will give the omitted proofs of auxiliary results we used throughout this paper.

Proof of Lemma 3.3. The given differential inequality is of the form

d

dτ
E(τ) ≤ −a(τ)E(τ) + b(τ) for a(τ) := η − µ e−τ and b(τ) := K e−γτ .

A direct application of the differential version of Grönwall’s lemma yields

E(τ) ≤ E(0) e−
∫ τ
0 a(r)dr +

∫ τ

0

b(s) e−
∫ τ
s a(r)dr ds. (A.1)

First, we estimate the integral
∫ τ
s
a(r)dr roughly but sufficiently as we will see. We have

−
∫ τ

s

a(r)dr =

∫ τ

s

µ e−r−ηdr = µ(e−s−e−τ )− η(τ−s) ≤ µ− η(τ−s)

since s ≥ 0. Inserting this into (A.1) and using the monotonicity of the exponential function gives

E(τ) ≤ E(0) eµ−ητ +K eµ−ητ
∫ τ

0

e(η−γ)sds = eµ
(
E(0) e−ητ +

K

η−γ
(
e−γτ−e−ητ

))
≤ e−min{η,γ}τ+µ

(
E(0) +

2K

|η−γ|

)
if η 6= γ.

In case η = γ, the integrand above is identically 1, which gives the result.

We now give the proof of Lemma 4.4, which provides the necessary upper estimates of the functions
Φα.

Proof of Lemma 4.4. Throughout we use α ≥ 1 and write Φα = gαhα with

gα(z) =

{∣∣ log(z+1)α
∣∣ for z > −1,

∞ for z ≤ −1,
and hα(z) =

{∣∣(z+1)α − 1
∣∣ for z ≥ −1,

∞ for z < −1.

To obtain upper bounds for Φ∗α, we derive lower bounds for Φα. We do the estimates for z ≥ 0 and
z ≤ 0 separately.

For z ≤ 0 it suffices to consider z ∈ (−1, 0). First observe gα(z) ≥ −αz by convexity. Next, we
have hα(z) = 1− (z+1)α, which is concave because of α ≥ 1. Hence, hα(0) = 0 and hα(1) = 1
imply hα(z) ≥ −z for z ∈ [−1, 0]. Together we find

Φα(z) ≥ αz2 for z ∈ [−1, 0], Φα(z) =∞ for z < −1.

For z ≥ 0 we use log 2 > 1/2 which implies log y ≥ min
{

(y−1)/2, 1/2
}

for y ≥ 1. We find

gα(z) = α log(z+1) ≥ αmin
{
z/2, 1/2

}
.

For hα we obtain hα(z) = (z+1)α − 1 ≥ zα, which follows by observing that the derivative of both
sides satisfy the same inequality and a subsequent integration. Moreover, hα(z) ≥ αz by convexity.
Hence, hα(z) ≥ max

{
αz, zα

}
, and we arrive at

Φα(z) ≥ α

2
max

{
α|z|, |z|α

}
min

{
|z|, 1

}
for z ≥ 0.

DOI 10.20347/WIAS.PREPRINT.3008 Berlin 2023



Convergence to self-similar profiles in RDS 25

For α = 1 the above estimate is too weak. To obtain a better estimate we observe that F0(ρ) =
ρ− log ρ− ρ ≥ 0, see (3.8). Hence, setting z = ρ− 1 we have

Φ1(z) = (ρ−1) log ρ = λB(ρ) + F0(ρ) ≥ λB(ρ) = λB(z+1) for z ≥ −1.

To obtain upper estimates for Φ∗α we use now again that the Legendre transform is order reversing and
the fact that for a family of functions (fi)i∈I the equality

(
infi(fi)

)∗
= supi

(
f ∗i
)

holds true, which is
a direct consequence of the definition (see [Pey15, Prop. 3.50]).

For α = 1 this gives

Φ∗1(ξ) ≤ sup
(
ξz − λB(z+1)

)
= −ξ + λ∗B(ξ) = eξ − ξ − 1 for all ξ ∈ R.

For α ∈ [1, 2] the above estimates give Φα(z) ≥ min
{
α
2
|z|α, α

2
z2
}

, and we obtain

Φ∗α(ξ) ≤ max
{
c̃α|ξ|α/(α−1),

1

2α
ξ2
}
.

In the case α ≥ 2 we have |z|α ≤ |z|2 for |z| ≤ 1 and find Φα(z) ≥ α
2
|z|α, which gives the desired

result.

Finally, we observe that for all α ≥ 1 we have Φα(z) ≥ α
2
z2 for |z| ≤ 1, which implies Φ∗α(ξ) ≤

1
2α
ξ2 for |ξ| ≤ α.
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