
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Convergence of a finite volume scheme and

dissipative measure-valued–strong stability for

a hyperbolic-parabolic cross-diffusion system

Katharina Hopf1, Ansgar Jüngel 2

submitted: April 4, 2023

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: katharina.hopf@wias-berlin.de

2 Institute of Analysis and Scientific Computing
Vienna University of Technology
Wiedner Hauptstr. 8-10
1040 Wien
Austria
E-Mail: juengel@tuwien.ac.at

No. 3006

Berlin 2023

2020 Mathematics Subject Classification. 35M33, 35R06, 65M12, 92D25.

Key words and phrases. Cross diffusion, segregating populations, parametrized measure, dissipative measure-valued
solution, finite-volume method, entropy method, weak-strong uniqueness, long-time behavior.

The second author acknowledges partial support from the Austrian Science Fund (FWF), grants P33010 and F65. He
thanks Antoine Zurek (Compiègne) and Flore Nabet (Palaiseau) for helpful discussions and pointing out the papers [40, 41].
This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme, ERC Advanced Grant no. 101018153.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


Convergence of a finite volume scheme and
dissipative measure-valued–strong stability for
a hyperbolic-parabolic cross-diffusion system

Katharina Hopf, Ansgar Jüngel

Abstract

This article is concerned with the approximation of hyperbolic-parabolic cross-diffusion sys-
tems modeling segregation phenomena for populations by a fully discrete finite-volume scheme.
It is proved that the numerical scheme converges to a dissipative measure-valued solution of the
PDE system and that, whenever the latter possesses a strong solution, the convergence holds in
the strong sense. Furthermore, the “parabolic density part” of the limiting measure-valued solu-
tion is atomic and converges to its constant state for long times. The results are based on Young
measure theory and a weak-strong stability estimate combining Shannon and Rao entropies.
The convergence of the numerical scheme is achieved by means of discrete entropy dissipation
inequalities and an artificial diffusion, which vanishes in the continuum limit.

1 Introduction

The segregation of multi-species populations can be modeled at a macroscopic level by cross-diffusion
equations. Segregation typically requires the associated diffusion matrix to have a nontrivial kernel.
In this situation, solutions may have spatial discontinuities; see, e.g., [2] for a two-species model. The
segregation models have been derived, for an arbitrary number of species, from interacting particle
systems in a mean-field-type limit [9]. The class considered here has recently been found to possess
a symmetric hyperbolic-parabolic structure [17]. In this paper, we establish the global existence of
dissipative measure-valued solutions as a limit of finite-volume approximations, the uniqueness of
strong solutions among dissipative measure-valued solutions, and a result on the long-time asymptotic
behavior.

1.1 Equations

The segregation cross-diffusion equations for the vector u = (u1, . . . , un) of the population densities
ui are systems of continuity equations

∂tui + div(uivi) = 0, vi = −∇pi(u), in Ω, t > 0, i = 1, . . . , n, (1)

where pi(u) =
∑n

j=1 aijuj and Ω ⊂ Rd (d ≥ 1) is a bounded Lipschitz domain, supplemented with
the no-flux boundary and initial conditions

ui∇pi(u) · ν = 0 on ∂Ω, t > 0, ui(0) = uin
i in Ω, i = 1, . . . , n, (2)

where ν denotes the exterior unit normal vector to ∂Ω. The variables (ui) represent, for instance,
densities of animal populations [2], healthy and tumor cell densities [39], or heights of thin fluid layers
[14, 37].
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K. Hopf, A. Jüngel 2

The parameters aij ≥ 0 are assumed to satisfy the following two conditions: The matrix A = (aij) ∈
Rn×n is semistable, i.e., the real parts of all its eigenvalues are nonnegative, and it satisfies the
detailed-balance condition, i.e., there exist π1, . . . , πn > 0 such that

πiaij = πjaji for all i, j = 1, . . . , n, i 6= j. (3)

These equations can be recognized as the detailed-balance condition for the Markov chain asso-
ciated to A, and the vector (πi) is an invariant measure. Under condition (3), the change of vari-
ables uj 7→ πjuj := ũj brings the equation in the form ∂tũi = div(ũi∇(Bũ)i), where the matrix
B = (aijπ

−1
j )ij is symmetric and positive semidefinite. Thus, from now on we consider, without loss

of generality, the equations

∂tui = div(ui∇pi(u)), pi(u) =
n∑
j=1

bijuj in Ω, t > 0, i = 1, . . . , n, (4)

where B = (bij) ∈ Rn×n is symmetric positive semidefinite and bij ≥ 0 for all i, j = 1, . . . , n. We
note that if bii = 0 for some i, then bji = bij = 0 for j = 1, . . . , n due to the positive semidefiniteness
of B. Thus, in this case, the dynamics of ui become trivial and the ith species can be removed from
the system. We may therefore further assume that bii > 0 for all i = 1, . . . , n. If rankB = n and
ui > 0 for all i = 1, . . . , n, equation (4) is parabolic in the sense of Petrovskii, which at the linear
level is a minimal condition for the generation of an analytic semigroup on Lp(Ω) [1]. The existence
of global weak solutions in the case rankB = n was investigated in [32, Theorem 17]. If B has
a nontrivial kernel, it is positive definite only on the subspace (kerB)⊥, and we lose the parabolic
structure. This is the situation we are primarily concerned with in this paper.

1.2 State of the art

Equations (1) with kerA nontrivial have been studied in the literature in special cases. The first work
is [2], where the global existence of segregated solutions for two species in one space dimension with
a11 = a12 = 1 and a21 = a22 = k > 0 was shown. This result relies on a change to mass variables.
The analysis was generalized in [3] to several space dimensions if k = 1. The idea is to introduce new
variablesw1 = u1+u2 andw2 = u1/(u1+u2). It turns out thatw1 solves a porous-medium equation
with quadratic nonlinearity andw2 solves a transport equation, demonstrating the hyperbolic-parabolic
nature of the system. The same idea was used in [27] for a related system, where pi(u) = (u1 +u2)γ

for γ > 1. Notice that the choice k = 1 means that the corresponding velocity fields vi in (1) are
independent of i, so that the motion of the two species is governed by a single velocity field.

The existence of an infinite family of minimizers of the entropy (or free energy) functional for different
local and nonlocal variants was proved in [6], showing that both segregation and mixing of species is
possible. If the pressure is the variational derivative of a certain functional, one may formulate (1) for
n = 2 as a formal gradient flow. This property has been exploited in [6, 15] to prove the convergence
of a minimizing scheme.

The one-velocity two-species case was generalized to an arbitrary number of species in [18], proving
the global existence of classical and weak solutions by decomposing the system into one decoupled
porous-medium equation and n− 1 transport equations. This approach was generalized in [17] to the
case of multiple velocity fields and with associated diffusion matrices of arbitrary rank r ∈ {1, . . . , n}
to show the local-in-time existence of classical solutions. Segregating solutions for one-velocity multi-
species reactive systems were constructed in [30].
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Finite volume scheme for hyperbolic-parabolic systems 3

There exist related cross-diffusion models with rank-deficient diffusion matrices in the literature, for
instance the Maxwell-Stefan equations for fluid mixtures [4], where the diffusion matrix has a one-
dimensional kernel. In contrast to the present problem, the kernel can be removed by taking into
account the volume-filling assumption

∑n
i=1 ui = 1, which allows one to reduce the system for the

densities u1, . . . , un to a parabolic one for the variables u1, . . . , un−1 via un = 1−
∑n−1

i=1 ui [33].

The analysis and the convergence of approximation schemes to equations (1) for general rank-deficient
matrices A is challenging, since the decomposition of the parabolic and hyperbolic parts is involved.
Moreover, in view of the results of [2], we cannot expect weak solutions in H1(Ω), and the hyperbolic
part makes it difficult to obtain (entropy) solutions in the distributional sense. In the present paper,
we choose to enlarge the solution space by considering dissipative measure-valued solutions, which
allow us to encode information about the oscillation properties of the approximate solutions.

DiPerna introduced the concept of (entropy) measure-valued solutions to conservation laws [16]. In this
framework, solutions are no longer integrable functions but Young measures (parametrized probability
measures), which are able to capture the limiting behavior of sequences of oscillating functions. This
concept is based on an earlier work by Tartar [44], who characterized weak limits of sequences of
bounded functions. Due to the lack of uniqueness results, the framework of measure-valued solutions
does not allow one to identify the physically relevant solutions, and further structural conditions on the
solutions are necessary.

One idea to resolve this issue is to require an integrated form of the entropy or energy inequality,
which leads to the concept of dissipative solutions. It has been introduced by P.-L. Lions [38, Sec. 4.4]
in the context of the incompressible Euler equations. In [5] it is shown that dissipative measure-valued
solutions to the incompressible Euler equations enjoy the weak-strong uniqueness property, i.e., the
dissipative measure-valued solution is atomic and coincides with the strong or classical solution of the
same initial-value problem if the latter exists. This idea was further applied to models from polyconvex
elastodynamics [11], to the compressible Euler and Navier-Stokes equations [28, 21], to hyperbolic-
parabolic systems in thermoviscoelasticity [10], and to various other, mainly fluid mechanical models.

In the present paper, we obtain dissipative measure-valued solutions to (4), (2) by passing to the limit
from discrete finite-volume solutions. We further show that they enjoy the weak-strong uniqueness
property (in the sense of measure-valued-strong uniqueness), which entails important consequences
for the numerical approximation. Indeed, one may expect that reasonable structure-preserving ap-
proximation schemes generate a dissipative measure-valued solution. If this measure-valued solution
turns out to be atomic, i.e. taking the form of a Dirac measure at each point in space-time, Young
measure theory implies that the underlying approximate solutions converge in the strong sense. This
idea has, for instance, been exploited in the proof of the convergence of finite-volume-type schemes
for the compressible Navier-Stokes and Euler equations [22, 23]. For a further discussion on the use
of measure-valued solutions in the numerical context, we refer to [24].

The novelty of this paper is the analysis of equations (4) with general rank-deficient matrices B by
combining the measure-valued framework, entropy methods, and finite-volume schemes.
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1.3 Key tools, definitions, and overview

The analysis of (4) is based on the observation that the system possesses two Lyapunov functionals,
respectively, the Shannon and Rao entropies

HS(u) =

∫
Ω

hS(u)dx, hS(u) =
n∑
i=1

(
ui(log ui − 1) + 1

)
, (5)

HR(u) =

∫
Ω

hR(u)dx, hR(u) =
1

2

n∑
i,j=1

bijuiuj. (6)

The Shannon (-Boltzmann) entropy is related to the thermodynamic entropy of the system, while the
Rao entropy measures the functional diversity of the species [43].

The functionals have two important properties. First, a computation shows that, along smooth solutions
to (4), (2),

dHS

dt
(u) +

n∑
i,j=1

∫
Ω

bij∇ui · ∇ujdx = 0, (7)

dHR

dt
(u) +

n∑
i=1

∫
Ω

ui|∇pi(u)|2dx = 0. (8)

Since the matrix B is positive semidefinite, the Shannon entropy dissipation term (the integral term in
(7)) is nonnegative and consequently, t 7→ HS(u(t)) is nonincreasing. The expression pi(u) can be
interpreted as the ith partial pressure and −∇pi(u) as the ith partial velocity (by Darcy’s law). Thus,
we may interpret the Rao entropy dissipation integral as the total kinetic energy of the system, and
t 7→ HR(u(t)) is also nonincreasing.

Second, the Shannon and Rao entropy densities hS and hR are convex, and their sum hS + hR is
strictly convex and has quadratic growth as |u| → ∞, u ∈ (0,∞)n, as soon as bij ≥ 0 and bii > 0
for all i, j = 1, . . . , n. These properties allow us to derive a weak-strong stability estimate based on
the Bregman distance h(u|v) := h(u)− h(v)− h′(v) · (u−v) associated with h = hS + hR.

Identities (7)-(8) provide estimates for ui in L∞(0, T ;L2(Ω)) and for (Bu)i in L2(0, T ; H1(Ω)),
T > 0. Thus, if B is rank-deficient, these bounds do not ensure gradient estimates for the whole
vector u. Notice that the weak convergence for um and ∇pi(um) = ∇(Bum)i in L2(Ω × (0, T )),
which may be expected for suitable approximating sequences um, does not allow us to identify the
weak limit of um,i∇(Bum)i. This issue is overcome by a suitable concept of dissipative measure-
valued solutions. Let us mention that the estimates coming from (8) lead to a control of um,i∇(Bum)i
in L2(0, T ;L4/3(Ω)), thus ruling out potential concentrations in this term.

Before giving the definition of the measure-valued solutions, we introduce some notations. We rewrite
equation (4) as

∂tui = div(ui∇(Bu)i), i = 1, . . . , n,

and set L := kerB ( Rn. Then L⊥ = ranB ) {0}. Let PL⊥ be the projection onto L⊥ and
set ŝ := PL⊥s for s ∈ Rn. Any vector-valued function u is written as u = (u1, . . . , un). We define
R≥ = [0,∞) and let P(W ) be the space of probability measures on

W := Rn
≥ × (L⊥)d.
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Finite volume scheme for hyperbolic-parabolic systems 5

The space L∞w (Ω× [0,∞);P(W )) is the set of weakly∗ measurable, essentially bounded functions
of Ω× [0,∞) taking values in P(W ). We henceforth use the notation

〈ν, f(s, p)〉 :=

∫
W

f(s, p) dν(s, p) for ν ∈ P(W ), f ∈ C0(W ),

whereC0 is the space of continuous functions vanishing at infinity. Whenever well defined, this notation
will also be used for more general continuous functions f . Finally, we let ΩT := Ω×(0, T ) for T > 0.

Definition 1 (Dissipative measure-valued solution). Suppose that uin ∈ L2(Ω;Rn
≥). We call a

parametrized measure
µ ∈ L∞w (Ω× [0,∞);P(W ))

with barycenters u := 〈µ, s〉, y := 〈µ, p〉 a dissipative measure-valued solution to (4), (2) if the
following is satisfied for all T > 0:

� Regularity: For i = 1, . . . , n

ui ∈ L∞(0,∞;L2(Ω)), ∂tu ∈ L2(0,∞;W 1,4(Ω)∗), y ∈ L2(ΩT ; (L⊥)d), y = ∇û.

Moreover, µ acts trivially on the ŝ-component,

〈µ, f(s, p)〉 = 〈µ, f(û+ PLs, p)〉 (9)

for all f ∈ C0(Rn
≥ × (L⊥)d).

� Shannon and Rao entropy inequalities: It holds for a.e. t > 0 that

Hmv
S (u(t)) +

∫ t

0

∫
Ω

〈µx,τ , |B1/2p|2〉dxdτ ≤ HS(uin), (10)

HR(u(t)) +
n∑
i=1

∫ t

0

∫
Ω

〈
µx,τ , si|Bpi|2

〉
dxdτ ≤ HR(uin), (11)

where HS and HR are defined in (5)-(6) and Hmv
S (u(t)) :=

∫
Ω
〈µx,t, hS(s)〉dx.

� Evolution equation: It holds for all i = 1, . . . , n and φ ∈ C1
c (Ω× [0, T )) that∫ T

0

∫
Ω

ui∂tφdxdt+

∫
Ω

uin
i φ(0)dx =

∫ T

0

∫
Ω

〈µx,t, si(Bp)i〉 · ∇φdxdt. (12)

It is easy to see that, under the hypotheses of Definition 1, the functions 〈µ, p〉 and 〈µ, si(Bp)i〉 are
well defined (cf. Section 4.5). Moreover, ui = 〈µ, si〉 ≥ 0. Property (9) can be extended to a larger
class of continuous functions f . In particular, it holds for all f ∈ C(W ) with f ≥ 0. If rankB = n,
property (9) implies that u fulfills (4), (2) in the usual weak sense, since then PL = 0. In Remark 5
we show that the definition of dissipative measure-valued solutions is consistent with the definition of
weak solutions.

Our main results can be sketched as follows; we refer to Section 2.5 for the precise statements.

� Existence of finite-volume approximations: There exists a sequence of approximate solutions
(um), where m ∈ N indicates the fineness of the mesh, to an implicit Euler finite-volume
scheme. The numerical scheme preserves the structure of the equations, namely nonnegativity,
conservation of mass, and entropy dissipation; see Theorem 3.
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� Existence of global dissipative measure-valued solutions: Any Young measure µ generated by
(um) is a dissipative measure-valued solution to (4), (2) in the sense of Definition 1, which
further satisfies (9); see Theorem 4. For this result, we need to include some artificial diffusion
in the scheme, which vanishes in the limit m→∞.

� Weak-strong uniqueness: If v is a positive classical solution to (4), (2) with initial datum v(0) =
uin and µ is a dissipative measure-valued solution to (4), (2), then µx,t = δv(x,t) ⊗ δ∇v̂(x,t) for
a.e. (x, t) ∈ ΩT ; see Theorem 7.

� Long-time behavior: The density û(t) := 〈µ·,t, ŝ〉 converges strongly in the L2(Ω) norm as
t→∞ to a function û∗ ∈ L2(Ω; [0,∞)n) satisfying

∫
Ω
û∗dx =

∫
Ω
uindx and∇(Bû∗) = 0

in Ω; see Theorem 9.

If equations (4), (2) admit a classical solution, the weak-strong uniqueness property implies that the
sequence of finite-volume solutions converges, in the strong L1-sense, to this classical solution on the
lifespan of the latter; see Corollary 8.

The paper is organized as follows. We introduce the numerical scheme and the precise statements of
the theorems in Section 2. The four theorems are proved in Sections 3-6, and we conclude in Appendix
A with some auxiliary lemmas.

2 Numerical scheme and main results

First, we introduce the notation necessary to formulate our numerical method. Then we state the
numerical scheme and the main results.

2.1 Spatial domain and mesh

Let d ≥ 2 and let Ω ⊂ Rd be a bounded polygonal domain (or polyhedral if d ≥ 3). We associate
to this domain an admissible mesh, given by (i) a family T of open polygonal (or polyhedral) control
volumes, which are also called cells, (ii) a family E of edges (or faces if d ≥ 3), and (iii) a family of
points (xK)K∈T associated to the control volumes and satisfying [20, Definition 9.1]. This definition
implies that the straight line xKxL between two centers of neighboring cells is orthogonal to the
edge (or face) σ = K|L between two cells. For instance, Voronoï meshes satisfy this condition [20,
Example 9.2]. The size of the mesh is given by ∆x = maxK∈T diam(K). The family of edges E is
assumed to consist of interior edges Eint satisfying σ ⊂ Ω and boundary edges σ ∈ Eext satisfying
σ ⊂ ∂Ω. For a given K ∈ T , EK denotes the set of edges of K , splitting into EK = Eint,K ∪ Eext,K .
For any σ ∈ E , there exists at least one cell K ∈ T such that σ ∈ EK .

We need a regularity assumption of the mesh. For given σ ∈ E , we define the distance

dσ =

{
d(xK , xL) if σ = K|L ∈ Eint,K ,

d(xK , σ) if σ ∈ Eext,K ,

where d is the Euclidean distance in Rd, and the transmissibility coefficient

τσ =
m̃(σ)

dσ
, (13)
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Finite volume scheme for hyperbolic-parabolic systems 7

where m̃(σ) denotes the (d−1)-dimensional Hausdorff measure of σ. We suppose the following mesh
regularity condition: There exists ζ > 0 such that for all K ∈ T and σ ∈ EK ,

d(xK , σ) ≥ ζdσ. (14)

This condition means that the mesh is locally quasi-uniform. We also use the geometric property∑
σ∈Eint,K

m̃(σ)d(xK , σ) ≤ dm(K) for any K ∈ T , (15)

where m denotes the d-dimensional Lebesgue measure. Inequalities (14) and (15) are needed, for
instance, to derive a uniform bound for the discrete time derivative of the approximate solution; see
Lemma 13.

2.2 Function spaces

Let T > 0, N ∈ N and introduce the time step size ∆t = T/N and the time steps tk = k∆t
for k = 0, . . . , N . We denote by D the admissible space-time discretization of ΩT = Ω × (0, T )
composed of an admissible mesh T and the values (∆t, N).

The space of piecewise constant functions is defined by

VT =

{
v : Ω→ R : ∃(vK)K∈T ⊂ R, v(x) =

∑
K∈T

vK1K(x)

}
,

where 1K is the characteristic function on K . To define a norm on this space, we define for v ∈ VT ,
K ∈ T , and σ ∈ EK ,

vK,σ =

{
vL if σ = K|L ∈ Eint,K ,

vK if σ ∈ Eext,K ,
DK,σv := vK,σ − vK , Dσv := |DK,σv|.

Let 1 ≤ q <∞ and v ∈ VT . The discrete W 1,q(Ω) norm on VT is given by

‖v‖1,q,T =
(
‖v‖q0,q,T + |v|q1,q,T

)1/q
, where

‖v‖q0,q,T =
∑
K∈T

m(K)|vK |q, |v|q1,q,T =
∑
σ∈E

m̃(σ)dσ

∣∣∣∣Dσvdσ

∣∣∣∣q,
where v ∈ VT . If v = (v1, . . . , vn) ∈ V n

T is a vector-valued function, we write for notational conve-
nience

‖v‖1,q,T =
n∑
i=1

‖vi‖1,q,T .

We associate to the discrete W 1,q norm a dual norm with respect to the L2 inner product:

‖v‖−1,q,T = sup

{∫
Ω

vwdx : w ∈ VT , ‖w‖1,q,T = 1

}
.

Then the following property holds:∣∣∣∣ ∫
Ω

vwdx

∣∣∣∣ ≤ ‖v‖−1,q,T ‖w‖1,q,T for all v, w ∈ VT , 1 < p <∞.

DOI 10.20347/WIAS.PREPRINT.3006 Berlin 2023
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Finally, we introduce the space VT ,∆t of piecewise constant functions with values in VT ,

VT ,∆t =

{
v : Ω× [0, T ]→ R : ∃(vk)k=1,...,N ⊂ VT , v(x, t) =

N∑
k=1

vk(x)1(tk−1,tk](t)

}
,

equipped with the discrete L2(0, T ;H1(Ω)) norm(
N∑
k=1

∆t‖vk‖2
1,2,T

)1/2

for all v ∈ VT ,∆t.

2.3 Discrete gradient

The discrete gradient is defined on a dual mesh. For this, we define the cell TK,σ of the dual mesh for
K ∈ T and σ ∈ EK :

� Diamond: Let σ = K|L ∈ Eint,K . Then TK,σ is that cell whose vertices are given by xK , xL,
and the end points of the edge σ.

� Triangle: Let σ ∈ Eext,K . Then TK,σ is that cell whose vertices are given by xK and the end
points of the edge σ.

The union of all diamonds and triangles TK,σ equals the domain Ω (up to a set of measure zero).
The property that the straight line xKxL between two neighboring centers of cells is orthogonal to the
edge σ = K|L implies that

m̃(σ) d(xK , xL) = dm(TK,σ) for all σ = K|L ∈ Eint.

The approximate gradient of v ∈ VT ,∆t is then defined by

∇Dv(x, t) =
m̃(σ)

m(TK,σ)
DK,σ(vk)νK,σ for x ∈ TK,σ, t ∈ [tk−1, tk),

where νK,σ is the unit vector that is normal to σ and points outwards of K .

2.4 Numerical scheme

The initial functions are approximated by u0 ∈ V n
T defined via

u0
i,K =

1

m(K)

∫
K

uin
i (x)dx for all K ∈ T , i = 1, . . . , n. (16)

Let uk−1 = (uk−1
1 , . . . , uk−1

n ) ∈ V n
T be given. Then the values uki,K for all K ∈ T and i = 1, . . . , n

are determined by the implicit Euler finite-volume scheme

m(K)
uki,K − uk−1

i,K

∆t
+
∑
σ∈EK

Fki,K,σ = 0, (17)

Fki,K,σ = −τσuki,σDK,σpi(u
k)− ηατσDK,σu

k
i , (18)
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Finite volume scheme for hyperbolic-parabolic systems 9

where η = max{∆x,∆t}, 0 < α < 2, and τσ is given by (13). The mobility uki,σ is defined for σ ∈ E
by the upwind scheme

uki,σ =

{
uki,K,σ if DK,σpi(u

k) ≥ 0,

uki,K if DK,σpi(u
k) < 0.

(19)

The upwind approximation allows us to derive the discrete Shannon entropy inequality; see Remark
1. We may also use a logarithmic mean function; see Remark 2.

We have added some artificial diffusion in the numerical fluxFki,K,σ, which vanishes in the limit η → 0.
The term is needed to show the convergence of the scheme. In particular, it provides an η-dependent
bound for the full gradient, compensating the incomplete gradient estimate. Note that the artificial
diffusion is not needed to prove the existence of discrete solutions, and we may set η = 0 in this case.
Artificial diffusion/viscosity is used in numerical approximations of the Euler equations to stabilize the
scheme; see, e.g., [23, (3.8)].

The numerical fluxesFki,K,σ are consistent approximations of the exact fluxes through the edges, since
Fi,K,σ + Fi,L,σ = 0 for all edges σ = K|L and Fi,K,σ = 0 for all Eext,K . The following discrete
integration-by-parts formula holds for v = (vK) ∈ VT :∑

K∈T

∑
σ∈EK

Fi,K,σvK = −
∑
σ∈Eint

Fi,K,σDK,σv. (20)

Notice that the terms Fi,K,σDK,σv on the right-hand side only depend on σ, but not on the specific
control volume K satisfying σ ∈ EK . Hence, to evaluate the sum on the right, we may pick for each σ
any K with σ ∈ EK as long as we keep K fixed.

Remark 1 (Discrete gradient-flow property for upwind scheme). The upwind approximation implies a
discrete gradient-flow property. Indeed, we first observe that the concavity of the logarithm gives

b(log a− log b) ≤ a− b ≤ a(log a− log b) for all a, b > 0.

Combined with definition (19) of uki,σ, this leads for uki,K > 0 and uki,L > 0 to

uki,σ(pi(u
k
L)− pi(ukK))(log uki,L − log uki,K) ≥ (pi(u

k
L)− pi(ukK))(uki,L − uki,K) (21)

and therefore, by discrete integration by parts (20),

n∑
i=1

∑
K∈T

∑
σ∈EK

τσFki,K,σ log uki,K = −
n∑
i=1

∑
σ∈Eint

τσu
k
i,σDK,σpi(u

k)DK,σ log uki (22)

− ηα
n∑
i=1

∑
σ∈Eint

τσDK,σu
k
i DK,σ log uki ≤ −

n∑
i=1

∑
σ∈Eint

τσbijDK,σu
k
jDK,σu

k
i ,

where we used the monotonicity of the logarithm implying that DK,σu
k
i DK,σ log uki ≥ 0. The right-

hand side of (22) is nonpositive due to the positive semidefiniteness of B = (bij). We deduce from
this inequality the discrete entropy inequality (25).

Remark 2 (Discrete gradient flow property for logarithmic mean). We may define uki,σ via the logarith-
mic mean

uki,σ =


uki,L − uki,K

log uki,L − log uki,K
if uki,K 6= uki,L and uki,K > 0, uki,L > 0,

uki,K if uki,K = uki,L > 0,

0 else.

(23)
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We remark that the artificial diffusion in the numerical flux (18) allows us to show that uki,K is positive
for all K ∈ T (see Section 3.5) such that uki,σ (for σ = K|L) is always defined by one of the
first two cases. Definition (23) also leads to a discrete gradient-flow property. Indeed, observing that
uki,σDK,σ log uki = DK,σu

k
i and multiplying (18) by log uki,K and summing over all i = 1, . . . , n,

K ∈ T , and σ ∈ EK , we see that (22) holds too. Notice that (21) becomes an equality in this
case.

Finally, we observe that the mobility satisfies in both cases the following properties:

uki,σ ≤ max{uki,K , uki,L}, |uki,σ − uki,K | ≤ |uki,K − uki,L| for σ = K|L. (24)

2.5 Main results

We impose the following hypotheses.

(H1) Data: Ω ⊂ Rd is a bounded polygonal (or polyhedral if d ≥ 3) domain, T > 0, and uin ∈
L2(Ω;Rn

≥) such that ‖uin‖L1(Ω) > 0. We set ΩT = Ω× (0, T ).

(H2) Discretization: D is an admissible discretization of ΩT satisfying (14).

(H3) Diffusion coefficients: B = (bij) ∈ Rn×n
≥ is symmetric positive semidefinite with rankB ∈

{1, . . . , n} and bii > 0 for i = 1, . . . , n.

Note that since B is positive semidefinite, its square root B1/2 exists and zTBz = |B1/2z|2 for z ∈
Rn. Moreover, with λ > 0 being the smallest positive eigenvalue of B, we have |B1/2z|2 ≥ λ|z|2.

Theorem 3. Let Hypotheses (H1)-(H3) hold, k ∈ N, η ≥ 0, and let uk−1 ∈ V n
T be given. Then there

exists a solution uk = (uk1, . . . , u
k
n) ∈ V n

T to scheme (16)-(18) satisfying uki,K > 0 for i = 1, . . . , n,
K ∈ T . Inductively, let uj ∈ V n

T , j = 1, . . . , k, be the solution to scheme (16)-(18) with uk−1

replaced by uj−1. Then {uj} obey the discrete entropy inequalities

HS(uk) +
k∑
j=1

∆t|B1/2uj|21,2,T + 4ηα
k∑
j=1

∆t
n∑
i=1

|(uji )1/2|21,2,T ≤ HS(u0), (25)

HR(uk) +
k∑
j=1

∆t
n∑
i=1

∑
σ∈E

τσu
j
i,σ|Dσ(Buj)i|2 ≤ HR(u0). (26)

Moreover, HR(uk) ≤ HR(uk−1).

The existence of finite-volume solutions to (16)-(18) was shown in [34] by using the Rao entropy
only, but the proof needs matrices B with full rank. We can avoid this condition since we exploit the
estimates coming from the Shannon entropy. Theorem 3 is proved by adding a discrete version of
the regularizing term ε(−∆wi + wi), where wi = log ui are the entropic variables [25, 31, 36],
and a topological degree argument, similar as in [34]. Uniform estimates from the Shannon entropy
inequality (25) allow us to perform the de-regularizing limit ε → 0. Observe that the theorem is valid
for η = 0, i.e., no artificial diffusion is needed here.

Theorem 3 and the subsequent results also hold for domains Ω ⊂ Rd with curved (Lipschitz) bound-
ary. Indeed, one may triangulate Ω in such a way that the control volumes have a curved boundary
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[40], or one may cover Ω by additional cells and estimate the integral error; we refer to Remark 14 for
details.

For the convergence result, we introduce a family (Dm)m∈N of admissible space-time discretizations
of ΩT indexed by the size ηm = max{∆xm,∆tm} of the mesh, where ∆xm = maxK∈Tm diam(K)
and ∆tm is the time step size of the mesh Dm, satisfying ηm → 0 as m → ∞. We denote by Tm
the corresponding meshes of Ω and set∇m := ∇Dm .

Theorem 4 (Convergence of the scheme). Let Hypotheses (H1)-(H3) hold, and let (Dm) be a family
of admissible meshes satisfying (14) uniformly in m ∈ N. Let (um) be a sequence of finite-volume
solutions to (16)-(18) with η = ηm > 0, constructed in Theorem 3. Then, up to a subsequence,
(um,∇mûm) generates a Young measure µ which is a dissipative measure-valued solution to (4), (2)
in the sense of Definition 1. Moreover, the function t 7→ HR(u(t)) is nonincreasing.

The strategy of the proof of Theorem 4 is as follows. The estimates from the discrete entropy inequal-
ities and a uniform bound for the discrete time derivative of um allow us to apply the compactness
result of [26] to conclude the strong convergence of (a subsequence of) ûm in L2(ΩT ) as m → ∞.
Moreover, (um) and ∇m(Bûm) are weakly converging in L2(ΩT ). Clearly, these convergences are
too weak to conclude the convergence of the nonlinear flux (18). However, the sequence (um,∇mûm)
generates a parametrized measure µ [42, Chap. 6] such that 〈µ, si(Bp)i〉 is the distributional limit of
um,i,σ∇m(Bûm)i. Moreover, because of the strong convergence of (ûm), we can separate this part,
leading to (9).

Remark 5 (Consistency of the definition). The definition of dissipative measure-valued solutions is
consistent with the definition of weak solutions. Indeed, any weak solution u to (4), (2) satisfying the
regularity statements of Definition 1 and the Shannon and Rao entropy inequalities gives rise to a
dissipative measure-valued solution µ via µx,t = δu(x,t)⊗ δ∇û(x,t). On the other hand, if a dissipative
measure-valued solution µ is trivial in the sense that µx,t = δv(x,t)⊗ δz(x,t) for certain functions v and
z, then v = 〈µ, s〉 = u and z = 〈µ, p〉 = y = ∇û. We infer that

〈µ, si(Bp)i〉 = ui(B∇û)i.

In this case, equation (12) reduces to the standard weak formulation of (4) for the density u and the
entropy inequalities (10) and (11) take the usual form of entropy inequalities for weak solutions. More
generally, the conclusion 〈µ, si(Bp)i〉 = ui(B∇û)i already holds if, for instance, µ is only atomic
in the density component, i.e. µx,t = δv(x,t) ⊗ νx,t, where ν denotes the parametrized measure
generated by (∇mûm)m.

Remark 6 (Full-rank approximation). Let Ω ⊂ Rd be a bounded Lipschitz domain. An alternative to
the finite-volume approach is to consider a suitable full-rank symmetric positive definite regularization
(Bρ) ∈ Rn×n of B with limρ→0Bρ = B, and to approximate (4) by

∂tui = div(ui∇(Bρu)i), i = 1, . . . , n. (27)

After an appropriate additional regularization, it is possible to apply the entropy method of [31, Sec. 4.4]
(using the Rao entropy structure) and to establish the existence of a nonnegative weak solution to (27),
(2) that satisfies both the Rao and Shannon entropy inequalities withB replaced byBρ. The dissipative
measure-valued solution to (4), (2) is then obtained in the limit ρ→ 0.

The statement of Theorem 4 is rather weak, since the Young measure may not be unique. However, we
can prove a weak-strong uniqueness result. According to Remark 14, we can assume in the following
that Ω is a general bounded domain with Lipschitz boundary.
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Theorem 7 (Weak-strong uniqueness). Let Ω ⊂ Rd be a bounded Lipschitz domain. Let v ∈ C1(Ω×
[0, T ];Rn

≥) be a positive solution to (4), (2) (in the weak sense) with initial datum v(0) = uin > 0,
and let µ be a dissipative measure-valued solution to (4), (2). Then

µx,t = δv(x,t) ⊗ δ∇v̂(x,t) for a.e. (x, t) ∈ Ω× (0, T ).

The assertion is deduced from a stability estimate based on the Bregman distance f(u|v) := f(u)−
f(v)− f ′(v) · (u−v) associated with the convex function f := hS +hR, which has to be adapted to
the measure-valued framework. Loosely speaking, we consider the sum HS(u|v) +HR(u|v), where

Hk(u|v) =
n∑
i=1

∫
Ω

(
hk(u)− hk(v)− h′k(v) · (u− v)

)
dx, k = S,R,

and compute its time derivative along solutions to (4). Certain error terms arising in this computation
need to be estimated from above by C

∫
Ω
f(u|v)dx. For this step and in the absence of L∞(Ω)-

bounds on the densities ui, we take advantage of the better coercivity properties at infinity of the Rao
entropy.

As a consequence of Theorem 7, the finite-volume solution converges strongly to the classical solution
if the latter exists.

Corollary 8. Let u ∈ C1(Ω × [0, T ];Rn
≥) be a positive solution to (4), (2). Let (um) be a sequence

of finite-volume solutions to (16), (18) with η = ηm > 0. Then, as m→∞,

(um,∇mûm)→ (u,∇û) strongly in Lp(ΩT )

for all p ∈ [1, 2) and all T > 0.

Indeed, the weak-strong uniqueness implies that the Young measure generated by (um, ∇mûm)
coincides at each point (x, t) with the Dirac measure concentrated at the smooth solution. Since
|(um,∇mûm)|p ⊂ L1(ΩT ) is equi-integrable for every p ∈ [1, 2), the assertion in Corollary 8 thus
follows from classical Young measure theory (cf. e.g. [42, Theorem 6.12]).

It is shown in [17, Theorem 2.6] for Ω = Td (with periodic boundary conditions) that problem (4),
(2) possesses a positive classical solution on a short time interval if the initial data are positive and
smooth. The main results in the present paper should equally be valid in the periodic setting.

If B has a non-trivial kernel, steady states to (4), (2) are not necessarily constant in space and for any
fixed mass vector m ∈ (0,∞)n, there exist infinitely many steady states. Given such m, we define
the space of steady states as

Sm =

{
v ∈ L2(Ω;Rn

≥) :

∫
Ω

v dx = m and∇(Bv) = 0 in Ω

}
.

Theorem 9 (Long-time behavior). Let µ be a dissipative measure-valued solution to (4), (2). Let u =
〈µ, s〉 and set m :=

∫
Ω
uindx. Then Sm ⊂ L∞(Ω;Rn

≥) and there exists u∗ ∈ Sm such that, as
t→∞,

û(t)→ û∗ strongly in L2(Ω;Rn
≥),

where û∗ = PL⊥u
∗. We recall that PL⊥ is the projection onto L⊥ = ranB.
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For the proof of Theorem 9, we argue as follows. The fact that
∫∞

0
‖∇(B1/2û)‖2

L2(Ω)dt is finite im-

plies the existence of a sequence tk →∞ such that k 7→ (B1/2u)(tk) converges strongly in L2(Ω)
to B1/2u∗ as k → ∞, where u∗ ∈ Sm. The monotonicity of k 7→ HR(u(tk)|u∗) then shows that
B1/2û(t) converges and consequently, û(t) converges to û∗ for all sequences t→∞. Such reason-
ing is classical in degenerate cases, where entropy-entropy dissipation estimates are not available;
see for instance [7, 29].

3 Discrete problem

In this section, we prove Theorem 3. The existence proof uses a discrete analog of the entropy method
for cross-diffusion systems [31]. We first introduce a regularized numerical scheme involving an ap-
proximation parameter ε > 0, prove the existence of a solution to this scheme and suitable estimates
coming from the Shannon entropy inequality, and apply a topological degree argument. The uniform
estimates allow us to perform the limit ε→ 0.

3.1 Definition and continuity of the fixed-point operator

Let uk−1 ∈ V n
T be given and let R > 0, δ > 0. We set

ZR =
{
w = (w1, . . . , wn) ∈ V n

T : ‖w‖1,2,T < R for i = 1, . . . , n
}

and define the mapping F : ZR → Rθn by F (w) = wε, where θ = #T and wε = (wε1, . . . , w
ε
n) is

the solution to the linear regularized problem

ε

(
−
∑
σ∈EK

τσDK,σw
ε
i + m(K)wεi,K

)
= −

(
m(K)

∆t
(ui,K − uk−1

i,K ) +
∑
σ∈EK

Fi,K,σ
)
, (28)

where ui,K := exp(wi,K) and Fi,K,σ is defined as in (18) with uki,K replaced by ui,K .

To show that F is well defined, we write (28) as

Mwε = v, where v = (vi,K)i=1,...,n,K∈T ,

vi,K =
m(K)

∆t
(ui,K − uk−1

i,K ) +
∑
σ∈EK

Fi,K,σ,
(29)

and M = diag(M ′, . . . ,M ′) ∈ Rθn×θn is a block diagonal matrix with M ′ ∈ Rθ×θ, which has the
entries

M ′
K,K = −εm(K)− ε

∑
σ∈EK

τσ, M ′
K,L =

{
ετσ if K ∩ L 6= ∅, σ = K|L,
0 if K ∩ L = ∅.

Therefore, the system Mwε = v can be decomposed into the independent subsystems M ′wεi =
vi for i = 1, . . . , n. Since M ′ is strictly diagonally dominant, these subsystems possess a unique
solution wεi . Then wε = (wε1, . . . , w

ε
n) is the unique solution to (29). Thus, the mapping F is well

defined.
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Next, we prove that F is continuous. We multiply (28) for some fixed i ∈ {1, . . . , n} by wεi,K and sum
over all i = 1, . . . , n and K ∈ T :

−ε
n∑
i=1

∑
K∈T

∑
σ∈EK

τσ(DK,σw
ε
i )w

ε
i,K + ε

n∑
i=1

∑
K∈T

m(K)(wεi,K)2

= −
n∑
i=1

∑
K∈T

m(K)

∆t
(ui,K − uk−1

i,K )wεi,K −
n∑
i=1

∑
K∈T

∑
σ∈EK

Fi,K,σwεi,K .
(30)

Using discrete integration by parts analogous to (20), we can rewrite the left-hand side as

−ε
n∑
i=1

∑
K∈T

∑
σ∈EK

τσ(DK,σw
ε
i )w

ε
i,K + ε

n∑
i=1

∑
K∈T

m(K)(wεi,K)2

= ε

n∑
i=1

∑
σ∈Eint

τσ(DK,σw
ε
i )

2 + ε

n∑
i=1

∑
K∈T

m(K)(wεi,K)2 = ε
n∑
i=1

‖wεi ‖2
1,2,T .

We turn to the terms on the right-hand side of (30). By definition, we have ‖wi‖1,2,T < R and conse-
quently ‖wi‖0,∞,T ≤ C(R, T ) and ‖ui‖1,2,T ≤ C(R, T ) (since the problem is finite-dimensional).
This shows that

−
n∑
i=1

∑
K∈T

m(K)

∆t
(ui,K − uk−1

i,K )wεi,K ≤
1

∆t

n∑
i=1

‖ui − uk−1
i ‖0,2,T ‖wεi ‖0,2,T

≤ C(R, T ,∆t)
n∑
i=1

‖wεi ‖1,2,T .

Finally, using definition (18) of the flux and discrete integration by parts,

−
n∑
i=1

∑
K∈T

∑
σ∈EK

Fi,K,σwεi,K =
n∑
i=1

∑
K∈T

∑
σ∈EK

τσ

( n∑
j=1

bijui,σ(DK,σuj) + ηαDK,σui

)
wεi,K

= −
n∑
i=1

∑
σ∈Eint

τσ

( n∑
j=1

bijui,σ(DK,σuj)(DK,σw
ε
i ) + ηα(DK,σui)(DK,σw

ε
i )

)

≤ max
σ∈E
‖ui,σ‖0,∞,T

n∑
i,j=1

bij|uj|1,2,T |wεi |1,2,T + ηα
n∑
i=1

|ui|1,2,T |wεi |1,2,T

≤ C(R, T )‖wεi ‖1,2,T .

For the last inequality, we used the fact that ui,σ depends on ui,K and ui,L for σ = K|L, and their
discrete L∞(Ω) norms can be bounded by the discrete L∞(Ω) norm of wi, which in turn can be
estimated by C(T )‖wi‖0,∞,T ≤ C(R, T ).

Inserting these estimates into (30) and dividing by ‖wεi ‖1,2,T if ‖wεi ‖1,2,T > 0 yields ε‖wεi ‖1,2,T ≤
C(R, T ,∆t). This bound allows us to verify the continuity of F . Indeed, let w` → w as ` → ∞
and set wε,` = F (w`). Then (wε,`)`∈N is uniformly bounded in the discrete H1(Ω) norm. Therefore,
there exists a subsequence, which is not relabeled, such that wε,` → wε as ` → ∞. Passing to the
limit ` → ∞ in scheme (28), we see that wε is a solution to the scheme and wε = F (w). Since the
solution to the linear scheme (28) is unique, the entire sequence (wε,`)`∈N converges to wε, which
shows the continuity of F .
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3.2 Existence of a fixed point

We will now show that the map F admits a fixed point by using a topological degree argument. We
prove that deg(I − F,ZR, 0) = 1, where deg is the Brouwer topological degree [12, Chap. 1]. Since
deg is invariant by homotopy, it is sufficient to verify that any solution (wε, ρ) ∈ ZR × [0, 1] to the
fixed-point equation wε = ρF (wε) satisfies (wε, ρ) 6∈ ∂ZR × [0, 1] for sufficiently large values of
R > 0. Let (wε, ρ) be a fixed point. The case ρ = 0 being clear, we assume that ρ 6= 0. Then wεi
solves

ε

(
−
∑
σ∈EK

τσDK,σw
ε
i + m(K)wεi,K

)
= −ρ

(
m(K)

∆t
(uεi,K − uk−1

i,K ) +
∑
σ∈EK

F εi,K,σ
)

(31)

for i = 1, . . . , n and K ∈ T , where uεi,K = exp(wεi,K) and F εi,K,σ is defined as in (18) with uki,K
replaced by uεi,K . The following inequality is the key argument.

Lemma 10 (Discrete Shannon entropy inequality). Let wε be a solution to (31) and uεi := exp(wεi ).
Then

ρHS(uε) + ε∆t
n∑
i=1

‖wεi ‖2
1,2,T + ρ∆t

n∑
i,j=1

∑
σ∈Eint

τσbijDK,σu
ε
iDK,σu

ε
j

+ 4ρηα∆t
n∑
i=1

|(uεi )1/2|21,2,T ≤ ρHS(uk−1).

(32)

Proof. We multiply (31) by ∆twεi,K , sum over i = 1, . . . , n and K ∈ T , and use discrete integration
by parts (cf. (20)). Then ε∆t

∑n
i=1 ‖wεi ‖2

1,2,T = I1 + I2 + I3, where

I1 = −ρ
n∑
i=1

∑
K∈T

m(K)(uεi,K − uk−1
i,K )wεi,K ,

I2 = −ρ∆t
n∑
i=1

∑
σ∈Eint

τσu
ε
i,σDK,σpi(u

ε)DK,σw
ε
i,K ,

I3 = −ρηα∆t
n∑
i=1

∑
σ∈Eint

τσDK,σu
ε
iDK,σw

ε
i,K .

The definition uεi,K = exp(wεi,K) and the convexity of the Shannon entropy imply that

I1 = −ρ
n∑
i=1

∑
K∈T

m(K)(uεi,K − uk−1
i,K ) log uεi,K ≤ −ρ

(
HS(uε)−HS(uk−1)

)
.

For I2, we rely on inequality (21):

I2 = −ρ∆t
n∑
i=1

∑
σ=K|L∈Eint

τσu
ε
i,σ(pi(u

ε
L)− pi(uεK))(log uεi,L − log uεi,K)

≤ −ρ∆t
n∑

i,j=1

∑
σ=K|L∈Eint

τσbij(u
ε
j,L − uεj,K)(uεi,L − uεi,K)

= −ρ∆t
n∑

i,j=1

∑
σ=K|L∈Eint

τσbijDK,σu
ε
iDK,σu

ε
j .
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Finally, using the elementary inequality (a− b)(log a− log b) ≥ 4(
√
a−
√
b)2,

I3 = −ρηα∆t
n∑
i=1

∑
σ=K|L∈Eint

τσ(uεi,L − uεi,K)(log uεi,L − log uεi,K)

≤ −4ρηα∆t
n∑
i=1

∑
σ=K|L∈Eint

τσ
(
(uεi,L)1/2 − (uεi,K)1/2

)2
= −4ρηα∆t

n∑
i=1

|(uεi )1/2|21,2,T .

Combining these estimates finishes the proof of Lemma 10.

We now complete the topological degree argument. Lemma 10 implies that

ε∆t
n∑
i=1

‖wεi ‖2
1,2,T ≤ ρHS(uk−1) ≤ HS(uk−1).

With the choice R := (ε∆t)−1/2HS(uk−1)1/2 + 1 we find that wε 6∈ ∂ZR and deg(I −F,ZR, 0) =
1. We conclude that F possesses a fixed point.

3.3 Limit ε→ 0

By Lemma 10, there exists C > 0, independent of ε, such that

C
n∑
i=1

∑
K∈T

m(K)(uεi,K − 1) ≤ HS(uε) ≤ HS(uk−1).

This gives a uniform discrete L1(Ω) bound for uεi . There exists a subsequence (not relabeled) such
that uεi,K → ui,K as ε → 0 for all i = 1, . . . , n and K ∈ T . Moreover, the discrete H1(Ω) bound
for
√
εwεi implies that εwεi,K → 0 for i = 1, . . . , n and K ∈ T . Then the limit ε → 0 in (31) yields

the existence of a solution uk := (ui,K)i=1,...,n,K∈T to (17). Observing that

n∑
i,j=

∑
σ∈E

τσbijDK,σu
ε
iDK,σu

ε
j =

∑
σ∈E

τσ(DK,σu
ε)TB(DK,σu

ε)

≥ λ
∑
σ∈E

τσ|B1/2DK,σu
ε|2 = λ|B1/2uε|21,2,T ,

the same limit in the regularized entropy inequality (32) directly leads to the discrete entropy inequality
(25).
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Finite volume scheme for hyperbolic-parabolic systems 17

3.4 Discrete Rao entropy inequality

To verify (26), we multiply (17) by ∆tpi(u
k
K), sum over i = 1, . . . , n and K ∈ T , and use discrete

integration by parts:
n∑
i=1

∑
K∈T

m(K)(uki,K − uk−1
i,K )pi(u

k
K)

= ∆t
n∑
i=1

∑
K∈T

∑
σ∈EK

τσ
(
uki,σDK,σpi(u

k) + ηαDK,σu
k
i

)
pi(u

k
K)

= −∆t
n∑
i=1

∑
σ∈Eint

τσu
k
i,σ(Dσpi(u

k))2 − ηα∆t
n∑

i,j=1

∑
σ∈Eint

τσbijDK,σu
k
i DK,σu

k
j

= −∆t
n∑
i=1

∑
σ∈Eint

τσu
k
i,σ(Dσpi(u

k))2 − ηα∆t
n∑
i=1

|(B1/2uk)i|21,2,T .

By the definition of pi(uk) and the symmetry and positive semidefiniteness of B, the left-hand side
becomes

n∑
i=1

∑
K∈T

m(K)(uki,K − uk−1
i,K )pi(u

k
K) =

n∑
i,j=1

∑
K∈T

m(K)bij(u
k
i,K − uk−1

i,K )ukj,K

=
1

2

n∑
i,j=1

∑
K∈T

m(K)bij
(
uki,Ku

k
j,K − uk−1

i,K u
k−1
j,K + (uki,K − uk−1

i,K )(ukj,K − uk−1
j,K )

)
≥ HR(uk)−HR(uk−1).

We infer the monotonicity of k 7→ HR(uk). After summation over k = 1, . . . , j and a renaming of the
indices k and j, this shows (26) and thus completes the proof of Theorem 3.

3.5 Positivity

Thanks to the artificial diffusion, the discrete solution uki,K is positive for i = 1, . . . , n and K ∈ T .
Indeed, let i ∈ {1, . . . , n} be fixed and assume that there exists K ∈ T such that uki,K = 0. We
infer from I3 in Section 3.2 that

ηα(uεi,L − uεi,K)(log uεi,L − log uεi,K) ≤ C(∆t, u0),

where L ∈ K is a neighboring cell of K . If uki,L > 0, the limit ε → 0 in the previous estimate leads
to a contradiction since log uεi,K diverges. Therefore, uki,L = 0. Let L′ ∈ T be a neighboring cell of
L. Arguing in a similar way as before, it follows that uki,L′ = 0. Repeating this argument for all cells
in T , we find that uki,K = 0 for all K ∈ T . This implies that

∑
K∈T m(K)uki,K = 0 and, by mass

conservation,
∑

K∈T m(K)u0
i,K = 0, which contradicts the positivity of the L1(Ω) norm of u0 in

Hypothesis (H1).

4 Convergence

In this section, we prove Theorem 4, that is, we show the asserted convergence of the numerical
scheme. Uniform estimates are derived from the entropy inequalities (25) and (26). Lemma 16 in the
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appendix shows that |ûk| ≤ λ−1|B1/2uk|, where we recall that ûk = PL⊥u
k. Thus, we obtain a

uniform estimate for ûk in the seminorm | · |1,2,T . Moreover, since bii > 0 and bij ≥ 0 for all i, j
(cf. Hypothesis (H3)), estimate (26) provides a uniform bound for uk in the discrete L2(Ω) norm.
Hence, there exists a constant C > 0 which is independent of η = max{∆x,∆t} such that

NT∑
k=1

∆t
(
‖ûk‖2

1,2,T + ‖B1/2uk‖2
1,2,T

)
+ ηα

NT∑
k=1

∆t|(uk)1/2|21,2,T ≤ C, (33)

max
k=1,...,NT

‖uk‖0,2,T +
k∑
j=1

∆t
n∑
i=1

∑
σ∈Eint

τσu
j
i,σ|Dσ(Buj)i|2 ≤ C. (34)

4.1 Compactness properties

We first prove a full gradient bound with a negative power of η on the right-hand side.

Lemma 11. There exists C = C(ζ) > 0 independent of η such that

N∑
k=1

∆t|uki |21,4/3,T ≤ Cη−α,

N∑
k=1

∆t|uki |21,1,T ≤ Cη−α.

Proof. By the mesh regularity (14) and property (15),∑
σ∈EK

m̃(σ)dσ
m(K)

≤
∑
σ∈EK

m̃(σ)d(xK , σ)

ζm(K)
≤ d

ζ
.

This yields, using Hölder’s inequality and the L2(Ω) bound (34) for uki ,

|uki |
4/3
1,4/3,T =

∑
σ∈Eint

m̃(σ)dσ

∣∣∣∣uki,L − uki,Kdσ

∣∣∣∣4/3
=
∑
σ∈Eint

m̃(σ)d−1/3
σ

∣∣(uki,L)1/2 − (uki,K)1/2
∣∣4/3∣∣(uki,L)1/2 + (uki,K)1/2)

∣∣4/3
≤
( ∑
σ∈Eint

m̃(σ)d−1
σ

(
(uki,L)1/2 − (uki,K)1/2

)2
)2/3

×
( ∑
σ∈Eint

m̃(σ)dσ
(
(uki,L)1/2 + (uki,K)1/2

)4
)1/3

≤ C|(uki )1/2|4/31,2,T

(∑
K∈T

m(K)(uki,K)2
∑
σ∈EK

m̃(σ)dσ
m(K)

)1/3

≤ C(ζ)|(uki )1/2|4/31,2,T ‖u
k
i ‖

2/3
0,2,T .

Taking the exponent 3/2, multiplying by ∆t, and summing over k = 1, . . . , N proves the first inequal-
ity. The second inequality follows along the same lines (or by Hölder’s inequality).

Lemma 12. There exists C = C(ζ) > 0 independent of η such that

N∑
k=1

∆t‖uki,σ(B∇Dûk)i‖2
0,4/3,T ≤ C.
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Proof. We infer from the definition of the discrete gradient and Hölder’s inequality that

‖uki,σ(B∇Dûk)i‖4/3
0,4/3,T =

∑
K∈T

∑
σ∈Eint,K

m(TK,σ)(uki,σ)4/3

∣∣∣∣ m̃(σ)

m(TK,σ)
DK,σ(Bûk)i

∣∣∣∣4/3 (35)

=
∑
K∈T

∑
σ∈Eint,K

m(TK,σ)1/3(uki,σ)2/3 m̃(σ)4/3

m(TK,σ)2/3

∣∣(uki,σ)1/2DK,σ(Bûk)i
∣∣4/3

≤
(∑
K∈T

∑
σ∈Eint,K

m(TK,σ)(uki,σ)2

)1/3(∑
K∈T

∑
σ∈Eint,K

m̃(σ)2

m(TK,σ)
uki,σ
∣∣DK,σ(Bûk)i

∣∣2)2/3

.

Because of m(TK,σ) = m̃(σ)dσ/d for σ ∈ Eint,K , mesh regularity (14), and property (15), we find
for the first factor that∑

K∈T

∑
σ∈Eint,K

m(TK,σ)(uki,σ)2 ≤ C(ζ)
∑
K∈T

( ∑
σ∈Eint,K

m̃(σ)d(xK , σ)

)
(uki,K)2 (36)

≤ C(ζ)
∑
K∈T

m(K)(uki,K)2 = C(ζ)‖ui‖2
0,2,T ,

where we also used (24). The second factor on the right-hand side of (35) becomes∑
K∈T

∑
σ∈Eint,K

m̃(σ)2

m(TK,σ)
uki,σ
∣∣DK,σ(Bûk)i

∣∣2 = d
∑
K∈T

∑
σ∈Eint,K

τσu
k
i,σ

∣∣DK,σ(Bûk)i
∣∣2.

We take (35) to the power 3/2, multiply by ∆t, and sum over k = 1, . . . , N :

N∑
k=1

∆t‖uki,σ(B∇Dûk)i‖2
0,4/3,T ≤ C max

k=1,...,N
‖uki ‖2

0,2,T

N∑
k=1

∆t
∑
σ∈Eint

τσu
k
i,σ|Dσ(Bûk)i|2 ≤ C,

where the uniform bound follows from (34).

For the compactness argument, we need an estimate for the discrete time derivative, which is defined
by

∂∆t
t vk =

vk − vk−1

∆t
for v ∈ VT ,∆t, k = 1, . . . , N.

Lemma 13 (Discrete time derivative). There exists a constant C = C(ζ) > 0 independent of η such
that

N∑
k=1

∆t‖∂∆t
t uk‖2

−1,4,T ≤ C.

Proof. Let φ ∈ VT be such that ‖φ‖1,4,T = 1. We multiply (17) by φK , sum over K ∈ T , apply
discrete integration by parts, and use Hölder’s inequality:∣∣∣∣ ∑

K∈T

m(K)

∆t
(uki,K − uk−1

i,K )φK

∣∣∣∣
=

∣∣∣∣− ∑
σ∈Eint

τσu
k
i,σDK,σpi(u

k)DK,σφ− ηα
∑
σ∈Eint

τσDK,σu
k
i DK,σφ

∣∣∣∣
≤ C‖uki,σ(B∇Dûk)i‖0,4/3,T |φ|1,4,T + ηα|uki |1,4/3,T |φ|1,4,T .
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Then we infer from Lemmas 11 and 12 that

N∑
k=1

∆t

∥∥∥∥uki − uk−1
i

∆t

∥∥∥∥2

−1,4,T
≤ C(ζ) + C(ζ)ηα,

which concludes the proof.

The solution uk ∈ VT to (17) refers to a fixed mesh. Let (Dm)m∈N be a sequence of meshes sat-
isfying (14) such that the mesh size ηm = max{∆xm,∆tm} converges to zero as m → ∞ and
set Nm = T/∆tm. Let um = (um,1, . . . , um,n) be defined as the piecewise constant function
um(x, t) = ukK for (x, t) ∈ K × [tk−1, tk), where uk is a solution to (17) on the mesh Dm, K ∈ T ,
and k = 1, . . . , N , and set u0

m = (u0
m,i)

n
i=1, where u0

m,i(x) := u0
i,K(x) for x ∈ K . Notice that

u0
m → uin in L2(Ω) as m → ∞. Furthermore, we introduce the function um,σ := (um,i,σ)ni=1 de-

fined by um,i,σ(x, t) = uki,σ for (x, t) ∈ TK,σ× [tk−1, tk), whereK ∈ T , σ ∈ E , and k = 1, . . . , N .
This function is piecewise constant on the dual mesh.

Let φ ∈ VT be such that ‖φ‖1,4,T = 1 and let ûm = PL⊥um. We write (Pij) for the matrix associated
to PL⊥ . Then ∣∣∣∣ ∑

K∈T

m(K)∂∆t
t ûm,i,KφK

∣∣∣∣ =

∣∣∣∣ ∑
K∈T

n∑
j=1

m(K)

∆t
Pij(u

k
j,K − uk−1

j,K )φK

∣∣∣∣
≤ C‖∂∆t

t ukm‖−1,4,T ‖φ‖1,4,T ≤ C.

Together with estimate (33), this implies that

Nm∑
k=1

∆t‖∂∆t
t ûkm‖2

−1,4,T ≤ C,
Nm∑
k=1

∆t‖ûkm‖2
1,2,T ≤ C.

It is shown in [35, Sec. 6.1] that the discrete norms ‖ · ‖1,2,T and ‖ · ‖−1,4,T satisfy the assumptions
of the compactness result in [26, Theorem 3.4]. Therefore, there exists a subsequence, which is not
relabeled, such that ûm → v strongly in L2(ΩT ) as m→∞ for some v ∈ L2(ΩT ). Moreover, up to
a subsequence, we have um ⇀ u weakly in L2(ΩT ) and consequently ûm = PL⊥um ⇀ PL⊥u = û
weakly in L2(ΩT ). This shows that û = v.

Estimate (33) implies that ym := ∇mûm is uniformly bounded in L2(ΩT ). Hence, there exists a
subsequence (not relabeled) such that ym ⇀ y weakly in L2(ΩT ). We conclude as in [8, Lemma 4.4]
that y = ∇û. We summarize:

um ⇀ u, ym ⇀ y = ∇û weakly in L2(ΩT ). (37)

These convergences are not sufficient to pass to the limit in the term um,i,σ∇m(Bum)i. The idea is
to embed the problem in the larger space of Young measures. Let P(W ) be the space of probability
measures on W := Rn

≥ × (L⊥)d. Since the sequences (um) and (ym) are bounded in L2(ΩT ), we
can apply [42, Theorem 6.2] to conclude the existence of a subsequence (not relabeled) and a family
of probability measures µ = (µx,t) with µx,t ∈ P(W ) for a.e. (x, t) ∈ ΩT such that the following
holds:

If f is a continuous function onW vanishing at infinity and if the sequence (f(um, ym)) convergences
weakly in L1(ΩT ), then its weak limit, which we denote by f(um, ym), satisfies

f(um, ym)(x, t) = 〈µx,t, f(s, p)〉 for a.e. (x, t) ∈ ΩT .
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In the above reasoning T ∈ (0,∞) was arbitrary. Hence, a diagonal argument allows us to choose µ
independent of T ∈ (0,∞) such that µ ∈ L∞w (Ω×(0,∞);P(W )) and the weak convergences (37)
hold for all T > 0. As a consequence,

u = 〈µ, s〉, û = 〈µ, ŝ〉, y = 〈µ, p〉 a.e. in Ω× (0,∞),

where ŝ = PL⊥s.

4.2 Convergence of the scheme

We show that µ is a dissipative measure-valued solution in the sense of Definition 1 satisfying (9).
The proof adapts the strategy of [8] to the present situation, where only a weaker form of convergence
is known to hold. Let T ∈ (0,∞), let i ∈ {1, . . . , n}, ψ ∈ C∞0 (Ω × [0, T )), and let ηm =
max{∆xm,∆tm} be small enough such that supp(ψ) ⊂ {x ∈ Ω : d(x, ∂Ω) > ηm} × [0, T ). We
introduce

Fm
10 = −

∫ T

0

∫
Ω

um,i∂tψdxdt−
∫

Ω

u0
m,i(x)ψ(x, 0)dx,

Fm
20 =

∫ T

0

∫
Ω

um,i,σ∇m(Bûm)i · ∇ψdxdt.

The convergence results established above imply that, as m→∞,

Fm
10 → −

∫ T

0

∫
Ω

ui∂tψdxdt−
∫

Ω

uin
i (x)ψ(x, 0)dx.

The limit in Fm
20 is more involved. First, Lemma 12 implies that the term um,i,σ(B∇mûm)i is weakly

relatively compact in L1(ΩT ) and thus weakly convergent in L1(ΩT ) along a subsequence. Second,
we assert that

um,σ − um → 0 in L1(ΩT ) as m→∞. (38)

We proceed as in [41, Section 4.2], but since we cannot control the full gradient, we need to rely on
the artificial diffusion. It follows from m(TK,σ) = d2

στσ/d that

‖ukm,i,σ − ukm,i‖0,1,Tm ≤ C
∑
K∈Tm

∑
σ∈Eint,K

m(TK,σ)|ukm,i,σ − ukm,i,K |

≤ C
∑
K∈Tm

∑
σ∈Eint,K

m(TK,σ)|ukm,i,L − ukm,i,K |

≤ C
∑

σ=K|L∈Eint

m(TK,σ)|ukm,i,L − ukm,i,K |

≤ C
∑

σ=K|L∈Eint

d2
στσ|ukm,i,L − ukm,i,K | ≤ Cηm|ukm,i|1,1,Tm ,

where the constant C > 0 may change from line to line. We take the square, multiply by ∆tm, sum
over k = 1, . . . , Nm, and use Lemma 11:

Nm∑
k=1

∆tm‖ukm,i,σ − ukm,i‖2
0,1,Tm ≤ Cη2−α

m .
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The right-hand side goes to zero as soon asα < 2. Hence, um−um,σ → 0 strongly inL2(0, T ;L1(Ω)),
which implies (38). We note that, by interpolation, the strong convergence (38) together with the fact
that the sequence (um − um,σ)m is uniformly bounded in L2(ΩT ) implies that

um − um,σ → 0 strongly in Lp(ΩT ) for every p < 2.

We now assert that, as a consequence of (38), the sequence (um,σ,∇mûm) generates the same
Young measure µ as (um,∇mûm) (after possibly passing to another subsequence). Indeed, since µ
is uniquely determined by its action on C0-functions, to verify the assertion, it suffices to show that

lim
m→∞

∫
ΩT

(
f(um,σ,∇mûm)− f(um,∇mûm)

)
φdxdt = 0

for all f ∈ C0(W ) and φ ∈ L1(ΩT ). This follows from (38) and the dominated convergence the-
orem, because functions f ∈ C0(W ) are uniformly continuous. Since um,i,σ(B∇mûm)i is weakly
convergent in L1(ΩT ), we thus infer that

um,i,σ(B∇mûm)i(x, t) =

∫
W

si(Bp)idµx,t(s, p) = 〈µx,t, si(Bp)i〉.

We conclude that

Fm
20 →

∫ T

0

∫
Ω

〈µx,t, si(Bp)i〉dxdt.

Let ψkK = ψ(xK , tk) and multiply (17) by ∆tψk−1
K and sum over K ∈ Tm, k = 1, . . . , Nm. This

gives Fm
1 + Fm

2 + Fm
3 = 0, where

Fm
1 =

Nm∑
k=1

∑
K∈Tm

m(K)(uki,K − uk−1
i,K )ψk−1

K ,

Fm
2 = −

Nm∑
k=1

∆tm
∑
K∈Tm

∑
σ∈Eint,K

τσu
k
i,σDK,σ(Buk)iψ

k−1
K ,

Fm
3 = −ηαm

Nm∑
k=1

∆tm
∑
K∈Tm

∑
σ∈Eint,K

τσDK,σu
k
iψ

k−1
K .

We infer from the Cauchy-Schwarz inequality and Lemma 11 that

|Fm
3 | ≤ ηαm

( Nm∑
k=1

∆tm|uki |21,4/3,Tm

)1/2( Nm∑
k=1

∆tm|ψk−1|21,4,Tm

)1/2

≤ Cηα/2m → 0

as m→∞. We claim that Fm
j0 − Fm

j → 0 for j = 1, 2.

For the limit of Fm
10 − Fm

1 , we use as in the proof of [8, Theorem 5.2] discrete integration by parts in
time:

Fm
1 = −

Nm∑
k=1

∑
K∈Tm

m(K)uki,K(ψkK − ψk−1
K )−

∑
K∈Tm

m(K)u0
i,Kψ

0
K

= −
Nm∑
k=1

∑
K∈Tm

∫ tk

tk−1

∫
K

uki,K∂tψ(xK , t)dxdt−
∑
K∈Tm

∫
K

u0
i,Kψ(xK , 0)dx,

Fm
10 = −

Nm∑
k=1

∑
K∈Tm

∫ tk

tk−1

∫
K

uki,K∂tψ(x, t)dxdt−
∑
K∈Tm

∫
K

u0
i,Kψ(x, 0)dx.
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It follows from the regularity of ψ that

|Fm
10 − Fm

1 | ≤ C(ΩT )‖uki ‖L∞(0,T ;L2(Ω))‖ψ‖C2(ΩT )∆tm → 0 as m→∞.

We deduce from the definition of the discrete gradient that

Fm
20 =

Nm∑
k=1

∫ tk−1

tk

∑
σ∈Eint

m̃(σ)

m(TK,σ)
uki,σDK,σ(Bûm)i

∫
TK,σ

∇ψ · νK,σdxdt,

Fm
2 =

Nm∑
k=1

∫ tk−1

tk

∑
σ∈Eint

m̃(σ)

dσ
uki,σDK,σ(Bûm)iDK,σψ

k−1dt.

This gives

|Fm
20 − Fm

2 | ≤
Nm∑
k=1

∑
σ∈Eint

m̃(σ)uki,σ|DK,σ(Bûkm)i|

×
∣∣∣∣ ∫ tk

tk−1

(
DK,σψ

k−1

dσ
− 1

m(TK,σ)

∫
TK,σ

∇ψ · νK,σdx

)
dt

∣∣∣∣.
By the proof of Theorem 5.1 in [8], there exists C > 0, independent of ηm, such that∣∣∣∣ ∫ tk

tk−1

(
DK,σψ

k−1

dσ
− 1

m(TK,σ)

∫
TK,σ

∇ψ · νK,σdx

)
dt

∣∣∣∣ ≤ C∆tmηm,

which shows, using the Cauchy-Schwarz inequality, that

|Fm
20 − Fm

2 | ≤ Cηm

Nm∑
k=1

∆tm
∑
σ∈Eint

m̃(σ)uki,σ|Dσ(Bûm)i|

≤ Cηm

Nm∑
k=1

∆tm|(Bukm)i|1,2,Tm
( ∑
K∈Tm

∑
σ∈Eint,K

m̃(σ)dσ(uki,σ)2

)1/2

.

We conclude from the Cauchy-Schwarz inequality, estimate (36), and the uniform bounds (33)-(34)
that

|Fm
20 − Fm

2 | ≤ C(ζ)ηm

( Nm∑
k=1

∆tm|(Buk)i|21,2,Tm

)1/2( Nm∑
k=1

∆tm‖uki ‖2
0,2,Tm

)1/2

≤ C(ζ)ηm → 0 as m→∞.

We deduce that Fm
10 + Fm

20 → 0 as m→∞. Then, because of Fm
1 + Fm

2 + Fm
3 = 0,

Fm
10 + Fm

20 = (Fm
10 − Fm

1 ) + (Fm
20 − Fm

2 )− Fm
3 → 0 as m→∞,

which proves that ui satisfies∫ T

0

∫
Ω

ui∂tψdxdt+

∫
Ω

uin
i ψ(0)dx =

∫ T

0

∫
Ω

〈µx,t, si(Bp)i〉 · ∇ψdxdt.

Hence, in the sense of distributions,

∂tui = div〈µ, si(Bp)i〉, ui(0) = uin
i , i = 1, . . . , n. (39)
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4.3 Entropy inequalities

We verify the entropy inequalities (10) and (11). The definition of u0
m and the regularity uin ∈ L2(Ω)

imply the strong convergence u0
m → uin in L2(Ω) as m→∞.

Re Shannon: Since (um)m is bounded in L2(ΩT ), the sequence (hS(um))m ⊂ L1(ΩT ) is equi-
integrable. After passing to a subsequence, we can therefore assume that (hS(um))m is weakly con-
vergent in L1(ΩT ), which implies that for a.e. (x, t) ∈ ΩT ,

〈µx,t, hS(s)〉 = hS(um)(x, t).

The dual mesh allows us to rewrite the Shannon entropy dissipation in (25) as

k∑
j=1

∆tm|B1/2ujm|21,2,Tm =

∫ tk

0

∫
Ω

|∇m(B1/2um)|2dxdτ.

Given 0 < δ � 1, let m be large enough such that ∆tm < δ. Then (25) entails for all t ∈ [δ, T ] that

HS(um(t)) +

∫ t−δ

0

∫
Ω

|∇m(B1/2um)|2dxdτ ≤ HS(u0
m).

Next, let ξ ∈ C1
c ([0, T );R≥) with ξ(0) = 1 and ξ′ ≤ 0. We multiply the last inequality by the

nonnegative function −ξ′(t) and integrate over t ∈ [δ, T ] :∫ T

δ

∫
Ω

(−ξ′(t))hS(um(t))dxdt+

∫ T

δ

(−ξ′(t))
∫ t−δ

0

∫
Ω

|∇m(B1/2ûm)|2dxdτdt ≤ ξ(δ)HS(u0
m).

We take the lim infm→∞ in the above inequality, where we invoke [42, Theorem 6.11] for the second
term on the left-hand side. This yields∫ T

δ

(−ξ′(t))
∫

Ω

〈µx,t, hS(s)〉dxdt+

∫ T

δ

(−ξ′(t))
∫ t−δ

0

∫
Ω

〈µx,τ , |B1/2p|2〉dxdτdt ≤ ξ(δ)HS(uin).

As δ ↓ 0, we infer∫ T

0

(−ξ′(t))
∫

Ω

〈µx,t, hS(s)〉dxdt+

∫ T

0

(−ξ′(t))
∫ t

0

∫
Ω

〈µx,τ , |B1/2p|2〉dxdτdt ≤ HS(uin).

This is true for all ξ ∈ C1
c ([0, T );R≥) with ξ(0) = 1 and ξ′ ≤ 0. We then choose ξ = ξ` with (ξ`)`

a suitable approximation of the Heaviside-type function 1[0,t0] and let ` → ∞ to deduce (10) at time
t = t0 for a.e. t0 ∈ (0, T ].

Re Rao: Next, we verify (11) and the time monotonicity of HR(u). Since (ûm) converges strongly to
û in L2(ΩT ), we find that

HR(u(t)) =
1

2

∫
Ω

|B1/2û(t)|2dx =
1

2
lim
m→∞

∑
K∈Tm

m(K)|B1/2ûm(t)|2 = lim
m→∞

HR(um(t)).

Together with the non-increase of [0,∞) 3 t 7→ HR(um(t)) (cf. Theorem 3), this implies that the
mapping t 7→ HR(u(t)) is nonincreasing. It remains to show (11). To this end, we let 0 < δ � 1 and
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take m large enough so that ∆tm < δ. Then it follows from the discrete Rao entropy inequality (26)
that

HR(um(t)) +
n∑
i=1

∫ t−δ

0

∫
Ω

um,i,σ|(B∇mûm)i|2dxdτ ≤ HR(u0
m).

To estimate below the lim infm→∞ of the second term on the left-hand side, we recall that µ is also
the Young measure associated with (um,σ,∇mûm). We therefore infer from [42, Theorem 6.11] for
every i ∈ {1, . . . , n}∫ t−δ

0

∫
Ω

〈µx,τ , si|(Bp)i|2〉dxdτ ≤ lim inf
m→∞

∫ t−δ

0

∫
Ω

um,i,σ|(B∇mûm)i|2dxdτ.

Thus, in the limit m→∞ we deduce

HR(u(t)) +
n∑
i=1

∫ t−δ

0

∫
Ω

〈µx,τ , si|(Bp)i|2〉dxdτ ≤ HR(uin),

and sending δ ↓ 0 we obtain (11).

4.4 Separation of the ŝ-component

For simplicity, we only prove identity (9) in the case where f = f(s) ∈ C0(Rn
≥). Let g(s1, s2) =

f(s1 + s2), defined on the convex set

Q = {(s1, s2) ∈ L⊥ × L : s1 + s2 ∈ Rn
≥}.

Since (ûm) converges strongly inL2(ΩT ), the Young measure µ̃, generated by (PL⊥um, PLum), has
the form µ̃x,t = δû(x,t) ⊗ νx,t, where ν = (νx,t) is the Young measure generated by the sequence
(PLum) [42, Prop. 6.13]. Hence, by construction of µ and µ̃,∫

Rn≥

f(s)dµx,t(s) =

∫
Q

g(s1, s2)dµ̃x,t(s1, s2) =

∫
Q

g(û(x, t), s2)dµ̃x,t(s1, s2)

=

∫
Q

f(û(x, t) + s2)dµ̃x,t(s1, s2).

It follows that 〈µx,t, f(s)〉 = 〈µx,t, f(û(x, t) + s2)〉 for all f = f(s) ∈ C0(Rn
≥) and a.a. (x, t).

4.5 Time regularity

The time regularity for the density part u = 〈µ, s〉 of the barycenter of µ follows from the continuity
equation (39). To see this, we first note that due to bii > 0, bij ≥ 0, and property (9),

〈
µx,t,

n∑
i=1

s2
i

〉
≤ C

〈
µx,t, |B1/2ŝ|2

〉
= C|B1/2û(x, t)|2 = ChR(u(x, t)) (40)
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for a.e. (x, t) ∈ Ω× (0,∞). Then we use Jensen’s inequality to estimate for i = 1, . . . , n,

‖〈µ, si(Bp)i〉‖2
L2(0,∞;L4/3(Ω)) ≤

∫ ∞
0

(∫
Ω

〈µx,t, |si(Bp)i|4/3〉dx
)3/2

dt

≤
∫ ∞

0

(∫
Ω

〈µx,t, s2
i 〉1/3〈µx,t, si|(Bp)i|2〉2/3dx

)3/2

dt

≤
∫ ∞

0

(∫
Ω

〈µx,t, s2
i 〉dx

)1/2 ∫
Ω

〈µx,t, si|(Bp)i|2〉dxdt

≤
(

ess sup
0<t<∞

∫
Ω

〈µx,t, s2
i 〉dx

)1/2(∫ ∞
0

∫
Ω

〈µx,t, si|(Bp)i|2〉dxdt

)
,

where Hölder’s inequality was applied several times. It therefore follows from (39) that

‖∂tui‖L2(0,∞;W 1,4(Ω)∗) ≤ ‖〈µ, si(Bp)i〉‖L2(0,∞;L4/3(Ω)) ≤ CHR(uin),

where the last step also uses (11) and (40). This finishes the proof of Theorem 4.

Remark 14 (Curved domains). We claim that Theorems 3 and 4 also hold for curved Lipschitz domains
Ω ⊂ Rd. The triangulation then contains control volumes with curved segments that are part of
∂Ω. The analysis of this section is still possible, since we consider no-flux boundary conditions and
no boundary values need to be defined. The analysis has to be adapted in two points. First, the
convergence of the scheme is typically proved on polygonal meshes and the error between the curved
cell and the polygonal cell (which is of order (∆x)d+1) needs to be taken into account. Second, as
the compactness of the approximate sequence has been established for polygonal domains [26], the
error between the approximate sequence and its extension by zero to the polygonal domain has to be
estimated. In two space dimensions, it is of order ∆x; see [40, Prop. 4.14] for details. The drawback of
this approach is that one has to perform numerical integrations over the curved elements, which may
be cumbersome in particular in three space dimensions.

Figure 1: Triangulation of a curved domain.

Here we report on the simple approach of [19]. The idea is to cover Ω by additional control volumes and
to estimate the integral error. To simplify the presentation, let Ω ⊂ R2 and let T be a sufficiently fine
triangulation of Ω into triangles. To each cell with two vertices on ∂Ω, we add the reflected triangle to
the triangulation such that Ω ⊂ ∪K∈T ∗K , where T ∗ consists of all cells K ∈ T and the associated
reflected cells Kr with nonempty intersection with Ω; see Figure 1. Denoting by ωr = Kr ∩ Ω if
Kr ∩ Ω 6= ∅ and ωc = K \ Ω if Kr ∩ Ω = ∅, the domain splits into

Ω = Ωh ∪ Ωr \ Ωc :=

( ⋃
K∈T

K

)
∪
(⋃

ωr

ωr

)
\
(⋃

ωc

ωc

)
.
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We can perform the numerical analysis on VT ∗ as in Sections 3 and 4. For the convergence of the
scheme, we need to show that the difference of the integrals over Ωh and Ω vanishes when ηm → 0.
The difference consists of two contributions: the integral over Ωr and the integral over Ωc. We illustrate
the convergence for the integral∣∣∣∣ ∫

Ωr

um,i,σ∇m(Bûm)i · ∇ψdx

∣∣∣∣ ≤ C
∑
ωr

m(ωr)‖um,i,σ‖0,∞,ωr‖∇m(Bûm)i‖0,∞,ωr ,

where ψ is a smooth test function. By the inverse inequality [13, Section 21.1]

‖v‖0,∞,ωr ≤ ‖v‖0,∞,Kr ≤ C(∆x)−d/2‖v‖0,2,Kr ,

the bound m(ωr) ≤ C(∆x)d+1 (which is valid under certain regularity conditions on the mesh), and
the Cauchy-Schwarz inequality, we have∣∣∣∣ ∫

Ωr

um,i,σ∇m(Bûm)i · ∇ψdx

∣∣∣∣ ≤ C∆x

(∑
Kr

‖um,i,σ‖2
0,2,Kr

)1/2(∑
Kr

‖∇m(Bûm)i‖2
0,2,Kr

)1/2

≤ C∆x→ 0 as η → 0,

taking into account the uniform bounds from (25) and (26). In a similar way, the integral over Ωc tends
to zero as η → 0.

5 Stability

In this section, we prove Theorem 7. Let µ be a dissipative measure-valued solution and let v ∈
C1(ΩT ) be a positive solution of (4), (2). We introduce the relative Shannon and Rao entropies by,
respectively,

Hmv
S (u(t)|v(t)) =

n∑
i=1

∫
Ω

(
〈µx,t, h(si)〉 − h(vi(x, t))− h′(vi(x, t)) · (ui − vi)(x, t)

)
dx,

=

∫
Ω

n∑
i=1

(
〈µx,t, si log si〉 − ui log vi − (ui − vi)

)
dx ≥ 0,

HR(u(t)|v(t)) =
1

2

∫
Ω

|B1/2(u− v)(x, t)|2dx ≥ 0,

where h(z) = z(log z − 1) + 1 for z ≥ 0. We further define the usual relative Shannon entropy
HS(u|v) =

∫
Ω

∑n
i=1

(
ui log ui − ui log vi − (ui − vi)

)
dx. Furthermore, we set

Hmv
rel (u|v) = Hmv

S (u|v) +HR(u|v),

Hrel(u|v) = HS(u|v) +HR(u|v).

We first compute the relative entropy inequalities.

Lemma 15 (Relative entropy inequalities). Suppose that Ω has a Lipschitz boundary. Let µ be a
dissipative measure-valued solution, u := 〈µ, s〉, and let v ∈ C1(ΩT ) be a positive solution to (4),
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(2) for t ∈ (0, T ) (in the weak sense). Then, for a.e. t ∈ (0, T ),

Hmv
S (u(t)|v(t)) +

∫ t

0

∫
Ω

〈
µx,τ , |B1/2(p−∇v)|2

〉
dxdτ (41)

+

∫ t

0

∫
Ω

〈
µx,τ ,

n∑
i=1

(vi − si)∇ log vi · (B(p−∇v))i

〉
dxdτ ≤ HS(uin|v(0)),

HR(u(t)|v(t)) +

∫ t

0

∫
Ω

n∑
i=1

〈µx,τ , si|(B(p−∇v))i|2〉dxdτ (42)

+

∫ t

0

∫
Ω

〈
µx,τ ,

n∑
i=1

(si − vi)∇(Bv)i · (B(p−∇v))i

〉
dxdτ ≤ HR(uin|v(0)).

Proof. It follows from (12) that for all i = 1, . . . , n and φ ∈ L2(0, T ;W 1,4(Ω))∫ T

0

(∂tui, φ)W 1,4(Ω)∗dt = −
∫ T

0

∫
Ω

〈µx,t, si(Bp)i〉 · ∇φdxdt, (43)

where (·, ·)W 1,4(Ω)∗ denotes the duality pairing between W 1,4(Ω)∗ and W 1,4(Ω).

Re Shannon: The solution property and positivity of v imply that for every ψ ∈ C1(ΩT ;Rn),

−
n∑
i=1

∫
Ω

(∂t log vi)ψidx =

∫
Ω

n∑
i=1

vi∇(Bv)i · ∇
(
ψi
vi

)
dx

=

∫
Ω

∇v : ∇(Bψ̂)dx−
n∑
i=1

∫
Ω

∇(Bv)i · (∇ log vi)ψidx.

Let t ∈ (0, T ) be arbitrary. An integration over τ ∈ (0, t) and an approximation argument imply that

for all ψ ∈ L2(ΩT ;Rn) with∇Bψ̂ ∈ L2(ΩT ),

−
n∑
i=1

∫ t

0

∫
Ω

(∂t log vi)ψidxdτ =

∫ t

0

∫
Ω

∇v : ∇Bψ̂dxdτ

−
n∑
i=1

∫ t

0

∫
Ω

∇(Bv)i · (∇ log vi)ψidxdτ.

The choice ψ = u = 〈µ, s〉 and the property∇Bû = B〈µ, p〉 = 〈µ,Bp〉 lead to

−
n∑
i=1

∫ t

0

∫
Ω

(∂t log vi)uidxdτ =

=

∫ t

0

∫
Ω

∇v : ∇Bûdxdτ −
n∑
i=1

∫ t

0

∫
Ω

∇(Bv)i · (∇ log vi)uidxdτ

=

∫ t

0

∫
Ω

〈µx,τ , B1/2∇v : B1/2p〉dxdτ −
n∑
i=1

∫ t

0

∫
Ω

〈µx,τ , si∇ log vi · ∇(Bv)i〉dxdτ.

Next, we use φi = 1[0,t] log vi as a test function in the weak formulation (43), multiply by −1, and
sum over i = 1, . . . , n:

−
n∑
i=1

∫ t

0

(∂tui, log vi)W 1,4(Ω)∗dτ =
n∑
i=1

∫ t

0

∫
Ω

〈µx,τ , si(Bp)i〉 · ∇ log vidxdτ.
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We add the previous two equations:

−
∫ t

0

d

dt

∫
Ω

n∑
i=1

(log vi)uidxdτ =

∫ t

0

∫
Ω

〈µx,τ , B1/2∇v : B1/2p〉dxdτ

+

∫ t

0

∫
Ω

〈µx,τ ,
n∑
i=1

si∇ log vi · (B(p−∇v))i〉dxdτ.

Combined with the identity

∫ t

0

∫
Ω

〈µx,τ , B1/2∇v : B1/2p〉dxdτ −
∫ t

0

∫
Ω

〈µx,τ , |B1/2∇v|2〉dxdτ

−
∫ t

0

∫
Ω

〈
µx,τ ,

n∑
i=1

vi∇ log vi · (B(p−∇v))i

〉
dxdτ = 0,

the Shannon entropy inequality (10), and mass conservation (d/dt)
∫

Ω
vi dx = 0, this gives (41).

Re Rao: Since vi∇(Bv)i ∈ L2(ΩT ), we can test the equation for v with the function 1[0,t] B(v−u) ∈
L2(0, T ;H1(Ω)). This yields

∫ t

0

∫
Ω

∂tv
TB(v − u)dxdτ = −

∫ t

0

∫
Ω

n∑
i=1

vi∇(Bv)i · ∇(B(v − u))idxdτ.

Next, we choose φ = 1[0,t](Bv)i in equation (43) for u and sum over i = 1, . . . , n:

−
∫ t

0

(∂tu,Bv)W 1,4(Ω)∗dτ =

∫ t

0

∫
Ω

n∑
i=1

〈µx,τ , si(Bp)i〉 · (B∇v)idxdτ.

Adding to these identities the Rao entropy inequality (11) and rearranging terms gives

1

2

∫ t

0

d

dt

∫
Ω

(u− v)TB(u− v)dxdτ ≤ −
∫ t

0

∫
Ω

n∑
i=1

〈µx,τ , si|(B(p−∇v))i|2〉dxdτ

−
∫ t

0

∫
Ω

n∑
i=1

〈µx,τ , (si − vi)(B∇v)i · (B(p−∇v))idxdτ,

which implies (42), concluding the proof.

We proceed with the proof of Theorem 7. To this end, we estimate the last integrals on the left-hand
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sides of (41) and (42). We infer from Young’s inequality that∣∣∣∣ n∑
i=1

(vi − si)∇ log vi · (B(p−∇v))i

∣∣∣∣ (44)

≤ 1

4
|B1/2(p−∇v)|2 + C

n∑
i=1

|∇ log vi|2(si − vi)2

≤ 1

4
|B1/2(p−∇v)|2 + C|s− v|2,∣∣∣∣ n∑

i=1

(si − vi)∇(Bv)i · (B(p−∇v))i

∣∣∣∣ (45)

≤ 1

4
|B1/2(p−∇v)|2 + C

n∑
i=1

|∇(Bv)i|2(si − vi)2

≤ 1

4
|B1/2(p−∇v)|2 + C|s− v|2,

where C > 0 depends on the L∞(ΩT ) norms of |∇ log vi| and ∇(Bv)i. Thus, adding the relative
entropy inequalities (41) and (42), the first terms on the right-hand sides of (44) and (45) can be
absorbed by the left-hand side of (41) such that

Hmv
rel (u(t)|v(t)) +

∫ t

0

∫
Ω

〈
µx,τ ,

1

2
|B1/2(p−∇v)|2

〉
dxdτ

≤ C

∫ t

0

∫
Ω

〈µx,τ , |s− v|2〉dxdτ +Hrel(u
in|v(0)).

(46)

The coercivity estimate from Lemma 17 in Appendix A implies that∫
Ω

〈µx,t, |s− v(x, t)|2〉dx ≤ CHmv
rel (u(t)|v(t)).

We insert this bound into (46) and invoke Gronwall’s inequality to deduce that

Hmv
rel (u(t)|v(t)) +

∫ t

0

∫
Ω

〈
µx,τ ,

1

2
|B1/2(p−∇v̂(x, τ))|2

〉
dxdτ ≤ eCtHrel(u

in|v(0)) = 0,

where the last equality follows from v(0) = uin. Hence, µx,t = δv(x,t) ⊗ δ∇v̂(x,t) for a.e. (x, t) ∈
Ω× (0, T ), which finishes the proof of Theorem 7.

6 Long-time asymptotics

In this section, we prove Theorem 9. First, we verify that Sm ⊂ L∞(Ω). Indeed, if v ∈ Sm, the vector
Bv is constant and

∫
Ω
Bvdx = Bm, which implies that Bv = (Bm)/|Ω|. Since the entries of B

and the components of v are nonnegative, vi ≤ (Bm)i/(bii|Ω|) for all i = 1, . . . , n. This proves the
claim.

The entropy inequalities (10)-(11) and the bound |〈µ,B1/2p〉|2 ≤ 〈µ, |B1/2p|2〉, which follows from
Jensen’s inequality, show that∫ ∞

0

‖∇(B1/2u)‖2
L2(Ω)dt <∞, sup

0<t<∞
‖u(t)‖L2(Ω) <∞.
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Thus, there exists a sequence (tk) ⊂ (0,∞) with tk → ∞ such that u(tk) ⇀ u∗ weakly in
L2(Ω) and B1/2u(tk) → B1/2u∗ strongly in L2(Ω) as k → ∞. Since

∫
Ω
u(tk)dx = m and the

sequence (∇(B1/2u(tk))) converges to zero in the L2(Ω) norm, we find that
∫

Ω
u∗dx = m and

∇(B1/2u∗) = 0. This implies that u∗ ∈ Sm. Moreover, we deduce from the strong convergence that

lim
k→∞

HR(u(tk)|u∗) =
1

2
lim
k→∞
‖B1/2(u(tk)− u∗)‖2

L2(Ω) = 0.

We assert that t 7→ HR(u(t)|u∗) is nonincreasing for a.e. t > 0. Indeed, we know from Section
4.3 that t 7→ HR(u(t)) is nonincreasing. Furthermore, since

∫
Ω
u(t)dx =

∫
Ω
u∗dx and Bu∗ is a

constant vector, we have
∫

Ω
u(t)TBu∗dx =

∫
Ω
u(s)TBu∗dx for t ≥ s. Hence, for t ≥ s,

HR(u(t)|u∗) = HR(u(t)) +HR(u∗)−
∫

Ω

u(t)TBu∗dx

≤ HR(u(s)) +HR(u∗)−
∫

Ω

u(s)TBu∗dx = HR(u(s)|u∗),

proving the claim.

We conclude that HR(u(t)|u∗) ≤ HR(u(tk)|u∗) → 0 for t ≥ tk → ∞. It follows from the positive
definiteness of B1/2 on L⊥ that

‖û(t)− û∗‖L2(Ω) ≤ C‖B1/2(û(t)− û∗)‖L2(Ω) ≤ 2HR(u(t)|u∗)→ 0

as t→∞. This finishes the proof of Theorem 9.

A Auxiliary results

Let the matrix B = (bij) ∈ Rn×n be symmetric positive semidefinite. Then the square root of
B1/2 exists and zTBz = |B1/2z|2 for z ∈ Rn. Let PL and PL⊥ be the projection matrices onto
L = kerB = kerB1/2 6= {0} and L⊥ = ranB, respectively.

Lemma 16. Let λ > 0 be the smallest positive eigenvalue of B1/2. Then

|PL⊥z| ≤ λ−1|B1/2z| for z ∈ Rn.

Proof. Let z ∈ Rn and ẑ = PL⊥z. By definition of λ, |B1/2ẑ|2 ≥ λ|ẑ|2. Then the conclusion follows
from B1/2ẑ = B1/2z −B1/2PLz = B1/2z.

We introduce the relative entropy densities

hS(u|v) =
n∑
i=1

(
h(ui)− h(vi)− h′(vi)(ui − vi) =

n∑
i=1

(
ui log

ui
vi
− (ui − vi)

)
,

hR(u|v) =
1

2
(u− v)TB(u− v) =

1

2
|B1/2(u− v)|2, u, v ∈ [0,∞)n,

where h(z) = z(log z − 1) + 1. We denote by ‖A‖2 the norm of A induced by the Euclidean norm
| · | in Rn.
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Lemma 17 (Coercivity). Let a0 = 1
2

mini∈{1,...,n} bii > 0, a1 = ‖B‖2, and let K ≥ 1. Then there
exists a constant c∗ > 0, only depending on a0, a1/a0, and M , such that for all u, v ∈ Rn

≥ with
0 < |v| ≤M ,

hS(u|v) + hR(u|v) ≥ c∗|u− v|2.

Proof. By assumption, we have 1
2
uTBu ≥ 1

2

∑n
i=1 biiu

2
i ≥ a0|u|2 for all u ∈ Rn

≥. If (a0/2)|u| ≥
a1|v| then

hR(u|v) =
1

2
uTBv − vTBu+

1

2
vTBv ≥ a0|u|2 − a1|u||v|+ a0|v|2

≥ a0|u|2 −
a0

2
|u|2 + a0|v|2 =

a0

2
|u|2 + a0|v|2 ≥

a0

3
|u− v|2.

Next let (a0/2)|u| < a1|v|. We find for f(z) = z log z that

ui log
ui
vi
− (ui − vi) = f(ui)− f(vi)− f ′(vi)(ui − vi)

= (ui − vi)
∫ 1

0

(
f ′(s(ui − vi) + vi)− f ′(vi)

)∣∣θ
s=0

dθ

= (ui − vi)2

∫ 1

0

∫ θ

0

f ′′(s(ui − vi) + vi)dsdθ.

Then we infer from |ui/vi| < 2a1/a0 that

f ′′(s(ui − vi) + vi) =
1

vi(s(ui/vi − 1) + 1)
>

1

M(s(2a1/a0 − 1) + 1)

and consequently,

ui log
ui
vi
− (ui − vi) ≥

(ui − vi)2

M

∫ 1

0

∫ θ

0

dsdθ

s(2a1/a0 − 1) + 1
,

which shows that hS(u|v) ≥ c1|u− v|2, where

c1 =
1

M
min

i=1,...,n

∫ 1

0

∫ θ

0

dsdθ

s(2a1/a0 − 1) + 1
.

Putting these estimates together and observing that hS(u|v) ≥ 0, hR(u|v) ≥ 0, we conclude the
proof with c∗ = min{a0/3, c1}.
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