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Second-order sufficient conditions for sparse optimal control of
singular Allen–Cahn systems with dynamic boundary conditions

Jürgen Sprekels, Fredi Tröltzsch

Abstract

In this paper we study the optimal control of a parabolic initial-boundary value problem of
Allen–Cahn type with dynamic boundary conditions. Phase field systems of this type govern the
evolution of coupled diffusive phase transition processes with nonconserved order parameters
that occur in a container and on its surface, respectively. It is assumed that the nonlinear func-
tions driving the physical processes within the bulk and on the surface are double well potentials
of logarithmic type whose derivatives become singular at the boundary of their respective do-
mains of definition. For such systems, optimal control problems have been studied in the past.
We focus here on the situation when the cost functional of the optimal control problem contains
a nondifferentiable term like the L1-norm leading to sparsity of optimal controls. For such cases,
we derive second-order sufficient conditions for locally optimal controls.

1 Introduction

Let Ω ⊂ R3 denote some bounded and connected open set with smooth boundary Γ = ∂Ω (a
compact hypersurface of class C2) and unit outward normal n, and let, in this order, ∂n, ∇Γ, ∆Γ

denote the outward normal derivative, the surface gradient, and the Laplace–Beltrami operator defined
on Γ. Recall that for sufficiently smooth functions v defined on Ω we have, with vΓ := v|Γ, the identities

∇ΓvΓ = ∇v − (∇v · n)n, ∆ΓvΓ = ∇Γ · ∇ΓvΓ, on Γ.

Moreover, let T > 0 denote a fixed final time, and

Qt := Ω× (0, t), Σt := Γ× (0, t), for t ∈ (0, T ], and Q := QT , Σ := ΣT .

We then study optimal control problems for the parabolic system with nonlinear dynamic boundary
condition

∂ty −∆y + f ′(y) = u a.e. in Q, (1.1)

∂tyΓ −∆ΓyΓ + ∂ny + f ′Γ(yΓ) = uΓ and yΓ = y|Γ a.e. on Σ, (1.2)

y(0) = y0 in Ω, yΓ(0) = y0Γ
on Γ. (1.3)

Here, the second identity in (1.2) has to be interpreted in the following way: for almost every t ∈ (0, T )
the trace y(t)|Γ of y(t) on the boundary Γ coincides with yΓ(t). Moreover, y0 and y0Γ

are given initial
data with y0|Γ = y0Γ

, and u and uΓ are distributed and boundary controls, respectively. The pair
(y, yΓ) is the state associated with the control pair (u, uΓ).

The system (1.1)–(1.3) constitutes a phase field model for the physical process when an isothermal
diffusive phase transition with nonconserved order parameter y taking place in the interior of a con-
tainer Ω ⊂ R3 is coupled via the dynamic boundary condition (1.2) to another nonconserving diffusive

DOI 10.20347/WIAS.PREPRINT.3005 Berlin 2023



J. Sprekels, F. Tröltzsch 2

phase transition occurring on the surface Γ of the container. We assume here that the order param-
eter y (and thus also yΓ) is normalized to attain its values in the interval [−1, 1], where the level
sets {y = −1} and {y = 1} correspond to the pure phases. We remark that in our setting the
pure phases will never occur (see the separation property (2.9) below). For more information on the
physical background of this model, we refer to [41] and the literature cited therein.

A very important role for the evolution play the nonlinear functions f and fΓ, which are double well
potentials whose derivatives define the thermodynamic forces driving the phase transitions in the bulk
and on the surface, respectively. Typical physically relevant cases are given by the regular, logarithmic,
and double obstacle potentials. In this order, they are given by

freg(r) =
1

4
(r − 1)2 for r ∈ R, (1.4)

flog(r) =

 c1

(
(1 + r) ln(1 + r) + (1− r) ln(1− r)

)
− c2r

2 if r ∈ (−1, 1)
2c1 ln(2)− c2 if r ∈ {−1, 1}
+∞ if r 6∈ [−1, 1]

, (1.5)

f2obs(r) =

{
−c3r

2 if r ∈ [−1, 1]
+∞ if r 6∈ [−1, 1]

. (1.6)

In this connection, we have ci > 0, i = 1, 2, 3, and c1, c2 are such that flog is nonconvex.

There exists a vast literature on the well-posedness and asymptotic behavior of the Allen–Cahn equa-
tion and its various generalizations when complemented with dynamic boundary conditions. Without
claiming to be comprehensive, we refer the reader to the works [2, 9, 10, 14, 15, 26, 27, 33, 36, 41, 44].
Optimal control problems for (1.1)–(1.3) have been studied in [1] for the regular case and in [23] for
the singular logarithmic case (1.5), while the double obstacle case (1.6) was investigated in [13]. In
particular, first-order necessary and second-order sufficient optimality conditions have been derived in
[23] for the differentiable tracking-type cost functional

J((y, yΓ), (u, uΓ)) :=
β1

2

∫∫
Q

|y − yQ|2 +
β2

2

∫∫
Σ

|yΓ − yΣ|2 +
β3

2

∫
Ω

|y(T )− yΩ,T |2

+
β4

2

∫
Γ

|yΓ(T )− yΓ,T |2 +
ν

2

∫∫
Q

|u|2 +
νΓ

2

∫∫
Σ

|uΓ|2 , (1.7)

which was also considered in [13]. Here, the targets yQ, yΣ, yΩ,T , yΓ,T are given functions, βi, 1 ≤
i ≤ 4, denote nonnegative constants which are not simultaneously zero, and ν, νΓ are positive
constants.

In this paper, we focus on the aspect of sparsity. To this end, we add to the cost functional J a suitable
term forcing sparsity, which is typically of the form

j((u, uΓ)) := α

∫∫
Q

|u| + αΓ

∫∫
Σ

|uΓ|, (1.8)

with positive coefficients α, αΓ. The total cost functional is then given by

J((y, yΓ), (u, uΓ)) := J((y, yΓ), (u, uΓ)) + j((u, uΓ)) . (1.9)

Notice that j is nonsmooth, which then also applies to J.

At this point, we specify the set of admissible controls: choosing real constants ρmin, ρmax, ρΓmin
,

ρΓmax with ρmin ≤ ρmax and ρΓmin
≤ ρΓmax , we set

Uad := {(u, uΓ) ∈ L∞(Q)× L∞(Σ) : ρmin ≤ u ≤ ρmax a.e. in Q,

ρΓmin
≤ uΓ ≤ ρΓmax a.e. on Σ} . (1.10)
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Second order conditions with sparsity for an Allen–Cahn system 3

Remark 1.1. We remark that the above constants could also be replaced by functions belonging to
L∞(Q) and L∞(Σ), respectively. We also stress the fact that, in contrast to the state functions y and
yΓ, the controls u and uΓ are completely independent from each other and not linked on the boundary.
We can therefore treat here the cases of distributed and of boundary controls simultaneously; the
cases of controling either only in the bulk or only on the surface are obtained by putting some of the
weights βi and the associated thresholds defining Uad equal to zero correspondingly.

The control problem under investigation in this paper now reads as follows:

(CP) Minimize J((y, yΓ), (u, uΓ)) subject to (1.1)–(1.3) and (u, uΓ) ∈ Uad.

There are numerous papers studying optimal control problems for problems with dynamic boundary
conditions. Without claiming to be complete, we cite here the works [1, 13, 23] for the Allen–Cahn
equation and [11, 12, 16, 17, 18, 19, 20, 21, 29] for systems of Cahn–Hilliard type.

Sparsity in the optimal control theory for partial differential equations has become a very active field
of research. The use of sparsity-enhancing functionals goes back to inverse problems and image
processing. It was the seminal paper [42] on elliptic control problems that initiated the discussion of
sparsity in the optimal control theory of partial differential equations. Soon after [42], many results
on sparse optimal controls for PDEs were published. We mention only very few of them with closer
relation to our paper, in particular [4, 30, 31], on directional sparsity, and [8] on a general theorem
for second-order conditions. Moreover, we refer to some new trends in the investigation of sparsity,
namely, infinite horizon sparse optimal control (see, e.g., [34, 35]) and fractional order optimal control
(cf. [38], [37]).

These papers concentrated on first-order optimality conditions for sparse optimal controls of single
elliptic and parabolic equations. In [6, 7], first- and second-order optimality conditions have been dis-
cussed in the context of sparsity for the (semilinear) system of FitzHugh–Nagumo equations. More
recently, sparsity of optimal controls for reaction-diffusion systems of Cahn–Hilliard type have been
addressed in [22, 28, 40]. Moreover, we refer to the measure control of the Navier–Stokes system
studied in [5].

However, to the best knowledge of the authors, second-order sufficient optimality for sparse controls for
the Allen–Cahn equation with dynamic boundary conditions have never been studied before. We also
improve a result on second-order sufficient conditions of [23] for the case without sparsity functionals.

The paper is organized as follows. In the next section, we list and discuss our assumptions, and we
collect known results concerning the well-posedness of the state system (1.1)–(1.3) and of the optimal
control problem that have been established in [2] and [23].

In Section 3, we employ the implicit function theorem to give a new proof of the known fact that
the control-to-state operator (u, uΓ) 7→ (y, yΓ) is twice continuously Fréchet differentiable between
appropriate Banach spaces. The final Section 4 then brings the main results of this paper, namely
the derivation of first-order necessary and second-order sufficient optimality conditions for the optimal
control problem (CP). In an appendix, we prove auxiliary results that are needed for the main theorem
on second-order sufficient conditions.

Prior to this, let us fix some notation. For any Banach space X , we denote by ‖ · ‖X , X∗, and
〈 · , · 〉X , the corresponding norm, its dual space, and the related duality pairing between X∗ and X .
For two Banach spaces X and Y that are both continuously embedded in some topological vector
space Z , we introduce the linear space X ∩Y that becomes a Banach space when equipped with its
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natural norm ‖v‖X∩Y := ‖v‖X + ‖v‖Y for v ∈ X ∩ Y .

The standard Lebesgue and Sobolev spaces defined on a set G (where here G = Ω or G = Γ) are,
for 1 ≤ p ≤ ∞ and k ≥ 0, denoted by Lp(G) and W k,p(G), respectively. If p = 2, they become
Hilbert spaces, and we employ the standard convention Hk(Ω) := W k,2(Ω). For convenience, we
also introduce the notation

H := L2(Ω), HΓ := L2(Γ), H := H ×HΓ,

V := H1(Ω), VΓ := H1(Γ), V := {(v, vΓ) ∈ V × VΓ : vΓ = v|Γ},
W := H2(Ω), WΓ := H2(Γ), W := W ×WΓ.

All of these spaces are Banach spaces when endowed with their natural norms. We denote by ( · , · )H
the natural inner product inH . As usual,H is identified with a subspace of V ∗ according to the identity

〈u, v〉V = (u, v)H for every u ∈ H and v ∈ V .

We then have the Hilbert triple (V,H, V ∗) with dense and compact embeddings. In the same way,
using the canonical inner products

(vΓ, wΓ)HΓ
=

∫
Γ

vΓwΓ and ((v, vΓ), (w,wΓ))H =

∫
Ω

vw +

∫
Γ

vΓwΓ

in the spaces HΓ and H, respectively, we can construct the Hilbert triples (VΓ, HΓ, VΓ
∗) and (V,H,

V∗) with dense and compact embeddings. We also recall the following version of Green’s formula for
functions vΓ ∈ H2(Γ) and wΓ ∈ H1(Γ), which is valid since the compact hypersurface Γ has an
empty boundary (for details, see, e.g., [25]):

−
∫

Γ

wΓ ∆ΓvΓ =

∫
Γ

∇ΓwΓ · ∇ΓvΓ . (1.11)

We close this section by introducing a convention concerning the constants used in estimates within
this paper: we denote by C any positive constant that depends only on the given data occurring in the
state system and in the cost functional, as well as on a constant that bounds the (L∞(Q)× L∞(Σ))–
norms of the elements of Uad. The actual value of such generic constants C may change from
formula to formula or even within formulas. Finally, the notation Cδ indicates a positive constant that
additionally depends on the quantity δ.

2 General assumptions and the state system

In this section, we formulate the general assumptions for the data of the state system (1.1)–(1.3), and
we collect some known results for the state system. Throughout this paper, we generally assume:

(A1) f = f1 + f2 and fΓ = fΓ,1 + fΓ,2, where f1, fΓ,1 : R → [0,+∞] are lower semicontinuous
and convex with f1(0) = 0 and fΓ,1(0) = 0. Moreover, f2, fΓ,2 : R → R have Lipschitz
continuous first derivatives on R. In addition, we require f2, fΓ,2 ∈ C4[−1, 1] and f1, fΓ,1 ∈
C4(−1, 1), and assume that

lim
r↘−1

f ′1(r) = lim
r↘−1

f ′Γ,1(r) = −∞ , lim
r↗1

f ′1(r) = lim
r↗1

f ′Γ,1(r) = +∞ , (2.1)

∃ M1 ≥ 0, M2 > 0 such that |f ′1(r)| ≤M1 +M2 |f ′Γ,1(r)| ∀ r ∈ (−1, 1). (2.2)
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(A2) (y0, y0Γ
) ∈ V ∩ (L∞(Ω)× L∞(Γ)), and it holds that

− 1 < ess infx∈Ω y0(x), ess supx∈Ω y0(x) < 1 . (2.3)

(A3) R > 0 is a fixed constant such that

Uad ⊂ UR := {(u, uΓ) ∈ L∞(Q)× L∞(Σ) : ‖u‖L∞(Q) + ‖uΓ‖L∞(Σ) < R}. (2.4)

Remark 2.1. We observe that the condition (A1) is fulfilled if both f and fΓ are given by logarithmic
expressions of the same type as the potential flog defined in (1.5). The condition (2.2) is of technical
nature; it is needed in the proof of the existence result of Theorem 2.2 below. From the viewpoint of
physics, it means that the thermodynamic force exerted on the surface somehow dominates the one
acting in the bulk. Moreover, the condition (2.3) implies that

−1 < ess infx∈Γ y0Γ
(x), ess supx∈Γ y0Γ

(x) < 1.

Therefore, the state (y, yΓ) is initially strictly separated from the endpoints of the interval (−1, 1).
This means that initially there are no pure phases within the container and on its surface. Finally, the
condition (A3) just fixes once and for all a bounded open subset of the control spaceL∞(Q)×L∞(Σ)
that contains Uad.

Next, we specify our notion of solution: for any given (u, uΓ) ∈ H, we call a pair (y, yΓ) a solution to
(1.1)–(1.3) if

y ∈ H1(0, T ;V ∗) ∩ L2(0, T ;V ),

yΓ ∈ H1(0, T ;V ∗Γ ) ∩ L2(0, T ;VΓ),

yΓ(t) = y(t)|Γ for a.e. t ∈ (0, T ),

y(0) = y0, yΓ(0) = y0Γ
,

and if, for almost every t ∈ (0, T ) and every (v, vΓ) ∈ V, it holds

〈∂ty(t), v〉V +

∫
Ω

∇y(t) · ∇v + 〈∂tyΓ(t), vΓ〉VΓ
+

∫
Γ

∇ΓyΓ(t) · ∇ΓvΓ

=

∫
Ω

(u(t)− f ′(y(t)))v +

∫
Γ

(uΓ(t)− f ′Γ(yΓ(t)))vΓ . (2.5)

Note that the identity (2.5) is formally derived as follows: test (1.1) by v and (1.2) by vΓ, integrate by
parts using (1.11), and add the resulting identities.

We have the following well-posedness result that follows from [23, Thm. 2.1 and Lem. 2.3].

Theorem 2.2. Suppose that the conditions (A1)–(A3) are fulfilled. Then the state system (1.1)–(1.3)
has for any (u, uΓ) ∈ L2(Q)× L2(Σ) a unique solution (y, yΓ) with the regularity

y ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (2.6)

yΓ ∈ H1(0, T ;HΓ) ∩ L∞(0, T ;VΓ) ∩ L2(0, T ;WΓ). (2.7)
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Moreover, there is a constant K1 > 0, which depends only on R and the data of the state system,
such that

‖y‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W )

+ ‖yΓ‖H1(0,T ;HΓ)∩L∞(0,T ;VΓ)∩L2(0,T ;WΓ) ≤ K1 , (2.8)

whenever (y, yΓ) is the solution to the state system associated with some (u, uΓ) ∈ UR. In addition,
a uniform strict separation property is satisfied: there are constants −1 < r− ≤ r+ < 1, which
depend only on R and the data of the state system, such that

r− ≤ y(x, t) ≤ r+ for a.e. (x, t) ∈ Q, r− ≤ yΓ(x, t) ≤ r+ for a.e. (x, t) ∈ Σ, (2.9)

whenever (y, yΓ) is the solution to the state system associated with some (u, uΓ) ∈ UR.

Remark 2.3. 1. By virtue of Theorem 2.2, the control-to-state operator S : (u, uΓ) 7→ S(u, uΓ) :=
(y, yΓ) is well defined as a mapping between L2(Q)×L2(Σ) and the Banach spaceH1(0, T ;H)∩
L∞(0, T ;V) ∩ L2(0, T ;W), which also encodes the condition that yΓ(t) = y(t)|Γ for almost every
t ∈ (0, T ). In particular, (y, yΓ) is a strong solution to the state system that satisfies the equations
(1.1)–(1.3) almost everywhere.
2. Observe that the separation condition (2.9) holds only for (bounded) controls in UR. If it is satisfied,
then, by condition (A1), we may without loss of generality assume that

max
i=1,2,3,4

max
j=1,2

(
‖f (i)

j (y)‖L∞(Q) + ‖f (i)
Γ,j(yΓ)‖L∞(Σ)

)
≤ K1 , (2.10)

for every solution (y, yΓ) associated with some (u, uΓ) ∈ UR.
3. We cannot expect y to be continuous onQ, in general. However, we have that y ∈ L2(0, T ;C0(Ω))
by the embedding H2(Ω) ⊂ C0(Ω). This fact justifies our denotation for the trace on Γ: indeed, we
have for almost all t ∈ (0, T ) that y(t) ∈ V ∩ C0(Ω), and therefore the trace yΓ(t) coincides with
the restriction of y(t) to the boundary.
4. Since the embedding (H1(0, T ;H) ∩ L2(0, T ;V ∩ W)) ⊂ C0([0, T ];V) is continuous, the
terminal observation (y(T ), yΓ(T )) in the functional (1.7) is well defined.

3 Differentiability of the control-to-state operator

In this section, we study the differentiability properties of the control-to-state operator S. To this end,
we introduce the Banach spaces

U := L∞(Q)× L∞(Σ), (3.1)

Y := H1(0, T ;H) ∩ L∞(0, T ;V) ∩ L2(0, T ;W), (3.2)

endowed with their standard norms. We then know from Theorem 3.2 and Theorem 3.5 in [23] that S
is under the assumptions (A1)–(A3) twice continuously Fréchet differentiable on U as a mapping from
U into Y, where, for any control pair (u∗, u∗Γ) ∈ U, with associated state (y∗, y∗Γ) := S(u∗, u∗Γ), the
first and second Fréchet derivatives DS(u∗, u∗Γ) ∈ L(U,Y) and D2S(u∗, u∗Γ) ∈ L(U,L(U,Y)) are
given as follows:

DOI 10.20347/WIAS.PREPRINT.3005 Berlin 2023
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(i) For any increment (h, hΓ) ∈ U, (ξ, ξΓ) := DS(u∗, u∗Γ)[(h, hΓ)] ∈ Y is the unique solution to
the linearized problem

∂tξ −∆ξ + f ′′(y∗)ξ = h a.e. in Q, (3.3)

∂tξΓ −∆ΓξΓ + ∂nξ + f ′′Γ(y∗Γ)ξΓ = hΓ and ξΓ = ξ|Γ a.e. on Σ, (3.4)

ξ(0) = 0 a.e. in Ω, ξΓ(0) = 0 a.e. on Γ. (3.5)

(ii) For any pair of increments (h, hΓ), (k, kΓ) ∈ U, (η, ηΓ) := D2S(u∗, u∗Γ)[(h, hΓ), (k, kΓ)] ∈ Y

is the unique solution to the bilinearized problem

∂tη −∆η + f ′′(y∗)η = −f (3)(y∗)ϕψ a.e. in Q, (3.6)

∂tηΓ −∆ΓηΓ + ∂nη + f ′′Γ(y∗Γ)ηΓ = −f (3)
Γ (y∗Γ)ϕΓψΓ and ηΓ = η|Γ a.e. on Σ, (3.7)

η(0) = 0 a.e. in Ω, ηΓ(0) = 0 a.e. on Γ, (3.8)

where (ϕ, ϕΓ) := DS(u∗, u∗Γ)[(h, hΓ)] and (ψ, ψΓ) := DS(u∗, u∗Γ)[(k, kΓ)].

(iii) The mappings DS : U → L(U,Y), (u, uΓ) 7→ DS(u, uΓ), and D2S(u, uΓ) : U → L(U,
L(U,Y)), (u, uΓ) 7→ D2S(u, uΓ), are Lipschitz continuous in the following sense: there exists a con-
stant K2 > 0, which depends only on R and the data, such that, for all controls (u, uΓ), (u∗, u∗Γ) ∈
UR and all increments (h, hΓ), (k, kΓ) ∈ U,

‖(DS(u, uΓ)−DS(u∗, u∗Γ))[(h, hΓ)]‖Y
≤ K2 ‖(u, uΓ)− (u∗, u∗Γ)‖L2(0,T ;H) ‖(h, hΓ)‖L2(0,T ;H) , (3.9)∥∥(D2S(u, uΓ)−D2S(u∗, u∗Γ)

)
[(h, hΓ), (k, kΓ)]

∥∥
Y

≤ K2 ‖(u, uΓ)− (u∗, u∗Γ)‖L2(0,T ;H) ‖(h, hΓ)‖L2(0,T ;H) ‖(k, kΓ)‖L2(0,T ;H) . (3.10)

Remark 3.1. As U is dense in L2(0, T ;H), the operator DS(u∗, u∗Γ) ∈ L(U,Y) can be extended in
the standard way to an operator belonging to L(L2(0, T ;H),Y) without changing its operator norm.
We still denote the extended operator by DS(u∗, u∗Γ), where we stress the fact that it coincides with
a Fréchet derivative only on U and not on L2(0, T ;H). However, it follows from [23, Thm. 2.2] that
the linearized system (3.3)–(3.5) has also for every right-hand side (h, hΓ) ∈ L2(0, T ;H) a unique
solution (ξ, ξΓ) ∈ Y that satisfies

‖(ξ, ξΓ)‖Y ≤ K3 ‖(h, hΓ)‖L2(0,T ;H)

with a constant K3 > 0 that depends only on R and the data. It is then easily verified that (ξ, ξΓ) =
DS(u∗, u∗Γ)[(h, hΓ)] with the extended operator, and, in the sense of the extension, the estimate
(3.9) is also satisfied for directions (h, hΓ) ∈ L2(0, T ;H). An analogous result holds for the validity
of (3.10).

The above results (i)–(iii) have been proved directly in [23] without use of the implicit function theorem,
where the authors announced that an alternative proof would be possible using the implicit function
theorem. This does not seem to be obvious, since the presence of nonlinearities would require differ-
entiability properties of Nemytskii operators between L∞–spaces. It is, however, not known whether
the solutions to linear systems like (3.3)–(3.5) are bounded. Below (see Lemma 3.2), we will show
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such a boundedness result for bounded right-hand sides. Using this result, we will be able to prove
differentiability via the implicit function theorem.

To this end, we introduce the Banach space

Z := {(y, yΓ) ∈ Y ∩ U : ∂ty −∆y ∈ L∞(Q), ∂tyΓ −∆ΓyΓ + ∂ny ∈ L∞(Σ)}, (3.11)

endowed with the norm

‖(y, yΓ)‖Z := ‖(y, yΓ)‖Y∩U + ‖∂ty −∆y‖L∞(Q) + ‖∂tyΓ −∆ΓyΓ + ∂ny‖L∞(Σ) ∀(y, yΓ) ∈ Z.
(3.12)

Finally, we fix constants r∗, r∗ such that

−1 < r∗ < r− < r+ < r∗ < 1, (3.13)

with the constants r−, r+ introduced in (2.9). We then consider the set

Φ :=
{

(y, yΓ) ∈ Z : r∗ < min
{

ess inf(x,t)∈Q y(x, t) , ess inf(x,t)∈Σ yΓ(x, t)
}

and max
{

ess sup(x,t)∈Q y(x, t) , ess sup(x,t)∈Σ yΓ(x, t)
}
< r∗

}
, (3.14)

which is obviously an open subset of Z. Notice that the functions in Z are bounded and measurable,
so that the essential infimum and supremum used above are well defined.

We now prove an auxiliary result for the linear initial-boundary value problem

∂ty −∆y = −λ1 f
′′(y∗)y + λ2 h a.e. in Q, (3.15)

∂tyΓ −∆ΓyΓ + ∂ny = −λ1 f
′′
Γ(y∗Γ)yΓ + λ2 hΓ and yΓ = y|Γ a.e. on Σ, (3.16)

y(0) = λ3y0 a.e. in Ω, yΓ(0) = λ3y0Γ
a.e. on Γ, (3.17)

which for λ1 = λ2 = 1 and λ3 = 0 coincides with the linearization (3.3)–(3.5) of the state system at
((u∗, u∗Γ), (y∗, y∗Γ)). For convenience, we now introduce the Banach space of the initial data,

N := {(y0, y0Γ
) : y0 ∈ V ∩ L∞(Ω), y0Γ

∈ VΓ ∩ L∞(Γ), y0Γ
= y0|Γ a.e. on Γ}, (3.18)

equipped with its natural norm. We then have the following result.

Lemma 3.2. Assume that λ1, λ2, λ3 ∈ {0, 1} are given and that the assumptions (A1)–(A3) are
fulfilled. Moreover, let ((u∗, u∗Γ), (y∗, y∗Γ)) ∈ UR×Φ be arbitrary. Then the system (3.15)–(3.17) has
for every (h, hΓ) ∈ U and every (y0, y0Γ

) ∈ N a unique solution (y, yΓ) ∈ Z. Moreover, the linear
mapping ((h, hΓ), (y0, y0Γ

)) 7→ (y, yΓ) is continuous from U×N into Z.

Proof. At first, it is standard to show that (3.15)–(3.17) has a unique solution (y, yΓ) ∈ Y for given
data (h, hΓ) ∈ U and (y0, y0Γ

) ∈ N. The existence can be proved via an appropriate Faedo–
Galerkin approximation for which a priori estimates and a passage to the limit process are performed.
The uniqueness proof is simple. In order not to overload the exposition, we avoid writing the Faedo–
Galerkin scheme here and just give the corresponding a priori estimates formally. To this end, we
introduce the constant

M := λ2 ‖(h, hΓ)‖U + λ3 ‖(y0, y0Γ
‖N. (3.19)

Now we put
z := −λ1f

′′(y∗)y + λ2h, zΓ := −λ1f
′′
Γ(y∗Γ)yΓ + λ2hΓ.
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Recalling that (y∗, y∗Γ) ∈ Φ, and putting γ := 1 + ‖f ′′‖C0([r∗,r∗]) + ‖f ′′Γ‖C0([r∗,r∗]), we have the
estimates

|z| ≤ γ(|y|+M) a.e. in Q, |zΓ| ≤ γ(|yΓ|+M) a.e. on Σ. (3.20)

In the remainder of the proof, we denote by C > 0 constants that may depend on γ but not on M .

Next, we add y to both sides of (3.15) and yΓ to both sides of (3.16), and we multiply the resulting
identities by ∂ty ∈ L2(Q) and ∂tyΓ ∈ L2(Σ), respectively. Then we integrate the results for arbitrary
t ∈ (0, T ] over Qt and Σt, respectively, integrate by parts using (1.11), and add the results. We then
arrive at the identity∫∫

Qt

|∂ty|2 +

∫∫
Σt

|∂tyΓ|2 +
1

2
‖y(t)‖2

V +
1

2
‖yΓ(t)‖2

VΓ

=
λ2

3

2
‖y0‖2

V +
λ2

3

2
‖y0Γ
‖2
VΓ

+

∫∫
Qt

(y + z)∂ty +

∫∫
Σt

(yΓ + zΓ)∂tyΓ . (3.21)

Applying Young’s inequality appropriately to the last two summands on the right-hand side, using
(3.20), and then invoking Gronwall’s lemma, we easily conclude that

‖(y, yΓ)‖H1(0,T ;H)∩L∞(0,T ;V) ≤ CM. (3.22)

At this point, we observe that (g, gΓ) := (z − ∂ty, zΓ − ∂tyΓ) ∈ H almost everywhere in (0, T ). It
therefore follows from the regularity result established in [18, Lem. 3.1] that for almost every t ∈ (0, T )
it holds (y(t), yΓ(t)) ∈W, and, with a constant CΩ > 0 that depends only on Ω,

‖(y(t), yΓ(t))‖W ≤ CΩ (‖(y(t), yΓ(t))‖V + ‖(g(t), gΓ(t))‖H) .

Thus, using (3.22) and (3.20), we readily conclude that (y, yΓ) ∈ L2(0, T ;W) with

‖(y, yΓ)‖L2(0,T ;W) ≤ CM. (3.23)

Combining (3.22) and (3.23), we therefore have (y, yΓ) ∈ Y with the bound

‖(y, yΓ)‖Y ≤ CM. (3.24)

Next, we are going to show that (y, yΓ) ∈ U with a corresponding norm estimate

‖(y, yΓ‖U ≤ CM. (3.25)

Once this will be shown, (3.15)-(3.16) will yield that (∂ty−∆y, ∂tyΓ−∆ΓyΓ +∂ny) = (z, zΓ) ∈ U,
which then implies that (y, yΓ) ∈ Z with ‖(y, yΓ)‖Z ≤ CM .

We argue by a Moser iteration technique. To this end, we rewrite the system (3.15)–(3.17). With
the constant γ introduced above, we put w(x, t) := e−γty(x, t) and wΓ(x, t) := e−γtyΓ(x, t),
noticing that for almost every t ∈ (0, T ) we have wΓ(t) = w(t)|Γ. In terms of these new variables,
the system (3.15)–(3.17) becomes

∂tw −∆w + (γ + f ′′(y∗))w = exp(−γt)λ2h a.e. in Q, (3.26)

∂twΓ −∆ΓwΓ + ∂nw + (γ + f ′′Γ(y∗Γ))wΓ = exp(−γt)λ2hΓ a.e. on Σ, (3.27)

w(0) = λ3y0 a.e. in Ω, wΓ(0) = λ3y0Γ
a.e. on Γ. (3.28)
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We aim at showing that (w,wΓ) ∈ U and that, with a constant Ĉ > 0 not depending on M ,

‖(w,wΓ)‖U ≤ Ĉ M. (3.29)

Once this will be shown, we will have ‖(y, yΓ)‖U ≤ exp(γT ) Ĉ M , and the proof of the assertion
will be complete. Observe that the system (3.26)–(3.28) is suited better for proving an L∞–bound than
(3.15)–(3.17), since the coefficient functions c0 := γ+f ′′(y∗) and c0Γ

:= γ+f ′′Γ(y∗Γ) are nonnegative
almost everywhere. In addition, the right-hand sides of (3.26) and of (3.27) are both bounded by M .

We now consider for s > 0 the cutoff-functions

ws := max {−s,min{w, s}}, wsΓ := max {−s,min{wΓ, s}} . (3.30)

We notice that y ∈ L2(0, T ;C0(Ω)), by the embedding H2(Ω) ⊂ C0(Ω). Hence, for almost all
t ∈ (0, T ), we have ws(t) ∈ V ∩ C0(Ω), which means that the trace of ws(t) on Γ is given by the
restriction of ws(t) to Γ. In other words, it holds ws(t)|Γ = wsΓ, and (ws, wsΓ) ∈ V. Moreover, we
obviously have that (ws, wsΓ) ∈ U. We therefore may for arbitrary integer n ≥ 2 test the equations
(3.26) and (3.27) by the admissible functions v = ws(t)2n−1 and vΓ = wsΓ(t)2n−1, respectively.
Integration by parts and over [0, t], where t ∈ (0, T ], addition of the resulting equalities, and the fact
that |e−γt| ≤ 1, yield the inequality∫∫

Qt

∂tw (ws)2n−1 +

∫∫
Σt

∂twΓ (wsΓ)2n−1 + (2n− 1)

∫∫
Qt

|ws|2n−2 |∇ws|2

+ (2n− 1)

∫∫
Σt

|wsΓ|2n−2 |∇Γw
s
Γ|2 +

∫∫
Qt

c0w(ws)2n−1 +

∫∫
Σt

c0Γ
wΓ(wsΓ)2n−1

≤
∫∫

Qt

|λ2h| |ws|2n−1 +

∫∫
Σt

|λ2hΓ| |wsΓ|2n−1 . (3.31)

Now note that 2n − 1 is an odd integer, and thus the signs of w, ws and (ws)2n−1 are equal. But
then, owing to the fact that c0 ≥ 0 by construction, the product c0w(ws)2n−1 is nonnegative almost
everywhere. Hence, the fifth summand on the left-hand side of (3.31) is nonnegative, and, by the same
token, also the sixth summand. Moreover, we have∫∫

Qt

∂tw (ws)2n−1 =

∫∫
Qt

∂tw
s (ws)2n−1 +

∫∫
Qt

∂t(w − ws) (ws)2n−1

=
1

2n
‖ws(t)‖2n

L2n(Ω) −
1

2n
‖ws(0)‖2n

L2n(Ω) +

∫
Ω

(w(t)− ws(t))(ws(t))2n−1

−
∫

Ω

(w(0)− ws(0))(w(0))2n−1 −
∫∫

Qt

(w − ws) ∂t
[
(ws)2n−1

]
.

Obviously, the integrand of the last summand on the right-hand side is zero almost everywhere, and if
we choose

s > λ3

(
‖y0‖L∞(Ω) + ‖y0Γ

‖L∞(Γ)

)
, (3.32)

which will henceforth be assumed, thenw(0) = ws(0), and also the integrand of the fourth summand
on the right-hand side vanishes. Finally, we easily check that the integrand of the third term on the
right-hand side is nonnegative. In summary,∫∫

Qt

∂tw (ws)2n−1 ≥ 1

2n
‖ws(t)‖2n

L2n(Ω) −
1

2n
‖w(0)‖2n

L2n(Ω) , (3.33)
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and, by the same token, an analogous estimate holds true for the second summand on the left-hand
side of (3.31). Hence, omitting several nonnegative terms on the left-hand side of (3.31), we obtain
from (3.31)–(3.33) the inequality

1

2n
‖ws(t)‖2n

L2n(Ω) +
1

2n
‖wsΓ(t)‖2n

L2n(Γ) ≤
1

2n
‖w(0)‖2n

L2n(Ω) +
1

2n
‖wΓ(0)‖2n

L2n(Γ)

+

∫∫
Qt

|λ2h| |ws|2n−1 +

∫∫
Σt

|λ2hΓ| |wsΓ|2n−1 . (3.34)

It remains to estimate the terms on the right-hand side. At first, denoting by κ the maximum between
the volume of Ω and the surface area of Γ, we have that

‖w(0)‖L2n(Ω) = λ3 ‖y0‖L2n(Ω) ≤ κ1/(2n) λ3 ‖y0‖L∞(Ω) ≤ κ1/(2n) M,

‖wΓ(0)‖L2n(Γ) = λ3 ‖y0Γ
‖L2n(Γ) ≤ κ1/(2n) λ3 ‖y0Γ

‖L∞(Γ) ≤ κ1/(2n)M. (3.35)

In addition, we obtain for the third term on the right-hand side (which we denote by I), using Young’s
inequality ab ≤ 1

p
|a|p + 1

q
|b|q with p = 2n

2n−1
and q = 2n ,

I ≤
∫∫

Qt

M |ws|2n−1 ≤ 2n− 1

2n

∫∫
Qt

|ws|2n +
M2n

2n
|Ω| t

≤ 2n− 1

2n

∫∫
Qt

|ws|2n +
M2n

2n
κT. (3.36)

An analogous estimate can be performed for the last summand on the right-hand side. Consequently,
combining the estimates (3.34)–(3.36), and multiplying the resulting inequality by 2n, we arrive at the
estimate

‖ws(t)‖2n
L2n(Ω) + ‖wsΓ(t)‖2n

L2n(Γ) ≤ 2κ(1 + T )M2n

+ (2n− 1)

∫ t

0

‖ws(σ)‖2n
L2n(Ω) dσ + (2n− 1)

∫ t

0

‖wsΓ(σ)‖2n
L2n(Γ) dσ ,

whence, by virtue of Gronwall’s lemma,

‖ws(t)‖2n
L2n(Ω) + ‖wsΓ(t)‖2n

L2n(Γ) ≤ 2κ(1 + T )M2n e(2n−1)t.

Therefore,

‖ws(t)‖L2n(Ω) ≤ (2κ(1 + T ))1/(2n) exp(T )M,

and, by the same token,

‖wsΓ(t)‖L2n(Γ) ≤ (2κ(1 + T ))1/(2n) exp(T )M.

Taking the limit as n→∞ in the last two inequalities, we find that

‖ws(t)‖L∞(Ω) + ‖wsΓ(t)‖L∞(Γ) ≤ 2 exp(T )M, (3.37)

for almost every t ∈ (0, T ), provided that s satisfies (3.32). At this point, we choose

s > 2 exp(T )M + λ3

(
‖y0‖L∞(Ω) + ‖y0Γ

‖L∞(Γ)

)
.

Then, owing to (3.37), ws = w and wsΓ = wΓ, whence we conclude that, for almost every t ∈ (0, T ),

‖w(t)‖L∞(Ω) + ‖wΓ(t)‖L∞(Γ) ≤ 2 exp(T )M.

Hence (3.29) is shown, which concludes the proof of the assertion.
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Having proved Lemma 3.2, we can now prepare for the application of the implicit function theorem. To
this end, we introduce for convenience abbreviating denotations, namely,

u := (u, uΓ), u∗ := (u∗, u∗Γ), y := (y, yΓ), y∗ := (y∗, y∗Γ),

y0 := (y0, y0Γ
), 0 := (0, 0).

We consider two auxiliary linear initial-boundary value problems. The first,

∂ty −∆y = h a.e. in Q, (3.38)

∂tyΓ −∆ΓyΓ + ∂ny = hΓ and yΓ = y|Γ a.e. on Σ, (3.39)

y(0) = 0 a.e. in Ω, yΓ(0) = 0 a.e. on Γ, (3.40)

is obtained from (3.15)–(3.17) for λ1 = λ3 = 0, λ2 = 1. Thanks to Lemma 3.2, it has for each
h = (h, hΓ) ∈ U a unique solution y = (y, yΓ) ∈ Z, and the associated linear mapping GQ : U→
Z, h 7→ y, is continuous. The second system reads

∂ty −∆y = 0 a.e. in Q, (3.41)

∂tyΓ −∆ΓyΓ + ∂ny = 0 a.e. on Σ, (3.42)

y(0) = y0 a.e. in Ω, yΓ(0) = y0Γ
a.e. on Γ, (3.43)

and results from (3.15)–(3.17) for λ1 = λ2 = 0, λ3 = 1. For each y0 ∈ N, it has a unique solution
y ∈ Z, and the associated mapping GΩ : N → Z, y0 7→ y, is linear and continuous as well. In
addition, we define on the open set A := (UR × Φ) ⊂ (U× Z) the nonlinear mapping

G : A→ U, (u,y) 7→ h := (−f ′(y) + u,−f ′Γ(yΓ) + uΓ) (3.44)

as a mapping from U× Z to U.

The solution y = (y, yΓ) to the nonlinear state equation (1.1)–(1.3) is the sum of the solution to the
system (3.38)–(3.40), where h = (h, hΓ) is given by (3.44) (with (y, yΓ) considered as known), and
of the solution to the system (3.41)–(3.43), that is, the state y associated with the control u = (u, uΓ)
is the unique solution to the nonlinear equation

y = GQ
(
G(u,y)

)
+ GΩ(y0). (3.45)

Let us now define the nonlinear mapping F : A→ Z,

F(u,y) := GQ
(
G(u,y)

)
+ GΩ(y0)− y. (3.46)

With F, the state equation can be shortly written as

F(u,y) = 0. (3.47)

This equation just means that y = (y, yΓ) is a solution to the state system (1.1)–(1.3) such that
(u,y) ∈ A. From Theorem 2.2 we know that such a solution exists for every u ∈ UR. A fortiori, any
such solution automatically enjoys the separation property (2.9) and is uniquely determined.

We are going to apply the implicit function theorem to the equation (3.47). To this end, we need the
differentiability of the involved mappings. Observe that, owing to the differentiability properties of the
involved Nemytskii operators (see, e.g., [43, Thm. 4.22, p. 229]), the mapping G is twice continuously

DOI 10.20347/WIAS.PREPRINT.3005 Berlin 2023



Second order conditions with sparsity for an Allen–Cahn system 13

Fréchet differentiable in U×Φ as a mapping from U×U into U, and for the first partial derivatives at
any point (u∗,y∗) ∈ A, and for all u ∈ U and y ∈ Z, we have the identities

DuG(u∗,y∗)[u] = (u, uΓ), DyG(u∗,y∗)[y] = (−f ′′(y∗)y,−f ′′Γ(y∗Γ)yΓ). (3.48)

At this point, we may apply the chain rule, which yields that F is twice continuously Fréchet differen-
tiable in UR × Φ as a mapping from U× (Y ∩ U) into Z, with the first-order partial derivatives

DuF(u∗,y∗) = GQ ◦DuG(u∗,y∗), DyF(u∗,y) = GQ ◦DyG(u∗,y∗)− IZ, (3.49)

where IZ denotes the identity mapping on Z.

We want to prove the differentiability of the control-to-state mapping u 7→ y defined implicitly by
the equation F(u,y) = 0, using the implicit function theorem. Now let u∗ ∈ UR be given and
y∗ = S(u∗). We need to show that the linear and continuous operator DyF(u∗,y∗) is a topological
isomorphism from Z into itself.

To this end, let v ∈ Z be arbitrary. Then the identity DyF(u∗,y∗)[y] = v just means that
GQ (DyG(u∗,y∗)[y])− y = v, which is equivalent to saying that

w := y + v = GQ (DyG(u∗,y∗)[w])− GQ (DyG(u∗,y∗)[v]) .

The latter identity means that w is a solution to (3.15)–(3.17) for λ1 = λ2 = 1, λ3 = 0, with the
specification (h, hΓ) = −DyG(u∗,y∗)[v] = (f ′′(y∗)v, f ′′Γ(y∗Γ)vΓ) ∈ U. By Lemma 3.2, such a
solution w ∈ Z exists and is uniquely determined, which shows that DyF(u∗,y∗) is surjective. At
the same time, taking v = 0, we see that the equation DyF(u∗,y∗)[y] = 0 means that y is the
unique solution to (3.15)–(3.17) for λ1 = 1, λ2 = λ3 = 0. Obviously, y = 0, which implies that
DyF(u∗,y∗) is also injective and thus, by the open mapping principle, a topological isomorphism
from Z into itself.

We may therefore infer from the implicit function theorem (cf., e.g., [3, Thms. 4.7.1 and 5.4.5] or
[24, 10.2.1]) that the control-to-state mapping S is twice continuously Fréchet differentiable in UR

as a mapping from U into Z. The explicit form of the first and second Fréchet derivatives is given
as in Theorem 2.2: in the case, where the directions (h, hΓ), (k, kΓ) belong to the space U, the
corresponding solutions (ξ, ξΓ) and (η, ηΓ) to the linearized system (3.3)–(3.5) and to the bilinearized
system (3.6)–(3.8), respectively, belong to the space Z. In summary, we have shown the following
result.

Theorem 3.3. Suppose that the conditions (A1)–(A3) are fulfilled. Then the control-to-state operator
S is twice continuously Fréchet differentiable in UR as a mapping from U into Z. Moreover, for every
(u∗, u∗Γ) ∈ UR and (h, hΓ), (k, kΓ) ∈ U the functions (ξ, ξΓ) = DS(u∗, u∗Γ)[(h, hΓ)] ∈ Z and
(η, ηΓ) = D2S(u∗, u∗Γ)[(h, hΓ), (k, kΓ)] ∈ Z are the unique solutions to the linearized system
(3.3)–(3.5) and the bilinearized system (3.6)–(3.8), respectively.

Remark 3.4. It is worth noting that for the argumentation used above the actual value of the constant
R > 0 defining UR did not matter. It therefore follows that S is twice continuously Fréchet differentiable
as a mapping from U to Z on the entire space U.

4 The optimal control problem

In this section, we study the optimal control problem (CP) with the cost functional (1.9). Besides the
general postulates (A1)–(A3), we make the following assumptions:
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(A4) The constants βi, i = 1, 2, 3, 4, are nonnegative and not all zero, while ν, νΓ, α, αΓ are positive.

(A5) The target functions satisfy yQ ∈ L2(Q), yΣ ∈ L2(Σ), (yΩ,T , yΓ,T ) ∈ V.

(A6) It holds β3 = β4.

Remark 4.1. The assumptions that β3 = β4 and that (yΩ,T , yΓ,T ) ∈ V are useful in order to have
regular solutions to the associated adjoint system (see below). It is not overly restrictive in view of
the continuous embedding (H1(0, T ;H) ∩ L2(0, T ;W ∩ V)) ⊂ C0([0, T ];V) which implies that
(y(T ), yΓ(T )) ∈ V.

The following existence result can be shown with an obvious modification of the proof of the corre-
sponding theorem [23, Thm. 3.1]. It is not restricted to functions j of the special form (1.8).

Theorem 4.2. Suppose that (A1)–(A5) are fulfilled, and suppose that j : L2(Q) × L2(Σ) → R is
convex and continuous. Then the optimal control problem (CP) admits a solution (u∗, u∗Γ) ∈ Uad.

In the following, we often denote by (u∗, u∗Γ) ∈ Uad an optimal control for (CP) and by (y∗, y∗Γ) =
S(u∗, u∗Γ) the associated state. For the corresponding adjoint state system we have the following
result.

Theorem 4.3. Suppose that (A1)–(A6) are fulfilled and let (u, uΓ) ∈ UR be a control with associated
state (y, yΓ). Then the associated adjoint state system

− ∂tp−∆p+ f ′′(y)p = β1(y − yQ) a.e. in Q, (4.1)

− ∂tpΓ −∆ΓpΓ + ∂np+ f ′′Γ(yΓ)pΓ = β2(yΓ − yΣ) and pΓ = p|Γ a.e. on Σ, (4.2)

p(T ) = β3(y(T )− yΩ,T ) a.e. in Ω, pΓ(T ) = β3(yΓ(T )− yΓ,T ) a.e. on Γ, (4.3)

has a unique solution (p, pΓ) ∈ Y. Moreover, there is a constant K4 > 0, which depends only on R
and the data, such that

‖(p, pΓ)‖Y ≤ K4

(
‖y − yQ‖L2(Q) + ‖yΓ − yΣ‖L2(Σ)

+‖y(T )− yΩ,T‖V + ‖yΓ(T )− yΓ,T‖VΓ
) . (4.4)

Proof. With the exception of (4.4), the assertion follows from [23, Thm. 3.4]. To show (4.4), we argue
as follows: we put

q(x, t) := p(x, T − t), qΓ := pΓ(x, T − t), ỹ(x, t) := y(x, T − t),
ỹΓ(x, t) := yΓ(x, T − t), h(x, t) := β1(y(x, T − t)− yQ(x, T − t)),
hΓ(x, t) := β2(yΓ(x, T − t)− yΣ(x, T − t)) . (4.5)

In terms of these quantities, the adjoint system (4.1)–(4.3) takes the form

∂tq −∆q = −f ′′(ỹ)q + h a.e. in Q, (4.6)

∂tqΓ −∆ΓqΓ + ∂nq = −f ′′Γ(ỹΓ) + hΓ and qΓ = q|Γ a.e. on Σ, (4.7)

q(0) = β3(y(T )− yΩ,T ) a.e. in Ω, qΓ(0) = β3(yΓ(T )− yΓ,T ) a.e. on Γ, (4.8)

which is a special case of the auxiliary system (3.15)–(3.17) with λ1 = λ2 = λ3 = 1, up to the
minor difference that the arguments of the functions f ′′ and f ′′Γ differ from those in (3.15) and (3.16)
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by a time shift. Obviously, (h, hΓ) ∈ L2(0, T ;H), and it follows from the continuity of the embedding
Y ⊂ C0([0, T ];V) and (A5) that the initial data of (q, qΓ) belong to V. Therefore, if we put

M := λ2 ‖(h, hΓ)‖L2(0,T ;H) + λ3 ‖(y0, y0Γ
‖V,

then the estimates (3.21)–(3.24) performed in the proof of Lemma 3.2 can be repeated (notice that the
condition (q(0), qΓ(0)) ∈ U is not needed for these estimates), and (4.4) follows from (3.24).

Note that – at this point – we cannot expect to have the stronger regularity (p, pΓ) ∈ Z, since, in view
of assumption (A5), the right-hand sides of (4.1) and (4.2) only belong to L2–spaces.

4.1 First-order necessary optimality conditions

In this section, we aim at deriving associated first-order necessary optimality conditions for local
minima of the optimal control problem (CP). We assume that (A1)–(A6) are fulfilled and that j :
L2(0, T ;H)→ R is a general convex and continuous functional. We use the abbreviations

u := (u, uΓ), u∗ := (u∗, u∗Γ), y := (y, yΓ), y∗ = (y∗, y∗Γ).

Next, we define the reduced cost functionals associated with the functionals J and J introduced in
(1.7) and (1.9) by

Ĵ(u) = J(S(u),u), Ĵ(u) = J(S(u),u) . (4.9)

Since S is twice continuously Fréchet differentiable from U into the space C0([0, T ];H) ⊂ Z, it
follows from the chain rule that Ĵ is a twice continuously Fréchet differentiable mapping from U into R,
where, for every u∗ = (u∗, u∗Γ) ∈ U and every h = (h, hΓ) ∈ U, it holds with (y∗, y∗Γ) = S(u∗, u∗Γ)
that

DĴ(u∗)[h] = β1

∫∫
Q

ξ(y∗ − yQ) + β2

∫∫
Σ

ξΓ(y∗Γ − yΣ) + β3

∫
Ω

ξ(T )(y∗(T )− yΩ,T )

+ β3

∫
Γ

ξΓ(T )(y∗Γ(T )− yΓ,T ) + ν

∫∫
Q

u∗h + νΓ

∫∫
Σ

u∗ΓhΓ, (4.10)

where (ξ, ξΓ) = DS(u∗)[h] ∈ Y is the unique solution to the linearized system (3.3)–(3.5) associ-
ated with h.

Remark 4.4. Observe that the right-hand side of (4.10) is meaningful also for arguments h = (h, hΓ)
∈ L2(0, T ;H), where in this case (ξ, ξΓ) = DS(u∗)[h] with the extension of the operator DS(u∗)
to L2(0, T ;H) introduced in Remark 3.1. Hence, by means of the identity (4.10) we can extend the
operator DĴ(u∗) ∈ U∗ to L2(0, T ;H). The extended operator, which we again denote by DĴ(u∗),
then becomes an element of (L2(0, T ;H))∗. In this way, expressions of the form DĴ(u∗)[h] have a
proper meaning also for h ∈ L2(0, T ;H).

In the following, we assume that u∗ = (u∗, u∗Γ) is a given locally optimal control for (CP) in the
sense of U, that is, there is some ε > 0 such that

Ĵ(u) ≥ Ĵ(u∗) for all u ∈ Uad satisfying ‖u− u∗‖U ≤ ε. (4.11)

Notice that any locally optimal control in the sense of Lp(Q)×Lp(Σ) with 1 ≤ p <∞ is also locally
optimal in the sense of U, since the topology of U is the finest among these spaces. Therefore, a
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result proved for locally optimal controls in the sense of U is also valid for locally optimal controls in
the sense of Lp(Q)× Lp(Σ). It is also true for (globally) optimal controls.

We claim that then the variational inequality

DĴ(u∗)[u− u∗] + j(u)− j(u∗) ≥ 0 ∀u ∈ Uad (4.12)

is satisfied. Although this result seems to be pretty standard by now, we nevertheless provide its proof
for the reader’s convenience. To this end, note that by local optimality there is some ε > 0 such that
(4.11) is satisfied.

Now let u ∈ Uad be arbitrary. Then, for any τ ∈ (0, 1], we have uτ := u∗ + τ(u− u∗) ∈ Uad. For
all sufficiently small τ > 0, it holds in addition that ‖uτ − u∗‖U ≤ ε. Hence, for all such sufficiently
small τ > 0, we obtain from (4.11) and from the convexity of j the following chain of inequalities:

0 ≤ Ĵ(uτ )− Ĵ(u∗) ≤ Ĵ(uτ )− Ĵ(u∗) + j(uτ )− j(u∗)
≤ J(S(uτ ),uτ )− J(S(u∗),u∗) + τ(j(u)− j(u∗)) .

Now, we divide by τ > 0 and take the limit as τ ↘ 0. Since ‖uτ − u∗‖U → 0 as τ ↘ 0, we then
can infer that the claim (4.12) is actually valid.

The variational inequality (4.12), in turn, implies that u∗ solves the convex minimization problem

min
u∈U

(
Ψ(u) + j(u) + IUad

(u)
)
,

with Ψ(u) = DĴ(u∗)[u], and where IUad
denotes the indicator function of Uad. Hence, denoting

by the symbol ∂ the subdifferential mapping in L2(0, T ;H) (recall that j is a convex continuous
functional on L2(0, T ;H)), we have the inclusion 0 ∈ ∂

(
Ψ + j + IUad

)
(u∗) or, by the well-known

rules for subdifferentials of convex functionals,

0 ∈ {DĴ(u∗)}+ ∂j(u∗) + ∂IUad
(u∗).

In other words, there are λ∗ ∈ ∂j(u∗) and λ̂ ∈ ∂IUad
(u∗) such that 0 = DĴ(u∗) +λ∗+ λ̂, which

by the definition of ∂IUad
(u∗) means that

0 ≤ DĴ(u∗)[u− u∗] + λ∗[u− u∗] ∀u ∈ Uad.

We have thus shown the following result (where we identify λ∗ with the corresponding element of
L2(0, T ;H) according to the Riesz isomorphism): if u∗ ∈ Uad is a locally optimal control for (CP) in
the sense of U, then there is some λ∗ = (λ∗, λ∗Γ) ∈ ∂j(u∗) ⊂ L2(0, T ;H) such that

DĴ(u∗)[u− u∗] +

∫∫
Q

λ∗(u− u∗) +

∫∫
Σ

λ∗Γ(uΓ − u∗Γ) ≥ 0 ∀u = (u, uΓ) ∈ Uad. (4.13)

As usual, we simplify the expressionDĴ(u∗)[u−u∗] in (4.13) by means of the adjoint state variables
defined in (4.1)–(4.3). A standard calculation (see [23, Thm. 3.4]) then leads to the following result.

Theorem 4.5. (Necessary optimality condition) Suppose that (A1)–(A6) are fulfilled and that
j : L2(0, T ;H) → R is convex and continuous. Moreover, let u∗ = (u∗, u∗Γ) ∈ Uad be a lo-
cally optimal control of (CP) in the sense of U with associated state (y∗, y∗Γ) = S(u∗) and ad-
joint state p∗ = (p∗, p∗Γ). Then there exists some λ∗ = (λ∗, λ∗Γ) ∈ ∂j(u∗) such that, for all
u = (u, uΓ) ∈ Uad,∫∫

Q

(p∗ + λ∗ + νu∗) (u− u∗) +

∫∫
Σ

(p∗Γ + λ∗Γ + νΓu
∗
Γ) (uΓ − u∗Γ) ≥ 0 . (4.14)
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We underline again that (4.14) is also necessary for all globally optimal controls and all controls which
are locally optimal in the sense of Lp(Q)× Lp(Σ) with p ≥ 1.

4.2 Sparsity of controls

The convex function j in the objective functional accounts for the sparsity of optimal controls, i.e.,
any locally optimal control can vanish in some region of the space-time cylinder Q. The form of this
region depends on the particular choice of the functional j which can differ in different situations. The
sparsity properties can be deduced from the variational inequality (4.14) and the particular form of
the subdifferential ∂j. In this paper, we are mostly interested in the so-called directional sparsity with
respect to time and full sparsity, and we omit the case of directional sparsity with respect to space
which can be handled analogously. Our analysis closely follows the lines of [40, Sect. 4]. We therefore
can be brief.

In order to have directional sparsity with respect to time, we use the functionals

jQT : L1(0, T ;L2(Ω))→ R, jΣ
T : L1(0, T ;L2(Γ))→ R,

jQT (u) =

∫ T

0

‖u(·, t)‖L2(Ω) dt, jΣ
T =

∫ T

0

‖uΓ(·, t)‖L2(Γ) dt. (4.15)

The associated subdifferential of jQT is given by (cf., [31])

∂jQT (u) =

{
λ ∈ L2(Q) :

{
‖λ(·, t)‖L2(Ω) ≤ 1 if u(·, t) = 0

λ(·, t) = u(·, t)/‖u(·, t)‖L2(Ω) if u(·, t) 6= 0

}}
, (4.16)

where the properties above are satisfied for a.e. t ∈ (0, T ). The subdifferential of jΣ
T is obtained

analogously.

The case of full sparsity is obtained for the functionals

jQF : L1(Q)→ R, jΣ
F : L1(Σ)→ R,

jQF (u) = ‖u‖L1(Q), jΣ
F (u) = ‖u‖L1(Σ). (4.17)

In this case we have (see [32])

∂jQF (u) =

λ ∈ L2(Q) : λ(x, t) ∈


{1} if u(x, t) > 0
[−1, 1] if u(x, t) = 0
{−1} if u(x, t) < 0

 for a.e. (x, t) ∈ Q

 ,

(4.18)
and the subdifferential of jΣ

F is obtained analogously.

4.2.1 Directional sparsity in time

In this section, we will focus on directional sparsity in time. To this end, we discuss the following
auxiliary variational inequality:∫∫

Q

(d(x, t) + κλ(x, t) + νu(x, t))(v(x, t)− u(x, t)) dx dt ≥ 0 ∀ v ∈ C, (4.19)
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where λ ∈ ∂jQT (u) and

C = {v ∈ L∞(Q) : u ≤ v(x, t) ≤ u a.e. in Q} (4.20)

with given real numbers u < 0 < u, κ > 0, ν > 0, and a given function d ∈ L2(Q).

The following result is known from [31, 4, 40].

Lemma 4.6. (Sparsity) Let u < 0 < u, κ > 0, ν > 0, and let u ∈ C be a solution to the
variational inequality (4.19). Then, for a.e. t ∈ (0, T ),

u(·, t) = 0 ⇐⇒ ‖d(·, t)‖L2(Ω) ≤ κ, (4.21)

as well as

λ(·, t)


∈ {v ∈ L2(Ω) : ‖v‖L2(Ω) ≤ 1} if ‖u(·, t)‖L2(Ω) = 0

=
u(·, t)

‖u(·, t)‖L2(Ω)

if ‖u(·, t)‖L2(Ω) 6= 0
. (4.22)

Remark 4.7. A corresponding sparsity result can be obtained for functions defined on the lateral
boundary Σ if the variational inequality (4.19) and the set C are adapted accordingly. For the sake of
a shorter exposition, and since the necessary changes are obvious, we may leave it to the reader to
formulate the details.

We apply the lemma, and its counterpart for functions defined on Σ, to derive sparsity properties of
locally optimal controls from the variational inequality (4.14). For directional sparsity in time, we use
the convex and continuous functional

j(u) = j((u, uΓ)) := α jQT (u) + αΓ j
Σ
T (uΓ) = α jQT (I(u)) + αΓ j

Σ
T (IΓ(u)), (4.23)

where I, IΓ denote the linear and continuous projection mappings I : u = (u, uΓ) 7→ u and
IΓ : u = (u, uΓ) 7→ uΓ from L2(Q) × L2(Σ) to L2(Q) and L2(Σ), respectively. Since the convex
functionals jQT and jΣ

T are continuous on the whole spaces L2(Q) and L2(Σ), respectively, we obtain
from the rules for subdifferentials (cf., [32, Sect. 4.2.2, Thms. 1 and 2]) that

∂j(u) = α I∗ ∂jQT (I(u)) + αΓ I
∗
Γ ∂j

Σ
T (IΓ(u))

=
{

(αλ, αΓλΓ) ∈ L2(Q)× L2(Σ) : λ ∈ ∂jQT (u), λΓ ∈ ∂jΣ
T (uΓ)

}
.

The variational inequality (4.14) is equivalent to two independent variational inequalities for u∗ and u∗Γ
that have to hold simultaneously, namely,∫∫

Q

(p∗ + αλ∗ + νu∗) (u− u∗) ≥ 0 ∀u ∈ Uad, (4.24)∫∫
Σ

(p∗Γ + αΓλ
∗
Γ + νΓu

∗
Γ) (uΓ − u∗Γ) ≥ 0 ∀uΓ ∈ Uad

Γ , (4.25)

where

Uad = {u ∈ L∞(Q) : ρmin ≤ u(x, t) ≤ ρmax for a.e. (x, t) ∈ Q}, (4.26)

Uad
Γ = {uΓ ∈ L∞(Σ) : ρΓmin

≤ uΓ(x, t) ≤ ρΓmax for a.e. (x, t) ∈ Σ}, (4.27)
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and where, for a.e. t ∈ (0, T ),

λ∗(·, t)


∈ {v ∈ L2(Ω) : ‖v‖L2(Ω) ≤ 1} if ‖u∗(·, t)‖L2(Ω) = 0

=
u∗(·, t)

‖u∗(·, t)‖L2(Ω)

if ‖u∗(·, t)‖L2(Ω) 6= 0
. (4.28)

as well as

λ∗Γ(·, t)


∈ {vΓ ∈ L2(Γ) : ‖vΓ‖L2(Γ) ≤ 1} if ‖u∗Γ(·, t)‖L2(Γ) = 0

=
u∗Γ(·, t)

‖u∗Γ(·, t)‖L2(Γ)

if ‖u∗Γ(·, t)‖L2(Γ) 6= 0
. (4.29)

Applying Lemma 4.6 to (4.24), and its analogue on Σ to (4.25), we arrive at the following result:

Theorem 4.8. (Directional sparsity in time) Suppose that the general assumptions (A1)–(A6) are
fulfilled, and assume that ρmin < 0 < ρmax and ρΓmin

< 0 < ρΓmax . Let u∗ = (u∗, u∗Γ) ∈ Uad be a
locally optimal control in the sense of U of the problem (CP) with the sparsity functional j defined in
(4.15), and with associated state (y∗, y∗Γ) = S(u∗) solving (1.1)–(1.3) and adjoint state p∗ = (p∗, p∗Γ)
solving (4.1)–(4.3). Then there are functions λ∗, λ∗Γ that satisfy (4.28), (4.29), and (4.24)–(4.25). In
addition, for almost every t ∈ (0, T ), we have that

‖u∗(·, t)‖L2(Ω) = 0 ⇐⇒ ‖p∗(·, t)‖L2(Ω) ≤ α, (4.30)

‖u∗Γ(·, t)‖L2(Γ) = 0 ⇐⇒ ‖p∗Γ(·, t)‖L2(Γ) ≤ αΓ. (4.31)

Moreover, if p∗ and λ∗, λ∗Γ are given, then the optimal controls u∗, u∗Γ are obtained from the projection
formulas

u∗(x, t) = max
{
ρmin,min

{
ρmax,−ν−1 (p∗ + αλ∗) (x, t)

}}
for a.e. (x, t) ∈ Q,

u∗Γ(x, t) = max
{
ρΓmin

,min
{
ρΓmax ,−νΓ

−1 (p∗Γ + αΓ λ
∗
Γ) (x, t)

}}
for a.e. (x, t) ∈ Σ.

The projection formulas above are standard conclusions from the variational inequalities (4.24)–(4.25).
It is to be expected that the support of locally optimal controls (u∗, u∗Γ) will shrink with increasing
sparsity parameters α, αΓ. Although this can hardly be quantified or proved, it is useful to confirm
that optimal controls vanish for all sufficiently large values of α and αΓ. We are going to derive a
corresponding result now.

For this purpose, let us indicate for a while the dependence of optimal controls, optimal states, and the
associated adjoint states, on the pair of weights α := (α, αΓ) by an index α, i.e., we write

u∗α = (u∗α, u
∗
Γα

), y∗α = (y∗α, y
∗
Γα

) and p∗α = (p∗α, p
∗
Γα

).

From (4.30) and (4.31) we infer that u∗α = 0 holds for all α > α∗ if

α∗ := sup
α>0
‖p∗α‖L∞(0,T ;H) < +∞, (4.32)

and u∗Γα
= 0 holds for all αΓ > α∗Γ if

α∗Γ := sup
αΓ>0
‖p∗Γα
‖L∞(0,T ;HΓ) < +∞. (4.33)
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Hence the controls vanish simultaneously if the components of α = (α, αΓ) are both larger than the
corresponding components of α∗ := (α∗, α∗Γ) provided that both (4.32) and (4.33) are valid. We now
show that this is actually the case. To this end, we recall the global estimates (2.8)–(2.10), which have
to be satisfied by all possible states corresponding to controls u ∈ Uad. Consequently, the right-hand
sides h := β1(y∗ − yQ) and hΓ := β2(y∗Γ − yΣ) in (4.1) and (4.2) are uniformly bounded in L2(Q)
and L2(Σ), respectively, independently of α. Moreover, owing to the continuity of the embedding
Y ⊂ C0([0, T ];V), the terminal data (p∗(T ), p∗Γ(T )) = (β3(y∗(T )− yΩ,T ), β3(y∗Γ(T )− yΓ,T )) are
uniformly bounded in V. Therefore, it follows from (4.4) that (p∗, p∗Γ) is bounded in Y, independently
of α. In particular,

‖(p∗, p∗Γ)‖C0([0,T ];H) ≤ C ,

where C > 0 is independent of α. Thus, in the case of directional sparsity in time, locally optimal
controls in the sense of U vanish for sufficiently large sparsity parameters.

4.2.2 Full sparsity

In this section, we consider the case when the sparsity functional is given by (1.8), i.e.,

j(u) = j((u, uΓ)) := α jQF (u) + αΓ j
Σ
F (uΓ) = α jQF (I(u)) + αΓ j

Σ
F (IΓ(u)), (4.34)

where I and IΓ have the same meaning as in (4.23). Similarly as there, we obtain that

∂j(u) = {(αλ, αΓλΓ) : λ ∈ ∂jQF (u), λΓ ∈ ∂jΣ
F (uΓ)}.

In the problem of full sparsity, the variational inequality (4.14) becomes∫∫
Q

(p∗ + αλ∗ + νu∗) (u− u∗) +

∫∫
Σ

(p∗Γ + αΓλ
∗
Γ + νΓu

∗
Γ) (uΓ − u∗Γ) ≥ 0

for all (u, uΓ) ∈ Uad. (4.35)

We now show the following result.

Theorem 4.9. (Full sparsity) Suppose that the assumptions (A1)–(A6) are fulfilled, and assume that
ρmax < 0 < ρmin and ρΓmin

< 0 < ρΓmax . Let u∗ = (u∗, u∗Γ) ∈ Uad be a locally optimal control in
the sense of U for the problem (CP) with the cost functional j defined in (4.34), and with associated
state (y∗, y∗Γ) = S(u∗) solving (1.1)–(1.3) and adjoint state p∗ = (p∗, p∗Γ) solving (4.1)–(4.3). Then
there exist functions λ∗ ∈ ∂jQF (u∗) and λ∗Γ ∈ ∂jΣ

F (u∗Γ) that satisfy (4.24)–(4.25). In addition, we
have that

u∗(x, t) = 0 ⇐⇒ |p∗(x, t)| ≤ α, for a.e. (x, t) ∈ Q, (4.36)

u∗Γ(x, t) = 0 ⇐⇒ |p∗Γ(x, t)| ≤ αΓ, for a.e. (x, t) ∈ Σ. (4.37)

Moreover, if p∗ and λ∗, λ∗Γ are given, then the optimal controls u∗, u∗Γ are obtained from the projection
formulas

u∗(x, t) = max
{
ρmin,min

{
ρmax,−ν−1 (p∗ + αλ∗) (x, t)

}}
for a.e. (x, t) ∈ Q,

u∗Γ(x, t) = max
{
ρΓmin

,min
{
ρΓmax ,−νΓ

−1 (p∗Γ + αΓ λ
∗
Γ) (x, t)

}}
for a.e. (x, t) ∈ Σ.
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Proof. First, we observe that the projection formulas are a direct consequence of the variational in-
equalities (4.24) and (4.25). It thus only remains to show the validity of (4.36) and (4.37). We only
prove the former equivalence, the proof of the latter is analogous.

We use the first projection formula and the fact that ρmin < 0 < ρmax. For a.e. (x, t) ∈ Q, we have:
if u∗(x, t) = 0, then −ν−1(p∗(x, t) + αλ∗(x, t)) = 0, where λ∗(x, t) ∈ [−1, 1]. Consequently,
|p∗(x, t)| = α|λ∗(x, t)| ≤ α.

Now let us assume that |p∗(x, t)| ≤ α. If u∗(x, t) > 0, then λ∗(x, t) = 1 and −ν−1(p∗(x, t) +
α) ≥ u∗(x, t) > 0, which implies that p∗(x, t) + α < 0 and thus |p∗(x, t)| = −p∗(x, t) > α, a
contradiction. By analogous reasoning, we can show that also the assumption u∗(x, t) < 0 leads to
a contradiction. We thus must have u∗(x, t) = 0. This ends the proof.

We conclude this section by investigating whether optimal controls have to vanish for sufficiently large
sparsity parameters. With the denotation introduced in the previous section, we thus have to check
whether

α∗ := sup
α>0
‖p∗α‖L∞(Q) < +∞, α∗Γ := sup

αΓ>0
‖p∗Γα
‖L∞(Σ) < +∞ . (4.38)

Such bounds cannot be expected to hold, in general. But they are actually valid under the following
additional assumption:

(A7) It holds β3 = β4 = 0, as well as yQ ∈ L∞(Q) and yΣ ∈ L∞(Σ).

Indeed, if (A7) is fulfilled, then the quantities introduced in (4.5) satisfy (4.6), (4.7), as well as q(0) = 0
and qΓ(0) = 0, where the functions h and hΓ are bounded in L∞(Q) and L∞(Σ), respectively,
independently of α. Now observe that in terms of these quantities the adjoint system (4.1)–(4.3)
becomes a special case of the auxiliary system (3.15)–(3.17) with λ1 = λ2 = 1 and λ3 = 0, up
to the minor difference that the arguments of the functions f ′′ and f ′′Γ differ from those in (3.15) and
(3.16) by a time shift. Since this difference does not matter in the estimates performed in the proof of
Lemma 3.2, we may argue as there to conclude that

‖(p∗α, p∗Γα
)‖U = ‖(q, qΓ)‖U ≤ C1 ‖(h, hΓ)‖U ≤ C2,

where C1 and C2 do not depend on α. The condition (4.38) is therefore fulfilled. In conclusion, also in
this case all locally optimal controls in the sense of U vanish for sufficiently large sparsity parameters.

4.3 Second-order sufficient optimality conditions

We conclude this paper with the derivation of second-order sufficient optimality conditions. We pro-
vide conditions that ensure local optimality of pairs u∗ = (u∗, u∗Γ) obeying the first-order necessary
optimality conditions of Theorem 4.5. Second-order sufficient optimality conditions are based on a
condition of coercivity that is required to hold for the smooth part J of J in a certain critical cone.
The nonsmooth part j contributes to sufficiency by its convexity. In the following, we restrict our-
selves to the case of full sparsity, where we generally assume that (A1)–(A6) and the conditions
ρmin < 0 < ρmax and ρΓmin

< 0 < ρΓmax are fulfilled. Our analysis will follow closely the lines of
[7], where a second-order analysis was performed for sparse control of the FitzHugh–Nagumo system.
In particular, we adapt the proof of [7, Thm. 3.4] to our setting of less regularity.
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To this end, we fix a pair of controls u∗ = (u∗, u∗Γ) that satisfies the first-order necessary optimality
conditions, and we set y∗ = (y∗, y∗Γ) = S(u∗). Then the cone

C(u∗) = {(v, vΓ) ∈ L2(0, T ;H) satisfying the sign conditions (4.39) a.e. in Q and Σ},

where

v(x, t)

{
≥ 0 if u∗(x, t) = ρmin

≤ 0 if u∗(x, t) = ρmax
, vΓ(x, t)

{
≥ 0 if u∗Γ(x, t) = ρΓmin

≤ 0 if u∗(x, t) = ρΓmax

, (4.39)

is called the cone of feasible directions, which is a convex and closed subset of L2(0, T ;H). We also
need the directional derivative of j at u ∈ L2(0, T ;H) in the direction v ∈ L2(0, T ;H), which is
given by

j′(u,v) = lim
τ↘0

1

τ
(j(u + τv)− j(u)) . (4.40)

Following the definition of the critical cone in [7, Sect. 3.1], we define

Cu∗ = {v ∈ C(u∗) : DĴ(u∗)[v] + j′(u∗,v) = 0} , (4.41)

which is also a closed and convex subset of L2(0, T ;H). According to [7, Sect. 3.1], it consists of all
v = (v, vΓ) ∈ C(u∗) satisfying

v(x, t)


= 0 if |p∗(x, t) + νu∗(x, t)| 6= α
≥ 0 if u∗(x, t) = ρmin or (p∗(x, t) = −α and u∗(x, t) = 0)
≤ 0 if u∗(x, t) = ρmax or (p∗(x, t) = α and u∗(x, t) = 0)

, (4.42)

as well as an analogous condition for vΓ.

Remark 4.10. Let us compare the first condition in (4.42) with the situation in the differentiable control
problem without sparsity terms obtained for α = αΓ = 0. Then this condition boils down to the
requirement that v(x, t) = 0 if |p∗(x, t) + νu∗(x, t)| > 0, or, since α = 0,

v(x, t) = 0 if |p∗(x, t) + αλ∗(x, t) + νu∗(x, t)| > 0. (4.43)

An analogous condition results for vΓ.

One might be tempted to define the critical cone using (4.43) and its counterpart for vΓ also in the
case α > 0, αΓ > 0. This, however, is not a good idea, because it leads to a critical cone that
is larger than needed, in general. As an example, we mention the particular case when the control
u∗ = 0 satisfies the first-order necessary optimality conditions and when |p∗| < α and |p∗Γ| < αΓ

hold a.e. in Q and Σ, respectively. Then the upper relation of (4.42), and its counterpart for vΓ, lead
to Cu∗ = {0}, the smallest possible critical cone.

However, thanks to u∗ = 0, the variational inequality (4.35) implies that p∗ + αλ∗ + νu∗ = 0 a.e. in
Q, and hence the condition |p∗(x, t) + αλ∗(x, t) + νu∗(x, t)| > 0 can only be satisfied on a set of
measure zero. Moreover, also the sign conditions (4.39) do not restrict the critical cone, and therefore
the largest possible critical cone Cu∗ = L2(0, T ;H) would be obtained, provided that analogous
conditions hold for u∗Γ and p∗Γ on Σ.

In this example, the quadratic growth condition (4.47) below is valid for the choice (4.41) as critical cone
even without assuming the coercivity condition (4.46) below (here the so-called first-order sufficient
conditions apply), while the use of a cone based on (4.43) leads to postulating (4.46) on the whole
space L2(0, T ;H) for the quadratic growth condition to be valid. This shows that the choice of (4.41)
as critical cone is essentially better than of one based on (4.43).
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At this point, we give an explicit expression for D2Ĵ(u)[v,w] for arbitrary u = (u, uΓ),v =
(v, vΓ),w = (w,wΓ) ∈ U. Arguing as in [43, Sect. 5.7], one obtains with (ϕ, ϕΓ) = DS(u)[v] and
(ψ, ψΓ) = DS(u)[w] that

D2Ĵ(u)[v,w] =

∫∫
Q

(
β1 − p f (3)(y)

)
ϕψ +

∫∫
Σ

(
β2 − pΓf

(3)
Γ (yΓ)

)
ϕΓψΓ

+ β3

∫
Ω

ϕ(T )ψ(T ) + β3

∫
Γ

ϕΓ(T )ψΓ(T ) + ν

∫∫
Q

vw + νΓ

∫∫
Σ

vΓwΓ , (4.44)

where (y, yΓ) and (p, pΓ) are the state and the adjoint state associated with u. We claim that∣∣∣D2Ĵ(u)[v,w]
∣∣∣ ≤ Ĉ ‖v‖L2(0,T ;H) ‖w‖L2(0,T ;H) , (4.45)

where the constant Ĉ > 0 is independent of u,v,w ∈ Uad. To prove the validity of (4.45), we
estimate the only critical term

I := −
∫∫

Q

pf (3)(y)ϕψ −
∫∫

Σ

pΓf
(3)
Γ (yΓ)ϕΓψΓ .

To this end, recall that (p, pΓ) ∈ Y by Theorem 4.3 and the global bound (2.10). Then, using Hölder’s
inequality, and the continuous embeddings V ⊂ L4(Ω) and VΓ ⊂ L4(Γ), we obtain that

|I| ≤ K1

∫ T

0

(
‖p‖L2(Ω) ‖ϕ‖L4(Ω) ‖ψ‖L4(Ω) + ‖pΓ‖L2(Γ) ‖ϕΓ‖L4(Γ) ‖ψΓ‖L4(Γ)

)
dt

≤ C
(
‖ϕ‖C0([0,T ];V ) ‖ψ‖C0([0,T ];V ) + ‖ϕΓ‖C0([0,T ];VΓ) ‖ψΓ‖C0([0,T ];VΓ)

)
≤ C ‖(ϕ, ϕΓ)‖Y ‖(ψ, ψΓ)‖Y ≤ C ‖v‖L2(0,T ;H) ‖w‖L2(0,T ;H) ,

which proves the claim. This result shows that, for all u ∈ Uad, the functional D2Ĵ(u) can be con-
tinuously extended to a continuous bilinear functional on L2(0, T ;H)2. This extension, which will still
be denoted by D2Ĵ(u), will be frequently used in the following.

We will rely on the following coercivity condition:

D2Ĵ(u∗)[v,v] > 0 ∀v ∈ Cu∗ \ {0} . (4.46)

Condition (4.46) is a direct extension of associated conditions that are standard in finite-dimensional
nonlinear optimization. In the optimal control of partial differential equation, it was first used in [8]. As
in [7, Thm 3.3] or [8], it can be shown that (4.46) is equivalent to the existence of a constant δ > 0
such that D2Ĵ(u∗)[v,v] ≥ δ ‖v‖2

L2(0,T ;H) for all v ∈ Cu∗ .

We have the following result.

Theorem 4.11. (Second-order sufficient condition) Suppose that (A1)–(A6) are fulfilled and that
ρmin < 0 < ρmax and ρΓmin

< 0 < ρΓmax . Moreover, let u∗ = (u∗, u∗Γ) ∈ Uad, together with
the associated state (y∗, y∗Γ) = S(u∗) and adjoint state (p∗, p∗Γ), fulfill the first-order necessary opti-
mality conditions of Theorem 4.5. If, in addition, u∗ satisfies the coercivity condition (4.46), then there
exist ε > 0 and σ > 0 such that the quadratic growth condition

Ĵ(u) ≥ Ĵ(u∗) + σ ‖u− u∗‖2
L2(0,T ;H) (4.47)

holds for all u ∈ Uad with ‖u− u∗‖L2(0,T ;H) < ε. Consequently, u∗ is a locally optimal control in the
sense of L2(0, T ;H).

DOI 10.20347/WIAS.PREPRINT.3005 Berlin 2023



J. Sprekels, F. Tröltzsch 24

Proof. The proof follows the one of [7, Thm. 3.4]. We remark that in [7] the second-order differentia-
bility of the objective functional in some Lp-space with p < ∞ was used, which we do not have in
our situation. However, as E. Casas pointed out to us in a private communication, this argument is not
needed.

We argue by contradiction, assuming that the claim of the theorem is not true. Then there exists a
sequence of controls {uk} ⊂ Uad such that, for all k ∈ N,

‖uk − u∗‖L2(0,T ;H) <
1

k
while Ĵ(uk) < Ĵ(u∗) +

1

2k
‖uk − u∗‖2

L2(0,T ;H) . (4.48)

Noting that uk 6= u∗ for all k ∈ N, we define

rk = ‖uk − u∗‖L2(0,T ;H) and vk =
1

rk
(uk − u∗) .

Then ‖vk‖L2(0,T ;H) = 1 and, possibly after selecting a subsequence, we can assume that

vk → v weakly in L2(0, T ;H)

for some v ∈ L2(0, T ;H). As in [7], the proof is split into three parts.

(i) v ∈ Cu∗ : Obviously, each vk obeys the sign conditions (4.39) and thus belongs to C(u∗). Since
C(u∗) is convex and closed in L2(0, T ;H), it follows that v ∈ C(u∗). We now claim that

DĴ(u∗)[v] + j′(u∗,v) = 0. (4.49)

Notice that by Remark 4.4 the expression DĴ(u∗)[v] is well defined. For every r ∈ (0, 1) and all
v = (v, vΓ), u = (u, uΓ) ∈ L2(0, T ;H), we infer from the convexity of j that

j(v)− j(u) ≥ j(u + r(v − u))− j(u)

r
≥ j′(u,v − u)

= max
(αλ,αΓλΓ)∈∂j(u)

(∫∫
Q

αλ(v − u) +

∫∫
Σ

αΓλΓ(vΓ − uΓ)
)
. (4.50)

This inequality yields, with uk = (uk, ukΓ
),

DĴ(u∗)[v] + j′(u∗,v) ≥ DĴ(u∗)[v] +

∫∫
Q

αλ∗v +

∫∫
Σ

αΓλ
∗
ΓvΓ

=

∫∫
Q

(p∗ + νu∗)v +

∫∫
Σ

(p∗Γ + νu∗Γ)vΓ +

∫∫
Q

αλ∗v +

∫∫
Σ

αΓλ
∗
ΓvΓ

= lim
k→∞

1

rk

(∫∫
Q

(p∗ + νu∗ + αλ∗)(uk − u∗) +

∫∫
Σ

(p∗Γ + νu∗Γ + αλ∗Γ)(ukΓ − u∗Γ)
)

≥ 0 , (4.51)

by the variational inequality (4.35). Next, we prove the converse inequality. By (4.48), we have

Ĵ(uk)− Ĵ(u∗) + j(uk)− j(u∗) <
1

2k
r2
k ,

whence, owing to the mean value theorem, and since uk = u∗ + rkvk, we get

Ĵ(u∗) + rkDĴ(u∗ + ϑkrkvk)[vk] + j(u∗ + rkvk) < Ĵ(u∗) + j(u∗) +
1

2k
r2
k
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with some 0 < ϑk < 1. From (4.50), we obtain j(u∗ + rkvk)− j(u∗) ≥ j′(u∗, rkvk), and thus

rkDĴ(u∗ + ϑkrkvk)[vk] + rkj
′(u∗,vk) <

r2
k

2k
.

We divide this inequality by rk and pass to the limit k → ∞. Here, we invoke Corollary 5.2 of the
Appendix, and we use that j′(u∗,vk)→ j′(u∗,v). We then obtain the desired converse inequality

DĴ(u∗)[v] + j′(u∗,v) ≤ 0 ,

which completes the proof of (i).

(ii) v = 0: We again invoke (4.48), now performing a second-order Taylor expansion on the left-hand
side,

Ĵ(u∗) + rkDĴ(u∗)[vk] +
r2
k

2
D2Ĵ(u∗ + ϑkrkvk)[vk,vk] + j(u∗ + rkvk)

< Ĵ(u∗) + j(u∗) +
r2
k

2k
.

We subtract Ĵ(u∗) + j(u∗) from both sides and use (4.50) once more to find that

rk

(
DĴ(u∗)[vk] + j′(u∗,vk)

)
+
r2
k

2
D2Ĵ(u∗ + ϑkrkvk)[vk,vk] <

r2
k

2k
. (4.52)

From the right-hand side of (4.50), and the variational inequality (4.14), it follows

DĴ(u∗)[vk] + j′(u∗,vk) ≥ 0 ,

and thus, by (4.52),

D2Ĵ(u∗ + ϑkrkvk)[vk,vk] <
1

k
. (4.53)

Passing to the limit k → ∞, we apply Lemma 5.3 and deduce that D2Ĵ(u∗)[v,v] ≤ 0. Since we
know that v ∈ Cu∗ , the second-order condition (4.46) implies that v = 0.

(iii) Contradiction: To finish the proof, we employ (4.44) to see that

D2Ĵ(u∗)[vk,vk] =

∫∫
Q

(
β1 − p∗f (3)(y∗)

)
ϕ2
k +

∫∫
Σ

(
β2 − p∗Γf

(3)
Γ (y∗Γ)

)
ϕ2
kΓ

+ β3

∫
Ω

ϕk(T )2 + β3

∫
Γ

ϕkΓ
(T )2 + ν

∫∫
Q

v2
k + νΓ

∫∫
Σ

v2
kΓ
. (4.54)

As shown in the previous step, v = 0, and therefore vk → 0 weakly in L2(0, T ;H). By Lemma
5.3, the sum of the four integrals containing ϕk or ϕkΓ

tends to zero. On the other hand, we have
‖vk‖L2(0,T ;H) = 1 for all k ∈ N, by construction. Hence,

ν

∫∫
Q

v2
k + νΓ

∫∫
Σ

v2
kΓ
≥ min{ν, νΓ}

(∫∫
Q

v2
k +

∫∫
Σ

v2
kΓ

)
= min{ν, νΓ} > 0. (4.55)

It therefore follows from the weak sequential lower semicontinuity of the last two summands on the
right-hand side of (4.54) that

lim inf
k→∞

D2Ĵ(u∗)[vk,vk] ≥ lim inf
k→∞

(
ν

∫∫
Q

v2
k + νΓ

∫∫
Σ

v2
kΓ

)
≥ min{ν, νΓ} > 0 .
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On the other hand, it is easily deduced from (4.53) and (3.10) that

lim inf
k→∞

D2Ĵ(u∗)[vk,vk] ≤ 0 ,

a contradiction. The assertion of the theorem is thus proved.

For the particular case α = αΓ without sparsity functional, Theorem 4.10 improves the second-order
sufficient condition [23, Thm. 3.6]: indeed, our coercivity condition (4.46) is required on a smaller
critical cone (compare (4.43) with the condition [23, (3.72)]), and we have local optimality in an L2-
neighborhood, hence in a larger set than in an L∞-neighborhood as in [23].

5 Appendix

In the following, we assume that (A1)–(A6) are fulfilled.

Lemma 5.1. Let {uk} ⊂ Uad converge strongly in L2(0, T ;H) to u∗ ∈ Uad. Then the sequence
{yk} of associated states converges strongly in Y to y∗, and the sequence {pk} of associated
adjoint states converges strongly in Y to p∗.

Proof. The strong convergence ‖yk−y∗‖Y → 0 follows directly from [23, Lem. 2.4]. By the continuity
of the embedding Y ⊂ C0([0, T ];V), we then have ‖yk(T ) − y∗(T )‖V → 0. Moreover, since the
states yk = (yk, ykΓ

) and y∗ = (y∗, y∗Γ) have to obey the separation property (2.9), we can
easily infer from (2.10) and the continuous embedding V ⊂ (L6(Ω)× L6(Γ)), using the mean value
theorem, that

‖f ′′(yk)− f ′′(y∗)‖C0([0,T ];L6(Ω)) + ‖f ′′Γ(ykΓ
)− f ′′Γ(y∗Γ)‖C0([0,T ];L6(Γ)) → 0 as k →∞. (5.1)

Next, we observe that the adjoint states pk = (pk, pkΓ) solve the system

− ∂tp−∆p+ f ′′(yk)p = β1(yk − yQ) a.e. in Q,

− ∂tpΓ −∆ΓpΓ + ∂np+ f ′′Γ(ykΓ)pΓ = β2(ykΓ − yΣ) and pΓ = p|Γ a.e. on Σ,

p(T ) = β3(yk(T )− yΩ,T ) a.e. in Ω, pΓ(T ) = β3(ykΓ(T )− yΓ,T ) a.e. on Γ.

From (2.10) it follows that the sequences {‖f ′′(yk)‖L∞(Q)} and {‖f ′′Γ(ykΓ)‖L∞(Σ)} are bounded.
Arguing as in the proof of the bound (4.4) in Theorem 4.3, we obtain that

‖pk‖Y ≤ c
(
‖yk − yΩ‖L2(Q) + ‖ykΓ − yΣ‖L2(Σ) + ‖yk(T )− yΩ,T‖V + ‖ykΓ(T )− yΓ,T‖VΓ

)
for all k ∈ N. In view of the convergence results shown above, we thus can conclude that

‖pk‖Y ≤ K for all k ∈ N, with some constant K > 0. (5.2)

Now we subtract the adjoint equations for pk and p∗ and set zk = (zk, zkΓ
) = pk − p∗. After some

rearrangement, we arrive at the system

− ∂tzk −∆zk + f ′′(y∗)zk = β1(yk − y∗) + [f ′′(yk)− f ′′(y∗)]pk a.e. in Q, (5.3)

− ∂tzkΓ −∆ΓzkΓ + ∂nzk + f ′′Γ(y∗Γ)zkΓ = β2(ykΓ − y∗Γ) + [f ′′Γ(ykΓ)− f ′′Γ(y∗Γ)]pkΓ

and zkΓ = zk |Γ a.e. on Σ, (5.4)

zk(T ) = β3(yk(T )− y∗(T )) a.e. in Ω, zkΓ(T ) = β3(ykΓ(T )− y∗Γ(T )) a.e. on Γ . (5.5)
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Again, we apply Theorem 4.3 to estimate zk in terms of the norms of the right-hand sides. Now notice
that from (5.1) and (5.2) it readily follows that the right-hand side of (5.3) converges to zero strongly
in L2(Q). Analogously, the right-hand side of (5.4) tends to zero strongly in L2(Σ). Therefore, and
since ‖yk(T ) − y∗(T )‖V → 0, we can infer from Theorem 4.3 that ‖zk‖Y → 0 as k → ∞. The
assertion is thus proved.

Corollary 5.2. Let {uk} ⊂ Uad converge strongly in L2(0, T ;H) to u∗ ∈ Uad, and let {vk} con-
verge weakly to v in L2(0, T ;H). Then

lim
k→∞

DĴ(uk)[vk] = DĴ(u∗)[v] . (5.6)

Proof. We have, with vk = (vk, vkΓ
),

DĴ(uk)[vk] =

∫∫
Q

(pk + νuk)vk +

∫∫
Σ

(pkΓ + νukΓ)vkΓ.

Owing to Lemma 5.1, we have, in particular, that {pk + νuk} converges to p∗ + νu∗ strongly in
L2(0, T ;H), whence the assertion immediately follows.

Lemma 5.3. Let {uk} and {vk} satisfy the conditions of Corollary 5.2, and assume that ν = νΓ = 0.
Then

lim
k→∞

D2Ĵ(uk)[vk,vk] = D2Ĵ(u∗)[v,v]. (5.7)

Proof. Let vk = (vk, vkΓ
), v = (v, vΓ), (ϕk, ϕkΓ

) = DS(uk)[vk], and (ϕ, ϕΓ) = DS(u∗)[v].
Since ν = νΓ = 0, we infer from (4.44) that

D2Ĵ(uk)[vk,vk] =

∫∫
Q

(β1 − pkf (3)(yk))ϕ
2
k +

∫∫
Σ

(β2 − pkΓf
(3)
Γ (ykΓ))ϕ2

kΓ

+ β3

∫
Ω

ϕ2
k(T ) + β3

∫
Γ

ϕ2
kΓ(T ) =

4∑
i=1

Ii,k,

with obvious notation. At first, notice that

(ϕk, ϕkΓ)− (ϕ, ϕΓ) = (DS(uk)−DS(u∗)) [vk] + DS(u∗)[vk − v] .

By virtue of (3.9) (recall Remark 3.1 in this regard) and the boundedness of {vk} in L2(0, T ;H), the
first summand on the right converges strongly to zero in Y. The second converges to zero weakly in
Y and, thanks to the compactness of the embedding Y ⊂ C0([0, T ];Lp(Ω)×Lp(Γ)) for 1 ≤ p < 6
(see, e.g., [39, Sect. 8, Cor. 4]), strongly in C0([0, T ];L5(Ω)× L5(Γ)). In conclusion,

(ϕk, ϕkΓ
)→ (ϕ, ϕΓ) strongly in C0([0, T ];L5(Ω)× L5(Γ)) . (5.8)

In particular,

lim
k→∞

(I3,k + I4,k) = β3

∫
Ω

ϕ2(T ) + β3

∫
Γ

ϕ2
Γ(T ) . (5.9)

Moreover, similarly as in (5.1), we have, as k →∞,

‖f (3)(yk)− f (3)(y∗)‖C0([0,T ];L6(Ω)) + ‖f (3)
Γ (ykΓ

)− f (3)
Γ (y∗Γ)‖C0([0,T ];L6(Γ)) → 0 , (5.10)
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and we know already from Lemma 5.1 that pk → p∗ strongly in C0([0, T ];L6(Ω)× L6(Γ)). Com-
bining this with (5.8) and (5.10), and invoking Hölder’s inequality appropriately, we easily verify that

lim
k→∞

(I1,k + I2,k) =

∫∫
Q

(β1 − p∗f (3)(y∗))ϕ2 +

∫∫
Σ

(β2 − p∗Γf
(3)
Γ (y∗Γ))ϕ2

Γ . (5.11)

From (5.9) and (5.11), the assertion follows.
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